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SUMMARY
During development, positional information directs cells to specific fates, leading them to differentiate with
their own transcriptomes and express specific behaviors and functions. However, the mechanisms underly-
ing these processes in a genome-wide view remain ambiguous, partly because the single-cell transcriptomic
data of early developing embryos containing accurate spatial and lineage information are still lacking. Here,
we report a single-cell transcriptome atlas of Drosophila gastrulae, divided into 77 transcriptomically distinct
clusters. We find that the expression profiles of plasma-membrane-related genes, but not those of transcrip-
tion-factor genes, represent each germ layer, supporting the nonequivalent contribution of each transcrip-
tion-factor mRNA level to effector gene expression profiles at the transcriptome level. We also reconstruct
the spatial expression patterns of all genes at the single-cell stripe level as the smallest unit. This atlas is
an important resource for the genome-wide understanding of the mechanisms by which genes cooperatively
orchestrate Drosophila gastrulation.
INTRODUCTION

One of the fundamental goals of developmental biology is to un-

derstand how genes cooperatively orchestrate morphogenesis

and physiological functions at the cellular and tissue levels. In

the scheme of programmed control of development, positional

information is established by the combination of morphogens

and cell-cell interactions. Then each cell is canalized into a spe-

cific fate depending on its position in embryos.1–3 The dynamics

of gene regulatory networks is considered to be essential for

transforming gradual analog information into a discrete digital

pattern of gene expression.4,5 After cell fate canalization, it is

widely considered that the combinatorial action of transcriptional

factors (TFs) establishes a transcriptome profile that defines

the pattern of cell and tissue morphogenesis.6,7 Technological

advances have led to a genome-wide understanding of gene

expression control and cell differentiation processes.8,9 How-
This is an open access article under the CC BY-N
ever, our understanding has yet to sufficiently link the transcrip-

tome with cell and tissue behavior. To understand how TFs

orchestrate cell/tissue behavior through establishing character-

istic transcriptomes, it is crucial to have a single-cell transcrip-

tome atlas of developing embryos containing both accurate

spatial and lineage information.

Drosophila gastrulae have been an excellent model system

for studying multicellular morphogenesis for decades.10–12

The cell-specific expression of genes has been extensively

analyzed using in situ hybridization (ISH).13,14 However, it is still

difficult to obtain quantitative transcriptome profiles of each cell

together with spatial information. For example, the Berkeley

Drosophila Transcription Network Project (BDTNP) established

a gene-expression database as a virtual embryo by integrating

the quantified fluorescence ISH (FISH) data from multiple em-

bryos. However, the number of genes analyzed was less than

100.15–17
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In this decade, single-cell RNA sequencing (scRNA-seq) has

become a standard technique that enables the analysis of tran-

scriptomes at the single-cell level.18,19 Since cells need to be

dissociated into the single-cell level from tissues for scRNA-

seq, several computational methods have also been developed

to restore the spatial information of scRNA-seq data.20–23 For

Drosophila gastrulae, scRNA-seq analysis and spatial recon-

struction of gene expression were performed.24 However, there

is room for improvement in its quality because, for many genes,

the reconstructed spatial pattern from scRNA-seq data did not

match the original pattern uncovered by ISH. For example, the

famous 14-stripes expression patterns of segment polarity

genes (e.g., wingless [wg], engrailed [en]) have not been fully re-

constructed in theDrosophila Virtual Expression eXplorer (DVEX;

https://shiny.mdc-berlin.de/DVEX/). Recently, we computation-

ally overcame this limitation by developing a machine learning

method, Perler, based on generative linear mapping.25

Although we and others have made efforts to improve compu-

tational methods,26–28 there still is a fundamental limitation with

the scRNA-seq data; the number of high-quality cells sequenced

was 1,297, which ismuch lower than the number of cells in a gas-

trula (approximately 6,000 cells),24 so there might be cells not in

the scRNA-seq data. In addition, Karaiskos et al. distinguished

only 13 clusters in their scRNA-seq data, which may not be suf-

ficient to fully describe the entire Drosophila gastrula. Therefore,

further acquisition of scRNA-seq data will enable us to perform a

more precise transcriptomic characterization and improve the

spatial-transcriptome reconstruction.

In this study,weaimed to improve the single-cell transcriptome

atlas of Drosophila gastrula and update it to version 2.0. To this

end,weprofiled single-cell transcriptomes that can be annotated

into 77 clusters and further recapitulated the transcriptome pro-

files of each pair-rule stripe. Finally, we cataloged the spatial

expression patterns of all genes in Drosophila gastrulae via

computational integration with reference spatial expression pat-

terns using Perler25 or NovoSpaRc.26 Since Drosophila gastrula

is one of the most well-characterized multicellular systems, this

atlasprovides an important quantitative resource for awide range

of biological fields as a reference for understanding the principles

that link gene regulatory networks and cell differentiation to cell

behavior and tissue morphogenesis.

RESULTS

scRNA-seq of fixed cells dissociated from Drosophila

embryos
To conduct scRNA-seq analysis for Drosophila gastrulae, we

first reexamined the protocols of the single-cell dissociation
Figure 1. Comparison between trypsin and CAP dissociation for scRN

(A) Schematic diagram of the data acquired in this study.

(B andC) UniformManifold Approximation and Projection (UMAP) plot of the Set3

Seurat cluster information. Dot plot shows the expression patterns of typical ma

(D) Midline cells are colored magenta in the UMAP plot of the Set3 CAP-10x dat

(E–G) Expression patterns of sim (E), E(spl)m8-HLH (F), and tsr (G) in the Set3 CA

(H) Midline cells are colored magenta in the UMAP plot of the Set2 trypsin-10x d

(I–K) Expression patterns of sim (I), E(spl)m8-HLH (J), and tsr (K) in the Set2 tryps

The expression patterns in (E–G) and (I–K) represent the log-transformed values
step. We tried the mechanical dissociation protocol as previ-

ously reported24 but did not recover enough cells in our hands.

Therefore, we next attempted gentle breaking of the vitelline

membrane and dissociated the cells enzymatically. It has

recently been recognized that enzymatic dissociation at room

temperature leads to artificial changes in the transcriptome. To

overcome this problem, cell dissociation using cold-active

protease (CAP, also known as subtilisin A from Bacillus licheni-

formis) at low temperatures has been shown to be a good solu-

tion.29–32 We examined both enzymes to assess the artificial

effect of trypsin and the usefulness of CAP on single-cell disso-

ciation of Drosophila embryos (Figure 1A). In addition, a step of

non-cross-linking fixation using CellCover is added to avoid

the gene expression change after cell dissociation to cell lysis

steps (Figure 1A). Bulk RNA sequencing (RNA-seq) analysis indi-

cates CellCover fixation could preserve the transcriptome profile

(Figure S1A).

We then performed scRNA-seq analysis using three different

protocols: set 1, trypsin dissociation and Fluidigm C1 mRNA

Seq HT IFC (Set1 trypsin-C1HT); set 2, trypsin dissociation

and 10x Genomics Chromium V3.1 (Set2 trypsin-10x); and set

3, CAP dissociation and 10x Genomics Chromium V3.1 (Set3

CAP-10x) (Figure 1A). In all datasets, gene expression was

quantified by counting the different unique molecular identifiers

(UMIs), short random nucleotide sequences added to each

transcript in the reverse transcription step per gene and per

cell.33 After filtering the data of high-quality cells (see STAR

Methods for details), 1,243, 7,314, or 6,180 cells remained,

and the expression of 4,480, 3,222, or 4,053 genes per cell in

the median was detected for Set1, Set2, or Set3 data, respec-

tively (Table S1). Set1 trypsin-C1HT data showed higher me-

dian UMI counts per cell (152,429) than the other 10x data

(22,506 [Set2] and 37,610 [Set3]). One of the reasons for higher

sensitivity is greater sequencing depth per cell, which is consis-

tent with a previous report that the C1 platform can produce

rich information.34 Unsupervised clustering and the extraction

of marker genes for each cluster using Seurat v322 revealed

that each dataset contains all major cell types, such as meso-

derm (snail [sna], twist [twi]), trunk dorsal ectoderm (decapenta-

plegic [dpp], pannier [pnr]), trunk neuroectoderm (short gastru-

lation [sog]), head ectoderm (Optix, ocelliless [oc]), terminal

endoderm (fork head [fkh]), pole cells (polar granule component

[pgc]), and dorsal amnioserosa cells (pebbled [peb]), indicating

there was no cell type bias in all datasets (Figures 1B, 1C, S1B,

and S1C). The Set1 trypsin-C1HT data were composed of four

biological replicates, and there was no obvious batch effect

among them, indicating the reproducibility of our protocol

(Figure S1B).
A-seq

CAP-10x scRNA-seq data (B) and the Set2 trypsin-10x scRNA-seq data (C) with

rker genes for each cluster.

a.

P-10x data.

ata.

in-10x data.

after SCTransform normalization.
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Trypsin dissociation causes artificial upregulation of
Notch target genes
To reveal the extent to which different dissociation methods

affect the single-cell transcriptome profile, we inspected all

scRNA-seq data in depth. Midline cells (mesoectoderm) are

known to highly express Notch target genes single-minded

(sim) and some Enhancer of split (E(spl)) complex genes, such

as E(spl)m5-helix-loop-helix (E(spl)m5-HLH), and E(spl)m8-

HLH.35–37 In Set3 CAP-10x data, all these genes were specif-

ically expressed in the midline cell cluster (Figures 1D–1F). On

the other hand, we noticed that, in Set2 trypsin 10x data,

although the midline cell cluster was identified by specific

expression of sim, E(spl)m8-HLH showed strong and broad

expression not only in the midline cell cluster but also in other

clusters (Figures 1H–1J). To assess whether the artificial induc-

tion of E(spl) complex genes is due to trypsin treatment, we

performed bulk RNA-seq. Although there was a high

correlation between intact embryos and trypsin-dissociated

cells, trypsin-dissociated cells showed higher expression of

E(spl) complex genes, indicating that trypsin treatment artificially

upregulates the expression independent of cell type

(Figures S1G and S1H).

In addition, Set2 trypsin-10x data had Seurat clusters that

showed high twinstar (tsr) expression (Figure 1K). For

example, the trunk mesoderm was divided into two clusters

(clusters 1 and 10 in Figure 1C), and cluster 10 showed higher

expression of tsr than cluster 1 (Figure 1K). Furthermore, clus-

ter 6, which seems to belong to the trunk ectoderm, also

showed high tsr expression. On the other hand, clusters 6

and 10 showed relatively low expression of E(spl) complex

genes (Figure 1J). To characterize these cells with high tsr

expression (tsr-high cells), we identified highly expressed

genes in cluster 10 compared with cluster 1 and performed

gene set enrichment analysis. By Gene Ontology (GO) enrich-

ment analysis, the term ‘‘oxidative phosphorylation’’ was en-

riched in highly expressed genes of the tsr-high cell cluster

(Figure S1I), suggesting that these cells exhibited some meta-

bolic stress responses.

