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REGULAR PAPER

Predicting rice (Oryza sativa L.) canopy temperature difference and estimating its 
environmental response in two rice cultivars, ‘Koshihikari’ and ‘Takanari’, based 
on a neural network
Rintaro Kondoa, Yu Tanakab and Tatsuhiko Shiraiwab

aTohoku Agricultural Research Center, NARO, Iwate-city, Japan; bThe Graduate School of Agriculture, Kyoto University, Kyoto-city, Japan

ABSTRACT
Canopy photosynthesis is an important component of biomass production in field-grown rice 
(Oryza sativa L.). Although canopy temperature differences (CTD) provide important information 
for evaluating canopy photosynthesis, the measurement of CTD is still a labor-intensive task. 
Therefore, we designed this study to establish a model for predicting CTD under different field 
conditions using meteorological data and evaluated the environmental response of CTD using the 
established model. Our study collected 2,056,264 CTD data points from two rice cultivars having 
different photosynthetic capacities, ‘Koshihikari’ and ‘Takanari’, and then used these data to create 
a novel model using a neural network (NN). The input variables were limited to meteorological 
data, and the output variable was set to CTD. The established NN model produced a prediction 
accuracy of R2 = 0.792 and RMSE = 0.605°C. We then used this NN model to simulate the CTD 
response of the Koshihikari and Takanari cultivars in response to various environmental changes. 
These predictions revealed that Takanari had a lower CTD than Koshihikari when exposed to high 
relative humidity (RH) or low to moderate solar radiation (Rs). In contrast, the CTD of Koshihikari 
tended to be lower than that of Takanari under lower RH or higher Rs. This result implies that the 
advantages of the single-leaf gas exchange system in Takanari can be mitigated under extremely 
high-VPD conditions. Thus, our new method may provide a powerful tool to gain a better under-
standing of gas exchange, growth processes, and varietal differences in rice cultivated under field 
conditions.
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Introduction

Photosynthesis is a critical factor in plant biomass pro-
duction. Numerous studies have investigated the rela-
tionship between photosynthetic activity, biomass 
production, and final crop yield (Long et al., 2006; Wu 
et al., 2019; Yoon et al., 2020; Zhu et al., 2010). In field 

settings, crops grow as canopies under changing 
meteorological conditions, thus it is not surprising that 
various methods for evaluating canopy photosynthesis 
have been developed over time. These include the 
canopy photosynthesis model (Anten, 1997; Johnson & 
Thornley, 1984; Li et al., 2021; Monsi & Saeki, 2005), eddy 
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covariance (Alberto et al., 2014; Ohtaki, 1984), and assim-
ilation chambers (Burkart et al., 2007; Drake & Leadley, 
1991; Katsura et al., 2006; Song et al., 2016). In addition, 
photosynthetic activity in constantly changing environ-
ments has been intensively assessed in rice (Adachi et al., 
2019a; Qu et al., 2016; Taniyoshi et al., 2020; Yamori et al., 
2020), soybean (Soleh et al., 2016; Tanaka et al., 2019), 
and other field crops (Salter et al., 2019; De Souza et al., 
2020; Taylor & Long, 2017). However, the long-term 
monitoring of canopy photosynthesis under field condi-
tions remains challenging.

Photosynthesis can be evaluated using thermal ima-
ging techniques as leaf/canopy transpiration is reflected 
in leaf/canopy surface temperature (Gates, 1968; Jones, 
2014). Given this, many studies have evaluated changes 
in the canopy surface temperature to evaluate the crop 
canopy status of open fields. Takai et al. (2010) revealed 
that canopy surface temperature is strongly related to 
the photosynthetic rate and stomatal conductance of 
the outer leaves, while Horie et al. (2006) reported that 
canopy diffusive conductance under field conditions 
could be estimated based on the surface temperature 
of both shaded and sunlit canopies. The canopy tran-
spiration rate was estimated in short-time intervals 
based on the canopy surface temperature and the heat 
balance model (Monteith & Unsworth, 2013) for rice 
(Kondo et al., 2021), soybean (Hou et al., 2019), and 
cotton (Jones et al., 2018). All these techniques assume 
that the leaf surface temperature is strongly affected by 
the latent heat flux of transpiration. Therefore, canopy 
temperature difference (CTD), represented by the differ-
ence between air and canopy surface temperature, is 
fundamental to the use of thermal imaging techniques. 
However, the measurement of CTD remains 
a challenging task because of the labor-intensive and 
technically sophisticated evaluations required to com-
plete these evaluations. Furthermore, the use of thermal 
imaging techniques has spatiotemporal limitations. The 
canopy surface temperature measured using thermal 
imaging devices are typically evaluated as a single 
image, and the capturing range of thermal imaging 
devices is limited. Even though this spatial limitation 
can partly be overcome by combining with unmanned 
aerial vehicle, it is difficult to take continuously in short- 
time intervals. To apply thermal imaging techniques for 
evaluations of plants cultivated in a field with greater 
practicality, these limitations need to be overcome.

