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Unitarity is the fundamental property of the S-matrix, while its usage for a scattering of unstable particles
has been subtle as unstable particles do not appear in the asymptotic states. Defining unstable-particle
amplitudes as residues of a higher-point amplitude at an appropriate complex pole, we find unitarity
equations for the 2-to-2 unstable-particle amplitudes from unitarity and analyticity of stable-particle
scattering amplitudes. The unstable-particle unitarity equations take a form analogous to those of the stable-
particle amplitudes when the in and out states are chosen to be complex-conjugate positions. In particular,
as in the optical theorem, we find a positivity constraint on a discontinuity of the amplitudes in a positive
region of the momentum transfer variable.
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I. INTRODUCTION

We are in the era of the revival of the S-matrix theory of
the 1960s. The physical requirements such as unitarity and
causality provide powerful consistency conditions on the
S-matrix, called positivity bounds, and they can be used to
constrain low-energy physics without detailed knowledge
of high-energy physics [1–3]. In the lack of understanding
ultimate laws of nature, the positivity bounds provide one
of the most promising ways to investigate new physics in a
model-independent way, and recently there has been a lot
of progress such as sharpening the bounds [4–18] and
extending the bounds to gravitational systems [19–28] and
systems without Lorentz invariance [29–32].
The S-matrix is a probability amplitude connecting the

infinite past and the infinite future. When a theory contains
unstable particles as well as stable particles, the asymptotic
states are spanned by the stable particles only, and
the unstable particles do not appear in the asymptotic
states [33]. A question is then whether we can apply the
S-matrix constraints to a “scattering” of unstable particles.
Unstable particles appear in many contexts. Most of the
known particles, either elementary ones or composite ones,
have finite decay widths [34]. New particles in physics
beyond the Standard Model and in quantum gravity would
be unstable unless they are protected by symmetry. If we
cannot apply the S-matrix arguments to the unstable
particles, this gives a strong limitation in the availability

of the S-matrix theory. Having said that, unstable particles
and stable particles may be indistinguishable when the
lifetime is sufficiently longer than the timescale of interest.
At least in an approximate sense, “scattering amplitudes” of
the unstable particles should be constrained by the physical
requirements. This would be a reason why the subtlety
associated with the unstable particles has not been seriously
studied. Yet, we need to quantify the requirements with a
proper definition of unstable-particle amplitudes to make
definite predictions. Even tiny corrections are important in
investigating quantum gravity constraints [35–39].
A definition of the unstable-particle amplitudes was

suggested in the 1960s (see [40] and references therein).
In the S-matrix theory, physical amplitudes are identified
with boundary values of analytic functions with singular-
ities implied by unitarity. A stable-particle exchange leads
to a pole whose residue is factorized by amplitudes
involving this particle; that is, a lower-point amplitude
is embedded in a higher-point amplitude. Analogously, a
lower-point unstable-particle scattering amplitude can be
defined by a residue of a higher-point stable-particle
amplitude at a complex pole corresponding to the unstable
particle. Then, we can discuss their properties although
there is still an ambiguity in the definition regarding the
choice of the complex pole as we will discuss later.
In a weakly coupled system, one may use the perturba-

tion theory to compute unstable-particle amplitudes.
Stable-particle amplitudes and unstable-particle amplitudes
exhibit different behaviors at the loop level as new
singularities such as anomalous thresholds and external-
mass singularities [41–43] arise when the mass of an
external state is extrapolated to an unstable region.
Nonetheless, in general, the perturbation series does not
necessarily converge and a resummation is required.
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We need to make sure whether perturbative calculations
correctly capture the properties followed by the general
requirements such as unitarity. It is desirable to understand
the general properties of unstable-particle amplitudes ab
initio without relying on the perturbation theory.
We thus revisit the S-matrix theory [40] whose under-

lying idea is making use of unitarity and analyticity of a
higher-point amplitude to analyse an embedded lower-
point amplitude. We first explain our assumptions and their
immediate consequences in Sec. II by following [40].
In Sec. III, we derive the unitarity equations for the
unstable-particle amplitudes from those for higher-point
stable-particle amplitudes. We discuss the properties of the
unstable-particle amplitudes based on the obtained unitarity
equations. The unitarity equations are derived in a negative
momentum transfer t < 0, where t is one of the
Mandelstam variables, in Sec. III while they are extended
to a finite positive t in Sec. IV. In Sec. V, we especially
focus on the sign of a discontinuity of the unstable-particle
amplitudes and show that the sign is fixed in a positive
region of the momentum transfer variable. We conclude in
Sec. VI with a summary and discussions. In Appendix A,
we briefly review the stable-particle unitarity equations and
we study a triangle Feynman diagram as a perturbative
validation of our results in Appendix B.

II. S-MATRIX THEORY

For simplicity, we focus on a theory composed of a stable
scalar field φ with the mass μ and an unstable scalar field A
with the pole massM in four dimensions. By the use of the
connected part of the S-matrix, the n-to-n0 scattering
amplitude and its Hermitian conjugate are defined by

hfp0gjSjfpgic ¼ −ið2πÞ4δð4Þðp0
tot − ptotÞAðþÞ

n0n ; ð2:1Þ

hfp0gjS†jfpgic ¼ ið2πÞ4δð4Þðp0
tot − ptotÞAð−Þ

n0n ; ð2:2Þ

withAð−Þ
n0n ¼ ðAðþÞ

nn0 Þ� where fpg and fp0g are the sets of the
external four-momenta of the initial and final states with
the total four-momenta ptot and p0

tot, respectively. We use
the ð−;þ;þ;þÞ convention and omit the Lorentz indices
for notational simplicity. We again emphasize that the
unstable particle does not appear in the asymptotic states
and its existence can be seen as a complex pole with
ImM2 < 0 as we will explain later. Hence, jfpgi only
involves the stable particles. Note that the amplitude is
defined with a minus sign in (2.1) to follow the convention
of Chapter 4 of [40]; accordingly, the imaginary part of the
forward amplitude is negative rather than positive.
Having defined the amplitudes, we require:
(1) Lorentz invariance: The amplitudes are given by

functions of Lorentz-invariant variables.
(2) Unitarity: SS† ¼ S†S ¼ 1.

(3) Analyticity: The physical amplitude and its Hermi-
tian conjugate are real boundary values of the same
analytic function with singularities inferred from
unitarity. In particular, the unitarity equations are
supposed to be the sums of discontinuities across
individual thresholds.

This analytic property is called Hermitian analyticity which
can be proved under a weaker condition on analyticity (or
causality) at least for the 2-to-2 amplitude in a gapped
system [40]. We do not prove Hermitian analyticity of
higher-point amplitudes in the present paper and simply
employ it as our analyticity postulate. Let us below explain
our assumptions in order. See [40] and references therein
for details.
Lorentz invariance concludes that the n-to-n0 amplitudes

are functions of 3ðnþ n0Þ − 10 independent inner products
of external momenta which we collectively denote by sA.