These results suggest that there are two types of cells in

Set2 trypsin-10x data: one increased some of the Notch target

genes (E(spl) complex genes), and the other showed some

kind of stress response upon trypsin treatment. Furthermore,

Set1 trypsin-C1HT data also showed strong and broad

expression of E(spl) complex genes (Figures S1D and S1E)

and clusters showing high tsr expression (Figure S1F). On

the other hand, in Set3 CAP-10x data, there was no such clus-

ter (Figures 1F and 1G), indicating that these cellular re-

sponses are specific to trypsin treatment but not CAP

treatment.
Figure 2. Seventy-seven subclusters of Drosophila gastrulae identified

(A) Subclustering of trunk ectodermal cells (PS2-13). (Left) Trunk ectodermal cells

plot of trunk ectodermal cells with 25 subcluster information.

(B) Expression patterns of genes expressed in specific parasegments. trn, even

(C) UMAP plot of the Set3 CAP-10x scRNA-seq data with information on the 77

(D) Schematic diagram showing the inferred spatial location of each subcluster i

(E) Heatmap showing the typical marker genes for subclusters of the posterio

mesoderm; DE, dorsal ectoderm; MG, midgut; NE, neuroectoderm.
Identification of 77 transcriptomically distinct
subclusters in Set3 data
To investigate the detailed single-cell transcriptome diversity in

the gastrulae, we performed subclustering of all scRNA-seq

data and manually annotated each subcluster based on known

gene expression patterns from databases (Berkeley Drosophila

Genome Project [BDGP] in situ database [https://insitu.fruitfly.

org],38–40 Fly-FISH [https://fly-fish.ccbr.utoronto.ca])13,14 and in-

formation from the literature. In the trunk region of the gastrula,

the amnioserosa, dorsal ectoderm, ventral neuroectoderm,

mesoectoderm (midline cells), and mesoderm emerge along

the dorsal-ventral (DV) axis.41 On the other hand, along the ante-

rior-posterior (AP) axis, cells were divided into 14 parasegments

(PSs),12,42–46 and even parasegments express tartan (trn) and

fushi tarazu (ftz) specifically.47,48 Therefore, we inferred the origin

of the trunk ectodermal cells in Set3 for each of the AP and DV

axes separately. We picked up the trunk ectoderm cells (Fig-

ure 2A, corresponding to PS2–13) and assigned these cells to

seven DV identities by k-means clustering with 35 selected DV

genes (see STAR Methods for details). Along the AP axis, we as-

signed these cells to four AP identities (parasegment 2 [PS2],

trunk ectoderm odd [PS3, 5, 7, 8, 9, 11], trunk ectoderm even

[PS4, 6, 8, 10, 12], and PS13) (Figure 2A). Combining these AP

and DV identities divided the trunk ectoderm cells into 25 sub-

clusters (Figure 2A). We also performed subclustering for other

Seurat clusters in Set3 and eventually divided the cells into 77

subclusters for Set3 data (Figures 2C, 2D, and S2; Table S2).

Notably, the head region located anterior to parasegment 1

could be divided into 15 subclusters, including future foregut pri-

mordium (Figure 2C), indicating that the head region can be sub-

divided into smaller areas at the transcriptome level. This result

may reflect the complexity of later head development. Note

that, during the subclustering process, 62 potential doublet cells

were identified and discarded from the dataset (see STAR

Methods for details). The remaining Set3 data consisted of

6,118 cells.

We also performed subclustering of Set1, Set2, and previously

reported data in Nikos Karaiskos et al. (NK-data)24 similarly. The

apparent differences between Set2 and Set3 are that we could

not clearly separate even/odd parasegmental identity of ventral

neuroectoderm in Set2 data. In Seurat clustering using all cells,

the dorsal ectoderm appears to be divided into even and odd

parasegments, while the ventral neuroectoderm is not separated

(Figures S3A and S3B). Furthermore, even after subclustering,

the lateral ectoderm could not be clearly divided into even and

odd parasegment along the DV axis. These differences could

be due to transcriptome distortion by trypsin treatment. In the

case of Set1 and NK-data, only 32 and 28 subclusters could

be distinguished, respectively (Figures S3C and S3D),
from scRNA-seq data

are colored magenta in the UMAP plot of the Set3 CAP-10x data. (Right) UMAP

parasegment; Scr, PS 2; Abd-B, PS13.

subclusters.

n gastrula.

r ectodermal and endodermal cells. AS, amnioserosa; CVM, caudal visceral
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Figure 3. Harmony integration of all datasets

(A) UMAP plot of scRNA-seq data merging Set1, Set2, Set3, and NK-data before Harmony batch correction (left) and after Harmony batch correction (right).

(B) Enlarged view of the integrated UMAP of the boxed area in (A). (Top) Seurat clusters. (Bottom) trn expression.

(C) UMAP plot of the Harmony-integrated data with information on the 68 subclusters.AS, amnioserosa; CVM, caudal visceral mesoderm; DE, dorsal ectoderm;

MG, midgut; NE, neuroectoderm.
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suggesting that sequencing more cells, rather than deeper

sequencing of each cell, is more important for identifying minor

cell types, as already mentioned.49,50 The results of the subclus-

tering are summarized in Table S2.

To further test whether more cells allow us to identify more

clusters, we integrated all scRNA-seq data using Harmony51

(Figure 3A) and did clustering. However, we could subdivide

the Harmony-integrated data into only 68 distinct subclusters

(Figure 3C). Clustering of the integrated data tended to fail to

separate parasegmental identities. The integrated data showed

a gradual trn expression pattern in the ventral ectoderm on the

Uniform manifold approximation and projection (UMAP) plot
6 Cell Reports 42, 112707, July 25, 2023
(Figure 3B). However, Seurat clusters did not correspond to

even/odd parasegmental identity with high or low trn expression.

Subclusters that could be identified in Set3 but not in the inte-

grated data were those corresponding to PS13 ectoderm, PS3

and 14 amnioserosa, and PS4 and 6 mesoderm (Figures 2C

and 3C). These results suggest that increasing the number of

cells does not necessarily increase resolution and could be

exacerbated by adding lower-quality data, such as for trypsin-

dissociated cells.

The Set1 trypsin C1HT data show a deeper depth of tran-

script counts per cell and a larger total number of detected

genes (14,785 in Set1, 13,214 in Set2, and 13,335 in Set3)



(legend on next page)
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(Table S1). Also, 1,374 genes were only detected in Set1 but

not in Set2 and Set3. To test the usefulness of this depth,

we compared marker gene detection sensitivity between

Set1 and Set2, which were based on trypsin dissociation, for

each Seurat cluster detected in Harmony-integrated data. As

a result, we found that 331 marker genes were only detected

in the Set1 trypsin C1HT data, and they showed lower expres-

sion levels than Set1/Set2 common or Set2 only marker genes

(Figure S3E). Furthermore, the same comparison was per-

formed between Set1 and Set3, and 321 marker genes de-

tected only in Set1 showed lower expression than Set1/Set3

common or Set3 only marker genes. One example of Set1-only

marker genes is Sarcoglycan delta (Scgdelta), detected as a

posterior midgut marker. Its expression was rarely detected

in Set2 and Set3 (Figure S3F). These results suggest that

deeper Set1 data help detect low-expressed genes and char-

acterize each cell more comprehensively.

Because (1) the CAP dissociation could well preserve the

original expression patterns of some Notch target genes,

and (2) the integration of all available datasets did not improve

the quality compared with Set3 only, we mainly focused on

the Set3 CAP-10x dataset using CAP for further analysis.

Potential intermediate-state cells
We noticed two of the 77 subclusters in Set3 CAP-10x were

difficult to annotate with an equivocal identity using well-known

marker genes. Three subclusters were identified from the

subclustering of cluster 18 (Figure S2B). One of them was ‘‘en-

doderm_antMG_wg,’’ which specifically expresses anterior

endoderm markers, such as fkh, huckebein (hkb), and serpent

(srp), as well as wg. Another subcluster named ‘‘mesoderm_-

head’’ showed the expression of mesoderm markers, such as

sna, twi, and heartless (htl). The third subcluster, expressing

wnt inhibitor of Dorsal (wntD), was positive for both endoderm

and mesoderm markers. Consistent with previous reports that

mesoderm genes sna and twi are also expressed in endo-

dermal cells,52–54 and wntD is known to repress mesoderm

differentiation,55,56 this cluster did not show mesoderm gene

expressions other than sna and twi. Therefore, we annotate

this third subcluster as ‘‘endoderm_antMG_wntD’’ at this

moment.

Another example of a potential intermediate state is ‘‘ecto-

derm PS14/hindgut,’’ which seems to be between PS14

ectoderm and hindgut (Figure 2E). It expressed both PS14

ectoderm markers (Abdominal B [Abd-B]) and hindgut markers

(disconnected [disco], wg, and brachyenteron [byn]). Multiplex

FISH of Abd-B and byn revealed the presence of cells co-ex-

pressing them at the border between the future epidermis
Figure 4. Clustering analysis with GLAD categories

(A) GO enrichment analysis of 3,000 HVGs using g:Profiler. The terms of cellular

(B) The number of genes belonging to each category in each bin of 3,000 HVGs div

by randomly sampling TF- and PM-related genes.

(C–E) UMAP plot with 1,500 HVGs (C), 258 TFs in 1,500 HVGs (D), and top 258 P

prior annotations (I).

(F–H) Hierarchical clustering analyses of 76 subclusters based on the Euclidean

258 TFs in 1,500 HVGs (G), and top 258 PM-related HVGs (H). Subclusters were

(I) Super-cluster information used to color the cells in the UMAP plot. See Table

8 Cell Reports 42, 112707, July 25, 2023
and hindgut (Figure S2C), suggesting that intermediate-state

cells exist between the epidermis and hindgut in the gastrula.

We annotate this subcluster as ectoderm PS14/hindgut at

this moment. We concluded that the scRNA-seq data contain

enough information to distinguish the spatial origin at the sin-

gle-cell level and transient intermediate states that have not

been recognized.

Expression profile of plasma-membrane genes better
represents the major cell types
Next, we analyzed the features of the transcriptome profile that

contributed to the classification of each cell. GO term analysis re-

vealed that genes encoding TF genes, as well as plasma-mem-

brane (PM)-relatedgeneswerehighly enriched in 3,000highly var-

iable genes (HVGs) (Figure 4A). Therefore, HVGs were classified

into four categories based on the Gene List Annotation for

Drosophila (GLAD) database57; TF genes, PM genes, non-TF,

andnon-PMgenes inGLAD (other genes), andgenesnot included

inGLAD (see STARMethods for details). Since TF geneswere en-

riched in the top 1,500HVGs (Figure4B), the top1,500HVGswere

used for the hierarchical clustering analysis below to focus on the

significance of TF enrichment. Hierarchical clustering of 76 sub-

clusters (pole cells were removed) with the top 1,500 HVGs clas-

sified the subclusters into three germ layers (ectoderm, endo-

derm, and mesoderm), indicating that the differences in the

cellular transcriptome at the gastrula stage reflect the differences

among future cell lineages (Figures 4C and 4F). To understand

how much information each gene set alone holds to characterize

the cell type, the hierarchical clusteringwas performed for each of

the four categories, using 258 genes with high variances in each

category. The 258 TF genes well segregated each cell along

with the original positions on theUMAPplot (Figure 4D). By hierar-

chical clustering using only TF genes, subclusters tended to be

classified by spatial location compared with the case using all

1,500 HVGs (Figure 4G). For example, the subclusters of ‘‘ecto-

derm_PS14,’’ ‘‘mesoderm_PS14,’’ and ‘‘mesoderm_caudal_visc-

eral’’ form a single group across the types of mesoderm and

ectoderm.

