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Abstract

Let p be a prime number. In the present paper, from the viewpoint of the compatibility/rigidity
of group-theoretic cyclotomes, we revisit the anabelian Grothendieck Conjecture for hyperbolic curves
over finitely generated fields of characteristic p established by A. Tamagawa, J. Stix, and S. Mochizuki.
Especially, we give an alternative proof of the Grothendieck Conjecture for nonisotrivial hyperbolic
curves over finitely generated fields of characteristic p obtained by J. Stix. In fact, by applying relatively
recent results in anabelian geometry for hyperbolic curves over finite fields developed by M. Säıdi and
A. Tamagawa, we discuss the J. Stix’s result in a certain generalized situation, i.e., the geometrically
pro-Σ setting, where Σ denotes the complement of a finite set of prime numbers that contains p in the
set of all prime numbers. Moreover, by combining with a theorem in birational anabelian geometry
obtained by F. Pop, we prove an absolute version of the geometrically pro-Σ Grothendieck Conjecture
for nonisotrivial hyperbolic curves over the perfections of finitely generated fields of characteristic p.
On the other hand, in the present paper, we also establish certain isotriviality criteria for hyperbolic
curves with respect to both l-adic Galois representations and pro-l outer Galois representations, where
l is a prime number ̸= p. These isotriviality criteria may be applied to give an alternative proof of the
J. Stix’s result.
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Introduction

Let p be a prime number. In anabelian geometry, we often consider the geometricity/scheme-
theoreticity of the isomorphisms [or more generally, homomorphisms] between various fundamental groups
of “anabelian” algebraic varieties [including hyperbolic curves — cf. Definition 1.1]. This type of ques-
tions are originally posed by A. Grothendieck [cf. [5]] and referred to as Grothendieck Conjecture in this
research area. The original question for hyperbolic curves over finitely generated fields in characteristic
0 was solved by A. Tamagawa (affine case — cf. [29], Theorem 0.4) and S. Mochizuki (proper case — cf.
[14], Theorem A; [15], Theorem A). Moreover, in the characteristic 0 case, by using p-adic Hodge theory,
S. Mochizuki proved a much more general statement for the hyperbolic curves over generalized sub-p-adic
fields, i.e., subfields of finitely generated extension fields of the completion of the maximal unramified ex-
tension field of the field of p-adic numbers [cf. [15], Theorem A; [16], Theorem 4.12]. On the other hand,
in the positive characteristic case, A. Tamagawa proved the Grothendieck Conjecture for affine hyperbolic
curves over finite fields [cf. [29], Theorems 0.5, 0.6], and J. Stix proved the Grothendieck Conjecture for
nonisotrivial [not necessarily, affine] hyperbolic curves over finitely generated transcendental extension
fields of finite fields [cf. [27], Theorem 3.2; [28], Theorem 5.1.3]. Later, S. Mochizuki developed a highly
nontrivial technique of cuspidalization and applied this technique to prove the Grothendieck Conjecture
for arbitrary hyperbolic curves over finite fields [cf. [19], Theorem 3.12].

Write Primes for the set of prime numbers. Let Σ ⊆ Primes be a nonempty subset. For each profinite
group G, we shall write GΣ for the maximal pro-Σ quotient of G.

In the present paper, from the viewpoint of the compatibility/rigidity of group-theoretic cyclotomes
associated to hyperbolic curves over fields of characteristic p [i.e., the duals of the second cohomology
groups of the geometric pro-prime-to-p fundamental groups with coefficients in ẐPrimes\{p} in the case
of proper hyperbolic curves — cf. Definition 2.3], we give an alternative proof of the J. Stix’s result
mentioned above. One technical difficulty in the case of nonisotrivial hyperbolic curves over finitely
generated transcendental extension fields of positive characteristic arises from the existence of Frobenius
twists. [Note that the Frobenius twists may change the moduli of hyperbolic curves but may not change
the étale fundamental groups of them.] In this situation, our key observation/philosophy is

such an obstruction that arises from the existence of Frobenius twists may be regarded as a(n)
defect/indeterminacy of the compatibility/rigidity of the group-theoretic cyclotomes.

Therefore, we do not control the Frobenius twists directly [as J. Stix did] but concentrate on the de-
termination of a(n) defect/indeterminacy of compatibility/rigidity of the group-theoretic cyclotomes. In
the present paper, thanks to relatively recent Grothendieck Conjecture-type results for hyperbolic curves
over finite fields obtained by M. Säıdi and A. Tamagawa [cf. [25], Theorem 1; [26], Theorem D], we may
discuss this defect/indeterminacy, hence also the J. Stix’s result, in a certain generalized situation, i.e., the
geometrically pro-Σ version of the Grothendieck Conjecture under the assumption that the complement
Primes \ Σ is finite and contains the characteristic of the base field. Moreover, by combining with a cer-
tain enhanced version of a F. Pop’s theorem in birational anabelian geometry, we also prove an absolute
version of the geometrically pro-Σ Grothendieck Conjecture for nonisotrivial hyperbolic curves over the
perfections of finitely generated transcendental extension fields of finite fields. This absolute version may
be regarded as a higher dimensional base field analogue of [25], Theorem 1; [26], Theorem D.

Before proceeding, let us observe that, in light of the theory of specialization, the compatibility/rigidity
of the group-theoretic cyclotomes associated to the étale fundamental groups of hyperbolic curves over
finitely generated fields of characteristic 0 is a direct consequence of the geometrically pro-prime-to-p
version of the Grothendieck Conjecture for hyperbolic curves over finite fields of characteristic p, together
with Chevalley’s theorem [i.e., the discussion in the proof of [29], Claim (6.8), together with a variant
of Lemma 2.7]. This observation leads to a proof of the Grothendieck Conjecture for hyperbolic curves
over finitely generated fields of characteristic 0. On the other hand, in the characteristic 0 case, a much
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stronger result is obtained by S. Mochizuki as mentioned above. Therefore, in the remainder of the present
paper, we do not discuss the Grothendieck Conjecture for hyperbolic curves in the case where the base
fields are of characteristic 0.

Next, in order to state our main results, we introduce some notations and notions. For each field
F , we shall write F for the algebraic closure [determined up to isomorphisms] of F ; F sep (⊆ F ) for the

separable closure of F in F ; GF
def
= Gal(F sep/F ), i.e., the absolute Galois group of F . For each connected

Noetherian scheme S, we shall write πét1 (S) for the étale fundamental group of S, relative to a suitable
choice of basepoint. For each algebraic variety [i.e., separated, geometrically integral, and of finite type
scheme] S over a field F , we shall write

∆S
def
= πét1 (SF )

Σ; ΠS
def
= πét1 (S)/Ker(πét1 (SF ) ↠ ∆S),

where SF
def
= S ×F F ; πét1 (SF ) ↠ ∆S denotes the natural surjection. In particular, we have an exact

sequence
1 −→ ∆S −→ ΠS −→ GF −→ 1

of profinite groups, which determines a pro-Σ outer representation

GF −→ Out(∆S).

Next, let F be a field; F0 ⊆ F a subfield; X an algebraic variety over F . Then we shall say that X
is isotrivial relative to F0 if X ×F F descends to an algebraic variety over F 0. Moreover, if F is of
characteristic p, then we shall say that X is isotrivial if X is isotrivial relative to Fp, i.e., the prime field
of characteristic p.

Then our main results are the following [cf. special cases of Theorems 4.4; 4.9]:

Theorem A. Let k be a finitely generated transcendental extension field of Fp; X1 a nonisotrivial hyper-
bolic curve over k; X2 a hyperbolic curve over k;

σ : ΠX1

∼→ ΠX2

a ∆X2-outer isomorphism of profinite groups that lies over the identity automorphism of Gk. Suppose
that the complement Primes \ Σ is finite and contains p. Then, after replacing X1 or X2 by a suitable
Frobenius twist of them, σ arises from an isomorphism

X1
∼→ X2

over k. [Here, we note that the Frobenius twists do not change the étale fundamental groups.]

Theorem B. Let k1, k2 be the perfections of finitely generated transcendental extension fields of Fp; X1

a nonisotrivial hyperbolic curve over k1; X2 a hyperbolic curve over k2. Suppose that the complement
Primes \ Σ is finite and contains p. Then the natural map

Isom(X1, X2) −→ OutIsom(ΠX1 ,ΠX2)

is bijective, where
Isom(X1, X2)

denotes the set of isomorphisms X1
∼→ X2 of schemes;

OutIsom(ΠX1 ,ΠX2)

denotes the set of outer isomorphisms ΠX1

∼→ ΠX2 of profinite groups [cf. Notations and conventions,
Profinite groups].
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Note that, in light of the relatively recent development of anabelian geometry for hyperbolic curves
over finite fields by M. Säıdi and A. Tamagawa, J. Stix’s argument in [27] also gives a proof of Theorem
A. On the other hand, as mentioned above, our proof of Theorem A is based on the verification of a
certain compatibility of the group-theoretic cyclotomes. The key ingredients of the verification of such
compatibility are the following isotriviality criteria for smooth curves [cf. Theorems 1.9, 1.14]:

Theorem C. Let k be a field; k ⊆ K a finitely generated field extension; X a smooth, proper curve over
K of genus ≥ 1. Suppose that Σ does not contain the characteristic of k. Write

ρ : GK −→ Aut(∆ab
X )

for the natural Σ-adic Galois representation associated to X. Then X is isotrivial relative to k if and
only if ρ(GK·k) = {1}.
Theorem D. Let k be a field; k ⊆ K a finitely generated field extension; X a hyperbolic curve over K.
Suppose that Σ does not contain the characteristic of k. Write

ρ : GK −→ Out(∆X)

for the natural pro-Σ outer representation associated to X. Then X is isotrivial relative to k if and only
if ρ(GK·k) = {1}.

Here, we note that the assumption on the properness of X in Theorem C may not be dropped [cf.
Remark 1.9.2]. These results may be of interest independent of anabelian geometry. Moreover, in light
of the development of various criteria in arithmetic geometry such as good reduction criteria, it would be
interesting to investigate the extent to which such isotriviality criteria exist for other classes of algebraic
varieties or base fields. It may be worth mentioning that, by applying a similar argument to the argument
applied in the proof of Theorem C, one may obtain a similar isotriviality criterion for abelian varieties
over fields of characteristic 0 [cf. Remark 1.9.3]. Finally, as a corollary of Theorem D, one may obtain
the following geometric result [cf. Corollary 1.17]:

Corollary E. Let k be a field; k ⊆ K a field extension; X a hyperbolic curve over K; S an algebraic
variety over K that admits a dominant morphism S → X over K. Suppose that S is isotrivial relative to
k. Then X is isotrivial relative to k.