Micrometeorological conditions strongly affect 
canopy gas exchange (Jones, 2014). For instance, favor-
able temperatures and strong radiation generally accel-
erate photosynthesis (Choudhury, 1987; Yamori et al., 
2014), which leads to stomatal opening and greater 
transpiration. Furthermore, air humidity affects stomatal 

aperture and transpiration rates (Monteith, 1995; 
Morison & Gifford, 1983). Thus, the activity of canopy 
gas exchange affects the canopy surface temperature 
and CTD, and it can be assumed that CTD can be esti-
mated from micrometeorological data. Meteorological 
data are universally utilized in the field of agriculture, 
easy to access, can be collected in short-time intervals, 
and cover wide area of lands. Given this, the evaluation 
of meteorological data may be advantageous to realize 
easier estimation of CTD and transpiration, thus redu-
cing costs and overcoming the spatiotemporal limita-
tions in the use of thermal imaging techniques.

Neural networks (NNs) are intensively being applied 
in the field of crop science. For example, NNs have been 
used to help detect crop diseases (Mujahidin et al., 
2021), predict biomass production (Jin et al., 2020; Ma 
et al., 2019), and grain yield (Das et al., 2018; Haghverdi 
et al., 2018; Nevavuori et al., 2019; Tanaka et al., 2021). In 
fact, some reports have even described using NN to 
estimate crop transpiration rates (Nam et al., 2019; 
J. Fan et al., 2021). However, these studies were con-
ducted at a limited scale and had difficulties translating 
these results to large-scale field conditions. The use of 
thermal imaging techniques may solve these problems 
to some extent. In addition, to the best of our knowl-
edge, ours is the first study designed to evaluate the 
application of NN to predict CTD in rice (Oryza sativa L.). 
The major reason for this is that the accumulation of 
data describing changes in the canopy surface tempera-
ture is a labor-intensive task. We collected the canopy 
surface temperatures of rice and the corresponding 
micrometeorological data at 2,056,264 points by estab-
lishing a system for estimating rice canopy transpiration 
rate over short time intervals (Kondo et al., 2021). We 
then used these data to develop an NN-mediated model 
to estimate CTD in an effort to increase accuracy and 
simplify these kinds of evaluations. Besides, the CTD 
prediction model based on big data may cancel noises/ 
errors caused by fluctuations of weather conditions (e.g. 
wind velocity, air temperature). This advantage may con-
tribute to extracting physiological responses to the var-
iations of weather conditions more clearly in rice.

The gas exchange of and genotypic differences in rice 
under either steady state or simple environmental con-
ditions have been reported numerous times (Ikawa et al., 
2017; Qu et al., 2016; Yamori et al., 2020). Many previous 
studies have reported that the saturated photosynthetic 
rate of a single indica leaf from the ‘Takanari’ cultivar was 
significantly higher than that of various japonica culti-
vars, including ‘Koshihikari’ (Adachi et al., 2019b; 
Hirasawa et al., 2010; Takai et al., 2010; Taylaran et al., 
2011). However, little information has been published 
regarding its canopy level gas exchange and genotypic 
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differences in response to various meteorological condi-
tions. This study focused on two rice cultivars, 
Koshihikari, the most popular cultivar in Japan, and 
Takanari, a cultivar having high photosynthetic capaci-
ties. With the model established to predict CTD from 
micrometeorological data, the environmental responses 
of CTD in these two cultivars under virtual meteorologi-
cal conditions can be evaluated or simulated. Thus, our 
model may be useful in revealing differences in the 
environmental response of the canopy gas exchange in 
both Koshihikari and Takanari.

The aim of this study was to establish a less labor-
ious method to predict CTD and then to evaluate the 
difference of environmental responses in two rice 
cultivars, Koshihikari and Takanari. We first developed 
an NN model to predict CTD using micrometeorolo-
gical data for two rice cultivars, Koshihikari and 
Takanari, and the accuracy of the model was evalu-
ated by comparison with two popular regression 
methods: multiple linear regression (MLR) and partial 
least squares regression (PLSR). Different CTD values 
produced under different meteorological conditions 
were then simulated for both cultivars and the results 
of these simulations were then used to evaluate gen-
otypic differences in the response of these cultivars 
to changing environmental conditions. These experi-
ments allowed us to produce a novel methodology 
for the easy estimation of CTD and evaluation of 
genotypic differences in environmental responses 
using micrometeorological data.