On the other hand, the set of PM-related genes well repro-

duced the clustering pattern with all 1,500 HVGs, and hierarchi-

cal clustering categorized 76 subclusters with their germ

layer identities beyond the spatial proximity in the embryo

(Figures 4E and 4H). Furthermore, the sets of non-TF and/or

non-PM genes also classified the subclusters into three germ

layers (Figures S4B–S4E). These clustering analyses revealed

that, without any prior functional knowledge about each gene,

only the mRNA expression profiles of TF genes were insufficient

to distinguish future cell lineages in this gastrula stage. On the
components are presented.

ided into 30 bins from the top. The red dotted lines show the expected numbers

M-related HVGs (E). Cells were colored by super cluster information based on

distances in log-transformed gene-expression space with top 1,500 HVGs (F),

colored based on the future germ layers.

S2 for details.



Figure 5. Inference of the pair-rule stripe identities to ectodermal cells

(A) (Top) Examples of the stripe expression patterns of pair-rule genes (eve, ftz) from the BDTNP ISH database. eve is expressed in odd parasegments, and ftz is

expressed in even parasegments. (Bottom) Expression patterns of nine stripe landmark genes and two odd/even landmark genes.

(B) Dot plots showing the expression patterns of landmark genes used for stripe assignment and non-landmark genes in each stripe.

(C) Reported stripe patterns of eve, ftz, h, 18w, Toll-6, and Tollo.47,62

(legend continued on next page)
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other hand, those of other effector genes better represented the

differentiation status of the three germ layers.

Transcriptome-level differences between the single-
cell stripes along the AP axis
In Drosophila gastrulae, each parasegment of the lateral ecto-

derm comprises four stripes along the AP axis, and each stripe

is a single-cell-wide column (Figure 5A). Each stripe has different

identities with combinatorial sets of pair-rule genes directing

polarized myosin localization, cell intercalation movement, and

germband extension.58–60 Because pair-rule genes encode

TFs, they should control downstream effector genes to drive

cell intercalation movement, and some effector genes, such as

18 wheeler (18w, also known as Toll-2), Toll-6, Tollo (also known

as Toll-8), and trnwere identified.61,62 It has been proposed that,

from detailed live imaging analyses, the difference between the

third and fourth stripes in each parasegment might be difficult

to distinguish, suggesting that the strength of cell-cell interaction

between them is weak and the difference in gene expression

profiles may also be smaller.63 Tetley et al. also proposed that

‘‘super-boundaries’’ that interface between cells of non-adjacent

stripes (‘‘skipped’’ boundary) are more contractile, implying that

these boundaries have more significant differences in receptor

expression patterns and stronger cell-cell interaction than

boundaries of adjacent identities.63

To clarify the whole picture of the genetic basis of germband

extension, we need to describe quantitatively how the gene

expression profiles differ among each stripe. To do this, by using

pair-rule genes and segment polarity genes as stripe landmarks,

we categorized the trunk ectodermal cells into eight single-cell

stripes that span an odd and even parasegmental unit

(Figures 5A, 5C, S5A, and S5B) (see STAR Methods for details).

Furthermore, the inference of the stripe pattern showed that, in

addition to the landmark genes used for inference, other stripe

genes, such as 18w, Toll-6, and Tollo, showed gradual changes

(Figure 5B). These patterns correlated well with the reported

expression patterns.62 These results indicated that this accu-

rately reconstructed the stripe pattern at the single-cell column

level.

This transcriptome information of eight single-cell stripes pro-

vides opportunities to quantitatively compare the differences in

gene expression profiles between them. First, we conducted

the differentially expressed gene (DEG) analyses between all

pairs of adjacent identities. Based on an expression difference

of R1.75 fold and a family-wise error rate (FWER) of %0.01, 10

to 26 genes were identified as DEGs between adjacent pairs

(Figure 5E). Similar to the DEG composition of whole scRNA-

seq data, most DEGs between adjacent stripes were TF or PM

genes, and there was little contribution from other cytoplasmic

genes (Figure 5F). As proposed by the ‘‘Toll receptor code,’’ all

boundaries within parasegment showed at least one Toll recep-

tor gene (18w, Toll-6, and Tollo) as DEGs (Figure 5D). In addition
(D) Violin plots showing the expression patterns of eve, ftz, h, 18w, Toll-6, and T

values for each stripe. Expression levels represent the log-transformed values a

nificant differences in expression (|FC| R 1.75 and FWER < 0.01).

(E) The number of DEGs between adjacent or super-boundaries.

(F) GLAD category breakdowns for unique DEGs of adjacent or super-boundarie

10 Cell Reports 42, 112707, July 25, 2023
to these known PM genes, our scRNA-seq data revealed that

transmembrane genes, such as commissureless (comm),

comm2, and Semaphorin 5c (Sema5c), were quantitatively

differentially expressed in a stripemanner (Figure S5C), suggest-

ing that these genes also play a role in cell-cell recognition for cell

intercalation. In terms of the number of DEGs, the difference be-

tween parasegments (Odd4 vs. Even1 and Even4 vs. Odd1) was

larger than that between cell stripes within parasegments, and

the difference between the third and fourth stripes (Odd3 vs.

Odd4 and Even3 vs. Even4) was the lowest (Figure 5E). In addi-

tion, by comparing the differences between super-boundaries,

more DEGs were identified than the differences between adja-

cent pairs (Figure 5E). These results are consistent with the

proposed models of super-boundaries and smaller differences

between the third and fourth stripes.63 This dataset will be impor-

tant for a quantitative understanding of the sufficient genetic

mechanisms for germband extension.

scRNA-seq analysis of the bicoid mutant
During development, perturbations of axis formation and posi-

tional information compromise the process of cell fate determi-

nation. However, these cell fate changes have often been

assessed by the expression of limited marker genes, most of

which encode TFs, and it is not clear whether the cells trans-

formed at the level of the whole transcriptome. To address this

issue, we performed scRNA-seq analysis of the bicoid-depleted

embryos. The AP axis of Drosophila is determined by the

morphogen gradients of the anterior Bicoid (Bcd) and the poste-

rior Nanos (Nos). The loss of Bcd function results in converting

the anterior identity into the posterior one.2,64 The anterior part

of bcd mutants eventually shows posterior profiles. However,

the developmental history of cells in the anterior region to reach

the state differs from that in the original posterior region. For

example, the onset of the anterior hunchback (hb) expression

in bcdmutants is delayed compared with that in the posterior.64

Since these historical differences may affect the final state,1

there may still be transformed cells with a mixed state of both

anterior and posterior identities or a state not present in the con-

trol gastrula at the transcriptome level.

By acquiring and subclustering bcd-RNAi scRNA-seq data,

cell types belonging to the anterior region of wild-type embryos,

such as the anterior midgut, head/PS1-2 ectoderm, and anterior

mesoderm, were not identified (Figure 6A). In addition, consis-

tent with previous reports,65,66 no clear expression of anterior

genes, such as oc and Deformed (Dfd), was detected in these

bcd-RNAi data (Figure S6A). Since bcd-RNAi data were ob-

tained by the trypsin-10x protocol, we compared this with Set2

trypsin-10x data. The bcd-RNAi data were merged with the con-

trol Set2 data without batch correction tools. The anterior clus-

ters consisted of control cells only (Figure 6B, Head_ectoderm,

Ectoderm_PS1-2, anterior midgut/mesoderm), while other clus-

ters were mixed well with cells from both data. The ratio of cells
ollo in each reconstructed pair-rule stripe. The gray line indicates the median

fter SCTransform normalization. Asterisks in the bottom panels indicate sig-

s.
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assigned to posterior clusters in bcd-RNAi embryos was signif-

icantly larger than that in wild-type embryos and almost double

(Figure 6C; Table S6). These results support the complete trans-

formation of the anterior region of bcd-RNAi embryos into the

posterior identity.

To further investigate bcd-RNAi embryos, we did DEG ana-

lyses between Set2 and bcd-RNAi data for each subcluster. As

a result, 161 genes upregulated in bcd-RNAi (Figure S6B, left)

and 113 genes downregulated in bcd-RNAi (Figure S6B, right)

were detected as DEGs in at least one subcluster. Among

them, 94 upregulated and 61 downregulated genes were de-

tected as DEGs in two or more subclusters, and 68 upregulated

and 37 downregulated genes were detected in both the trunk

subclusters and the posterior subclusters, which are supposed

to contain transformed cells in bcd-RNAi embryos. Since

most DEGs show no region specificity, they may reflect the dif-

ference in genetic background between control and bcd-RNAi

embryos.

In addition, to clarify whether there is a trace of anterior iden-

tity in bcd-RNAi data, we searched for genes common to both

this upregulated DEG list and the list of genes detected as

markers only in the anterior cluster in both Set2 and Set3

(see STAR Methods for details). Using this criterion, we identi-

fied a single gene, Distal-less (Dll). In control embryos, Dll was

expressed in the dorsal region of the PS1-2 ectoderm and am-

nioserosa that were absent in bcd-RNAi embryos (Figure S6C,

left and middle). On the other hand, in bcd-RNAi data, Dll

expression was detected in the trunk amnioserosa cluster (Fig-

ure S6C, right). Since Dll is expressed in anterior amnioserosa

cells but not in trunk amnioserosa in control embryos, Dll-pos-

itive amnioserosa cells in bcd-RNAi might be transformed from

PS1-2 amnioserosa to trunk amnioserosa and our data capture

a subtle residual feature of the transformed cells. However, this

residual Dll expression was specific to anterior amnioserosa. It

was not detected in other dorsal ectodermal regions, support-

ing the idea that anterior regions of bcd-RNAi embryos are

almost completely canalized into the posterior identity at the

transcriptome level.

Spatial reconstruction of all gene expression patterns at
single-cell resolution
We reconstructed the spatial expression pattern using our Set3

data (6,118 cells) and Perler,25 and then compared the results

with those obtained using the NK-data (1,297 cells). First, by

leave-one-gene-out cross-validation (LOOCV), Set-3-based

reconstruction showed a higher prediction score (median cor-

relation coefficient = 0.66) than that of NK-data-based recon-

struction (median correlation coefficient = 0.61) (Figure 7A).

Second, the gene-gene correlations in scRNA-seq data were

better conserved in Set-3-based reconstruction than in NK-

data-based reconstruction (Figure 7B). Finally, Set-3-based

reconstruction maintained the scale of expression values, but
Figure 6. Analysis of fate transformation in bcd knockdown mutants w

(A) UMAP plot of the bcd-RNAi scRNA-seq data with information on the 24 subc

(B) UMAP plot of the datamerging Set2 and bcd-RNAi data without batch correcti

cluster information (right).

(C) Ratio of the total number of cells to the number of cells in each Seurat cluste
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NK-data-based reconstruction did not (Figures 7C–7E). For

example, Set-3-based reconstruction showed low background

signals, and no re-scaling was needed as in NK-data recon-

struction. We also found that the reconstructed pattern of

some genes was qualitatively improved using our Set3 data.