The present paper is organized as follows. In §1, by applying some basic properties of the K/k-trace
associated to an abelian variety, Lang-Néron theorem, and a certain consequence of Martens’ proof of
Torelli’s theorem, we first prove Theorem C. Next, by combining Theorem C with a certain trick concern-
ing coverings of hyperbolic curves based on de Franchis-Severi theorem, we prove Theorem D. Moreover,
by applying Theorem D, together with the slimness of surface groups, we prove Corollary E. In §2, from
the viewpoint of the compatibility/rigidity of the group-theoretic cyclotomes, we formulate and prove a
certain relative version of the Grothendieck Conjecture for hyperbolic curves over finitely generated ex-
tension fields of Fp. Note that, in the positive characteristic case, the relative version of the Grothendieck
Conjecture [in the usual sense] does not hold even if we assume that the base field is finite. This is the rea-
son why we introduce a modified formulation in this section. On the other hand, the results in the present
section may be regarded as byproducts of highly nontrivial results that have been obtained by Tamagawa,
Mochizuki, and Säıdi. In §3, we prove that the kernel of the homomorphism from the automorphism group
of the perfection of a positive characteristic discrete valuation field to the outer automorphism group of
the absolute Galois group of the field consists of the Frobenius automorphisms. In §4, in light of the
isotriviality criteria in §1, together with the modified relative version of the Grothendieck Conjecture
formulated and proved in §2, we first determine the defect/indeterminacy of compatibility/rigidity of the
group-theoretic cyclotomes. As a direct consequence of this determination, we give a proof of Theorem
A, i.e., an alternative proof of the Stix’s results. Finally, by combining Theorem A with a Pop’s theorem
in birational anabelian geometry, together with the result obtained in §3, we prove Theorem B.
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Notations and conventions

Numbers: The notation Primes will be used to denote the set of prime numbers. The notation Z will
be used to denote the ring of integers. The notation Ẑ will be used to denote the profinite completion of
the underlying additive group of Z. If p is a prime number, then the notation Zp will be used to denote

the maximal pro-p quotient of Ẑ; the notation Ẑ(p)′ will be used to denote the maximal pro-prime-to-p
quotient of Ẑ; the notation Fp will be used to denote the finite field of cardinality p.

Fields: Let F be a field. Then we shall write F for the algebraic closure [determined up to isomorphisms]

of F ; F sep (⊆ F ) for the separable closure of F ; GF
def
= Gal(F sep/F ); F pf for the perfection of F .

Profinite groups: Let G be a profinite group; Σ a nonempty set of prime number; l a prime number.
Then we shall write Gab for the abelianization of G, i.e., the quotient of G by the closure of the com-

mutator subgroup [G,G] ⊆ G; GΣ for the maximal pro-Σ quotient of G; Gl def
= G{l}; Aut(G) for the

group of continuous automorphisms of the profinite group G; Inn(G) (⊆ Aut(G)) for the group of inner

automorphisms of G; Out(G)
def
= Aut(G)/Inn(G).

Let G1, G2 be profinite groups; H2 ⊆ G2 a closed subgroup; ϕ : G1
∼→ G2 a continuous isomorphism

of profinite groups considered up to composition with the inner automorphism determined by an element
∈ H2. Then we shall refer to such ϕ as an H2-outer isomorphism. In the case where H2 = G2, we shall
refer to such ϕ as an outer isomorphism. [Note that, if G1 = G2 = H2, then ϕ may be regarded as an
element of Out(G1).]

Schemes: Let F be a field; X an algebraic variety [i.e., separated, geometrically integral, and of finite

type scheme] over F ; F ⊆ E a field extension. Then we shall write XE
def
= X ×F E; X(E) for the set of

E-valued points of X.

Fundamental groups: Let S be a connected Noetherian scheme. Then we shall write πét1 (S) for the
étale fundamental group of S, relative to a suitable choice of basepoint [cf. [7]]. Suppose that S is an

open subscheme of a connected regular scheme S whose complement DS
def
= S \ S is a normal crossing

divisor on S. Then we shall write πtame
1 (S)

def
= πtame

1 (S,DS) for the tame fundamental group of S [that
classifies the finite étale coverings of S tamely ramified along DS ], relative to a suitable choice of basepoint
[cf. [6], Corollary 2.4.4]. In particular, πtame

1 (S) may be regarded as a quotient of πét1 (S). Here, we note
that πtame

1 (S) depends on the choice of S. On the other hand, throughout the present paper, there is no
confusion on the choice of such S. Therefore, we do not specify S in the notation of πtame

1 (S).

1 Isotriviality criteria for hyperbolic curves

In the present section, from the viewpoint of both Galois and outer Galois representation, we give
certain isotriviality criteria for hyperbolic curves. The key ingredients of the proof are some basic prop-
erties of the K/k-trace associated to an abelian variety, Lang-Néron theorem, and a certain consequence
of Martens’ proof of Torelli’s theorem.

First, we begin by recalling the definitions of hyperbolic curves over schemes and isotriviality of
algebraic varieties.

Definition 1.1. Let S be a connected, normal scheme; X a smooth curve over S [i.e., smooth, separated,
and of finite type scheme over S whose geometric fibers are integral and of dimension 1]. Then we shall
say that X is a hyperbolic curve over S if X admits a smooth compactification (X ⊆) X over S satisfying
the following conditions:
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• The complement X \X ⊆ X of X is a relative effective Cartier divisor on X/S that is étale over S.

• If we write g for the genus of the smooth, proper curve X over S; r for the degree of the finite étale
morphism X \X ⊆ X → S, then it holds that 2g − 2 + r > 0.

Remark 1.1.1. It follows immediately from the discussion in [17], §0, Curves, that the smooth compacti-
fication X of X over S satisfying the above two conditions is unique.

Definition 1.2. Let F be a field; F0 ⊆ F a subfield; X an algebraic variety over F . Then we shall say
that X is isotrivial relative to F0 if XF descends to an algebraic variety over F 0.

Next, we recall some basic properties of the K/k-traces associated to abelian varieties, together with
the well-known Lang-Néron theorem.

Definition 1.3. Let k be a field; k ⊆ K a field extension. Then we shall say that:

(i) The field extension k ⊆ K is primary if the algebraic closure of k in K is purely inseparable over k.

(ii) The field extension k ⊆ K is regular if k ⊆ K is separable, and k is algebraically closed in K.

Remark 1.3.1. Note that it follows immediately from the definitions that every regular field extension is
primary. Note also that every field extension of an algebraically closed field is regular [cf. [4], Corollary
2.6.5, (c)].

Definition 1.4. Let k be a field; k ⊆ K a primary field extension; A an abelian variety over K. Then a
K/k-trace (TrK/k(A), τ) associated to A is a final object in the category of pairs of an abelian variety B
over k and a morphism BK → A of abelian varieties over K [cf. [1], Definition 6.1].

Theorem 1.5. Let k be a field; k ⊆ K a primary field extension; A an abelian variety over K. Then the
K/k-trace associated to A exists [cf. [1], Theorem 6.2]. Write

τ : TrK/k(A)K −→ A

for the K/k-trace associated to A. Then the following hold:

(i) There exists a unique abelian subvariety A′ ⊆ A such that TrK/k(A/A
′) is the trivial abelian variety,

and the K/k-trace TrK/k(A
′)K → A′ associated to A′ is an isogeny [cf. [1], Theorem 6.4].

(ii) Suppose that the field extension k ⊆ K is regular. Then Ker(τ) is a connected finite group scheme
over K with a connected Cartier dual [cf. [1], Theorem 6.12].

(iii) Suppose that the field extension k ⊆ K is finitely generated and regular. Then A(K)/TrK/k(A)(k)
is finitely generated [cf. [1], Theorem 7.1; [10], Theorem 1].

As an application of Theorem 1.5, together with a variant of Torelli’s theorem [cf. Proposition 1.8
below], we give a certain monodromy criterion of isotriviality for smooth, proper curves of genus ≥ 1 [cf.
Theorem 1.9 below].
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Lemma 1.6. Let k be an algebraically closed field; k ⊆ K a finitely generated field extension of tran-
scendental degree 1; X a proper hyperbolic curve over K; S a smooth curve over k whose function field
coincides with K. Suppose that

• the proper hyperbolic curve X over K extends to a proper hyperbolic curve X over S, and

• there exists an infinite subset I ⊆ S(k) such that the special fibers of X at the closed points ∈ I are
isomorphic over k.

Then X is isotrivial relative to k.

Proof. Fix a closed point s0 ∈ I, and write Xs0 for the special fiber of X at s0. In particular, for
each s ∈ I, the special fibers of the proper hyperbolic curves Xs0 ×k S, X at s are isomorphic. Write
IsomS(Xs0 ×k S,X ) for the Isom scheme determined by the proper hyperbolic curves Xs0 ×k S, X over
S; ϕ for the structure morphism of this Isom scheme. Recall that ϕ is finite [cf. [2], Theorem 1.11], hence
closed. On the other hand, it follows immediately from the definition of I that the image of ϕ contains
the subset I ⊆ S(k). Here, we note that since S is a smooth curve over k, the infinite subset I of closed
points is dense in S. In particular, the closedness of ϕ implies that ϕ is surjective. Thus, since ϕ is finite,
we conclude that there exists a finite field extension K ⊆ L such that (Xs0)L is isomorphic to XL over L.
This completes the proof of Lemma 1.6.

In the remainder of the present section, for each abelian scheme A over a scheme, we shall write A∨

for the dual abelian scheme of A. For each smooth, proper curve X over a scheme, we shall write J(X )
for the relative Jacobian of X .

Lemma 1.7. Let k be an algebraically closed field; A an abelian variety over k equipped with a purely
inseparable polarization; S a smooth curve over k; B a principally polarized abelian scheme over S;

f : A×k S −→ B

a [purely inseparable] isogeny of polarized abelian schemes over S. For i = 1, 2, let si ∈ S(k) be a closed

point and write Bi
def
= B ×S si;

fi : A −→ Bi

for the [purely inseparable] isogeny of polarized abelian varieties over k induced by f . Suppose that the
principal polarization B ∼→ B∨ on B is determined by a(n) [integral] relative effective Cartier divisor

D ⊆ B on B/S with geometrically integral fibers. For i = 1, 2, write Di
def
= D ×S si. Write

D′ def= f2(f
−1
1 (D1))

red ⊆ B2.

Then D′ is a translate of D2 via a closed point of B2.