1

It is convenient to use the variables

sijk��� ≔ −p2
ijk��� ¼ −ð�pi � pj � pk � � � �Þ2; ð2:3Þ

where pi refers to both in and out momenta with the (þ)
sign for in momenta and with the (−) sign for out momenta,
respectively. In particular, the total energy variable is
denoted by s ¼ s12��� ¼ −p2

tot unless otherwise stated.2

The variables sij��� are subject to constraints in the physical
region. Together with the positive frequency conditions, the
physical region constraints correspond to the Gram deter-
minants (or the Cayley–Menger determinants) to have
appropriate signs. Let us write the set of indices i1 � � � ip
as I, ipþ1 � � � ipþq as J, i1 � � � ipipþ1 � � � ipþq as IJ and so on.
Considering timelike vectors pI, pJ, and pK , the physical
region constraints on their inner products are given by

���������

0 1 1 1

1 0 sJ sI
1 sJ 0 sIJ
1 sI sIJ 0

���������
> 0; ð2:4Þ

1In general, the amplitudes are decomposed into scalar and
pseudoscalar parts. The pseudoscalar part is absent for n ¼ n0 ¼
2 in four dimensions since the conservation law leaves three
independent momenta and no pseudoscalar can be formed by
three vectors. Since we are interested in 2-to-2 subamplitudes
embedded in higher-point amplitudes, the pseudoscalar part of
higher-point amplitudes would be irrelevant to our discussions.

2The variables s, t, and u will be used to denote the
Mandelstam variables of embedded 2-to-2 amplitudes. The
relations between fs; t; ug and the energy variables of a
higher-point amplitude depend on how the 2-to-2 amplitude is
embedded. In most cases of the present paper, the total energy
variable of the higher-point amplitude agrees with that of the
embedded 2-to-2 amplitude.
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������������

0 1 1 1 1

1 0 sJ sJK sI
1 sJ 0 sK sIJ
1 sJK sK 0 sIJK
1 sI sIJ sIJK 0

������������
> 0: ð2:5Þ

Lorentz transformation can also be used to interchange the
in momenta and the out momenta of the n ¼ n0 ¼ 2
amplitude, concluding the symmetry condition

hp0
2p

0
1jSjp1p2i ¼ hp2p1jSjp0

1p
0
2i: ð2:6Þ

In the following, we adopt the diagrammatic notation of
[40,44]:

ð2:7Þ

where q is the four-momentum of an internal line which is
determined by external momenta p and loop momenta k
according to the conservation law. Then, the unitarity
equations, which are consequences of SS† ¼ 1, of the
2-to-2 amplitude and the 3-to-3 amplitudes in ð3μÞ2 ≤ s <
ð4μÞ2 are written as

ð2:8Þ

ð2:9Þ

where the summations are over the possible connected
diagrams with different choices of the particles. The
unitarity equation only involves the solid lines representing
the stable φ-particle because of the absence of the unstable
particles in the asymptotic states [33] (see also [45]). As the
total energy increases, the number of internal lines
increases while the structure of the equations is the same

in the 2-to-2 and 3-to-3 unitarity equations (see
Appendix A). According to (2.6), the left-hand side (lhs)
of the 2-to-2 unitarity equation represents the imaginary
part, .
The amplitudes Að�Þ

n0n can be analytically continued from
the physical region into the complex plane with the relation

Að−Þ
n0n ðsAÞ ¼ ½AðþÞ

nn0 ðs�AÞ�� in the complex domain. Hermitian

analyticity states that Að�Þ
n0n are opposite boundary values of

the same analytic functions An0n,
3 which we may write

Að�Þ
n0n ðsAÞ ¼ lim

ε→0þ
An0nðsA � iεÞ: ð2:10Þ

The directions to approach the real axis may depend on the
choice of the variables. The precise directions to approach
the real axis have to be chosen to coincide with the causal
direction for the (þ) amplitude and the anticausal direction
for the (−) amplitude, respectively (see [43] for a recent
discussion). An immediate consequence of (2.10) is that
the unitarity equation represents the total discontinuity of
the analytically-continued amplitudeAn0n. For example, the
2-to-2 unitarity equation is understood as the discontinuity
between sþ iε and s − iε, The
first and second terms on the right-hand side (rhs) of (2.9)
are the discontinuities associated with the two-particle
intermediate states and the three-particle states, respec-
tively. The unitarity equations of higher-point amplitudes
are more involved. As we stated in the assumption 3, we
shall assume that the unitarity equations are decomposed
into discontinuities across individual energy variables [47].
The first line of the rhs of (2.9) is regarded as the
discontinuity in the total energy variable swhile the second
line of (2.9) is understood as the 2-particle discontinuities in
subenergy variables

ð2:11Þ

where the labels (�) only refer to the ways of approach of
the specified subenergy variable, namely s12 ¼ −ðp1 þ
p2Þ2 and s45 ¼ −ðp4 þ p5Þ2 with the label . The

last term of (2.9) is the sum of the one-particle singularities
in cross-energy variables, e.g., s145 ¼ −ðp1 − p4 − p5Þ2.
A resonance of an unstable particle can be explained by a

complex pole s ¼ M2 residing on the unphysical sheet that
is reached from the physical region by going down through
the branch cut (see Fig. 1). The existence of a complex pole
is indeed predicted by unitarity [48]. Hermitian analyticity

3When the amplitude satisfies the symmetry condition (2.6),
Hermitian analyticity is reduced to real analyticity; see e.g., [46]
for their distinctions.
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implies that another pole, called a shadow pole, also exists
at the complex-conjugate position s ¼ ðM2Þ� which is
reached from the opposite boundary by going up through
the cut. Therefore, when one continues the (�) amplitudes
from a real s to s ¼ M2 by going down, the analytic

continuation of AðþÞ
22 has a singularity while Að−Þ

22 is regular

since s stays on the physical sheet for Að−Þ
22 [see the path

(c)]. Conversely, when one moves s up to reach s ¼ ðM2Þ�,
AðþÞ

22 is regular whereas Að−Þ
22 is singular, respectively.

We then analytically continue the 3-to-3 amplitude by
moving the subenergy variable s12 ¼ −ðp1 þ p2Þ2 from
the upper-half plane and investigate the neighborhood of
the complex pole s12 ¼ M2,

ð2:12Þ

wherewe add the label (þ) to cover the 1 and 2 external lines
only sincewe have only specified the direction of the analytic
continuation of the variable s12. The symbol ∼ means that
we have picked out the singular terms and the wavy line
connecting to the (þ) bubble in the right diagram is under-
stood as the pole factor ðs12 −M2Þ−1. The existence of the
singularity at s12 ¼ M2 is deduced from (2.11) since the small
(þ) bubble has a pole at s12 ¼ M2 when the 2-to-2 amplitude
does. On the other hand, we can consider a different path of
the analytic continuation to reach the shadow pole

ð2:13Þ

in which the wavy line connecting to the (−) bubble should be
understood as ½s12 − ðM2Þ��−1. The residue is computed by
considering an integration contour encircling the pole accord-
ing to Cauchy’s residue theorem. The 2-to-3 amplitudewith an
external unstable particle is then defined by the residue at either
s12 ¼ M2 or s12 ¼ ðM2Þ� after subtracting the three-point
coupling constant . Similarly, we can define the 2-to-2
amplitudes representing a “scattering” of a stable particle and
an unstable particle which are diagrammatically denoted by

ð2:14Þ

We stress that the definition of the unstable-particle amplitude
is not unique as it depends on the choice of the complexpole. In
the literature (e.g., [43]), the unstable-particle amplitudes are
defined by the all-(þ) amplitudes [the former one of (2.14)]
because M2 is the pole approached from the causal direction.
However, there is no need to use the all-(þ) amplitudes to
investigate the S-matrix constraints since we are interested in
the analytically continued amplitudeswhichno longer describe
physical scattering processes. In fact, as wewill show, unitarity
equations take a simpler form in the case of themixed type [the
latter one of (2.14)] and the mixed-type would be more useful
for studying unitarity constraints.