For example, the pattern of segment polarity genes (wg and

en) became much more evident in Set3 reconstruction, and

the background between the stripes was almost zero in the

Set-3-based reconstruction (Figure 7F). In addition, ISH for

C15 showed expression only in the dorsal amnioserosa, and

ISH for egr showed a broader expression along the dorsal

midline. The reconstructed pattern of C15 with NK-data and

Perler showed a broad expression like egr, while Set3 and Per-

ler reconstructed a pattern similar to ISH (Figure 7G). These

results indicate that the reconstruction based on Set3 data is

more accurate and provides better interpretability for applica-

tions in future biological studies.

Recently, in addition to Perler, other computational

methods for spatial reconstruction have been proposed.

One of them is NovoSpaRc, which adopts a different strategy

from Perler and is based on the hypothesis that physically

neighboring cells share similar transcriptional profiles and

the framework of optimal transport.26,67 We attempted spatial

reconstruction using NovoSpaRc and our Set3 data. Overall,

NovoSpaRc showed performance comparable with Perler.

First, the spatial reconstruction by Perler and NovoSpaRc

showed a high correlation (Figure S7A). Second, the predic-

tion performances of spatial reconstruction by LOOCV were

also comparable (Figure S7B). Finally, we also examined the

degree to which the spatial reconstruction by Perler and

NovoSpaRc conserved the gene-gene correlation in the orig-

inal scRNA-seq. Perler maintained slightly higher gene-gene

correlations than NovoSpaRc (Figure S7C).

On the other hand, from a qualitative point of view,

NovoSpaRc showedmore spatially uniform patterns than Perler.

Although, for example, both methods well reconstructed the

ventral expression of mesodermal gene twi, the expression

within ventral mesodermal in Perler looked more spatially vari-

able than that in NovoSpaRc (Figure S7D). This difference could

be because NovoSpaRc takes physical distances between cells

into account.

DISCUSSION

We conducted scRNA-seq analysis to establish the single-cell

transcriptome atlas ofDrosophila gastrulae with higher accuracy

and spatial resolution. These data consist of 6,118 cells covering

the entire gastrula and allowed us to identify 77 subclusters. We

also recapitulated the stripe expression patterns along the AP

axis with single-cell-wide column resolution. We found that, at

the transcriptome level, rather than the primary TF layer in the

regulatory network, the subsequent layer of PM genes or other
ith scRNA-seq

lusters. tsr-high cells were removed.

onmethods. Cells are colored according to the original dataset (left) and Seurat

r for each dataset. The results of the Fisher’s exact test are listed in Table S6.
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cytoplasmic genes showed mRNA expression profiles that bet-

ter represented the features of the three germ layers. A spatially

reconstructed dataset is also established.

Artificial effect of trypsin treatment during cell
dissociation
Single-cell dissociation is one of the critical steps for scRNA-seq

analysis, and minimizing the artificial effect of dissociation on

gene expression is of critical importance. Here, we compared

two proteases, trypsin and CAP, and found that only trypsin

treatment at 25�C increased the expression of the E(spl) complex

genes, known targets of Notch signaling, regardless of cell type.

This result suggests that trypsin treatment ofDrosophila gastrula

cells induces Notch signal activation. Although the detailed

mechanism of Notch activation by trypsin is unclear, these re-

sults indicate that cell dissociation methods need to be carefully

considered not only for mammalian tissues, as previously re-

ported,29–32,68 but also for insect tissues.

Several methods other than CAP have also been proposed to

minimize the artificial effect of enzymatic treatment on the tran-

scriptome. One is to add transcriptional inhibitors such as acti-

nomycin D.69 In this study, we attempted the CAP method first

rather than transcriptional inhibitors because these inhibitors

may not block the degradation of mRNAs. On the other hand,

cell dissociation at low temperatures using CAP is expected to

minimize transcription and degradation. Although we did not

test the use of these inhibitors, they could be useful if target tis-

sues cannot be dissociated using CAP at low temperatures. The

other method is single-nucleus RNA-seq. The advantages of

single-nucleus RNA-seq are that (1) isolation of nuclei is easier

than dissociation of cells from complex tissues, and (2) tissues

can be flash-frozen to suppress the gene expression changes.

However, the number of transcripts and genes detected per

cell tends to be lower than with scRNA-seq.70,71 In this study,

we used scRNA-seq to obtain deeper transcriptome data

because of the simple tissue structure of Drosophila gastrula.

However, since scRNA-seqwas applicable only to embryos after

cellularization, snRNA-seq should be used to obtain single-cell

transcriptome profiles of pre-cellularization embryos, as recently

published.72
Figure 7. Spatial reconstruction by Perler

(A) Comparison between the leave-one-gene-out cross-validation (LOOCV) results

each landmark gene. The x and y axis show the correlations between reference IS

based on NK-data and Set3 data, respectively.

(B) Comparison of gene-gene correlation structure conservation between Set3-

gene that was commonly included in top 500 HVGs of both datasets (372 genes

based reconstruction, and the y axis shows gene-gene correlation structure cons

structure conservation is described in STAR Methods.

(C–E) Examples of reconstructed expression by Perler on Set3 (left) andNK-data (r

maps are linear and zero-max scaled. Bottom panels show density histogram

Expression patterns are log scaled, and each bin size is 0.2 in density histogram

(F) The reconstructed expression patterns ofwg by Perler based on Set3 (left) and

patterns inwhole embryo. Bottom-left panel shows the enlarged views of the regio

right panels show the histograms of the expression in whole embryo and the regio

scaled, and y axes in the histogram are log scaled. Themaximum expression patte

‘‘max2’’ (red dashed lines), respectively. The minimum expression in the whole e

(G) (left) ISHs of C15 and egr from the Berkeley Drosophila Genome Project (BD

views of Set3-based reconstructed patterns of C15 and egr by Perler. (Left) The la

by Perler. Red and white lines show the region of expression along the dorsal m
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Transient intermediate state during cell differentiation
Detailed subclustering revealed potential intermediate-state

cells in Drosophila gastrulae, belonging to ectoderm PS14/hind-

gut, that are likely to be intermediate between PS14 ectoderm

and hindgut. Intermediate/hybrid (or multilineage priming) states

have also been identified in the embryogenesis of other organ-

isms by scRNA-seq analysis,73–75 suggesting that the transient

intermediate state is a common step during cell differentiation.

It is thought that such intermediate states do not persist, and

the cells should eventually differentiate into one of the two states,

but how the direction of differentiation is determined is still poorly

understood. Cell differentiation proceeds in parallel with

morphogenesis during development, and we recently found

that morphogenesis can modulate cell differentiation.76 Since

the intermediate ectoderm PS14/hindgut region undergoes

dynamic changes in tissue shape (hindgut/endoderm invagina-

tions), the cell differentiation paths may depend on the comple-

tion of invagination of the hindgut at this time. In the future, it is

essential to investigate the lineages of these cells in detail using

time-course analyses of cell differentiation and morphogenesis.

PM DEGs
Here, we found that PM genes show higher variability between

cells of fly gastrula rather than cytoplasmic genes, and highly

variable PM genes are sufficient to classify cell types established

in the gastrula. Furthermore, DEGs between adjacent pair-rule

stripes were also mainly composed of PM genes and pair-rule

TF genes. These results suggest that PM genes, rather than

other cytoplasmic genes, contribute more strongly to cellular

and tissue-level regulation during gastrulation. This result is

consistent with previous reports showing that cellular signaling

mediated by transmembrane proteins triggers cellular and tissue

behaviors.61,62,77 Since variable genes other than TF and PM

genes also classified cells into three germ layers to some degree

(Figure S4), the combinatorial profiles of these cytoplasmic or

unclassified genes may be able to define the basic properties

of cells and tissues, or the range of behavioral capabilities. Var-

iable expressions of PM genes might then orchestrate the local

cell-cell interaction, followed by driving cell and tissue morpho-

genesis in combination with their capacities.
of Perler reconstructions based on NK-data and Set3 data. Each dot indicates

H expression patterns and the reconstructed expression pattern of each gene

based and NK-data-based reconstruction by Perler. Each dot indicates each

). The x axis shows gene-gene correlation structure conservation in NK-data-

ervation of Set3-based reconstruction. The definition of gene-gene correlation

ight). In each plot, upper panels show reconstructed expression patterns. Color

s of the gene expression in the original scRNA-seq and the reconstruction.

s.

NK-data (right). In each plot, upper-left panel shows reconstructed expression

n enclosedwith a red rectangle in the upper-left panel. Upper-right and bottom-

n shown in bottom-left panel, respectively. Expression values in plots are linear

rns in the whole-embryo plots and enlarged plots are indicated by ‘‘max1’’ and

mbryo is indicated by ‘‘min’’ (green dashed line).

GP; https://insitu.fruitfly.org/).38–40 Lateral view (middle). The lateral or dorsal

teral or dorsal views of NK-data-based reconstructed patterns of C15 and egr

idline.

https://insitu.fruitfly.org/
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Transmembrane DEGs between stripes include not only three

Toll receptorgenes (18w,Toll-6, andTollo), trn, and5-HT2A,which

are known to play a role in the regulation of germband exten-

sion,61,62,78,79 but also factors that have not been recognized as

regulators of germband extension but are known to be involved

in axon guidance, such as comm, comm2,80,81 and Sema5c.82

There is growing evidence that many transmembrane proteins

identifiedas factors for neural-network formation arealso involved

in epithelial morphogenesis and homeostasis83–86 Furthermore,

Sema5c was recently reported to be involved in the morphogen-

esis of follicle epithelia.87 In this analysis, only a few genes were

identified as pair-rule DEGs. Although it remains possible that

some essential genes are being missed because the threshold is

too high, the limited transmembrane DEGs are expected to be

sufficient to organize the dynamics of epithelial morphogenesis

in a redundant or cooperative manner.

Non-linear conversion from spatial information to cell-
type-specific transcriptome
The mechanisms of cell fate specification and differentiation

have been studied extensively in genome-wide research using

transcriptomic and epigenetic analyses.8,9 However, it is still a

fundamental biological question how a limited number of TFs

and signaling generate various cell types during development.

Also, local intercellular communication can affect TF activity

in a post-transcriptional manner. To solve this issue, it is neces-

sary to comprehensively clarify the relationship between TFs

and downstream gene expression at the single-cell level with

spatial information. At least in the case of Drosophila gastrula,

we revealed that, rather than the expression profiles of TF

genes, those of PM genes or other effector genes better repre-

sented the cell differentiation status corresponding to the three

germ layers (Figures 4 and S4). In other words, initial positional

information remains to some extent when viewed from the

perspective of only mRNA expression profiles of all TFs. These

analyses using our scRNA-seq data support the idea of a non-

linear combinatorial scheme of transcriptome establishment

by TFs.