Proof. First, since f is an isogeny of polarized abelian schemes, the polarization A ×k S → A∨ ×k S on
A ×k S determined by the irreducible relative effective Cartier divisor f−1(D) ⊆ A ×k S on A ×k S/S
coincides with the polarization induced by the given polarization on A. Write K for the function field of

S; C1
def
= f−1

1 (D1) ×k S; L(−) for the line bundle associated to an effective Cartier divisor (−). Recall
that the Neron-Severi group associated to AK is embedded into Hom(AK , A

∨
K
). Then since L(C1) and

L(f−1(D)) determine a same polarization on A×k S, after possibly replacing K by a finite extension field
of K, we observe that there exists an S-valued point x ∈ A×k S such that

(L(T−1
x C1) =) T ∗

xL(C1) ∼= L(f−1(D)),
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where Tx : A×k S
∼→ A×k S denotes the translate automorphism determined by x. Write m

def
= deg f ; µ1

(respectively, µC1) for the multiplicity of the irreducible effective Cartier divisor f−1
1 (D1) ⊆ A (respectively,

C1 ×S K = f−1
1 (D1)×k K ⊆ AK);

ϕ : Cred1 −→ f(C1)red, ϕs1 : f−1
1 (D1)

red −→ D1

for the natural finite morphisms. Here, we note that:

• µC1 = µ1, and m = deg f2 = deg f1 = µ1 · deg ϕs1 .

• The residue field extension of ϕ at the points corresponding to the generic points of Cred1 ×S s1,
f(C1)red ×S s1 coincides with the function field extension of ϕs1 .

In particular, m1
def
= µC1 · deg ϕ ≥ m. On the other hand, we recall that the push-forward by a finite

morphism between algebraic varieties preserves linear equivalence relations on Weil divisors. Therefore,
since L(T−1

x C1) ∼= L(f−1(D)), by considering the push-forward by f , we observe that

L(f(T−1
x C1)red)⊗m1 ∼= L(D)⊗m.

Then there exists a positive integer m2 ≥ m1 such that

L(f2(T−1
x C1 ×S s2)

red)⊗m2 ∼= L(D2)
⊗m.

Thus, since m2 ≥ m, and D2 determines a principal polarization, by considering the respective degrees of
the isogenies associated to the ample line bundles L(f2(T−1

x C1×S s2)
red)⊗m2 , L(D2)

⊗m on B2, we conclude
that m = m2. Moreover, in light of the torsion-freeness of the Neron-Severi group associated to B2, this
implies that

L(f2(T−1
x C1 ×S s2)

red) ∼= L(D2)

Note that since D2 ⊆ B2 is an effective Cartier divisor, H0(B2,L(D2)) ̸= {0}. Then since D2 determines
a principal polarization, it follows immediately from theorems in [22], p. 150, that H0(B2,L(D2)) = k.
Thus, we conclude that f2(T

−1
x C1 ×S s2)

red = D2, hence that D′ is a translate of D2. This completes the
proof of Lemma 1.7.

Now we prove a certain consequence of Martens’ proof of Torelli’s theorem.

Proposition 1.8. Let k be an algebraically closed field; A an abelian variety over k equipped with a purely
inseparable polarization

ϕ : A −→ A∨;

S a smooth curve over k; X a proper hyperbolic curve or an elliptic curve over S. Suppose that there
exists a(n) [purely inseparable] isogeny

f : A×k S −→ J(X )

of polarized abelian schemes over S, where we regard J(X ) as a polarized abelian scheme via the canonical
polarization [cf. [3], Proposition 6.9]. Then the generic fiber of X is isotrivial relative to k.

Proof. First, suppose that X is an elliptic curve. Then X ∼→ J(X ), and A is also an elliptic curve. Note
that, for each point s of S, the dual isogeny of f induces a purely inseparable isogeny J(X )×S s→ A∨.
In particular, since A∨ is a smooth, proper curve, the generic fiber of J(X ) descends [up to isomorphisms]
to a Frobenius twist of A∨. Thus, we conclude that the generic fiber of X is isotrivial relative to k.
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Next, suppose that X is a proper hyperbolic curve. In light of Lemma 1.6, it suffices to verify that,
up to isomorphisms, only finitely many proper hyperbolic curves appear in the special fibers of X . Let

s1, s2 be closed points of S. For i = 1, 2, write Xi
def
= X ×S si;

ιi : Xi ↪→ J(Xi)

for the Albanese embedding relative to a point ∈ Xi(k); g ≥ 2 for the genus of Xi;

θi

for the effective Cartier divisor on J(Xi) that appears as the scheme-theoretic image of the natural

morphism X
(g−1)
i → J(Xi) induced by ιi. Then, for i = 1, 2, f induces a purely inseparable isogeny

ψi : A −→ J(Xi)

such that ψ−1
i (θi) is an irreducible effective Cartier divisor that determines the polarization ϕ. Note that

since the isogenies ψ1 and ψ2 are purely inseparable, we have the composite of isomorphisms

ψ : J(X2)(k)
∼← A(k)

∼→ J(X1)(k)

of the groups of k-valued points. Recall that the canonical polarizations on Jacobians are principal.
Therefore, it follows immediately from Lemma 1.7, together with the various definitions involved, that
ψ(θ2(k)) is a translate of θ1(k) via a closed point of J(X1). Moreover, in light of the construction of ψ,
we observe that ψ maps any Zariski closed subset to a Zariski closed subset of same dimension. Thus, we
conclude from Martens’ proof of Torelli’s theorem [cf. [11]; [12], §13] that ψ(ι2(X2)(k)) is a translate of
ι1(X1)(k) or of ι1(X1)

∗(k), where ι1(X1)
∗ denotes the reflection of ι1(X1) in J(X1). Next, for i = 1, 2,

since ϕ is a purely inseparable polarization, and ψi is a purely inseparable isogeny of polarized abelian
varieties, we obtain a purely inseparable isogeny

ψ∨
i : J(Xi) −→ A∨.

such that ψ∨
i ◦ ψi = ϕ. Here, we note that ψ∨

1 and ψ∨
2 are compatible with ψ in a natural sense. For

i = 1, 2, write
Zi ⊆ A∨

for the scheme-theoretic image of the composite morphism ψ∨
i ◦ ιi : Xi → A∨. Then since ψ(ι2(X2)(k))

is a translate of ι1(X1)(k) or ι1(X1)
∗(k), it holds that Z2 is a translate of Z1 or the reflection of Z1. In

particular, Z1 and Z2 are isomorphic over k. On the other hand, observe that the degrees of the finite
purely inseparable extensions on function fields associated to the finite morphisms X1 → Z1, X2 → Z2

are bounded by deg ϕ.
In summary, there exists a one-variable function field K over k such that the function field of any

proper hyperbolic curve over k that arises as a special fiber of X is isomorphic to a finite purely inseparable
extension field of K of degree ≤ deg ϕ over k. Thus, since the isomorphism class of a finite purely
inseparable extension field of a one-variable function field over k is determined by its degree, we conclude
that, up to isomorphisms, only finitely many proper hyperbolic curves appear in the special fibers of X .
This completes the proof of Proposition 1.8.

Theorem 1.9. Let k be a field; k ⊆ K a finitely generated field extension; X a smooth, proper curve over

K of genus ≥ 1; Σ a nonempty set of prime numbers invertible in k. Write ∆X
def
= πét1 (XK)Σ;

ρ : GK −→ Aut(∆ab
X )

for the natural Σ-adic Galois representation associated to X. Then X is isotrivial relative to k if and
only if ρ(GK·k) = {1}.
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Proof. Necessity is immediate. To verify sufficiency, it suffices to consider the case where Σ = {l} for
some prime number l. Suppose that ρ(GK·k) = {1}. Then, by replacing k, K by k, a suitable finite
extension field of K · k, respectively, we may assume without loss of generality that

k = k, X(K) ̸= ∅, ρ(GK) = {1}.

In particular, the field extension k ⊆ K is regular [cf. Remark 1.3.1]. Moreover, in light of the induction
on the transcendental degree of the field extension k ⊆ K, we may assume without loss of generality that
K is a one-variable function field over k. Write J(X)′ ⊆ J(X) for the unique subabelian variety as in
Theorem 1.5, (i). Then since ρ(GK) = {1}, it follows immediately from Theorem 1.5, (i), (iii), together
with [20], Proposition A.6, (iv), that J(X)′ = J(X), and the K/k-trace

τ : TrK/k(J(X))K −→ J(X)

associated to J(X) is an isogeny over K. Furthermore, it follows from Theorem 1.5, (ii), that τ is a purely
inseparable isogeny over K whose dual is also purely inseparable. Next, let S be a smooth curve over k
such that

• the function field of S coincides with K,

• X extends to a smooth, proper curve X over S, and

• τ extends to an isogeny
τ̃ : TrK/k(J(X))S −→ J(X )

of abelian schemes over S.

Then since τ is a purely inseparable isogeny over K whose dual is also purely inseparable, we observe
that τ̃ , the dual of τ̃ , and the canonical polarization of J(X ) determine a purely inseparable polarization

ϕ̃ : TrK/k(J(X))S −→ TrK/k(J(X))∨S

over S. Note that, in light of Chow’s theorem [cf. [1], Theorem 3.19], ϕ̃ arises from a purely inseparable
polarization

ϕ : TrK/k(J(X)) −→ TrK/k(J(X))∨

over k. Thus, we conclude from Proposition 1.8 that X is isotrivial relative to k. This completes the
proof of sufficiency, hence of Theorem 1.9.

Remark 1.9.1. In the notation of Theorem 1.9, suppose that X is nonisotrivial relative to k, and Σ = {l}
for some prime number l invertible in k. Let H ⊆ GK·k be an open subgroup. Then it follows immediately
from Theorem 1.9, together with the various definitions involved, that ρ(H) ̸= {1}. On the other hand,
we recall that the kernel of the natural homomorphism Aut(∆ab

X ) → Aut(∆ab
X /l

2 ·∆ab
X ) is a torsion-free

pro-l group [cf. Lemma 1.10 below]. In particular, after replacing K by a finite extension field of K, one
may observe that ρ(GK·k) is a nontrivial torsion-free pro-l group.

Remark 1.9.2. The assumption that X is proper over K in Theorem 1.9 may not be dropped. Indeed,
suppose that k is algebraically closed, and the field extension k ⊆ K is transcendental. Let X0 be a
proper hyperbolic curve over k; x ∈ X0(K) \ X0(k). Observe that the abelianizations of the respective
geometric pro-Σ fundamental groups of a once-punctured hyperbolic curve and its smooth compactification
are isomorphic naturally. Then, in light of this observation, the nonisotrivial affine hyperbolic curve
X0 ×k K \ {x} over K gives a counter-example.
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Remark 1.9.3. Let k be a field of characteristic 0; k ⊆ K a finitely generated field extension; A an abelian
variety over K; Σ a nonempty set of prime numbers. Write TΣA for the Σ-adic Tate module associated to
A [i.e., the product of l-adic Tate modules associated to A, where l ranges over the prime numbers ∈ Σ];

ρ : GK −→ Aut(TΣA)

for the natural Σ-adic Galois representation associated to A. Then it follows from a similar argument
to the argument applied in the proof of Theorem 1.9 that A is isotrivial relative to k if and only if
ρ(GK·k) = {1}.

Lemma 1.10. Let l be a prime number; n a positive integer. Suppose that l is odd (respectively, l = 2).
Then the kernel of the natural surjection

ϕ : GLn(Zl) ↠ GLn(Fl) (respectively, ϕ : GLn(Zl) ↠ GLn(Z/l2Z))

is torsion-free.