III. UNITARITY EQUATIONS

A. Aφ → Aφ

Using the above properties, let us find the unitarity
equation of the unstable-particle scattering. We start with
the unitarity equation of the 3-to-3 amplitude and consider
its residue at the complex poles of the subenergy variables

s12 and s45 with the label . The path of analytic

continuation should be chosen to reach the correct sheet on
which the complex pole exists (see Fig. 1). Since the
complex pole is responsible for the resonance, there should
be paths fromReM2 � iε to the polesM2 and ðM2Þ� without
a nonanalytic change of the unitarity equation. In other
words, we deal with the complex pole that is the singularity
closest to the real boundaries. Hence, we first consider the
unitarity equation in the vicinity of s12 ¼ s45 ¼ ReM2 and
then continue it by complexifying s12 and s45.
The variables s ¼ s123 ¼ s456; u ¼ s126 ¼ s345 and

t ¼ s1245 ¼ s36 play the role of the standard Mandelstam
variables after extracting the residuewhere s, t, u are subject
to the constraint sþ tþ u ¼ 2μ2 þ s12 þ s45. We should
understand the physical region in which the unitarity
equations are first applied. For fixed fs12; s45g, the physical
region of fs; t; ug can be identified by using (2.4) and (2.5),
e.g., putting I ¼ 12; J ¼ 3; K ¼ 45 in (2.5). The constraint
is shown in Fig. 2 where the physical region of the process
123 → 456 (the s-channel process) corresponds to the right
region. The variable u can take a positive value even in the
s-channel region; thus, the u-channel normal threshold can
be present in the s-channel unitarity equation. On the other
hand, t is always negative in the s-channel region and the
t-channel normal threshold would not appear. We thus
regard the amplitude as a function of s; u; s12; s45 and
variables that are irrelevant to the residue.
When ð2μÞ2 < ReM2 < ð3μÞ2, we can use (2.9) in

s < ð4μÞ2. On the lhs of the unitarity equation (2.9), the

variables s12 and s45 in and are situated in

different positions on the Riemann surface. We use the

FIG. 1. The positions of the complex pole P at s ¼ M2 and the
shadow pole at s ¼ ðM2Þ� where the symbol × denotes the branch
point. The black dashed lines are the paths on the physical sheetwhile
the red dotted lines are on the unphysical sheet. Depending on the
path, we do or do not reach the complex poles: the paths (a) and (b)
reach the complex poleM2 and the shadow pole ðM2Þ� whereas the
path (c) stays on the physical sheet on which no complex poles exist.
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discontinuity equations of the subenergies (2.11) to set
them to the same position:

ð3:1Þ

Here, R denotes the diagrams that either the 1 and 2 lines or
the 4 and 5 lines do not connect to a single (�) bubble
which may not possess the complex pole of either s12 or s45.
As ReM2 or s increases, the number of internal lines
increases as long as kinematically allowed. Therefore, the
general expression is

ð3:2Þ

where a, b are the number of the internal lines and the bold
line is the shorthand for the summation. We then move
s12 and s45 by going up/down to reach s12 ¼ ðM2Þ� and
s45 ¼ M2 at which R may be regular in either s12 or s45,
leading to

ð3:3Þ

Canceling the common factors, we obtain the unitarity
equation of the unstable-particle scattering as the residue of
the 3-to-3 unitarity equation:

ð3:4Þ

Note that thanks to choosing the complex conjugate
positions s12 ¼ ðM2Þ� and s45 ¼ M2, the constraint sþ
tþ u ¼ 2μ2 þ 2ReM2 is unchanged.4

Let us discuss what the unitarity equation (3.4) evaluates.
We recall that the (þ) amplitude is related to the (−)
amplitude via the Hermitian conjugation Að−Þ

n0n ¼ ðAðþÞ
nn0 Þ�,

reading

Að−Þ
33 ðs; u; s12; s45; � � �Þ ¼ ½AðþÞ

33 ðs; u; s�45; s�12; � � �Þ�� ð3:5Þ

for s; u ∈ R, s12; s45 ∈ C, and � � � are variables irrelevant to
the residue. We have used that s and u are invariant under
the replacement fp1; p2; p3g ↔ fp4; p5; p6gwhile s12 and
s45 are interchanged with complex conjugation. When s12
and s45 are located at complex-conjugate positions,
s�45 ¼ s12, we find

Að−Þ
33 ðs; u; s12; s�12; � � �Þ ¼ ½AðþÞ

33 ðs; u; s12; s�12; � � �Þ��: ð3:6Þ

Therefore, the lhs of the unitarity equation (3.4) is the
imaginary part of the amplitude:

FIG. 2. The physical regions in terms of s, t, u for
s12 ¼ s45 ¼ 7μ2. The three isolated regions correspond to the
physical regions for the s-channel process 123 → 456 (right), the
u-channel process 126 → 345 (top), and the t-channel process
1245 → 36 (left), respectively.

4If there is a stable-particle pole in the s12- and s45-planes, one
may continue (3.1) to approach the stable poles s12 ¼ s45 ¼ μ2.
Since the stable-particle poles should reside on the physical sheet,
the continuations from the upper-half plane and the lower-half
plane reach the same pole, meaning that there is no distinction in
the (�) labels attached to a single line. Then, one could reproduce
the 2-to-2 unitarity equation as the residue of the 3-to-3 unitarity
equation (3.1) although the constraint sþ tþ u ¼ 2μ2 þ s12 þ
s45 should be taken care of; t takes different values before and
after analytic continuation.
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ð3:7Þ

The unitarity equation (3.4) is also understood as the sum
of the s-channel discontinuity and the u-channel disconti-
nuity. Let us write

ð3:8Þ

ð3:9Þ

where s� ¼ s� iε and u� ¼ u� iε and limε→þ0 is under-
stood. According to our analyticity postulate (the
assumption 3), the unitarity equation (3.4) can be decom-
posed into a couple of equations:

ð3:10Þ

ð3:11Þ

This decomposition is related to the existence of a regular
region. When u is fixed in the region u < 4μ2; u ≠ μ2, the
second term on the rhs of (3.4) is not kinematically allowed,
leading to

ð3:12Þ

We then continue (3.10) in the region u < 4μ2ðu ≠ μ2Þ and
compare it with (3.12). We conclude