It has been proposed that sequential logic can overcome the

bottleneck of combinatorial logic.88 In this theoretical view, there

is a limit to the transcriptome pattern that can be established

from only the combination state at the time. However, if we

take the sequential logic wherein the time ordering of factors in-

forms the outcome, the diversity of target configurations dramat-

ically increases even with the same regulatory network. Although

the anterior part of bcd mutants eventually got the posterior

combination of gap genes, the temporal histories of gap gene

expression (e.g., hb) and pair-rule gene expression (e.g., eve

and ftz) are slightly different from those of the original posterior

region.64 However, our scRNA-seq analysis of bcd-depleted

embryos revealed that the anterior part of them acquired tran-

scriptome characteristics for cells in the posterior region (Fig-

ure 7), suggesting that the temporal histories of gap genes and

pair-rule genes do not significantly affect the formation of

transcriptome, and the status at the last moment just before

gastrulation starts (50min after the onset of nuclear cycle 14) de-

termines the cell fate. Therefore, the sequential scheme has less

contribution to cell fate control in the Drosophila gastrula,
possibly because of the short duration of the process. These re-

sults support the proposed possibility that ‘‘subsequent layers

serve to transform the positional information, fully available

already at the gap gene layer, into an explicit commitment to

repeated but discrete cell types.’’2 Furthermore, even though

there are some noise and sharp discontinuities along the AP

axis, all cells in bcd mutants eventually canalize into cell types

that are present in the wild type at the level of the transcriptome,

suggesting that the robust gene regulatory mechanism is oper-

ating not only with a handful of marker genes but also with a

multitude of genes across the whole genome. Similar canaliza-

tion into the defined transcriptomic state existing in wild types

upon perturbations has been reported in scRNA-seq of zebrafish

mutants.73,74

In this study, using our scRNA-seq data with Perler or

NovoSpaRc, we reconstructed the spatial transcriptome of

Drosophila gastrula at single-cell resolution with high accuracy.

Gene regulatory network analysis has made progress in recent

years with scRNA-seq and assay for transposase-accessible

chromatin with sequencing (ATAC-seq) in many species,

including flies. Therefore, this gastrula spatial atlas could be

used as an essential reference to reveal the gene regulatory

network of early embryos and to bring up the whole picture

of cell-cell communication. Future integrated analyses of

gene regulatory networks with single-cell epigenetic profiling

and spatial signaling activity with spatial-transcriptome data

will provide us with more detailed insights into the mechanisms

by which the gradual positional information is non-linearly

converted into discrete patterns of cell differentiation

genome-wide and also enable a deeper understanding of the

developmental systems that orchestrate tissue morphogenesis

and functions.
Limitations of the study
Although both Perler and NovoSpaRc reconstructions seem

highly accurate, there is still a limitation. In both methods, the

spatial gene expression along the AP axis appears to be well re-

constructed, whereas that along the DV axis is insufficient. For

example, in the UMAP plot of the original scRNA-seq data, the

expression levels of vnd and ind were mutually exclusive in the

brk+ medial neuroectoderm, intermediate neuroectoderm, and

midline cells. However, these levels were intermingled in both re-

constructed data (Figures S7E–S7H). This output is probably

because the reference BDTNP ISHdata are not sufficient and ac-

curate because of the limited number of genes analyzed and the

incomplete computational integration of the imaging data from

multiple embryos. The construction of more precise reference

data in the future will enable us to perform a more accurate

reconstruction of the spatial transcriptome. Taken together, at

present, it would be better to use the results of spatial recon-

struction with reference to the original scRNA-seq data for future

biological applications.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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kan, E., and Horne-Badovinac, S. (2019). Planar-Polarized Semaphorin-

5c and Plexin A Promote the Collective Migration of Epithelial Cells in

Drosophila. Curr. Biol. 29, 908–920.e6. https://doi.org/10.1016/j.cub.

2019.01.049.

88. Letsou, W., and Cai, L. (2016). Noncommutative Biology: Sequential

Regulation of Complex Networks. PLoS Comput. Biol. 12, e1005089.

https://doi.org/10.1371/journal.pcbi.1005089.

89. Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman,

M., Tirosh, I., Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015).

Highly Parallel Genome-wide Expression Profiling of Individual Cells Us-

ing Nanoliter Droplets. Cell 161, 1202–1214. https://doi.org/10.1016/j.

cell.2015.05.002.

90. Kaminow, B., Yunusov, D., and Dobin, A. (2021). STARsolo: accurate,

fast and versatile mapping/quantification of single-cell and single-nu-

cleus RNA-seq data. Preprint at bioRxiv. https://doi.org/10.1101/2021.

05.05.442755.

91. Hafemeister, C., and Satija, R. (2019). Normalization and variance stabi-

lization of single-cell RNA-seq data using regularized negative binomial

regression. Genome Biol. 20, 296. https://doi.org/10.1186/s13059-019-

1874-1.

92. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H.,

and Vilo, J. (2019). g:Profiler: A web server for functional enrichment anal-

ysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47,

W191–W198. https://doi.org/10.1093/nar/gkz369.

93. Saxena, A., Wagatsuma, A., Noro, Y., Kuji, T., Asaka-Oba, A., Watahiki,

A., Gurnot, C., Fagiolini, M., Hensch, T.K., and Carninci, P. (2012). Treha-

lose-enhanced isolation of neuronal sub-types from adult mouse brain.

Biotechniques 52, 381–385. https://doi.org/10.2144/0000113878.
94. Kishi, J.Y., Lapan, S.W., Beliveau, B.J., West, E.R., Zhu, A., Sasaki, H.M.,

Saka, S.K., Wang, Y., Cepko, C.L., and Yin, P. (2019). SABER amplifies

FISH: enhanced multiplexed imaging of RNA and DNA in cells and tis-

sues. Nat. Methods 16, 533–544. https://doi.org/10.1038/s41592-019-

0404-0.

95. Beliveau, B.J., Kishi, J.Y., Nir, G., Sasaki, H.M., Saka, S.K., Nguyen, S.C.,

Wu, C.T., and Yin, P. (2018). OligoMiner provides a rapid, flexible environ-

ment for the design of genome-scale oligonucleotide in situ hybridization

probes. Proc. Natl. Acad. Sci. USA 115, E2183–E2192. https://doi.org/

10.1073/pnas.1714530115.

96. Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: An ultra-fast all-in-

one FASTQ preprocessor. Bioinformatics 34, i884–i890. https://doi.org/

10.1093/bioinformatics/bty560.

97. Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis

(Springer-Verlag New York). https://doi.org/10.1007/978-0-387-

98141-3.

98. Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K.,

Slichter, C.K., Miller, H.W., McElrath, M.J., Prlic, M., et al. (2015).

MAST: A flexible statistical framework for assessing transcriptional

changes and characterizing heterogeneity in single-cell RNA sequencing

data. Genome Biol. 16, 278–313. https://doi.org/10.1186/s13059-015-

0844-5.

99. Hunter, J.D. (2007). Matplotlib: A 2D graphics environment. Comput. Sci.

Eng. 9, 90–95. https://doi.org/10.1109/MCSE.2007.55.

100. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,

Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,

et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing

in Python. Nat. Methods 17, 261–272. https://doi.org/10.1038/s41592-

019-0686-2.

101. Martin, M. (2011). Cutadapt removes adapter sequences from high-

throughput sequencing reads. EMBnet. j. 17, 10–12. https://doi.org/10.

14806/EJ.17.1.200.

102. Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification

from RNA-Seq data with or without a reference genome. BMC Bioinf. 12,

323. https://doi.org/10.1186/1471-2105-12-323.

103. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: A Bio-

conductor package for differential expression analysis of digital gene

expression data. Bioinformatics 26, 139–140. https://doi.org/10.1093/

bioinformatics/btp616.
Cell Reports 42, 112707, July 25, 2023 19

https://doi.org/10.1016/j.devcel.2016.11.015
https://doi.org/10.1016/j.devcel.2016.11.015
https://doi.org/10.1038/ncomms12282
https://doi.org/10.1038/ncomms12282
https://doi.org/10.1016/j.cub.2020.09.061
https://doi.org/10.1016/j.cub.2020.09.061
https://doi.org/10.1016/j.cub.2019.01.049
https://doi.org/10.1016/j.cub.2019.01.049
https://doi.org/10.1371/journal.pcbi.1005089
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1101/2021.05.05.442755
https://doi.org/10.1101/2021.05.05.442755
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.2144/0000113878
https://doi.org/10.1038/s41592-019-0404-0
https://doi.org/10.1038/s41592-019-0404-0
https://doi.org/10.1073/pnas.1714530115
https://doi.org/10.1073/pnas.1714530115
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.14806/EJ.17.1.200
https://doi.org/10.14806/EJ.17.1.200
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616


Resource
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

RNase quiet Nacalai Cat#09147-14

Trehalose Nacalai Cat#11667-34

trypsine-EDTA Sigma Cat#T3924

trypsin inhibitor Sigma Cat#T6522

BSA Wako Cat#012-23881

ULTRAPURE BSA Thermo Fisher Cat#AM2616

RNasin plus Promega Cat#N2611

CellCover Anacyte Laboratories Cat#800-125

Bacillus licheniformis protease (CAP) Sigma Cat#P5380

ERCC spike-in mix Thermo Fisher Cat#4456740

RNeasy Lipid Tissue Mini Kit Qiagen Cat#74804

RNeasy Mini Kit Qiagen Cat#74104

dextran sulfate 500 kDa Wako Cat#193-09981

DAPI Dojindo Cat#D212
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SMART-Seq v4 Ultra Low Input RNA Kit Clonetech Cat#634888

Nextera XT DNA Library Preparation Kit Illumina Cat#FC-131-1024

Deposited data

fastq files of scRNA-seq This paper DRA: DRA009858, DRA011653, and DRA011680

fastq files of scRNA-seq Karaiskos et al.24 SRA: GSM2494783 – GSM2494789

Gene List Annotation for Drosophila Hu et al.57 https://www.flyrnai.org/tools/glad/web/

Processed scRNA-seq data file, including

UMI count table, Seurat object and loom files.

This paper Mendeley Data: https://dx.doi.org/10.17632/k8g638cmxv.1

The viewer for browsing the dataset

on the browser.

This paper Mendeley Data: https://dx.doi.org/10.17632/k8g638cmxv.1

UMI count table of NK-data Karaiskos et al.24 https://shiny.mdc-berlin.de/DVEX/

FISH reference table Karaiskos et al.24 https://shiny.mdc-berlin.de/DVEX/

FISH reference table BDTNP15–17 http://bdtnp.lbl.gov
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Bloomington Drosophila

Stock Center
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D.melanogaster, w; UAS-mCD8.chRFP (III) Bloomington Drosophila

Stock Center

Stock number 27392
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Primers for C1HT, See Table S3 This paper N/A

Probe for SABER FISH, See Table S3 This paper N/A

Software and algorithms

R version 4.0.3 R project RRID:SCR_001905
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Seurat version 3.2.2 Stuart et al.22 RRID:SCR_016341

SCTransform version. 0.3.2 Hafemeister and Satija91 RRID:SCR_022146
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Resource
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Takefumi Kondo

(takefumi.kondo@riken.jp).

Materials availability
Materials generated in this study are available upon request.