Proof. Since Ker(ϕ) is a pro-l group, it suffices to verify that Ker(ϕ) has no nontrivial l-torsion element.
Write In ∈ GLn(Zl) for the identity matrix. Let A ∈ Ker(ϕ) be such that Al = In. Suppose that A ̸= In.
Then there exist a positive integer t (respectively, t ≥ 2) and a matrix B ∈ Mn(Zl) \Mn(lZl) such that
A = In + ltB. Therefore, since Al = In, it holds that∑

1≤i≤l

(
l

i

)
· litBi = 0.

Write ai
def
=

(
l
i

)
· lit; vl for the l-adic additive valuation such that vl(l) = 1. Then it follows immediately

from our assumption that l is odd (respectively, l = 2, and t ≥ 2) that vl(al) = lt > t + 1 = vl(a1), and
vl(ai) = it+ 1 > t+ 1 = vl(a1) for each i = 2, . . . , l − 1. In particular, it follows from the equality in the
above display that B ∈ Mn(lZl). This contradicts the condition that B ∈ Mn(Zl) \Mn(lZl). Thus, we
conclude that A = In. This completes the proof of Lemma 1.10.

In light of Remark 1.9.2, to establish an isotriviality criterion for affine hyperbolic curves, we consider
an anabelian setting. To obtain an anabelian criterion of isotriviality for hyperbolic curves, we prepare
some lemmas.

Lemma 1.11. Let k be a separably closed field; k ⊆ K a field extension; X, Y proper hyperbolic curves
over k. Then any isomorphism XK

∼→ YK over K descends to an isomorphism X
∼→ Y over k. In

particular, if a proper hyperbolic curve Z over K is nonisotrivial relative to k, then for each field extension
K ⊆ L, ZL is also nonisotrivial relative to k.

Proof. Since k is separably closed, Lemma 1.11 follows immediately from the fact that the Isom scheme
Isomk(X,Y ) is finite and unramified over k [cf. [2], Theorem 1.11].

Remark 1.11.1. Let k be a field; k ⊆ K a field extension; X a hyperbolic curve over K; Z → X a [possibly,
ramified] finite Galois covering over K whose degree is coprime to the characteristic of k. Suppose that Z
is isotrivial relative to k and of genus ≥ 2. In particular, the smooth compactification of Z [obtained as
the normalization of the smooth compactification of X in the function field of Z] is a proper hyperbolic
curve that is isotrivial relative to k. Then it follows immediately from Lemma 1.11 that X is also isotrivial
relative to k. A much more general statement will be given later [cf. Corollary 1.17].
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Now we recall the well-known de Franchis-Severi theorem.

Theorem 1.12. Let k be an algebraically closed field; X, Y proper hyperbolic curves over k. Then the
cardinality of the set of generically étale, finite morphisms Y → X over k is finite.

Proof. Theorem 1.12 follows immediately from [24], p.49, Theorem.

Lemma 1.13. Let k be a field; l a prime number invertible in k; k ⊆ K a finitely generated field extension;
X an affine hyperbolic curve over K. Suppose that X is nonisotrivial relative to k. Then there exists
a geometrically pro-l finite étale Galois covering Y → X such that the smooth compactification of Y is
nonisotrivial relative to k.

Proof. First, in light of Hurwitz’s formula, together with Remark 1.11.1, by replacing X by the domain
curve of a suitable geometrically pro-l finite étale Galois covering of X, we may assume without loss of
generality that X has genus ≥ 2. Next, in light of the induction on the transcendental degree of the
finitely generated field extension k ⊆ K, together with Lemma 1.11 and the various definitions involved,
that we may assume without loss of generality that:

• k is algebraically closed, and the transcendental degree of the field extension k ⊆ K is 1.

• The smooth compactification X of X over K is isotrivial relative to k.

• If we write X0 for the proper hyperbolic curve over k such that (X0)K is isomorphic to X over K,
then the divisor X \X ⊆ X consists of a K-valued point that does not arise from a k-valued point
of X0.

After replacing K by a finite separable extension field of K, if necessary, we fix a finite étale Galois
covering Y → X over K of degree l that ramifies over the K-valued point in the complement of X. Then
it suffices to verify that the smooth compactification Y of Y over K is nonisotrivial relative to k [cf. also
Remark 1.11.1].

Suppose that Y is isotrivial relative to k. Write Y 0 for the proper hyperbolic curve over k such that
(Y 0)K is isomorphic to Y over K. Let S0 be a smooth, proper curve over k whose function field coincides
with K. Then the respective K-valued points in the complements of X, Y determine respective sections

ιX : S0 −→ X0 ×k S0, ιY : S0 −→ Y 0 ×k S0

of the second projection morphisms, and the finite étale Galois covering Y → X over K extends to a
finite étale Galois covering

ϕ : Y 0 ×k S0 \ Im(ιY ) −→ X0 ×k S0 \ Im(ιX)

over S0. For each closed point s ∈ S0, write

ϕs : Y 0 −→ X0

for the finite morphism over k determined by the finite étale Galois covering between the special fibers
at s induced by ϕ. Then it follows immediately from Theorem 1.12 that there exists an infinite subset

I ⊆ S0(k) such that ϕs1 = ϕs2 for any s1, s2 ∈ I. Write ϕI
def
= ϕs, where s ∈ I. On the other hand,

since the K-valued point in the complement of X does not arise from a k-valued point of X0, we observe
that the composite of ιX with the first projection morphism X0 ×k S0 → X0 is a dominant morphism.
Thus, since ϕ ramifies at the divisor Im(ιX), we conclude that the finite morphism ϕI ramifies at infinitely
many closed points. This is a contradiction. Thus, we conclude that Y is nonisotrivial relative to k. This
completes the proof of Lemma 1.13.
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Next, in light of Lemma 1.13, we give an anabelian criterion of isotriviality for hyperbolic curves from
the viewpoint of outer representations.

Theorem 1.14. Let k be a field; k ⊆ K a finitely generated field extension; X a hyperbolic curve over

K; Σ a nonempty set of prime numbers invertible in k. Write ∆X
def
= πét1 (XK)Σ;

ρ : GK −→ Out(∆X)

for the natural pro-Σ outer representation associated to X. Then X is isotrivial relative to k if and only
if ρ(GK·k) = {1}.

Proof. Necessity is immediate. To verify sufficiency, it suffices to consider the case where Σ = {l} for some
prime number l. Suppose that X is nonisotrivial relative to k. Then it follows from Lemma 1.13 that there
exists a geometrically pro-l finite étale Galois covering Y → X such that the smooth compactification of
the hyperbolic curve Y [over a finite extension field of K] is nonisotrivial relative to k. After replacing K
by a finite extension field of K, write

ρY : GK −→ Out(∆Y )

for the natural pro-l outer representation associated to Y , where ∆Y
def
= πét1 (YK)l. Thus, we conclude

from Theorem 1.9, together with Remark 1.9.1, that ρY (GK·k) is not finite. Therefore, since the index of
the normal closed subgroup ∆Y ⊆ ∆X is finite, it holds that ρ(GK·k) ̸= {1}. This completes the proof of
sufficiency, hence of Theorem 1.14.

Here, we recall the definition and an elementary property of slimness of profinite groups, which play
important roles in anabelian geometry.

Definition 1.15. Let G be a profinite group. Then we shall say that G is slim if every open subgroup of
G is center-free.

Lemma 1.16. Let G be a slim profinite group; H ⊆ G an open subgroup; σ ∈ Aut(G). Suppose that σ
induces the identity automorphism of H. Then σ is the identity automorphism.

Proof. By replacing H by a smaller open subgroup of G, we may assume without loss of generality that
H is normal in G. Then since G is slim, the natural homomorphism f : G→ Aut(H) obtained by taking
conjugates is injective. On the other hand, we observe that the respective inner automorphisms of G,
Aut(H) determined by σ, σ|H are compatible with respect to the natural homomorphism f . Thus, since
f is injective, we conclude from our assumption that σ|H is the identity automorphism that σ is also the
identity automorphism. This completes the proof of Lemma 1.16.

Finally, as an application of Theorem 1.14, we prove the following geometric result.

Corollary 1.17. Let k be a field; k ⊆ K a field extension; X a hyperbolic curve over K; S an algebraic
variety over K that admits a dominant morphism S → X over K. Suppose that S is isotrivial relative to
k. Then X is isotrivial relative to k.

Proof. First, by replacing K by a suitable subfield of K, we may assume without loss of generality that
the field extension k ⊆ K is finitely generated. Next, let l be a prime number invertible in k. Write

∆(−)
def
= πét1 ((−)K)l. Recall that ∆X is slim [cf. [21], Proposition 1.4]. Then, in light of Theorem 1.14,

together with Lemma 1.16, it suffices to verify that the natural homomorphism f : ∆S → ∆X induced
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by the dominant morphism S → X is open. On the other hand, if M ⊆ L is a finitely generated
field extension, then the natural homomorphism GL → GM is an open homomorphism. Thus, since the
dominant morphism S → X induces a finitely generated field extension of function fields, we conclude
that f is open. This completes the proof of Corollary 1.17.

2 Modified formulation of the relative Grothendieck Conjecture for
hyperbolic curves over fields of positive characteristic via compati-
bility of cyclotomes

In the present section, we revisit the Grothendieck Conjecture-type results for hyperbolic curves over
finitely generated fields of positive characteristic established by Tamagawa, Mochizuki, Stix, and Säıdi-
Tamagawa [cf. [19], [25], [26], [27], [28], [29]]. Especially, in the relative situation, we formulate and
prove a certain variant of them from the viewpoint of the compatibility of the group-theoretic cyclotomes.
In fact, this formulation will be of use in a subsequent joint work with Hoshi and Sawada concerning
Grothendieck Conjecture-type results in anabelian geometry.

Let p be a prime number; Σ ⊆ Primes a nonempty subset of prime numbers that does not contain p;
k a field of characteristic p. For each hyperbolic curve X over a field, we shall write X for the smooth
compactification of X over the base field.

Definition 2.1. Let S be a smooth variety over k. Then we shall write

∆S
def
= πét1 (Sk)

Σ; ΠS
def
= πét1 (S)/Ker(πét1 (Sk) ↠ ∆S),

where πét1 (Sk) ↠ ∆S denotes the natural surjection. In particular, the natural exact sequence of profinite
groups

1 −→ πét1 (Sk) −→ πét1 (S) −→ Gk −→ 1

[cf. [7], Exposé IX, Théorème 6.1] induces a natural exact sequence of profinite groups

1 −→ ∆S −→ ΠS −→ Gk −→ 1.