0 ¼ AAφ→Aφðs−; uþÞ −AAφ→Aφðs−; u−Þ
¼ AAφ→Aφðsþ; uþÞ −AAφ→Aφðsþ; u−Þ; ð3:13Þ

in the region u < 4μ2ðu ≠ μ2Þ, namely no discontinuity in
u. The converse is also true: if (3.13) is assumed in
u < 4μ2; u ≠ μ2, the continuation of (3.12) to the region u >
4μ2 leads to (3.10) and (3.11).
The amplitude is often regarded as a function of a single

variable by fixing other variables. By using (3.10)
and (3.11), let us discuss the analytic structure of the

fixed-t amplitude AAφ→AφðsÞ where u is eliminated by the
constraint sþ tþ u ¼ 2μ2 þ 2ReM2. The s-channel sin-
gularity and the u-channel singularity coexist in the
complex s-plane. When t is fixed at t− ¼ t0 − iε0 with
t0 < 0 and ε0 > 0, the analytic structure is given by Fig. 3
(left). In s1 > 2ReM2 − 2μ2 − t0, the u-channel cut is
absent and the discontinuity between s1 þ iε (P1 in

Fig. 3) and s1 − iε (P2) is given by . We then

continue the function to the region s2 < 2ReM2 − 2μ2 − t0.
Since Imu ¼ −Imðsþ tÞ ¼ −Imsþ ε0, the lower-half
s-plane always gives Imu > 0 (the path Q1 → Q2). On
the other hand, there exists a branch cut on the upper-half
plane: the path P1 → P2ð0 < Ims < ε0Þ corresponds to
Imu > 0 and the path P1 → P0

2ðIms > ε0Þ is Imu < 0.
Hence, the discontinuity between P0

2 and Q2 is given by

which does not agree with (3.4)

due to the negative sign in the second term. A similar
consideration gives the analytic structure for tþ ¼ t0 þ iε0

as shown in Fig. 3 (right). The amplitude is

identified with the values of the analytically-continued

amplitude AAφ→Aφðs; t−Þ at P1 and P2 while is the

values of AAφ→Aφðs; tþÞ at R1 and R2. In other words,

and cannot be understood as opposite

boundary values on one sheet.
Let us investigate whether and can be still

described by the same analytic function of the single
variable. We assume that the s-channel branch cut ends at
s ¼ 4μ2 and the existence of a path drawn in Fig. 4 for
t ¼ t−. The points P1, P2,Q1, andQ2 in Fig. 4 are the same
as the points in Fig. 3 (left). We go round the branch point
s ¼ 4μ2 and reachQ1 that corresponds to s ¼ s− and t ¼ t−
with s1 > 2ReM2 − 2μ2 − t0. Recall that R1 in the right
panel of Fig. 3 is at s ¼ s− and t ¼ tþ with
s1 > 2ReM2 − 2μ2 − t0. Equation (3.13) implies that there
is no discontinuity in t in the region s1 > 2ReM2 − 2μ2 − t0.
Therefore, Q1 can be identified with R1 under the limit
ε0 → 0. Then, R2 is reached by passing above the u-channel
branch point as shown in Fig. 4. Note that we have only
drawn the 2-particle thresholds in Fig. 4 while other normal
thresholds (and anomalous thresholds if any) have to be
taken into account as well.R1 → R2 should pass through the

FIG. 3. Analytic structures (modulo poles) of AAφ→Aφðs; t−Þ
(left) and AAφ→Aφðs; tþÞ (right) in the vicinity of the s-channel
region. The zigzag line on the real axis is the s-channel branch cut
while the zigzag lines above (left) and below (right) are the u-
channel branch cut, respectively.
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lower side of the s-channel branch points and the upper side
of the u-channel branch points to be consistent with Fig. 3.
Therefore, we should carefully discuss the unitarity

equation to read the discontinuity in a single variable.
Nonetheless, when one is interested in the discontinuity in
the region s > 2ReM2 − 2μ2 − t, the rhs of the unitarity
equation (3.14) is given by the s-channel discontinuity

only. and are regarded as opposite boundary

values, P1 and Q1 ¼ R1 in Fig. 4. The unitarity equation
simply reads

ð3:14Þ

in s > 2ReM2 − 2μ2 − t.
If we postmultiply (3.2) by and use the

2-particle discontinuity equations like (2.11) we obtain

ð3:15Þ

where is the diagrammatic notation for R. The last
term includes, for instance, a triangle diagram

ð3:16Þ

which may contribute to the unitarity equation even after
extracting the residue at s12 ¼ s45 ¼ M2. (3.15) does not
evaluate the imaginary part but can evaluate discontinuities.
The form of the unitarity equation depends on the choice of
the complex poles, suggesting that the analytic structures of

and are different. InAppendixBwe show that

the analytic structure of the triangle Feynman diagram
indeed depends on the positions of s12 and s45. One can
also notice that even the first term on the rhs of (3.15), which
may represent the s-channel discontinuities, is not given by a
sum of the products of (þ) amplitudes and (−) amplitudes,
differently from the standard unitarity equation. In general,
the first term does not necessarily have a fixed sign.
We can also discuss the unitarity equation in crossed

regions. The analysis in the u-channel region is the same as

the previous discussion. Hence, we only consider the
t-channel region starting with the 4 → 2 unitarity equation

ð3:17Þ

where the lines are labeled as

Using the 2-particle discontinuity equations twice, we
find [40,47]

ð3:18Þ

which can be used to move s12 and s45 to the lower-half
plane:

ð3:19Þ

Hence, the unitarity equation for s12 ¼ s45 ¼ ðM2Þ� takes a
form similar to the standard 2-to-2 unitarity equation. On
the other hand, one can replace (−) with (þ) in the
subenergy variable s45 by following the discussion in

(3.15). One then finds the unitarity equation for

that may have additional contributions from R.

B. AA → AA

The previous analysis can be extended into amplitudes
involving more unstable particles although the analysis
becomes more complicated. Let us briefly discuss the
AA → AA amplitude which arises as a residue of the
4-to-4 amplitude

When we set s12 ¼ s34 ¼ s56 ¼ s78 ¼ ReM2, the physical
s-channel region is given by s > 4ReM2; t < 0; u < 0
where s ¼ s1234 ¼ s5678; t ¼ s1256 ¼ s3478 and u ¼ s1278 ¼
s3456 with the constraint sþ tþ u ¼ s12 þ s34 þ s56 þ s78.
For simplicity, we assume ð2μÞ2 < ReM2 < ð3μÞ2. The

4-to-4 unitarity equation reads

FIG. 4. A path going round the s-channel branch point ðP2 →
Q2Þ and the u-channel branch point ðQ2 → R2Þ. The black dashed
curve and the red dotted curve are paths on the different sheets.
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ð3:20Þ

where ð2μÞ2 ≤ s12; s34; s56; s78 < ð3μÞ2 is assumed
which restricts the number of lines connecting small
bubbles. We then use (3.18)-type discontinuity equations
to set s12 ¼ s34 ¼ ReM2 − iε and s56 ¼ s78 ¼ ReM2 þ iε
in (3.20). There are many cancellations, yielding

ð3:21Þ

There exists a crossed box diagram on the rhs of the
unitarity equation (3.21).
Let us discuss the kinematically-allowed region of the

diagram with s12 ¼ s34 ¼ s56 ¼ s78 ¼ ReM2. We
name the internal lines as

ð3:22Þ

where each internal line is on the mass shell, q2i ¼ −μ2. The
time flows from right to left. The energy-momentum
conservation of each bubble gives

8>>><
>>>:

p12 ¼ q1 þ q2;

p34 ¼ q3 þ q4;

p56 ¼ q1 þ q3;

p78 ¼ q2 þ q4;