Materials and methods

Plant materials

Koshihikari and Takanari were cultivated in a paddy field 
at the Graduate School of Agriculture, Kyoto University, 
Kyoto, Japan (35° 2ʹ N, 135° 47ʹ E, 65 m altitude) in 2017, 
2018, and 2019 with seeds being sown on April 20, 
23 April 2017, 2018, and 19 April 2019, and the seedlings 
transplanted on May 16, 18 May 2017, 2018, and 
17 May 2019. The planting density was 22.2 plants·m−2 

and we used 60 kg N ha−1, 47 kg P ha−1, and 56 kg K·ha−1 

as the basal dressing across all 3 years. In 2018 and 2019, 
40 kg N·ha−1, 31 kg P·ha−1, and 37 kg K·ha−1 were addi-
tionally applied as top dressings at the beginning of July. 
Weeds, diseases, and insects were strictly controlled, and 
the field was fully irrigated throughout the growing 
season.

Data collection

Micrometeorological data from the paddy field were 
measured using a meteorological data acquisition sys-
tem from July 18th to 25th over 3 years at 1-s intervals, 
except for 24 July 2019, because of serious problems 
with the device. The air temperature (Ta) and relative 
humidity (RH) were recorded in 2017, using 
a temperature and relative humidity probe (CS215, 
Campbell Scientific, Inc., USA) with an aspirated radia-
tion shield. Solar radiation (Rs) was recorded using an 
albedo meter (PCR-3, Kipp & Zonen, Netherlands). These 
instruments were set approximately 2 m above the 
ground (1 m above the canopy) and connected to 
a data logger (CR-1000; Campbell Scientific, Inc.). In 
2018 and 2019, Ta and RH were recorded using 
a composite meteorological sensor (WS500; EKO 
Instruments, Japan) while Rs was recorded using 
a pyranometer (MS802; EKO Instruments, Japan). All 
sensors were set at the same height as in 2017 and 
were connected to a data logger (GL840, GRAPHTEC 
Co., Japan).

In all 3 years, the canopy surface temperature (Tc) 
was recorded using an infrared thermal imaging 
camera (InfReC S30, Nippon Avionics Co., Ltd., 
Japan) with a resolution of 160 × 120 pixels, with 
a spectral range of 8–13 μm, and thermal sensitivity 
of less than 0.2°C at 30°C. The camera was placed 
16 m from the paddy field and 7 m above the 
ground with an elevation of 24°. Thermal images 
were then recorded every second and all plots 
were placed in a single image. Tc was corrected 
using reference temperatures and a temperature 
reference board was placed adjacent to the experi-
mental field. The white felt was attached to a -
60 × 40 cm wooden board and the surface 
temperature of the reference board was simulta-
neously recorded using a thermometer (TR-52i, T&D 
Corporation, Japan) and thermal imaging camera. 
The difference in these two data points was then 
used to correct the temperature drift of the thermal 
imaging camera. Our modeling assumed that this 
corrected for changes in canopy surface emissivity. 
Once corrected, we extracted the mean Tc value 
from each thermal image with four, two, and three 
replications in 2017, 2018, and 2019, respectively. 
CTD was then calculated using the following 
equation: 

CTD ¼ Tc � Ta (1) 
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Data preprocessing, model establishment, and 
prediction

The distribution of all observed CTD data is shown in 
Figure 1(a) with each datasets classified as one of three 
categories: training, validation, and prediction, as shown 
in Figure 1(b). All parameters were normalized as 
follows: 

Vnorm ¼
V þ α

Vmax � Vmin
(2) 

where Vnorm is the value after normalization, V is the 
observed value, α is the correction term, Vmax is the 
maximum observed value, and Vmin is the minimum 
observed value. The parameters for normalizing each 
variable on a 0–1 scale are shown in Table 1. After this 
preprocessing, the model was established using three 
computational methods: MLR, PLSR, and NN, using the 
training and validation datasets. The input variables 
were Ta, RH, and Rs, and the output variable was 
CTD. The MLR and PLSR models were established 
using the scikit-learn library in Python, version 3.8.5, 
while the NN model was established using the Neural 
Network Console software (version 2.0 (Sony Network 
Communications Inc., Japan). First, the model structure 
was automatically determined using a structure search 
function in the Neural Network Console software using 
the Koshihikari dataset. The model structure with the 
least validation error was then selected (Figure 2). We 
then used this structure to train the model for both 
the Koshihikari and Takanari datasets. In both the 

structure search and training, the loss function was 
expressed as a squared error, and the optimizer was 
Adam. The batch size and learning rate were set as 
512 and 0.0001, respectively. The learning process was 
used to minimize the errors between the estimated 
and observed CTDs in the training and validation 
datasets. The epoch size was set to 50, and the valida-
tion error was calculated every two epochs. This train-
ing revealed that the lowest validation error was 
observed in the 12th epoch in Koshihikari and the 
20th epoch in the Takanari datasets. The model with 
the least validation error was then saved for each 
cultivar and used in all the downstream analyses. We 
then confirmed the efficacy of these models by using 
them to predict the CTD values for each strain on 
22 July 2017, and 21 July 2018, respectively.