Lemma 2.2. Let X be a hyperbolic curve of genus ≥ 2 over k. Then the following hold:

(i) The dual ẐΣ-module of the second cohomology group H2(∆X , Ẑ
Σ) is isomorphic to ẐΣ(1) as Gk-

modules. Here, “(1)” denotes the Tate twist, i.e., ẐΣ(1)
def
= lim←−n

µn(k), where n ranges over the
positive integers whose prime factors are contained in Σ.

(ii) Let d be a positive integer;
Y −→ X

a finite étale Galois covering tamely ramified along the cusps of X [i.e., points ∈ X \ X] whose
geometric degree [i.e., the degree of the finite morphism Yk → Xk induced by the covering Y → X]
is equal to d. [In particular, Y is a hyperbolic curve of genus ≥ 2 over a finite Galois extension of

k.] Write ẐΣ(−1) def
= Hom(ẐΣ(1), ẐΣ). Then the natural composite homomorphism

ẐΣ(−1) ∼← H2(∆X , Ẑ
Σ) −→ H2(∆Y , Ẑ

Σ)
∼→ ẐΣ(−1)
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of Gk-modules [cf. (i)] induced by the natural open homomorphism ∆Y → ∆X is given by multipli-
cation by d. In particular, we have a natural isomorphism

H2(∆X , Ẑ
Σ)

∼→ 1

d
·H2(∆X , Ẑ

Σ)
∼→ H2(∆Y , Ẑ

Σ)

of Gk-modules.

Proof. First, we verify assertion (i). Observe that since X is a smooth proper curve of genus ≥ 2, there
exists a natural isomorphism

H2(∆X , Ẑ
Σ)

∼→ H2
ét(Xk, Ẑ

Σ)

of Gk-modules. On the other hand, it follows immediately from Poincaré duality that H2
ét(Xk, Ẑ

Σ) is

isomorphic to ẐΣ(−1) as Gk-modules. Thus, we conclude that the dual ẐΣ-module of H2(∆X , Ẑ
Σ) is

isomorphic to ẐΣ(1) as Gk-modules, as desired. This completes the proof of assertion (i).
Next, we verify assertion (ii). Note that since the geometric degree of the finite morphism f : Y → X

[induced by the finite étale Galois covering Y → X] is d, it holds that deg f∗L = d · deg L for each
line bundle L on X. Then, in light of the construction of Poincaré duality, we observe that the natural
composite

ẐΣ(−1) ∼← H2
ét(Xk, Ẑ

Σ) −→ H2
ét(Y k, Ẑ

Σ)
∼→ ẐΣ(−1)

is given by multiplication by d. This completes the proof of assertion (ii), hence of Lemma 2.2.

Definition 2.3. Let X be a hyperbolic curve over k. Then we shall write

ΛX

for the dual ẐΣ-module of the direct limit

lim−→
ΠY ⊆ΠX

H2(∆Y , Ẑ
Σ),

where ΠY ⊆ ΠX ranges over the normal open subgroups that correspond to the geometrically pro-Σ finite
étale Galois coverings Y → X whose domain curves are of genus ≥ 2 [In particular, Y is a smooth proper
curve of genus ≥ 2]; the transition maps are isomorphisms that appear in the final display of Lemma 2.2,
(ii). In particular, it follows immediately from Lemma 2.2, (i), (ii), that there exists a natural isomorphism

ΛX
∼→ ẐΣ(1)

of Gk-modules.

Lemma 2.4. Let X be a hyperbolic curve over k. Suppose that there exists a prime number l ∈ Σ such
that the l-adic cyclotomic character Gk → Z×

l associated to k is open. Then the following hold:

(i) The cuspidal inertia subgroups of ∆X [i.e., inertia subgroups of ∆X associated to points ∈ X\X] may
be reconstructed, in a purely group-theoretic way, from [the underlying topological group structure
of] ΠX , together with the normal closed subgroup ∆X ⊆ ΠX .

(ii) The cyclotome ΛX may be reconstructed, in a purely group-theoretic way, from [the underlying
topological group structure of] ΠX , together with the normal closed subgroup ∆X ⊆ ΠX .
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Proof. First, we verify assertion (i). Note that the image of the outer representation Gk → Out(∆X) may
be reconstructed from the data (ΠX ,∆X ⊆ ΠX). Thus, we conclude from [the proof of] [18], Corollary
2.7, (i), together with our assumption on the l-adic cyclotomic character associated to k, that ΛX may
be reconstructed from the data (ΠX ,∆X ⊆ ΠX). This completes the proof of assertion (i).

Next, we verify assertion (ii). Let Y → X be a geometrically pro-Σ finite tamely ramified Galois
covering. Then one may observe that

• the genus of Y may be determined by [the underlying topological group structure of] ∆Y , together
with the cardinality of the set of cusps of Y ;

• there exists a natural bijection between the set of cusps of Y and the set of the conjugacy classes of
cuspidal inertia subgroups of ∆Y ;

• the kernel of the natural [outer] surjection ∆Y ↠ ∆Y is topologically generated by the cuspidal
inertia subgroups of ∆Y ;

• every cuspidal inertia subgroup of ∆Y coincides with the intersection of a cuspidal inertia subgroup
of ∆X with ∆Y .

Therefore, in light of the construction of ΛX , assertion (ii) follows immediately from assertion (i). This
completes the proof of assertion (ii), hence of Lemma 2.4.

Definition 2.5.

(i) Let S1, S2 be k-schemes. Then we shall write

Isomk(S1, S2)

for the set of isomorphisms S1
∼→ S2 of schemes over k.

(ii) Let X1, X2 be smooth varieties over k. Then we shall write

IsomGk
(ΠX1 ,ΠX2)/Inn(∆X2)

for the set of isomorphisms ΠX1

∼→ ΠX2 of profinite groups that lie over the identity automorphism
of Gk considered up to composition with an inner automorphism determined by an element of
∆X2 (⊆ ΠX2). Suppose that X1 and X2 are hyperbolic curves over k. Then we shall write

IsomΛ
Gk

(ΠX1 ,ΠX2)/Inn(∆X2) ⊆ IsomGk
(ΠX1 ,ΠX2)/Inn(∆X2)

for the subset determined by the isomorphisms σ : ΠX1

∼→ ΠX2 [that lie over the identity automor-
phism of Gk] such that the natural composite isomorphism

ẐΣ(1)
∼← ΛX1

∼→ ΛX2

∼→ ẐΣ(1)

[cf. the final display of Definition 2.3; Lemma 2.4, (ii)] induced by σ is the identity automorphism.

Theorem 2.6. Suppose that k is a finite field [of characteristic p], and the cardinality of the subset
Primes \ Σ ⊆ Primes is finite. Let X1, X2 be hyperbolic curves over k. Then the natural map

Isomk(X1, X2) −→ IsomΛ
Gk

(ΠX1 ,ΠX2)/Inn(∆X2)

is bijective.
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Proof. Let σ : ΠX1

∼→ ΠX2 be an isomorphism of profinite groups that lies over the identity automorphism
of Gk. Write X̃1 → X1, X̃2 → X2 for the respective geometrically pro-Σ universal coverings associated to
ΠX1 , ΠX2 . Then it follows from [26], Theorem D, that σ arises from the following commutative diagram
of pro-schemes

X̃1
∼−−−−→ X̃2y y

X1
∼−−−−→ X2,

where the vertical arrows denote the natural morphisms; the horizontal arrows denote the isomor-
phisms. Here, we observe that this commutative diagram induces an isomorphism (X1)k

∼→ (X2)k
of schemes and an automorphism k

∼→ k of fields. On the other hand, since the cardinality of the
subset Primes \ Σ ⊆ Primes is finite, it follows from [8], Theorem A, that the natural homomor-
phism GFp → Aut(ẐΣ(1)) is injective. Then it follows immediately from the various definitions in-

volved that the element ∈ GFp ↪→ Aut(ẐΣ(1)) determined by the automorphism k
∼→ k coincides

with the inverse of the element ∈ Aut(ẐΣ(1)) that corresponds to the natural composite isomorphism
ẐΣ(1)

∼← ΛX1

∼→ ΛX2

∼→ ẐΣ(1) [cf. the final display of Definition 2.3; Lemma 2.4, (ii)]. In particular, if
the natural composite isomorphism ẐΣ(1)

∼← ΛX1

∼→ ΛX2

∼→ ẐΣ(1) is the identity automorphism, then
the isomorphism (X1)k

∼→ (X2)k is an isomorphism of k-schemes. These observations immediately imply
that the natural map

Isomk(X1, X2) −→ IsomΛ
Gk

(ΠX1 ,ΠX2)/Inn(∆X2)

is bijective, as desired. This completes the proof of Theorem 2.6.

Remark 2.6.1. The condition that the subset Primes \ Σ ⊆ Primes is finite that appears in Theorem 2.6
[and in the results of the present paper] may be replaced by a weaker condition as in [26], Theorem D.
On the other hand, since the condition in [26], Theorem D depends on respective hyperbolic curves under
considerations, the author has decided to assume a stronger condition throughout the present paper.

Remark 2.6.2. Note that the absolute Galois groups of finite fields are abelian. In particular, the relative
Grothendieck Conjecture for hyperbolic curves over finite fields in the usual formulation does not hold.
This situation has made the author to introduce the modified formulation as in Theorem 2.6. Moreover,
in the case where we consider Grothendieck Conjecture for hyperbolic curves over more general base fields,
if we restrict our attention to such a modified formulation, then we do not need to treat the isotrivial and
nonisotrivial cases separately [cf. Theorems 2.9, 4.4 below].

Lemma 2.7. Let S be a connected regular scheme of characteristic p; s ∈ S a closed point; X → S a

proper hyperbolic curve. Write η ∈ S for the generic point of S; Xη
def
= X ×S η; Xs

def
= X ×S s. Then the

natural composite isomorphism
ẐΣ(1)

∼← ΛXη

∼→ ΛXs

∼→ ẐΣ(1)

induced by the specialization isomorphism ∆Xη

∼→ ∆Xs [cf. also the final display of Definition 2.3] is the
identity automorphism.

Proof. Write Xη, Xs for the geometric fibers of X → S over η, s, respectively. Then we have the following
commutative diagram:

H2(∆Xs , ẐΣ)
∼−−−−→ H2

ét(Xs, ẐΣ)y≀
y≀

H2(∆Xη , ẐΣ)
∼−−−−→ H2

ét(Xη, ẐΣ),
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where the horizontal arrows denote the natural isomorphisms [cf. our assumption that X → S is a proper
hyperbolic curve]; the left-hand vertical arrow denotes the isomorphism induced by the specialization
isomorphism ∆Xη

∼→ ∆Xs ; the right-hand vertical arrow denotes the specialization isomorphism. On the

other hand, we observe that the trace maps H2
ét(Xs, ẐΣ(1))

∼→ ẐΣ and H2
ét(Xη, ẐΣ(1))

∼→ ẐΣ [induced
by the long cohomology exact sequences associated to Kummer exact sequences] are compatible with
the specialization isomorphism H2

ét(Xs, ẐΣ(1))
∼→ H2

ét(Xη, ẐΣ(1)). Thus, in light of the construction of

Poincaré duality, we conclude that the natural composite isomorphism ẐΣ(1)
∼← ΛXη

∼→ ΛXs

∼→ ẐΣ(1) is
the identity automorphism. This completes the proof of Lemma 2.7.