Data and code availability
d All raw sequence data were deposited in the DDBJ Sequence Read Archive (DRA) under accession numbers DRA009858,

DRA011653, and DRA011680. Processed scRNA-seq datasets (including UMI count table, Seurat object, and loom files to

visualize data in SCope (https://scope.aertslab.org/)) and the viewer for browsing the datasets on the browser have been

deposited at Mendeley Data. DOI is listed in the key resources table.

d Jupyter Notebooks of code used for data analysis have been deposited at GitHub. DOI was generated through Zenodo and is

listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains
All stocks weremaintained on standard laboratory food containing corn flour, corn grits, dry yeast, glucose, agar, propionic acid, and

butyl p-hydroxybenzoate. The following fly strains were used as a control: y w for set 1 C1HT and set 2 trypsin-10x data.w; R14E10-

GAL4[attP2] UAS-mCD8.chRFP (III) for set 3 CAP-10x data andw for SABER-FISH.Maternal RNAi knockdown of bcdwas performed

as previously reported.64 Briefly, UAS-bcd RNAi (TRiP.GL00407) females were crossed with matalpha4-GAL-VP16[67] and mata-

lpha4-GAL-VP16[15] males. The matalpha4-GAL-VP16[67]/+; matalpha4-GAL-VP16[15]/UAS-bcd RNAi (TRiP.GL00407) females

hatched from it were crossed with UAS-bcd RNAi (TRiP.GL00407) males, and embryos obtained from this cross were used as

bcd-RNAi embryos.
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Preparation of single-cell suspensions
All equipment, including the forceps, brushes, and nylon mesh, was treated with RNase quiet (Nacalai) and washed well with RNase-

free water. Embryos were collected by egg laying for 20–30 min and kept for 90 min at 25�C. Then, embryos were dechorionated

using bleach and washed with RNase-free PBS. The developmental stages of embryos were monitored under a fluorescent stereo-

microscope (Nikon SMZ18), and stage 6–7 embryos shortly after initiation of gastrulation were picked and transferred into 10 mL of

ice-cold homogenization buffer (1x RNase-free PBS, 5% trehalose) in a 1.5 mL microtube (Watson, PROKEEP protein low binding

tube). Trehalose was included in the whole dissociation process as a cell protectant93. After collecting 150–300 embryos at the bot-

tom of the microtubes, the vitelline membranes were broken by slowly turning the tip of the pipette tip (Axygen, Maxymum Recovery

200 mL Universal Fit Tip with Filter). The disrupted embryos were suspended in 500 mL of ice-cold homogenization buffer and pelleted

by centrifugation at 800 rcf for 2 min at 4�C. After removing the supernatant, the pellet was resuspended in 500 mL of ice-cold ho-

mogenization buffer, followed by centrifugation at 800 rcf for 2 min at 4�C.
For trypsin treatment, the pellet was resuspended in 1x trypsin-EDTA (Sigma, T3924) and kept at 25�C for 10min. 500mL of ice-cold

stopping buffer (1x PBS, 5% trehalose, 0.375% BSA (WAKO, 012–23881), 0.1 mg/mL trypsin inhibitor (Sigma, T6522)) was added.

After washing with 500mL of ice-cold wash buffer1 (1x PBS, 5% trehalose, 0.375% BSA (WAKO, 012–23881)) twice, the pellet was

resuspended with 200 mL of ice-cold loading buffer (1x PBS, 5% trehalose, 0.5 mg/mL ULTRAPURE BSA (Thermo Fisher, AM2616),

1/200 RNasin plus (Promega, N2611)).

For CAP treatment, the pellet after homogenization was resuspended in 500mL CAP solution (5 mg/mL Bacillus licheniformis

protease (Sigma P5380), 5% trehalose, in 1x PBS), and kept at 6�C for 30 min. Then, 500 mL of ice-cold wash buffer2 (1x PBS,

5% trehalose, 0.5 mg/mL ULTRAPURE BSA (Thermo Fisher, AM2616)) was added. After washing with wash buffer2 four times,

the pellet was resuspended in 200 mL of ice-cold loading buffer.

For either trypsin or CAP treatment, the cells suspended in 200 mL of ice-cold loading buffer were filtered through a cell strainer

(FLOWMI Cell Strainers for 1000uL Pipette Tip, 40um Porosity) and fixed with 1 mL of CellCover (Anacyte Laboratories) for 1 h at

25�C, and then kept at 4�C overnight. The fixed cells were washed with 500 mL of ice-cold loading buffer and resuspended in

100 mL of ice-cold loading buffer. After counting the density of cells using a hemocytometer, the density was adjusted to approxi-

mately 200 or 300 cells/mL for Fluidigm C1HT, or approximately 300 cells/mL for 10x genomics Chromium.

Single-cell RNA-seq using C1HT
scRNA-seq library preparations using Fluidigm C1 with the C1 Single-Cell mRNA Seq HT IFC were performed according to the

manufacturer’s protocol with some modifications. Before proceeding to the cell lysis step, all 800 capture sites in the IFC were

automatically imaged using an Axio Observer.Z.1 (Zeiss) equipped with an Axiocam 105 color (Zeiss) and an electric stage. One

modification was custom primers with inserted 8 base UMI for the reverse transcription reaction. Primer sequences are listed in

Table S3. We also added the ERCC spike-in mix (Thermo Fisher, 4456740) to the Lysis Mix. Another modification was the concen-

tration of the primers used in the library amplification step. A 10-fold lower concentration of enrichment primer was used. The PCR

cycle for library amplification was 12. After quality control and quantification using Bioanalyzer and qPCR, the libraries were

sequenced with a NextSeq 500 (Illumina), 75 cycles high-output kit v2 (Read1: 15 cycles, Read2: 69 cycles, Index1: 8 cycles, total

92 cycles).

Single-cell RNA-seq using 10x Chromium
Library preparations using 10x Chromium with the Chromium Next GEM Single Cell 3ʹ Reagent Kits v3.1, were performed according

to the manufacturer’s protocol. The PCR cycles were 11 for cDNA amplification and 11 for library amplification. After quality control

and quantification using Bioanalyzer and qPCR, the libraries were sequenced using NextSeq 500 (Read1: 28 cycles, Read2, 56 cy-

cles), NovaSeq 6000 (Illumina) (Read1: 28 or 151 cycles, Read2, 91, 98, or 151 cycles), or HiSeq X (Illumina) (Read1: 151 cycles,

Read2, 151 cycles). For the trypsin dataset (set 2), the libraries were sequenced using the NovaSeq 6000. For the set 3 CAP dataset,

the same library was sequenced three times with NextSeq 500, NovaSeq 6000, and HiSeq X. All reads obtained from the three

sequencing times were integrated for analysis.

Bulk RNA-seq
For total RNA preparation from embryos, 80 stage 6–7 embryos were harvested, and total RNA was purified using RNeasy Lipid Tis-

sue Mini Kit (Qiagen). For total RNA preparation from dissociated cells, 200–300 embryos at stage 6–7 were dissociated into single-

cell suspensions by trypsin-EDTA treatment as described above. After washing, the cells were passed through a 40 mm strainer and

pelleted. Total RNA was purified from approximately 40,000 cells using the RNeasy Mini Kit (Qiagen). For total RNA preparation from

fixed cells, 200–300 embryos at stage 6–7 were dissociated into single-cell suspensions by trypsin-EDTA treatment and fixed by

CellCover as described above. Cells were stored at 4�C for one day and pelleted. Total RNA was purified from approximately

40,000 pelleted cells using an RNeasy Mini Kit (Qiagen).

cDNAwas synthesized from 250 ng of each total RNA using the SMART-Seq v4 Ultra Low Input RNAKit (Clonetech). Then, a library

for Illumina sequencers was constructed from 0.0625 ng cDNA using the Illumina Nextera XT DNA Library Preparation Kit. The
22 Cell Reports 42, 112707, July 25, 2023



Resource
ll

OPEN ACCESS
libraries were sequenced on an Illumina NextSeq 500 to obtain single-end readswith a length of 76 bases. Each sample was analyzed

in duplicates. For each library, 36,577,021–41,844,986 reads were sequenced.

SABER-FISH
SABER-FISH was performed using a protocol described in Kishi et al., 201994 with some modifications. The ‘‘Balance’’ list of candi-

date probe sequences pre-designed using OligoMiner pipeline95 was downloaded from https://oligopaints.hms.harvard.edu/

genome-files. Thirty probe sequences that target exons common to all isoforms of each gene were randomly extracted from the

list. SABER-FISH probes were prepared by PER amplification using DNA oligos (Table S3) purchased from IDT.

Embryo fixation was performed by a protocol as previously described.76 Briefly, embryos were dechorionated in 50% bleach for

2 min and fixed in 1:1 4% PFA containing 1 mM CaCl2 and heptane for 20 min at room temperature. The vitelline membrane was

removed by shaking in 1:1 methanol and heptane. Fixed embryos were rinsed in methanol 2 times and collected to DNA LoBind

Tubes (Eppendorf). And then, embryos were washed in PBS with 0.2% Tween 20 and 0.2% Triton X-100 (2 3 2 min), washed in

PBSTw (PBS with 0.1% Tween 20) (3 3 5 min), and placed in 1:1 PBSTw and Whyb buffer (23 SSC pH 7.0 with 1% Tween 20

and 40% formamide) for 5 min. Before hybridization, embryos were incubated in Whyb for 10 min at 43�C. And then, embryos

were incubated with 1 mg/100 mL probes in pre-warmed Hyb1 buffer (Whyb with 2.5% dextran sulfate 500 kDa (FUJIFILM Wako,

193–09981)) for 16–48 h at 43�C. After hybridization, embryos were washed in Whyb (quickly once and 3 3 30 min) and washed

in 23 SSCT (23 SSC with 0.1% Tween 20) (3 3 5 min) at 43�C. Before fluorescent oligo hybridization, the tube was returned to

room temperature, and embryos were washed in PBSTw (3 3 5 min). The tube was then transferred to 37�C and once the tube

was warm, the PBSTw was removed and replaced with 0.2 mM DNA oligos conjugated with Alexa-fluor (synthesized by Thermo

Fisher, Table S3) in pre-warmed Hyb2 buffer (PBSTw with 2.5% dextran sulfate 500 kDa). After incubation for 20 min at 37�C in

the dark, embryos were washed in PBSTw (quickly once and 3 3 5 min) at 37�C. Then, embryos were incubated with 1 mg/mL

DAPI (Dojindo) in PBSTw for 30min at room temperature in the dark and thenwashed in PBSTw (33 15min). Embryosweremounted

in SlowFade Diamond Antifade Mountant (Invitrogen). Images were taken using a Zeiss LSM800 with a 403 water immersion objec-

tive (Objective LD LCI Plan-Apochromat 40x/1.2 Imm Corr DIC M27, Zeiss).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of 10x Chromium data
Read1, including UMIs and cell barcodes, was trimmed to 28 base lengths using fastx_trimmer (FASTX-toolkit, version 0.0.14, http://

hannonlab.cshl.edu/fastx_toolkit). Adapter trimming and quality filtering were performed using fastp (version 0.20.1, for NextSeq 500

data with q 20 –cut_tail -l 28 –max_len1 28 –max_len2 55 –trim_poly_g –trim_poly_x, for 10x NovaSeq data -q 20 –cut_tail -l 28