ð3:23Þ

where p12 ¼ p1 þ p2 and so on. Let us denote the Gram
determinants of qi by

Gðq1 � � � qNÞ ¼ detðqi · qjÞ ði; j ¼ 1; � � �NÞ: ð3:24Þ

Then, the kinematically-allowed region, i.e., the vectors qi
can be constructed to be real, is determined by

Gðq1q2Þ < 0; Gðq1q2q3Þ < 0; Gðq1q2q3q4Þ < 0:

ð3:25Þ

The first condition Gðq1q2Þ < 0 is satisfied by
s12 ¼ ReM2 > ð2μÞ2. By using the conservation law
(3.23) and the on-shell conditions, the second and third
conditions read

t < 0; u < 0;

4ReM2ð4μ2 − ReM2Þ þ tu − 4μ2ðtþ uÞ < 0; ð3:26Þ

which is drawn as region I in Fig. 5. Therefore, the physical
region s > 4ReM2; t < 0; u < 0 is divided into region I in
which is kinematically allowed and region II in
which it is kinematically forbidden. They are divided by the
curve AB which must correspond to a singularity curve.
In the high-energy limit (region II), the second term in

(3.21) is kinematically forbidden and should be absent. By
analytic continuation, we then obtain the standard form of
the 2-to-2 unitarity equation for the AA → AA scattering as
the residue at s12 ¼ s34 ¼ ðM2Þ� and s56 ¼ s78 ¼ M2:

ð3:27Þ

where the lhs represents the discontinuity across the real
s-axis and the imaginary part

ð3:28Þ

On the other hand, a careful analysis is required in region I
because of the additional contribution .

IV. EXTENDED UNITARITY

In the previous section, the unstable-particle unitarity
equations are derived in the physical regions of the Mandel-
stam variables fs; t; ug, especially in a negative t region.

FIG. 5. The physical region of the s-channel process is divided
into region I and region II by the curve AB. Here, we set
ReM2 ¼ 7μ2.
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On the other hand, the same unitarity equations are expected
to hold even outside the physical region, called extended
unitarity, and this is indeed the case in the stable-particle
amplitude [40]. In this section, let us show that the unstable-
particle unitarity equations hold even in a finite positive t. The
positive t extension will be used to find a positivity constraint
on the unstable-particle amplitudes in the next section.
The positive t extension requires analytic continuation.

However, we do not know the analytic structure in a
positive t. On the other hand, the analytic structure in
the subenergy variable, especially the existence of the
complex poles, can be deduced from the knowledge of
2-to-2 amplitudes and the two-particle discontinuity equa-
tions (2.11). Hence, we first adjust subenergy variables so
that the physical region can include a positive t and then
continue the unitarity equation in the subenergy variables.
Let us first consider theAA → AA amplitude. In Sec. III B,

we set s12 ¼ s34 ¼ s56 ¼ s78 ¼ ReM2 in the amplitude

and then continued the unitarity equation in the subenergy
variables because ReM2 � iε are the points closest to the
complex poles in the real boundaries. However, as shown in
Fig. 6, we can still reach the correct sheet on which the
complex pole exists (or does not exist) even starting from
the vicinity of ReM2. For the unstable particle with
ð2μÞ2 < ReM2 < ð3μÞ2, we can consider the 4-to-4 unitarity
equation in ð2μÞ2 < s12; s34; s56; s78 < ð3μÞ2 (if there is no
anomalous threshold) and then analytically continue the
unitarity equation in fs12; s34; s56; s78g with fixed s and t.
The physical region of s and t is deformed thanks to the
change of the initial input of fs12; s34; s56; s78g and then the
unitarity equation can be extended away from the negative t.
For instance, let us consider

s12¼ s78¼ReM2þδs; s34¼ s56¼ReM2−δs: ð4:1Þ

Then, the physical region constraint of the s-channel region is
given by

s > 2ReM2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðδs=ReM2Þ2

q �
;

4ReM2 − s < t <
4δs2

s
; ð4:2Þ

which includes a positive t region for δs ≠ 0.
We then discuss the Aφ → Aφ amplitude. Since the 3

and 6 external lines of are fixed to be on-shell, the

physical region of the 3-to-3 amplitude is always given by
t ¼ s36 < 0 in the s-channel region even when we change
the values of s12 and s45. Instead, let us consider the 4-to-4
amplitude and extract an embedded Aφ → Aφ amplitude at
s12 ¼ ðM2Þ�; s56 ¼ M2, and s348 ¼ μ2, that is,

ð4:3Þ

where the line is the pole factor
of the stable particle, satisfying

ð4:4Þ

The existence of a simple pole at s348 ¼ μ2 is implied by
unitarity [40]. Hence, we consider the 4-to-4 unitarity
equation and pick up the diagrams having the singular
structure of (4.3). Such a diagram should satisfy (i) the 1
and 2 momenta connect to a (−) bubble, (ii) the 5 and 6
momenta connect to a (þ) bubble, and (iii) the 3, 4, and 8
momenta connect to a single bubble. The condition
(iii) includes diagrams with the structure

due to the conservation in the right bubble. We also note
that the diagrams that the 1 and 2 (or 5 and 6) momenta
connect to a (þ) [or (−)] bubble can be discarded as far as
the paths like (a) and (b) of Fig. 6 are concerned.5 Sorting
out the relevant terms according to (i)–(iii), the 4-to-4
unitarity equation is given by the following form (see
Appendix A)

FIG. 6. Several paths to approach s12 ¼ M2 starting at
Ims12 ¼ þε, corresponding to the (þ) amplitudes (left) and at
Ims12 ¼ −ε for the (−) amplitudes (right) where the different
types of the curves run on different sheets. In (a) and (b), the þiε
paths correctly reach the complex pole while the −iε paths stay
on the physical sheet. On the other hand, we need to bypass the
branch point by adding a positive imaginary part in (c) or a
negative imaginary part in (d). Then, we cannot reach the correct
sheet in (c) and (d).

5In Sec. III, we have aligned the sign of the bubbles by using the
two-particle discontinuity equations before analytic continuation.
This would be more illustrative in understanding how to extract the
unstable-particle unitarity equations. On the other hand, when
considering the paths like (a) and (b) of Fig. 6, it is also possible
to analytically continue the unitarity equation first and then use the
discontinuity equations. The latter approach can simplify calcula-
tions because we can immediately ignore diagrams that the 1 and 2
(or 5 and 6) momenta do not connect to a (−) [or (þ)] bubble.

UNITARITY AND UNSTABLE-PARTICLE SCATTERING … PHYS. REV. D 107, 065017 (2023)

065017-9



ð4:5Þ

where ð2μÞ2 < s12; s34; s56 < ð3μÞ2 is assumed for sim-
plicity. We then use the 2-to-2 unitarity equation

; and (4.4), yielding

ð4:6Þ

Furthermore, the two-particle discontinuity equations (2.11)
imply

ð4:7Þ

ð4:8Þ

The lhs of (4.6) can be replaced with the mixed amplitudes.
As a result, we obtain the 2-to-2 unstable-particle unitarity
equation (3.4) from the 4-to-4 unitarity equation of the
stable particle. Here, we stress that the momentum transfer
of the embedded Aφ → Aφ amplitude corresponds to
t ¼ s1256 ¼ s3478 which is not necessarily negative in the
physical region of the 4-to-4 amplitude. For instance, when
we consider

s12¼ReM2þ2δs; s348¼μ2−2δs; s56¼ReM2; ð4:9Þ

the s-channel region in the large s limit is given by

−sþOðs0Þ < t <
4δs2

s
þOðs−2Þ; ð4:10Þ

where s ¼ s12348 ¼ s567 is the total energy variable of the
embedded 3-to-3 amplitude.
All in all, we have obtained the unitarity equations which

are applicable even away from the negative t region. The
unstable-particle unitarity equations are then obtained by
extracting their residues as we did in the previous section.
The validity of the unstable-particle unitarity equations can
be extended to the region 0 < t < 4δs2=s. The allowed
value of δs is determined by the condition for reaching the
correct poles in analytic continuation.