Lemma 2.8. Let S be an algebraic variety over a field; Z a scheme; ϕ : Z → S a finite unramified
morphism of schemes. Suppose that, for any closed point s ∈ S, the closed immersion Spec k(s) → S
[where k(s) denotes the residue field of the local ring OS,s at s ∈ S] lifts to a morphism Spec k(s) → Z
via ϕ. Write η ∈ S for the generic point of S. Then ϕ is totally split in an étale neighborhood of η ∈ S.

Proof. Note that it follows immediately from our assumption that the image of ϕ contains the subset of
closed points of S. On the other hand, since S is an algebraic variety over a field, the subset of closed
points of S is dense. Therefore, the finiteness of ϕ implies that ϕ is surjective. Recall that the étale locus
of ϕ is open. In particular, since ϕ is a finite unramified morphism, by replacing S by an open subscheme
of S, we may assume without loss of generality that ϕ is a finite étale, and surjective morphism. Thus,
we conclude that there exists a suitable finite étale Galois covering W → S such that the morphism
W ×S Z →W is totally split, as desired. This completes the proof of Lemma 2.8.

Theorem 2.9. Suppose that k is a finitely generated field [of characteristic p], and the cardinality of the
subset Primes \ Σ ⊆ Primes is finite. Let X1, X2 be hyperbolic curves over k. Then the natural map

Isomk(X1, X2) −→ IsomΛ
Gk

(ΠX1 ,ΠX2)/Inn(∆X2)

is bijective.

Proof. First, the injectivity of the natural map in question is well-known. In the remainder, we discuss the
surjectivity of the natural map. Recall that every almost pro-Σ surface group is slim [cf. [21], Proposition
1.4]. Then, in light of Galois descent, together with Hurwitz’s formula, by replacing X1, X2, by suitable
respective geometrically pro-Σ finite étale Galois coverings, we may assume without loss of generality that
X1 and X2 have genus ≥ 2. On the other hand, since k is a finitely generated field, it follows immediately
from Lemma 2.4, (i), that every isomorphism ΠX1

∼→ ΠX2 of profinite groups that lies over the identity
automorphism of Gk induces a bijection between the respective sets of cuspidal inertia subgroups of ∆X1 ,
∆X2 . Therefore, again by applying a similar argument to the above argument concerning Galois descent,
together with the slimness of almost pro-Σ surface groups, we may assume without loss of generality that
X1 and X2 are proper hyperbolic curves.

Next, let S be a smooth variety over a finite field such that

• the function field of S coincides with k, and

• the proper hyperbolic curves X1, X2 over k extend to proper hyperbolic curves X1, X2 over S,
respectively.

Write
IsomS(X1,X2)
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for the Isom scheme over S determined by X1 and X2. Recall that IsomS(X1,X2) is finite and unramified
over S [cf. [2], Theorem 1.11]. On the other hand, let s ∈ S be a closed point; σ : ΠX1

∼→ ΠX2

an isomorphism of profinite groups that determines an element ∈ IsomΛ
Gk

(ΠX1 ,ΠX2)/Inn(∆X2). Write

(X1)s
def
= X1 ×S s; (X2)s

def
= X2 ×S s; k(s) for the residue field of S at s. Then since X1 and X2 are proper

hyperbolic curves over S, it follows immediately from Lemma 2.7 that σ determines an element σs ∈
IsomΛ

Gk(s)
(Π(X1)s ,Π(X2)s)/Inn(∆(X2)s). Therefore, by applying Theorem 2.6, we observe that σs arises from

a unique isomorphism (X1)s
∼→ (X2)s over k(s). In particular, the structure morphism IsomS(X1,X2)→ S

satisfies the assumption of Lemma 2.8. Here, we note that, in light of Galois descent, to verify that σ
arises from a(n) [unique] isomorphism X1

∼→ X2 over k, one may replace k by a finite Galois extension of
k. Thus, in light of Lemma 2.8, by replacing k by a finite Galois extension of k, S by an étale locus of S,
and s ∈ S by a suitable closed point of S, we may assume without loss of generality that there exists an
isomorphism X1

∼→ X2 over S that lifts the isomorphism (X1)s
∼→ (X2)s over k(s). Thus, we conclude from

the theory of specialization that the isomorphism X1
∼→ X2 over k induced by the isomorphism X1

∼→ X2

over S maps to σ via the natural map Isomk(X1, X2) −→ IsomΛ
Gk

(ΠX1 ,ΠX2)/Inn(∆X2). This completes
the proof of Theorem 2.9.

Remark 2.9.1. The argument applied in the proof of Theorem 2.9 is similar to the argument applied in
[29], §6.

Definition 2.10. Let X be a hyperbolic curve over k; ϕ : πtame
1 (X) ↠ Π a quotient of profinite groups

such that the natural quotient πtame
1 (X) ↠ Gk factors through ϕ. Write ∆ for the kernel of the natural

surjection Π ↠ Gk. Then we shall say that Π is Σ-closed if, for each normal open subgroup N ⊆ Π, the
natural surjection (ϕ−1(N) ∩ πtame

1 (Xk))
Σ ↠ (N ∩∆)Σ is an isomorphism.

Definition 2.11. Let X be a hyperbolic curve over k; N ⊆ πtame
1 (X) a normal open subgroup. Then we

shall refer to the quotient

πtame
1 (X)/Ker(N ∩ πtame

1 (Xk) ↠ (N ∩ πtame
1 (Xk))

Σ)

as an almost geometrically pro-Σ quotient of πtame
1 (X) associated to N .

Remark 2.11.1. Let X be a hyperbolic curve over k. Then it follows immediately from the various
definitions involved that πtame

1 (X) and any almost geometrically pro-Σ quotient of πtame
1 (X) are Σ-closed.

In particular, ΠX is Σ-closed. Moreover, every Σ-closed quotient of πtame
1 (X) may be identified with the

inverse limit of an inverse system consisting of almost geometrically pro-Σ quotients of πtame
1 (X).

Lemma 2.12. Let X be a hyperbolic curve over k; Π a Σ-closed quotient of πtame
1 (X); Y → X a

finite étale Galois covering tamely ramified along the cusps of X that corresponds to a normal open
subgroup ΠY ⊆ Π. Then one may reconstruct the natural isomorphism ΛY

∼→ ΛX [compatible with the
natural scheme-theoretic identifications ΛX

∼→ ẐΣ(1), ΛY
∼→ ẐΣ(1)], in a purely group-theoretic way,

from [the underlying topological group structure of] Π, together the normal closed subgroups ΠY ⊆ Π,
Ker(Π ↠ Gk) ⊆ Π.

Proof. Lemma 2.12 follows immediately from Lemma 2.2, (ii), together with the various definitions in-
volved.
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Definition 2.13. Let X be a hyperbolic curve over k; Π a Σ-closed quotient of πtame
1 (X). For each

normal open subgroup N ⊆ Π, write XN → X for the finite tamely ramified Galois covering associated
to N ⊆ Π. Then we shall write

ΛΠ
def
= lim−→

N⊆Π

ΛXN
,

where N ⊆ Π ranges over the normal open subgroups; the transition maps are the isomorphisms as in
Lemma 2.12. In particular, we have a natural isomorphism ΛΠ

∼→ ẐΣ(1).

Remark 2.13.1. In the notation of Definition 2.13, suppose that there exists a prime number l ∈ Σ such
that the l-adic cyclotomic character Gk → Z×

l associated to k is open. Then it follows immediately from
Lemma 2.4, (ii), together with the various definitions involved, that ΛΠ may be reconstructed, in a purely
group-theoretic way, from [the underlying topological group structure of] Π.

Corollary 2.14. Let X1, X2 be hyperbolic curves over k;

Π1, Π2

Σ-closed quotients of πtame
1 (X1), π

tame
1 (X2), respectively;

σ : Π1
∼→ Π2

a Ker(Π2 ↠ Gk)-outer isomorphism of profinite groups that lies over the identity automorphism of Gk.
Suppose that

• k is a finitely generated field [of characteristic p],

• the cardinality of the subset Primes \ Σ ⊆ Primes is finite, and

• the composite isomorphism ẐΣ(1)
∼← ΛΠ1

∼→ ΛΠ2

∼→ ẐΣ(1) induced by σ [cf. Remark 2.13.1] is the
identity automorphism.

Then σ arises from a unique isomorphism
X1

∼→ X2

over k.

Proof. Note that since Π1 and Π2 are Σ-closed quotients, Π1 and Π2 may be identified with the respective
inverse limits of inverse systems consisting of almost geometrically pro-Σ quotients of πtame

1 (X1), π
tame
1 (X2)

compatible with σ [cf. Remark 2.11.1]. Thus, we may assume without loss of generality that Π1, Π2

coincide with almost geometrically pro-Σ quotients of πtame
1 (X1), π

tame
1 (X2), respectively. In this situation,

in light of Galois descent, together with the slimness of almost pro-Σ surface groups [cf. [21], Proposition
1.4], we conclude from Theorem 2.9 that σ arises from a unique isomorphism X1

∼→ X2 over k, as desired.
This completes the proof of Corollary 2.14.
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3 Automorphisms of the perfections of positive characteristic discrete
valuation fields that induce the identity outer automorphisms of the
absolute Galois groups

Let p be a prime number; k a discrete valuation field of characteristic p; σ ∈ Aut(kpf). Write

ϕ : Aut(kpf) −→ Out(Gkpf)

for the natural homomorphism [cf. [9], Introduction]. In the present section, we prove that if ϕ(σ) is
trivial, then there exists a unique integer m such that σ coincides with the pm-th Frobenius automorphism
of kpf. The proof may be regarded as a certain modified version of the discussion applied in [9], i.e., a
combination of Kummer theory and Artin-Schreier theory with respect to cyclotomes. This result may
be applied to give an enhanced version of a well-known Pop’s theorem in birational anabelian geometry
in the next section.

For each field F of characteristic p and each positive integer n, we shall write

℘pn : F −→ F

for the Artin-Schreier map that maps F ∋ x 7→ xp
n − x ∈ F ;

℘p∞(F )
def
=

∩
m≥1

Im(℘pm) ⊆ F,

where m ranges over the positive integers. Write Z[ 1
p∞ ] ⊆ Q for the [additive] subgroup generated by the

negative integer powers of p;
Okpf ⊆ kpf

for the ring of integers of kpf.