–max_len1 28 –max_len2 97 –trim_poly_g –trim_poly_x, for HiSeq X data with -q 20 –cut_tail -l 28 –max_len1 28 –max_len2 97 –trim_

poly_x).96 The trimmed reads were mapped to the genome sequence of Drosophila melanogaster (BDGP6.22.98) and UMI-counted

using STARsolo (version 2.7.7a).90 In this process, since STARsolo (version 2.7.7a) cannot account for multi-gene reads for UMI

counting, a modified gtf annotation file in which genes overlapped in the same direction of the genome were integrated and treated

as the same gene (Table S4) was used. For cell filtering, the median of the total UMI per cell in the filtered output of STARsolo was

calculated, and cells with a total UMI two times higher than the mean value were filtered as potential doublets. Then, cells in which

either the number of genes detected, the UMI proportion of ribosomal RNA genes, or the UMI proportion of mitochondrial genome

genes were outside the range of an average value ±2.53 SDwere filtered as low-quality cells. The remaining UMI-count tables were

loaded into Seurat (version 3.2.3)22 and normalized using the SCTransform function with an option (vars.to.regress = c("percent.mt’’,

"percent.rRNA")).91 "percent.mt" and ‘‘percent.rRNA’’ were labels of metadata which contain the percentages of transcripts from the

mitochondrial genome and nuclear rRNA genes to total detected transcripts in each cell respectively. If the residual_variance (Pear-

son residual) returned by SCTransform is 1, the variance for that gene is considered to be noise. So, we define the (residual_variance

�1) as the biological variance. Since cumulative sums plateaued at the top 3,000 genes when values were taken in descending order,

the number of HVGs used for dimensionality reduction was set at 3,000. Then PCA analysis was performed using the RunPCA func-

tion in Seurat. To determine the number of dimensions to be used in subsequent analyses, an Elbow plot of the standard deviation of

each principal component in Set3was produced using the ElbowPlot function in Seurat. Based on this plot, the number of dimensions

used was set to 30. The same number of dimensions was used throughout this paper unless otherwise mentioned. UMAP analysis

was performed using RunUMAP (dims = 1:30, n.neighbors = 20L) functions, followed by unsupervised graph-based clustering with

FindNeighbors and FindClusters functions in Seurat. In this study, this clustering output by Seurat using all cell data is referred to as

"Seurat cluster". Seurat clusters showing high expression of ribosomal protein genes and not expressing the markers corresponding

to the embryonic space were filtered out as low-quality cells. Each cluster was manually annotated based on the marker genes iden-

tified by the FindAllMarkers function. All plots were generated using Seurat or ggplot2 in R unless otherwise noted.

Analysis of C1HT data
Adapter trimming and quality filtering were performed using fastp (version 0.20.1) with options (-q 20 –cut_tail -l 14 –max_len1 14

–max_len2 68 –trim_poly_g –trim_poly_x), and the trimmed readsweremapped to the genome sequence ofDrosophila melanogaster

(BDGP6.22.98) with a modified gtf annotation file as described above and UMI-counted using STARsolo. Only the data derived from
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the cells determined to be a singlet from the image of the capture site were loaded into Seurat. For each batch, cells in which either the

number of genes detected, the UMI proportion of ribosomal RNA genes, the UMI proportion of mitochondrial genome genes, or the

UMI proportion of ERCC spike-ins were outside the range of an average value ±2.5 3 SD were filtered as low-quality cells. Then all

four batches were merged and normalized using SCTransform with an option (vars.to.regress = c("percent.mt’’, "percent.rRNA’’,

‘‘percent.ERCC’’)). ‘‘percent.ERCC’’ were labels of metadata which contain the percentage of ERCC to total detected transcripts

in each cell. Dimensionality reduction, graph-based clustering, and Seurat cluster annotation were performed similarly to the 10x

data. All plots were generated using Seurat or ggplot2 (version 3.3.3)97 in R, unless otherwise noted.

Analysis of scRNA-seq data of NK-data
Fastq files (GSM2494783 – GSM2494789) reported in Karaiskos et al., 201724 were obtained from SRA database. Adapter trimming

and quality filtering were performed using fastp (version 0.20.1) with options (-q 20 –cut_tail -l 20 –max_len1 20 –max_len2 64 –trim_

poly_g –trim_poly_x), and potential SMART adapter were further trimmed from read 2 using Cutadapt (version 3.4) with option (-m

20:20 -G AAGCAGTGGTATCAACGCAGAGTACATGGG). The trimmed reads were mapped to the genome sequence of

D. melanogaster (BDGP6.22.98) with a modified gtf annotation file as described above or the reference that combines this

D. melanogaster and D. virilis (GCF_003285735.1_DvirRS2) references using STAR. Then, the UMI count tables were generated

from the BAM files using in TagReadWithGeneFunction, DetectBeadSubstitutionErrors, DetectBeadSynthesisErrors (with –PRI-

MER_SEQUENCE AAGCAGTGGTATCAACGCAGAGTAC) and DigitalExpression (with –NUM_CORE_BARCODES 5000) in Drop-

seq tools (version 2.5.1).89 For data containing D. melanogaster and D. virilis cells, only cells with more than 90% of the total number

of UMIsmapped toD.melanogaster were considered to beD.melanogaster cells and extracted for further analyses. As in the original

paper, cells with a total UMI count of 12,500 or more were retained as high-quality cells. For each batch, cells in which either the

number of genes detected, the UMI proportion of ribosomal RNA genes, or the UMI proportion of mitochondrial genome genes

were outside the range of an average value ±2.5 3 SD were filtered as low-quality cells. Then, all seven batches were merged

and normalized using SCTransform with an option (vars.to.regress = c("percent.mt’’, "percent.rRNA’’)). Dimensionality reduction,

graph-based clustering, and Seurat cluster annotation were performed in the same way as the 10x data. All plots were generated

using Seurat or ggplot2 (version 3.3.3)97 in R, unless otherwise noted.

Filtering out tsr-high cells from trypsin data
To remove tsr-high cells from Set2 trypsin-10x data and bcd-RNAi data, the correlation coefficients between all pairs of 2,000 HVGs

were calculated with the correlate function in the corrr package (version 0.4.3) of R. Then, genes positively and negatively correlated

with tsr were extracted to perform principal component analysis (PCA) and model-based clustering by the Mclust function in mclust

package of R (version 5.4.7, https://cran.r-project.org/package=mclust) with options (pca = 30, G = 2,modelNames = "VVV"). Finally,

the cluster with high tsr expression was filtered out as stressed cells for further data integration.

For trypsin-C1HT data (Set1), after removing pole cells, normalization using SCTransform, dimensionality reduction using RunPCA

and clustering using the FindNeighbors and FindClusters functions (resolution = 2.0) with 30 dimensions were performed. Of clusters

detected, two clusters that showed high expression of tsr were removed.

Subclustering of each scRNA-seq data
For subclustering, we further applied unsupervised graph-based clustering using the FindNeighbours and FindClusters functions for

each set unit of clusters as shown in Table S2. If the number of cells in the cluster set unit was 500 or more, normalization by the

SCTransform function was performed again, and then genes with highly variable features detected by SCTransform were used

for dimensionality reduction by the RunPCA function. We noticed that if the number of cells was below 500, SCTransform does

not normalize properly. In that cases, additional normalization and HVG selection were not performed. If the number of cells was

more than 30, 30 dimensions were used for RunUMAP, FindNeighbours, and FindClusters, and if the number of cells was 30 or

less, dimension number �1 was used. The resolution parameter in the FindClusters function was empirically determined. The

maximum value at which no subcluster can be annotated based on knowledge of the literature was adopted. One exception is

that subclustering along the DV axis of the lateral ectoderm was performed using k-means clustering (n = 7) with only 35 DV genes

(Ama, Ance, Atx-1, bbg, brk, C15, CG13653, cic, cv-2, dap, Doc1, Doc2, Doc3, dpp, Dr, Dtg, Egfr, egr, emc, ind, mirr, peb, pnt, pnt,

rho, sog, SoxN, srp, stg, tup, ush, vn, vnd, Z600, zen). Each subcluster was manually annotated based on the marker genes shown in

Table S2. During subclustering, cells showing expression of both ectodermal andmesodermal genes were removed as doublets and

filtered. In addition, cells that did not express the markers corresponding to the embryonic space were also removed as low-quality

cells. The remaining singlet dataset consisted of 6,118, 1018, 4,855, and 1,476 cells for Set3, Set1, Set2, and NK-data, respectively.

Harmony integration of scRNA-seq datasets
The control integration data was generated using Set1, Set2, Set3, and NK-data after subclustering. Each dataset was individually

normalized by SCTransform, and 3,000 genes to be used for integration were determined using the FindIntegrationFeatures function

in Seurat. Dimensionality reductions were performed in the same way as the 10x data. Then, batch correction was performed using

the Harmony (version 0.1.0)51 with 30 PCs, followed by dimensionality reduction using the RunUMAP function and clustering using

the FindNeighbors and FindClusters functions. Each cluster was annotated as in the case of individual datasets.
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Subclustering of the integrated datasets
As for each individual dataset, subclustering analysis was performed for the control integration dataset. First, the cluster set unit was

divided into the original four datasets. If the number of cells in the cluster set unit was 500 or more, normalization by the SCTransform

function was performed again. If the cell number is less than 500, renormalization was not performed, and the values of the scale.data

slot in the SCT assay of Seurat object were centered by the ScaleData function (with do.scale = FALSE). Then, the 3,000 HVGs used

for re-integration were selected using the FindIntegrationFeatures function in Seurat, and dimensionality reduction was performed

using the RunPCA function. Then, batch correction was performed using the Harmony with 30 PCs, followed by the dimensionality

reduction using the RunUMAP function. Clustering and annotation were performed as in the case of individual datasets described

above.

Comparison of sensitivity for marker genes
First, the integrated data described above was split again for each derived dataset. Among them, the FindAllMarkers function

(method = ’MAST’) was applied to Set1 (C1HT) and Set2 (10x Chromium) data to detect marker genes in each cluster at an

FWER threshold of 0.01. In each of Set1 and Set2, genes detected as markers in at least one cluster were listed. To calculate the

mean expression value of each marker gene, cell data were extracted from all clusters in which the gene was detected as a marker

gene, and the average expression level of the gene in the cell group was calculated.

Merge of Set2 and bcd-RNAi data
For the Set2 and bcd-RNAi data after subclustering, both were re-normalized separately by the SCTransform function and merged

using the ‘‘merge’’ function in Seurat. 3,000 HVGs for thismerged dataset were determined using the SelectIntegrationFeatures func-

tion in Seurat, and the RunPCA function was applied without batch correction. 30 PCs were used for dimensionality reduction by the

RunUMAP function and clustering by the FindNeighbors function and the FindClusters Clustering. Since, each Set2 and bcd-RNAi

data were mixed well in this UMAP plot of this merged data (Figure 6B), further batch correction was not applied. Each cluster was

annotated as for individual datasets. The Fisher exact test was used to test whether, for each Seurat cluster, the ratio of cells assigned

to the cluster is different between bcd-RNAi and control dataset.

DEG analysis between Set2 control bcd-RNAi
First, the subcluster information of bcd-RNAi and Set2 weremanually linked. For cells annotated as "Dorsal_lateral_ectoderm_PS13"

and "Amnioserosa_PS13-1400 in the Seurat cluster after merging Set2 and bcd-RNAi, this cluster information was used instead of the

subcluster information. Then, DEGs were determined by the FindMarkers function (method = ’MAST’) between bcd-RNAi and Set2

for each subcluster present in both bcd-RNAi and Set2 and filtered by an FWER threshold of 0.01 and |logFC| threshold of 0.5. DEGs

with high expression in bcd-RNAi were considered positive DEGs, and thosewith low expression in bcd-RNAi were considered nega-

tive DEGs.