V. OPTICAL THEOREM

One of the important consequences of unitarity is the
optical theorem which fixes the sign of the imaginary part
(and the discontinuity multiplied by i). In our convention,
the imaginary part of the 2-to-2 stable-particle amplitudes
has to be negative in the forward limit. The optical theorem
has been the basis of unitarity constraints in quantum
field theory. Combined with the dispersion relation, the
optical theorem provides strong consistency conditions on
low-energy effective field theories called positivity bounds
[1–3]. Motivated by this, let us investigate the sign of the
rhs of the unitarity equations in the unstable-particle
amplitudes.
We rename the external states as follows:

ð5:1Þ

and

ð5:2Þ

where s¼−ðp1þp2Þ2, t¼−ðp1−p3Þ2, u¼ −ðp1 −p4Þ2.
Here, the variable u is eliminated by using

�
sþ tþ u ¼ 2μ2 þ 2ReM2 ðAφ → AφÞ;
sþ tþ u ¼ 4ReM2 ðAA → AAÞ; ð5:3Þ

and the amplitudes are regarded as a function of s and t at a
sufficiently large s so that the direction to approach the real
t-axis does not matter. The “on-shell” conditions of the
external states should be understood as

p2
1¼−ðM2Þ�; p2

2¼−μ2; p2
3¼−M2; p2

4¼−μ2; ð5:4Þ

for (5.1) whereas

p2
1 ¼ p2

2 ¼ ðM2Þ�; p2
3 ¼ p2

4 ¼ M2: ð5:5Þ

for (5.2), respectively.
As we have seen, when we consider a sufficiently large s,

the unitarity equations (2.9), (3.14), and (3.27) take the
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same form which all evaluate the discontinuity across the
real s-axis. The rhs of the 2-to-2 unitarity equations are

−i
XZ

dΠAðþÞ
a→X1X2

ðp3; p4jfqgÞAð−Þ
X1X2→aðfqgjp1; p2Þ ð5:6Þ

according to the rule (2.7) where X1;2 are either φ or A and

XZ
dΠ¼

X
a¼2

2π

ð2πÞ3ða−1Þa!
Z Ya−1

i¼1

d4ki
Ya
j¼1

θðq0jÞδðq2j þμ2Þ

¼
X
a¼2

1

a!

Z �Ya
i¼1

d3qi
ð2πÞ3

1

2q0i

�
ð2πÞ4δð4Þ

�
ptot−

Xa
j¼1

qj

�
:

ð5:7Þ

The arguments of the (�) amplitudes are expressed by four-
momenta; the momenta appearing on the left side of the bar
are those of the out states while the right ones are the in
states, respectively. The external momenta have to be
complexified to satisfy the “on-shell” conditions. The
forward limit p1 ¼ p3 does not satisfy the “on-shell”
conditions for unstable particles. Let us instead consider

p1 ¼ p�
3; p2 ¼ p�

4: ð5:8Þ

The conservation p1 þ p2 ¼ p3 þ p4 implies that the total
momentum p1 þ p2 is real under (5.8). Then, the internal
momenta fqg can be real since only the kinematically-
allowed internal lines appear in a given s. Therefore, by the

use of Að−Þ
n0n ðsAÞ ¼ ½AðþÞ

nn0 ðs�AÞ��, (5.8) leads to

Að−Þ
X1X2→aðfqgjp1; p2Þ ¼ ½AðþÞ

a→X1X2
ðp3; p4jfqgÞ��; ð5:9Þ

meaning that the integrand of the rhs is given by the
modulus of the amplitude as in the forward limit. We then
translate the condition (5.8) in terms of the Mandelstam
variables. Since p1 þ p2 is real and timelike for s > 0, we
can move to the center-of-mass frame in which

p1¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
X1
Þ�þp2

q
;p

�
; p2¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

X2
Þ�þp2

q
;−p

�
;

ð5:10Þ

with a complexified three-momentum p ¼ pR þ ipI where
m2

X1;2
are either M2 or μ2. The momentum conservation is

manifest under (5.8) and (5.10). As for X1 ¼ X2 ¼ X,
the energy conservation is solved by 2pR · pI ¼ Imm2

X,
leading to

s ¼ 4ðRem2
X þ p2R − p2I Þ; t ¼ 4p2I : ð5:11Þ

On the other hand, the generic solution to the energy
conservation is not easily expressed for X1 ¼ A and X2 ¼ φ.

We thus present the result in the high-energy limit, jpRj ≫
jmX1;2

j; jpIj, in which 4pR · pI ≈ Imðm2
X1

þm2
X2
Þ and

s ¼ 4p2R þOðp0RÞ; t ¼ 4p2I þOðp−2R Þ; ð5:12Þ

where we keep the imaginary parts of both masses for
completeness. Note that the modulus of pI is bounded from
below to satisfy the energy conservation when the external
state is unstable; accordingly, there exists aminimumvalue of
t which is given by

tminðsÞ ≈
½Imðm2

X1
þm2

X2
Þ�2

s
when s ≫ jm2

X1;2
j ð5:13Þ

and in particular

tmin ¼
1

2

�
4Rem2

X − sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðImm2

XÞ2 þ ðs − 4Rem2
XÞ2

q �

ð5:14Þ
when X1 ¼ X2 ¼ X. As shown in Sec. IV, the unitarity
equations are extended to the positive momentum transfer
region t < t� with t�ðsÞ ¼ 4δs2=sþOðs−2Þ. Hence, as long
as Imðm2

X1
þm2

X2
Þ < 2δs holds, we obtain the inequality

iDiscsAX1X2→X1X2
ðs; tÞ ¼

XZ
dΠjAX1X2→aj2 > 0; ð5:15Þ

in 0 ≤ tminðsÞ ≤ t < t�ðsÞ where tmin ¼ 0 holds only if all
external states are stable.6

VI. SUMMARY

The unitarity equations are the fundamental equations in
the S-matrix theory.We have derived the unitarity equations
for unstable particles from the general properties of the
stable-particle amplitudes, namely Lorentz invariance, uni-
tarity, and analyticity. The unstable-particle amplitudes have
been defined as residues of a higher-point stable-particle
amplitude at a complex pole of the unstable particle. The
unitarity equations depend on how we choose the complex
poles. Since the unitarity equations are supposed to evaluate
discontinuities, the analytic structure of the unstable-particle
amplitudes should depend on the choice of the complex
pole. Although we have not thoroughly discussed the
analytic structure in the present paper, as demonstrated in
Sec. III A, our unitarity equations can be basic tools