Lemma 3.1. Let F be a field of characteristic p that admits a surjective homomorphism F× ↠ Z[ 1
p∞ ];

τ ∈ Aut(F )

an automorphism that induces the identity outer automorphism of GF . Fix a lifting

τ̃ ∈ Aut(F sep)

of τ that induces the identity automorphism of GF [cf. [9], Lemma 1.2]. Then the following hold:

(i) Write c ∈ (Ẑ(p)′)× = Aut(Ẑ(p)′(1)) for the element determined by τ̃ . Then there exists a unique
integer m such that c = pm. In particular, τ̃ induces the pm-th Frobenius automorphism on Fp (⊆
F sep).

(ii) Suppose that F is perfect. Then the automorphism F/℘p∞(F )
∼→ F/℘p∞(F ) of Fp-vector space

induced by τ coincides with the automorphism induced by the pm-th Frobenius automorphism of F ,
where m denotes the integer that appears in (i).

Proof. First, we verify assertion (i). Write

κF : F× −→ H1(GF , Ẑ(p)′(1))

for the Kummer map. Note that it follows immediately from the various definitions involved that κF
is compatible with τ : F

∼→ F and the automorphism of H1(GF , Ẑ(p)′(1)) induced by τ̃ . On the other
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hand, since τ̃ induces the identity automorphism of GF , it follows from the definition of c that the
automorphism of H1(GF , Ẑ(p)′(1)) induced by τ̃ is given by multiplication by c. Then the existence of a
surjective homomorphism F× ↠ Z[ 1

p∞ ] implies that the automorphism of Ẑ(p)′ given by multiplication by

c preserves the subgroup Z[ 1
p∞ ] ⊆ Ẑ(p)′ . Here, we observe that (Ẑ(p)′)× ∩ Q = {±pn}n∈Z. In particular,

it holds that c ∈ {±pn}n∈Z. Note that the field automorphism of Fp induced by τ̃ is given by the

assignment F×
p ∋ x 7→ xc ∈ F×

p . Thus, since the assignment F×
p ∋ x 7→ x−1 ∈ F×

p does not give rise to a

field automorphism of Fp, we conclude that c ∈ {pn}n∈Z. This completes the proof of assertion (i).
Next, we verify assertion (ii). Since F is perfect, by replacing τ by the composite of τ with the p−m-th

Frobenius automorphism, we may assume without loss of generality that m = 0. In particular, it holds
that c = 1. In this situation, it suffices to verify that, for each positive integer n, τ̃ induces the identity
automorphism of F/Im(℘pn). Observe that there exists a natural isomorphism

F/Im(℘pn)
∼→ H1(GF ,Fpn)

that arises from the natural exact sequence

1 −→ Fpn −→ F sep ℘pn−→ F sep −→ 1.

Thus, since τ̃ induces the identity automorphism of GF , we conclude from assertion (i) that τ̃ induces the
identity automorphism of F/Im(℘pn). This completes the proof of assertion (ii), hence of Lemma 3.1.

Lemma 3.2. It holds that
℘p∞(kpf) ⊆ Okpf .

Proof. Let a ∈ ℘p∞(kpf) \ Okpf be an element. By replacing k by a finite [purely inseparable] extension
field of k, we may assume without loss of generality that a ∈ k. Observe that, for each positive integer n,
the finite field extension of k obtained by adjoining the roots of the equation xp

n −x−a = 0 is separable.
This observation implies that a ∈ ℘p∞(k). Thus, we conclude from [9], Lemma 2.2, (iii), that a ∈ Okpf .
This completes the proof of Lemma 3.2.

Lemma 3.3. Suppose that ϕ(σ) is trivial. Then σ preserves the subset kpf \ Okpf ⊆ kpf. Moreover,
there exists a unique integer m such that the automorphism of kpf \ Okpf induced by σ coincides with the
automorphism determined by the assignment kpf \ Okpf ∋ x 7→ xp

m ∈ kpf \ Okpf.

Proof. Note that the discrete valuation on k gives a surjective homomorphism (kpf)× ↠ Z[ 1
p∞ ]. Then

it follows immediately from Lemma 3.1, (ii), that, by replacing σ by the composite of σ with a suitable
Frobenius automorphism, we may assume without loss of generality that σ induces the identity auto-
morphism on kpf/℘p∞(kpf). Thus, in light of Lemma 3.2, we conclude from a similar argument to the
argument applied in the proof of [9], Lemma 2.3, that σ is trivial. This completes the proof of Lemma
3.3.

Theorem 3.4. Suppose that ϕ(σ) is trivial. Then there exists a unique integer m such that σ coincides
with the pm-th Frobenius automorphism.

Proof. Theorem 3.4 follows immediately from Lemma 3.3, together with the fact that every element
∈ Okpf may be written as the sum of two elements ∈ kpf \ Okpf .
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4 Absolute Grothendieck Conjecture for nonisotrivial hyperbolic curves
over the perfections of finitely generated fields of positive charac-
teristic

Throughout the present section, we maintain the notation of §2 and suppose that

the cardinality of the subset Primes \ Σ ⊆ Primes is finite.

Moreover, we shall say that

a hyperbolic curve C over the field k [of characteristic p] is isotrivial if C is isotrivial relative
to the subfield k ∩ Fp ⊆ k.

In the present section, in light of the isotriviality criterion in §1, together with the relative version
of the Grothendieck Conjecture formulated in §2, we first discuss the partial compatibility of the group-
theoretic cyclotomes [cf. Proposition 4.3]. As a direct consequence of this partial compatibility, we give
an alternative proof of Stix’s results concerning the relative version of the Grothendieck Conjecture for
nonisotrivial hyperbolic curves over the finitely generated fields of positive characteristic [cf. Theorem
4.4]. Moreover, by combining with one of the Pop’s results in birational anabelian geometry, together
with the result obtained in §3, we prove an absolute version of the Grothendieck Conjecture for the
geometrically pro-Σ fundamental groups of nonisotrivial hyperbolic curves over the perfections of finitely
generated fields of positive characteristic [cf. Theorem 4.9]. This result may be regarded as a higher
dimensional base field analogue of [25], Theorem 1; [26], Theorem D.

First, we begin by recalling an elementary property of the relative Frobenius morphisms.

Definition 4.1. Let m be a positive integer; X a hyperbolic curve over k. Write

X(pm)

for the hyperbolic curve over k obtained by forming the base extension of X via the morphism Spec k →
Spec k that corresponds to the pm-th Frobenius endomorphism k → k;

F
(pm)
X : X −→ X(pm)

for the relative pm-th Frobenius morphism.

Lemma 4.2. Let m be a positive integer; X a hyperbolic curve over k. Then the composite isomorphism

ẐΣ(1)
∼← ΛX

∼→ ΛX(pm)
∼→ ẐΣ(1)

induced by F
(pm)
X is given by multiplication by pm.

Proof. Lemma 4.2 follows immediately from the construction of Poincaré duality, together with the various
definitions involved.

Proposition 4.3. Suppose that k is a finitely generated transcendental extension field of the prime field
[of characteristic p]. Let X1 be a nonisotrivial hyperbolic curve over k; X2 a hyperbolic curve over k;

Π1, Π2
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Σ-closed quotients of πtame
1 (X1), π

tame
1 (X2), respectively;

σ : Π1
∼→ Π2

a ∆2
def
= Ker(Π2 ↠ Gk)-outer isomorphism of profinite groups that lies over the identity automorphism of

Gk. Then X2 is also nonisotrivial, and the composite isomorphism

ẐΣ(1)
∼← ΛΠ1

∼→ ΛΠ2

∼→ ẐΣ(1)

induced by σ [cf. Remark 2.13.1] is given by multiplication by pm for some integer m.

Proof. First, it follows immediately from Remark 2.11.1 that we may assume without loss of generality
that

Π1 = ΠX1 , Π2 = ΠX2 .

In particular, σ induces an isomorphism between the pro-Σ outer representations associated to X1, X2.
Then since X1 is nonisotrivial, it follows immediately from Theorem 1.14 that X2 is also nonisotrivial.

In the remainder of the present proof, we verify the second assertion. In light of Lemmas 1.13; 2.4,
(i); 2.12, by replacing X1, X2 by the respective smooth compactifications of suitable geometrically pro-Σ
finite étale Galois coverings of X1, X2, we may assume without loss of generality that

X1 and X2 are nonisotrivial proper hyperbolic curves over k.

Next, write
kcyc (⊆ k)

for the maximal cyclotomic extension field of k;

σcyc ∈ (ẐΣ)× = Aut(ẐΣ(1))

for the element determined by the composite isomorphism ẐΣ(1)
∼← ΛΠ1

∼→ ΛΠ2

∼→ ẐΣ(1). In order to
verify that σcyc is an integer power of p, it suffices to verify that, for each finite subset Σ† ⊆ Σ, the element
∈ (ẐΣ†

)× determined by σcyc is an integer power of p. Fix a finite subset Σ† ⊆ Σ. For each prime number
l ∈ Σ†, write

ρl : Gk −→ Aut((∆l
1)

ab) (respectively, χl : Gk −→ Aut(Zl(1)))

for the natural l-adic Galois representation associated to X1 (respectively, the l-adic cyclotomic character
associated to k). Then since X1 is nonisotrivial, it follows immediately from Remark 1.9.1 that, by
replacing k by a finite extension field of k, for each prime number l ∈ Σ†, we may assume without loss of
generality that

• χl(Gk) is a torsion free pro-l group,

• ρl factors through the maximal pro-l quotient Gk ↠ Gl
k, and

• ρl(Gkcyc) is a nontrivial torsion-free pro-l group.

In the remainder, by a slight abuse of notations, we shall also use ρl, χl for the l-adic Galois representations
of Gl

k induced by ρl, χl, respectively.
Next, in light of the theory of specialization, it follows immediately from [26], Theorem D, together with

Lemma 2.7, that σcyc is contained in the image of the natural injection GFp ↪→ Aut(ẐΣ(1)). Note that, if

we identify GFp and the image of the injection GFp ↪→ Aut(ẐΣ(1)), then σcyc lifts to an automorphism of

k that induces a Frobenius endomorphism on k. [In particular, the automorphism of k induces an inner
automorphism of Gk.] Therefore, in light of Lemma 4.2, by replacing X1 or X2 by a suitable Frobenius
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twist [that corresponds to the Frobenius endomorphism on k], we may assume without loss of generality
that there exists an element τGal ∈ Gk such that, if we write

τ : Π2
∼→ Π2

for the ∆2-outer automorphism induced by τGal, then the composite isomorphism ẐΣ(1)
∼← ΛΠ1

∼→ ΛΠ2

∼→
ẐΣ(1) induced by τ ◦ σ is the identity automorphism. In this situation, to verify Proposition 4.3,

it suffices to verify that the image of τGal via the Σ†-adic cyclotomic character χΣ† : Gk →
Aut(ẐΣ†

(1)) is trivial.