To extract marker genes for each subcluster in Set2, the FindAllMarkers function (method = ’MAST’) was applied to Set2 to detect

marker genes at an FWER threshold of 0.01, and marker genes detected only in anterior subclusters not found in bcd-RNAi were

defined as anterior markers. The list of these anterior markers was compared with the list of positive DEGs, and the common genes

including Dll were considered candidates for residual features of transformation from anterior to posterior in bcd-RNAi embryos.

Gene Ontology enrichment analysis
For GO enrichment analysis of all high-quality cells, cells in the pole cell cluster were removed, and the list of the top 3,000 highly

variable features was extracted using Seurat. The gene list was analyzed using g:Profiler (https://biit.cs.ut.ee/gprofiler) with

g:SCS algorithm,92 and significantly enriched terms in cellular components were identified at an FDR threshold of 0.01 and term_size

lower than 4,000. For the analysis of highly expressed genes in the tsr-high cluster of Set2 10x trypsin dataset, 328 highly expressed

genes in cluster 10 (Mesoderm_tsr-high) compared to cluster 1 (Trunk_mesoderm) were identified using the FindMarkers function

with MAST98 at an FWER threshold of 0.01 and logFC threshold of 0.25. The gene list was analyzed using g:Profiler, and significantly

enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were identified at an FDR threshold of 0.01.

Hierarchical clustering analysis with GLAD
The gene list of each GLAD category was downloaded from https://www.flyrnai.org/tools/glad/web/. Since some genes listed in the

"Transcription factor/DNA binding’’ category are also listed in other categories, a modified database was prepared to exclude these

duplications. An integrated gene list of "Trans-membrane proteins,’’ "Receptors,’’ "Secreted proteins,’’ and "Matrisome" categories

was used as the list of plasma-membrane (PM)-related genes. Genes listed in GLAD categories other than the ‘‘Transcription factor/

DNA binding’’ category and plasma-membrane-related genes were considered as other cytoplasmic genes. Since "PM-related

genes" includes genes that function in the organelles, the genes having the ‘‘intracellular membrane-bounded organelle’’ (GO:

0043231) or its child term (Including "mitochondrion," "Golgi apparatus" and "endoplasmic reticulum") were transferred to other

cytoplasmic genes. The modified GLAD list is presented in Table S5. In addition, since TF genes were particularly enriched in the

top 1,500 HVGs (Figure 4B), the top 1,500 HVGs were used in this clustering analysis to focus on the significance of this TF

enrichment.
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For the analysis using only a specific gene set, to align the numbers to the lowest TFs, only 258 genes were selected from the top of

variance in all sets. The dimensionality reduction analysis was performed using Seurat, as described above. The cell identity in the

UMAP plot was colored using pre-annotated information (Figure 4I). For the hierarchical clustering analysis, the average normalized

expression value of each gene for each of the 76 subclusters (pole cells were removed) was calculated using the AverageExpression

function of Seurat. Euclidean distances for all pairs of subclusters in log-transformed gene-expression space were calculated using

the dist function of R. Then, hierarchical clustering based on the Euclidean distances was performed with the hclust function with the

averagemethod. Euclidian distances and the structure of hierarchical clustering were drawn as a heatmap using the heatmap.2 func-

tion in the gplot package (version 3.1.1, https://CRAN.R-project.org/package=gplots) of R.

Assignment of stripe identities
scRNA-seq data annotated as ‘‘trunk ectoderms 2’’ (see Table S2 for details) were extracted. It is considered that each parasegment

is composed of four stripes along the A-P axis, and each stripe is a single-cell-wide column and has different gene expression pro-

files.63 Therefore, to infer the stripe positions in parasegment, ‘‘trunk ectoderms 2’’ cells were analyzed by k-means clustering (n = 4)

with nine landmark genes of the stripe position (Figure 5A). Then, data in each stripe were divided into odd or even parasegment by

k-means clustering (n = 2) with trn for stripes 1 and 2 (or pxb for stripes 3 and 4) and genes positively and negatively correlated with it.

K-means clustering was performed with the k-means function in the ClusterR package (version 1.2.2, https://CRAN.R-project.org/

package=ClusterR) of R. The correlation coefficient between all pairs of 1,000 HVGs was calculated with the correlate function in the

corrr package (version 0.4.3) of R. All plots were generated by Seurat or ggplot2 (version 3.3.3) in R. DEGs between each adjacent

boundary or super boundary were identified using the FindMarkers function with MAST and filtered by an FWER threshold of 0.01,

and FC threshold of 1.75. FC threshold was empirically determined by plotting the FC distribution of DEGs between adjacent bound-

aries with an FDR of 0.01 or less.

Spatial reconstruction of gene expression
Preprocessing scRNA-seq data

For Set3 data, because the BDTNP FISH data does not contain pole cells, 123 cells in the ‘‘pole_cells’’ cluster were removed from the

dataset. As described above, the UMI-count table of the remaining 5,995 cells was renormalized using SCTransform. Then, dimen-

sionality reduction analysis was performed using the RunPCA function of Seurat with default settings.

The raw count table (dge_raw.txt) for NK-data was obtained fromDrosophila Virtual Expression eXplorer (https://shiny.mdc-berlin.

de/DVEX/). This count table was loaded into Seurat and normalized using the SCTransform function without options. Note that, in this

data, pole cells were already removed, and the UMI counts for mitochondrial and rRNA genes were omitted.

For both datasets, a log-scaled count (‘‘data’’ slot in ‘‘SCT’’ assay of the Seurat object) and HVGs detected by SCTransform were

used for spatial reconstruction.

Selection of ISH reference landmark genes

ISH spatial references were constructed mainly based on the BDTNP database (D_mel_wt__atlas_r2.vpc from http://bdtnp.lbl.gov)

and DVEX (bdtnp.txt). The DVEX reference was forked from the BDTNP reference, but three genes (bowl, ems, and exex) were only in

the DVEX reference.

Both scRNA-seq data were derived from stage 6–7 embryos, while ISH reference data were established for stage 5 embryos.

Some genes in the ISH data dynamically changed the expression pattern from stage 5 to stage 6–7. Therefore, genes whose expres-

sion patterns significantly changed between the two time points and that could worsen the reconstruction were removed from the

reference. As a result, 67 genes remained as landmarks for spatial reconstruction (Table S7). In addition, among 3,039 cells in the

DVEX reference, eight cells with y < 0 were removed.

Spatial reconstruction by Perler

Perler (version 0.1.0) Python package was obtained from https://github.com/yasokochi/Perler. For both set 3 and NK-data, log-

scaled counts and reference above were loaded into the PERLER object, and then the EM algorithm was performed using the em_al-

gorithm method with option (optimize_pi = False). Next, the distances between the scRNA-seq data points and reference data

points were calculated using the calc_dist method with default parameters. Optimization of hyperparameters was performed by

the loocv method with default parameters and the gridsearch method with parameters (grids = ((0,1), (0.01,1))). Finally, spatial

gene expression patterns were reconstructed by the spatial reconstruction method with parameters (mirror = False, _3d = True,

z_scored = False).

Spatial reconstruction by NovoSpaRc

NovoSpaRc (version 0.4.3) reconstruction was mainly performed according to https://github.com/rajewsky-lab/novosparc. First,

log-scaled counts and reference data were loaded into the Tissue object of NovoSpaRc. Cost matrices for the optimal transport

framework were calculated by the set_up_smooth_costs method based on 30 principal components (PCs) and the setup_linear_cost

methodwith the reference and default parameters. Then, spatial reconstruction was performed using the reconstructionmethodwith

parameters (alpha_linear = 0.3, epsilon = 5e-3). Note that the alpha_linear parameter and the number of used PCs were determined

by grid search so that the LOOCV score described below was maximized.
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Leave-one-gene-out cross-validation (LOOCV)

Each of the 67 landmark genes in the ISH reference was removed from the reference as the true expression, and spatial reconstruc-

tion by Perler or NovoSpaRc was performed using the remaining 66 genes as the reference. Pearson correlations between the

reconstructed expression pattern of the removed gene and the truth were then calculated.

For the decision of hyperparameter for NovoSpaRc, we calculated the score:

J = � 1

2

X67

i

ln
�
1 � r2i

�

Here, ri is the Pearson correlation coefficient between the ISH expression and the reconstructed expression of gene i. The hyper-

parameter and number of PCs with the highest score were selected.

Comparison of gene correlation conservation

First, 372 commonHVGs included in the top 500 HVGs of both set 3 and NK-data scRNA-seq datasets were selected. For each HVG,

Pearson correlation coefficients between the gene and other 371 HVGs in the original scRNA-seq data and those in the set-3-based

or NK-data-based reconstruction were calculated. Then, the Pearson correlation coefficient between these two correlation scores for

each of the 372 HVGs was calculated as gene-gene correlation structure conservation between the original scRNA-seq data and

either reconstruction. For the comparison between Perler and NovoSpaRc, the top 500 HVGs of the set 3 data were used.

Plotting reconstructed expression pattern

Plotting was performed using the scatter function in the matplotlib (version 3.3.4) package.99 The reconstructed expression values

were converted from a log-scale to a linear scale. For the lateral view, all the cells in the reference were plotted. For dorsal and ventral

views, cells with z > 0 and z% 0 were used, and the cells were mirrored on the x-z plane. The anterior is left in all plots, and the dorsal

is up in lateral views.

Density plot of ind and vnd expression

For the plot of scRNA-seq data, intermediate or medial neuroectoderm cells in the abdomen and PS13 and midline cells were ex-

tracted from set 3 data. For the reconstruction data plot, cells with |x| < 50 and �55� < q < 0� were extracted. q is the angle between

the y axis and the line segment drawn from the center of the embryo to the cell in a cross-section parallel to the y-z plane containing

the cell, expressing the position of the cell on the DV-axis (Figure S7G). Density estimation was performed using the Gaussian_kde

class in the stats module in the Scipy package (version 1.6.0).100 Estimation results were plotted using the pcolormesh function in the

matplotlib package (version 3.3.4).

Analysis of bulk RNA-seq data
Sequenced reads were quality trimmed using Trim Galore (version 0.6.4, https://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/) and Cutadapt (version 1.18)101 with the –nextseq 20 option. After removing the 76th base from each read, the remaining

reads were mapped to the genome sequence of Drosophila melanogaster (BDGP6.22.98) using STAR with a modified gtf annotation

file, as described above. Gene expression was calculated using RSEM (version 1.3.3),102 and differential expression analysis was

performed using edgeR (version 3.32.1).103 After removing the mitochondrial and ribosomal RNA genes, low expression genes

with CPM less than 0.1 in all six samples were also filtered out. Normalization was performed using calcNormFactors. Spearman

correlation coefficients were calculated using the cor function in R. DEGs were identified using the glmQLFit and glmQLFTest func-

tions in the edgeR package at an FDR threshold of 0.01 and logFC threshold of 2.

ADDITIONAL RESOURCES

All reconstructed stripe patterns, spatial reconstruction results, and a viewer for them were available in https://github.com/

TKondolab/flygastrula2 and https://dx.doi.org/10.17632/k8g638cmxv.1.
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