6It may be possible to extend the positivity constraint (5.15)
beyond t� by analytic continuation as long as analytic continu-
ation does not require a distortion of the original integration
hypercontour in the rhs of the unitarity equations. If the
integration hypercontour is distorted, we can no longer use the
relation (5.9) and the positivity is not guaranteed. In the stable-
particle case, the positive t extension of the positivity constraint
up to the normal threshold is known; see, e.g., [6,49].
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for investigating analytic properties and then establishing
the S-matrix theory for unstable particles.
We have assumed Hermitian analyticity of higher-point

amplitudes,while analyticity beyond the 2-to-2 amplitude has
not been well understood. It is important to study analyticity
fromboth perturbative andnonperturbative approaches and to
confirm their validity. A precise understanding of the analytic
structure of the unstable-particle amplitudes is indispensable
to derive further general properties.
Meanwhile, it would be interesting to investigate appli-

cations. If the dispersion relation is proved (or assumed), the
inequality (5.15) can lead to positivity bounds on unstable
particles.7 We can study the bounds on not only the lightest
state but also the whole spectra of a theory such as unstable
particles in the (beyond) Standard Model or Regge states.
Furthermore, the nonuniqueness of the unstable-particle
amplitudes implies that there might be different sets of
unitarity constraints from amplitudes with different choices
of complex poles. We may obtain a strong consistency
condition on the theory by combining all the possible
unitarity constraints. We leave them for future studies.
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APPENDIX A: STABLE-PARTICLE UNITARITY
EQUATIONS

Let us briefly review the derivations of unitarity equa-
tions of higher-point amplitudes. We write

ðA1Þ

ðA2Þ

Inserting the completeness relation
P jqihqj ¼ 1 to

SS† ¼ 1, the conditions for unitarity are given by

ðA3Þ

ðA4Þ

ðA5Þ

up to n ¼ n0 ¼ 4 where the bold line is short for the
summation up to the kinematically-allowed number of the
states, e.g.,

ðA6Þ

The S-matrix elements may be decomposed into discon-
nected parts and connected parts:

ðA7Þ

ðA8Þ

ðA9Þ

ðA10Þ

ðA11Þ

ðA12Þ

Here, the summations are over possible choices of the
particles and the bold lines are used not to specify the
number of lines explicitly. Note that the numbers of in/out
states on the lhs and the rhs have to be the same: for
instance, when the bold line in (A7) denotes three in states,
the first term on rhs in (A7) is absent because there is no
disconnected diagram with n ¼ 3; n0 ¼ 2. We also note that
in our notation (2.7), the (�) bubbles denote the amplitudes
while the connected parts of the S-matrix elements contain

7Note that we have studied the sign of iDiscsAX1X2→X1X2
only

in a sufficiently large s; however, this would be sufficient for the
positivity bounds because the low-energy part can be computed
by using the knowledge of the low-energy theory and the only
high-energy part of the discontinuity is used as a positivity
constraint on the low-energy theory [4,5].
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certain factors on top of the amplitudes. However, it turns
out that the factors can be consistently omitted [40,44], so
we shall not write these factors for notational simplicity.
We then apply (A7)–(A12) to (A3)–(A5) and reorganize

the equations. As for n ¼ n0 ¼ 2, we obtain

ðA13Þ

The disconnected terms are canceled, yielding

ðA14Þ

In the case of n ¼ n0 ¼ 3, the unitarity equation involves
the product

ðA15Þ

which can be expanded into the disconnected part and the
connected part:

ðA16Þ

In this way, we rearrange (A4) based on the connectedness
structure and find

ðA17Þ

The connected part yields the 3-to-3 unitarity
equation (2.9).
The 4-to-4 unitarity equation can be similarly derived

and the complete expression in ð4μÞ2 < s < ð5μÞ2 is given
in [40]. However, for our purpose, we only need terms that
have certain singular structures in the unitarity equation.
As we have seen, the unitarity equations arise from the
connected parts. Hence, we write

ðA18Þ

To obtain the expression (3.20), we only need to keep the
terms that the pairs of external lines can connect to a single
bubble. Hence, we can ignore terms with and ,
and find (3.20) by expanding (A18) with only keeping the
connected terms that the pairs of external lines connect to a
single bubble. The Eq. (4.5) is obtained by expanding

ðA19Þ

and picking up terms satisfying (i)–(iii) mentioned in

Sec. IV. Here, , , and are omitted because

they do not satisfy (i)–(iii). Note that in the main text the
subenergy variables are assumed to satisfy ð2μÞ2 < s12; s34;
s56; s78 < ð3μÞ2 for simplicity. Hence, diagrams such as

do not appear in the unitarity equation.

APPENDIX B: TRIANGLE DIAGRAM

In this appendix, we consider the one-loop Feynman
diagram

ðB1Þ

with the assigned external and internal four-momenta
where qi are fixed by pi and the loop momentum k.
Here, we have introduced t ¼ −ðp1 − p3Þ2 ¼ −ðp2 −
p4Þ2; s1 ¼ −p2

1 and s3 ¼ −p2
3. The internal lines are

supposed to have a real mass μ while the external lines
are “on the mass shell” m2

Xi
¼ −p2

i (i ¼ 1, 3) where m2
Xi
is

either M2 or ðM2Þ�. The external states 2 and 4 can be
either the stable particle or the unstable particle since the
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diagram (B1) is independent of p2
2 and p

2
4 but we assign the

stable particles to them for simplicity of the discussion.
Strictly speaking, complexifying m2

Xi
requires embedding

the diagram in a 3-to-3 amplitude and a resummation of
loop corrections to the propagator of the unstable particle.
The variables si ¼ −p2

i should be understood as the
subenergy variables of the 3-to-3 diagram and then (B1)
is extracted by considering integration contours encircling
the complex poles in the complex si-planes. In practice, we
may directly compute the Feynman diagram (B1) for real si
by following the standard iε prescription and then impose
the “on-shell” conditions si ¼ m2

Xi
by analytic continuation

(see Fig. 1 for the paths of the continuation). The Feynman
diagram, as is well known, gives

−iAtri ¼ −
Z

d4k
ð2πÞ4

Y3
i¼1

1

q2i þ μ2 − iε
¼ i

ð4πÞ2 I tri; ðB2Þ

I tri ≔
Z

1

0

�Y3
i¼1

dαi

�
δ

�
1 −

X3
i¼1

αi

�
1

D
; ðB3Þ

with

D ¼ α1α2s1 þ α2α3s3 þ α1α3t

− ðμ2 − iεÞðα1 þ α2 þ α3Þ2; ðB4Þ

where the coupling constants are omitted.
Unitarity predicts that the all-(þ) amplitude has the

triangle singularity while the mixed-type amplitude does
not. We study the analytic structure of the integral (B3) by
studying the Landau equations [50] and check this state-
ment at the perturbative level. An extensive review on this
subject is given in [40] and we follow their methods. Since
the “on-shell” conditions are imposed after the analytic
condition, we first regard s1 and s3 as complex variables.
The integral (B3) may be singular when the integrand is
singular, i.e. D ¼ 0. However, in general, the integration
hypercontour can be distorted to avoid the D ¼ 0 hyper-
surface. The singularity of (B3) can be found only if such a
distortion ceases to exist. When the Landau equations