Next, by applying a similar argument to the argument applied in the proof of Theorem 2.9 to τ ◦ σ
[together with the fact that the absolute Galois groups of finite fields are abelian], we observe that there
exists an isomorphism f : X1

∼→ X2 over k such that the outer isomorphisms of ∆2 induced by f and

τ ◦ σ coincide. Therefore, by replacing σ by the composite of σ with the ∆1
def
= Ker(Π1 ↠ Gk)-outer

isomorphism Π2
∼→ Π1 induced by f−1, we may assume without loss of generality that

X1 = X2, and τ ◦ σ induces the identity outer automorphism of ∆1.

Since τ ◦σ lies over the inner automorphism of Gk determined by τGal ∈ Gk, this assumption implies that
ρl(τGal) lies in the center of ρl(Gk) for each prime number l ∈ Σ†.

Fix a prime number l ∈ Σ†. Suppose that χl(τGal) is nontrivial. Write

I ⊆ Gl
k

for the pro-cyclic subgroup [∼= Zl] topologically generated by the image of τGal in G
l
k. Let

J ⊆ Ker(χl) (⊆ Gl
k)

be a pro-cyclic subgroup [∼= Zl] such that ρl(J) is nontrivial, hence isomorphic to Zl. Write

H ⊆ Gl
k

for the closed subgroup topologically generated by I and J ;

(J ⊆) H ′ def= H ∩Ker(χl) (⊆ Gl
k).

Now we recall that

• every nontrivial closed subgroup of Zl is open, and

• the composite of ρl with the determinant map Aut((∆l
1)

ab) → Z×
l coincides with some positive

integer power of χl.

Then since χl(τGal) is not a torsion element, and ρl(τGal) commutes with ρl(J), it follows immediately that
ρl(H) = ρl(I)⊕ρl(J) (∼= Zl⊕Zl). Now this product decomposition determines a surjective homomorphism

(H ′)ab ↠ ρl(J) (∼= Zl)

of I-modules, where ρl(J) is endowed with the trivial action of I. On the other hand, we recall that
every finite cyclic extension of degree l-power of a field that contains all the l-power roots of unity is a
Kummer extension. In particular, for each finite cyclic quotient (H ′)ab ↠ C, it holds that I acts on C
via χl. Then since χl(I) is open in Z×

l , this contradicts the existence of the surjective homomorphism
(H ′)ab ↠ ρl(J) of I-modules. Therefore, χl(τGal) is trivial. Finally, by varying l ∈ Σ†, we conclude that
χΣ†(τGal) is trivial. This completes the proof of Proposition 4.3.
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Next, we give an alternative proof of [27], Theorem 3.2; [28], Theorem 5.1.3.

Theorem 4.4. We maintain the notation of Proposition 4.3. Suppose that the integer m is nonnegative
(respectively, negative). By a slight abuse of notation, we shall write

F
(pm)
X1

: πtame
1 (X1)

∼→ πtame
1 (X

(pm)
1 ) (respectively, F

(p−m)
X2

: πtame
1 (X2)

∼→ πtame
1 (X

(p−m)
2 ))

for the natural Ker(πtame
1 (X

(pm)
1 ) ↠ Gk)-outer (respectively, Ker(πtame

1 (X
(p−m)
2 ) ↠ Gk)-outer) isomor-

phism [that lies over the identity automorphism of Gk] induced by F
(pm)
X1

(respectively, F
(p−m)
X2

). Write

Π
(pm)
1 (respectively, Π

(p−m)
2 )

for the quotient of πtame
1 (X

(pm)
1 ) (respectively, πtame

1 (X
(p−m)
2 )) determined by Π1 and F

(pm)
X1

(respectively,

Π2 and F
(p−m)
X2

). Then the natural composite Ker(Π2 ↠ Gk)-outer (respectively, Ker(Π
(p−m)
2 ↠ Gk)-outer)

isomorphism

Π
(pm)
1

∼←
F

(pm)
X1

Π1
∼→
σ

Π2 (respectively, Π1
∼→
σ

Π2
∼→

F
(p−m)
X2

Π
(p−m)
2 )

arises from a unique isomorphism

X
(pm)
1

∼→ X2 (respectively, X1
∼→ X

(p−m)
2 )

of schemes over k.

Proof. In light of Lemma 4.2 and Proposition 4.3, Theorem 4.4 follows immediately from Corollary
2.14.

In the remainder of the present section, we prove a certain absolute version of Theorem 4.4. In order
to do this, we first prepare some lemmas.

Lemma 4.5. Suppose that k is a perfect field, and Gk is center-free. Let m be an integer; X a hyperbolic
curve over k;

f : X
∼→ X

an automorphism of schemes that lies over the pm-th Frobenius automorphism of k. Suppose, moreover,
that f induces the identity outer automorphism of ΠX . Then m = 0, and f is the identity automorphism.

Proof. First, we observe that the natural composite map

Autk(X) −→ AutGk
(ΠX)/Inn(∆X) −→ Out(ΠX)

is injective. Indeed, the injectivity of the first arrow is well-known, and the injectivity of the second arrow
follows immediately from our assumption that Gk is center-free. In particular, to verify Lemma 4.5, it
suffices to verify that m = 0. By replacing f by the inverse of f , if necessary, we may assume without
loss of generality that m is not positive.

Next, in light of the injectivity of the second arrow in the above display, it follows from our assumption
that f induces the identity outer automorphism of ΠX that f determines the identity ∆X -outer auto-
morphism of ΠX that lies over the identity automorphism of Gk. In particular, f induces the identity
automorphism of ẐΣ(1). On the other hand, write

ϕ : X(p−m) ∼→ X
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for the natural isomorphism of schemes; g
def
= f ◦ ϕ : X(p−m) ∼→ X. Note that the automorphism of ẐΣ(1)

[i.e., the composite ẐΣ(1)
∼← Λ

X(p−m)

∼→ ΛX
∼→ ẐΣ(1)] induced by ϕ is given by multiplication by pm.

Moreover, since g is an isomorphism over k, it holds that g induces the identity automorphism of ẐΣ(1).
Therefore, f induces the automorphism of ẐΣ(1) given by multiplication by p−m. Thus, we conclude that
1 = p−m, hence that m = 0. This completes the proof of Lemma 4.5.

Proposition 4.6. Suppose that k is the perfection of a finitely generated field. Let X be a hyperbolic curve
over k; Π a Σ-closed quotient of πtame

1 (X). Then the natural quotient Π ↠ Gk may be reconstructed, in
a purely group-theoretic way, from [the underlying topological group structure of] Π.

Proof. First, suppose that k is a finite field [or equivalently, Π is topologically finitely generated]. Then
Proposition 4.6 follows immediately from a similar argument to the argument applied in the proof of
[20], Theorem 2.6, (i) [i.e., an application of the Weil conjecture for abelian varieties over finite fields,
together with [20], Proposition A.6, (iv)]. Next, suppose that k is not a finite field [or equivalently,
Π is not topologically finitely generated]. Recall that every finitely generated transcendental extension
field is Hilbertian [cf. [4], Proposition 13.4.1], and that the operations of forming the perfections of
fields do not change their absolute Galois groups. Then it follows from [13], Theorem 2.1, that every
topologically finitely generated normal closed subgroup of Gk is trivial. On the other hand, we observe
that Ker(πtame

1 (X) ↠ Gk), hence also Ker(Π ↠ Gk), is topologically finitely generated. Thus, we conclude
that Ker(Π ↠ Gk) may be characterized as the maximal topologically finitely generated normal closed
subgroup of Π. This completes the proof of Proposition 4.6.

Definition 4.7. Let G1, G2 be profinite groups. Then we shall write

OutIsom(G1, G2)

for the set of outer isomorphisms G1
∼→ G2 of profinite groups.

Here, we record a certain enhancement of a well-known theorem in birational anabelian geometry
obtained by Pop.

Theorem 4.8. Let k1, k2 be finitely generated transcendental extension fields of the prime field of char-
acteristic p. Write

IsomF (kpf2 , k
pf
1 )

for the set of isomorphisms kpf2
∼→ kpf1 of fields considered up to compositions with the Frobenius automor-

phisms. Then the natural map

IsomF (kpf2 , k
pf
1 ) −→ OutIsom(Gk1 , Gk2)

— where we identify Gk1, Gk2 with G
kpf1

, G
kpf2

, respectively — is bijective.

Proof. The injectivity portion of Theorem 4.8 follows immediately from Theorem 3.4, and the surjectivity
portion of Theorem 4.8 follows immediately from [23], Theorem 1.3. This completes the proof of Theorem
4.8.

Finally, we prove an absolute version of Theorem 4.4 as follows.
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Theorem 4.9. Let k1, k2 be the perfections of finitely generated transcendental extension fields of the
prime field of characteristic p; X1 a nonisotrivial hyperbolic curve over k1; X2 a hyperbolic curve over k2;

Π1, Π2

Σ-closed quotients of πtame
1 (X1), π

tame
1 (X2), respectively;

σ : Π1
∼→ Π2

an outer isomorphism of profinite groups. Then σ arises from a unique isomorphism

X1
∼→ X2

of schemes. In particular, the natural maps

Isom(X1, X2) −→ OutIsom(πtame
1 (X1), π

tame
1 (X2)),

Isom(X1, X2) −→ OutIsom(ΠX1 ,ΠX2)

are bijective.

Proof. First, the uniqueness portion follows immediately from Lemma 4.5, together with the injectivity
portion of Theorem 4.8. Next, we observe that it follows from Proposition 4.6 that σ induces an outer
isomorphism Gk1

∼→ Gk2 of profinite groups. Then, by applying the surjectivity portion of Theorem 4.8, to
verify that σ arises from an isomorphism X1

∼→ X2 of schemes, we may assume without loss of generality
that k = k1 = k2, and σ induces the identity outer automorphism of Gk. In this situation, the desired
geometricity of σ follows immediately from Theorem 4.4. This completes the proof of Theorem 4.9.

Remark 4.9.1. The nonisotriviality assumption on X1 in Theorem 4.9 may not be dropped. Indeed,
suppose that k is the perfection of a finitely generated transcendental extension field of the prime field
of characteristic p. Write ϕ : Gk → GFp for the natural open homomorphism. Let X be an isotrivial
hyperbolic curve over k that descends to a hyperbolic curve over Fp; σ ∈ Gk an element such that ϕ(σ)
is nontrivial and does not coincide with any integral power of the p-th Frobenius automorphism [of Fp].
Note that since X descends to a hyperbolic curve over Fp, the pro-Σ outer representation

ρ : Gk −→ Out(∆X)

associated to X factors through ϕ. In particular, if we write iσ for the inner automorphism of Gk

determined by σ, then since GFp is abelian, it holds that ρ◦ iσ = ρ. Thus, in light of the center-freeness of
∆X , we obtain a ∆X -outer automorphism of ΠX that induces the trivial outer automorphism on ∆X and
iσ on Gk. Then the assumption on σ, together with the injectivity portion of Theorem 4.8, immediately
implies that [the outer automorphism of ΠX determined by] this ∆X -outer automorphism does not arise
from any automorphism of X.
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