αi
∂D
∂αi

¼ 0 for each i; ðB5Þ

have a nontrivial solution for αi where ε → 0 is understood,
a part of the αi-space is trapped by the D ¼ 0 hypersurface
(and the boundary of the integration hypercontour αi ¼ 0),
leading to a necessary condition for the integral (B3) to be
singular. Note that since D is a homogeneous function of
αi, the delta function in (B3) can be ignored to analyse (B5)
and D ¼ 0 is automatically satisfied when (B5) holds. The
sufficient condition is that the integration hypercontour is

actually trapped, which we will discuss later. The singu-
larity with αi ≠ 0 for all i is called the leading singularity
and the singularity having αi ¼ 0 is called the lower-order
singularity, respectively. The leading singularity corre-
sponds to the singularity that all the internal lines are
on-shell which is the triangle singularity in the case of (B1).
The necessary condition for the leading singularity is

det
∂
2D

∂αi∂αj
¼ 2μ2½t2 − tð2s1 þ 2s3 − s1s3=μ2Þ

þ ðs1 − s3Þ2� ¼ 0: ðB6Þ

On the other hand, the lower-order singularities may be
found when either one of the following is satisfied:

tðt − 4μ2Þ ¼ 0; ðB7Þ

s1ðs1 − 4μ2Þ ¼ 0; ðB8Þ

s3ðs3 − 4μ2Þ ¼ 0: ðB9Þ

The Eqs. (B6)–(B9) describe the would-be singular hyper-
surfaces in the complex ðt; s1; s3Þ-space which we denote
by Σtri;Σt;Σ1, and Σ3, respectively.
The iε prescription guarantees that the integral (B3) is

regular in the real ðt; s1; s3Þ-space that defines the (þ)
region on the Riemann surface. The integral (B3) is
continued analytically into the region Imt > 0; Ims1 >
0; Ims3 > 0 because D does not vanish for positive αi
which is the undistorted integration hypercontour. On the
other hand, singularities may be found when the real axis is
passed. Having understood the (þ) region, we omit iε
in the following. For real ðt; s1; s3Þ, the singular
hypersurface D ¼ 0 in the αi-space is symmetrical about
the real αi-plane; if a part of D ¼ 0 intersects the real
αi-plane, the complex conjugate part also intersects the
real αi-plane, trapping the real αi-plane. Therefore, singu-
larities in the vicinity of the (þ) region are found when
the Landau equations have a nontrivial solution for pos-
itive αi.
We are interested in the analytic structure away from the

(þ) region; s3 should follow the path (a) of Fig. 1 while s1
should follow the path (b) to compute the amplitude .

Hence, we consider the analytic structure in the complex
ðs1; s3Þ-space by fixing t at a physical value (t < 0). The
would-be singular hypersurfaces Σtri;Σ1;Σ3 are described
by two-dimensional surfaces in the four-dimensional space.
They are generically curves in two-dimensional sections,
e.g., Ims1 ¼ Ims3 ¼ 0, as shown in Fig. 7. Σt does not
appear because t is fixed. In the (þ) region, that is the real
ðs1; s3Þ-plane approached from Ims1; Ims3 > 0, whether
Σtri;Σ1;Σ3 are actually singular or not is checked by
positivity of αi. The lines s1 ¼ 4μ2 and s3 ¼ 4μ2 are the
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lower-order singularities. There are branch cuts in the
region s1; s3 > 4μ2 and the way to approach the region
s1; s3 > 4μ2 determines whether the unstable-particle

amplitude is or . The curve ABC is singular

if it is approached from the (þ) direction, showing that the

diagram (B1) of the type has the triangle singularity

(cf. [40,43]). On the other hand, we need to approach the
curve ABC from the directions Ims1 < 0 and Ims3 > 0 to

discuss the analytic structure of . Let us consider the

curve DEF which is the real section of the surface Σtri but is
not singular in the (þ) region. The surface Σtri spreads in
the complex ðs1; s3Þ-space and the curve DEF is connected
to the curve ABC through the surface Σtri as shown in Fig. 7
(right). Note that the curve BE exists on the surface s1 ¼ s�3
so the point B in the (þ) region and the point E in the (þ)
region do not exist on the same surface Σtri. The point E in
the (þ) region is connected to the point B approached from
Ims1 < 0 and Ims3 > 0 (or Ims1 > 0 and Ims3 < 0). Since
the point E is regular and the curve BE does not intersect
another singularity, the integral (B3) remains regular along

the curve BE. Hence, the diagram (B1) of the type

has no triangle singularity. All in all, the analytic structure
of the one-loop diagram (B1) is consistent with the
predictions of unitarity.
Finally, let us briefly discuss so-called external-mass

singularities [41–43]. As s1 or s3 exceeds 4μ2, the external
line can decay to the pair of the internal lines which would
lead to a nonvanishing imaginary part of the diagram. On
the other hand, the unitarity equation (3.4) implies that
the imaginary part arises only from the s-channel and/or

u-channel cut in the amplitude . The external-mass

singularity should not provide an imaginary part of the

amplitude , while it can give an imaginary part of

. To confirm the absence/existence of the imaginary

part explicitly, we consider t → −0 at which the simple
analytic result is available [51]:

I trijt¼0 ¼
1

2ðs1 − s3Þ
½Lðs1=μ2Þ − Lðs3=μ2Þ�; ðB10Þ

where

LðxÞ ≔ ln2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xðx − 4Þp
− xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xðx − 4Þp þ x

�
; ðB11Þ

is an analytic function with a branch cut in x > 4 on the first
sheet and ImLðxÞ ¼ 0 in x < 4. The iε prescription dictates
that the physical region is approached from the upper-half
plane. The Schwarz reflection principle concludes
Lðx�Þ ¼ L�ðxÞ. Therefore, when we set the masses of
the external states in the complex-conjugate positions
s1 ¼ ðM2Þ�; s3 ¼ M2, we find

I trijt¼0;s3¼s�
1
¼M2 ¼ ImLðM2=μ2Þ

2ImM2
ðB12Þ

for ImM2 ≠ 0. Hence, the diagram of the type has

no imaginary part, consistently with unitarity. On the other
hand, when s1 ¼ s3, the integral is given by

FIG. 7. Two-dimensional sections of the complex ðs1; s3Þ-space: Ims1 ¼ Ims3 ¼ 0 (left) and s1 ¼ s�3 (right). The black dashed curves
are regular parts of the surfaces Σtri;Σ1;Σ3 while the red sold curves are singular when they are approached from Ims1; Ims3 > 0. The
right figure shows that the surface Σtri spreads in the complex ðs1; s3Þ-space and the point B and the point E approached from
Ims1 > 0; Ims3 < 0 (or Ims1 < 0; Ims3 > 0) reside on the same surface Σtri; on the other hand, the point B and the point E approached
from Ims1; Ims3 > 0 are on different surfaces. Here, we set t ¼ −4μ2.
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I trijt¼0;s3¼s1 ¼ −
1

μ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx − 4Þp ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx − 4Þp

− xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx − 4Þp þ x

�
ðB13Þ

with x ¼ s1=μ2 ¼ s3=μ2, which has a non-vanishing imaginary part at Rex > 4. The diagram of the type has an
imaginary part due to the external-mass singularity.
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