Analysis

Prior to completing these predictions, we exposed 
our data to a correlation analysis focusing on the 
relationships between Ta, RH, Rs, CTD in Koshihikari, 
and CTD in Takanari. We then used the predictions 
from the MLR, PLSR, and NN models to determine the 
coefficient of determination (R2) and root mean 
squared error (RMSE) for the observed versus pre-
dicted CTD values. We then evaluated CTD prediction 
under virtual meteorological conditions using our NN 
model. These simulations were completed using RH 
and Rs values ranging from 30% to 100% and 0 to 
1500 W m−2, respectively. The Ta was fixed at one of 
three positions: 25°C, 30°C, or 35°C, and then used to 
predict CTD for both Koshihikari and Takanari using 
these parameters. Once completed, the simulated 
CTD values were compared and the difference in 
CTD between Koshihikari and Takanari (TTaka – TKoshi) 
was defined by the equation below: 

TTaka � TKoshi ¼ CTDTaka � CTDKoshi (3) 

Figure 1. (a) Histogram showing the distribution of all the observed CTD data points, (b) tabular representation of the dataset 
classification into Training, Validation, and Prediction subsets.

Table 1. Representation of the minimum and maximum values 
(Vmin,Vmax, respectively) and correction term (α) for each as 
applied in the normalization.

Variable Unit Vmin Vmax α

Ta °C 20 40 −20
RH % 0 100 0
Rs W m−2 0 1500 0
CTD °C −10 10 10
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Figure 2. The structure of the model for predicting canopy transpiration rates. Each component can be explained as: ELU | Exponential 
Linear Unit, PReLU | Parametric Reflected Linear Unit, SELU | Scaled Exponential Linear Unit, and Squared Error | Output Layer 
minimizing the squared error. The numbers next to the Fully Connected Layers represent the number of dimensions.
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where CTDTaka and CTDKoshi represent the CTDs of 
Takanari and Koshihikari, respectively. All analyses were 
conducted in Python (Van Rossum & Drake, 2009).

Results

Meteorological conditions

The mean daytime Ta, mean RH, and cumulative Rs from 
18 to 25 July in 2017, 2018, and 2019 are shown in 
Figure 3. The mean Ta ranged from 25.43°C on 
19 July 2019, to 33.48°C on 18 July 2018. The mean RH 
ranged from 53.21% on 24 July 2018, to 93.55% on 
22 July 2019. The cumulative Rs ranged from 6.56 
MJ·m−2·d−1 on 22 July 2019, to 28.00 MJ·m−2·d−1 on 

24 July 2018. Generally, 2018 was characterized as hot 
and dry, while 2019 was cool and humid. 2017 displayed 
a larger variance in weather and ran the full gambit of 
these conditions.

The correlation matrix calculated for the meteorolo-
gical data and CTD is shown in Figure 4. This data 
revealed a strong negative correlation between Ta and 
RH (r = −0.96) and more moderate correlations between 
Ta and Rs (r = 0.60) and RH and Rs (r = −0.62). Of the three 
meteorological factors evaluated only CTD, Ta, and RH 
were moderately correlated with CTD in Koshihikari 
(r = −0.48, r = 0.47, respectively) and Takanari 
(r = −0.55, r = 0.53, respectively). In contrast, Rs was not 
correlated with CTD in either cultivar (r = 0.014 and 
r = −0.028, respectively).

Figure 3. (a) Daily cumulative solar radiation (Rs), (b) mean air temperature (Ta), and (c) mean relative humidity (RH) for the daytime 
between July 18 and July 25 in 2017, 2018, and 2019, except 24 July 2019. The green, red, and blue lines represent 2017, 2018, and 
2019, respectively.

Figure 4. The correlation coefficient matrix for the daytime air temperature (Ta), relative humidity (RH), solar radiation (Rs), and canopy 
temperature differences in Koshihikari (CTDKoshi) and Takanari (CTDTaka) cultivars. The color bar represents the value of the correlation 
coefficient.

PLANT PRODUCTION SCIENCE 399



Predicting canopy temperature differences

The results of CTD prediction for both the Koshihikari 
and Takanari using each of the three computational 
methods on 22 July 2017, and on 21 July 2018, are 
shown in Figures 5 and 6, respectively. On 
22 July 2017, the prediction based on NN demonstrated 
the best accuracy (R2 = 0.748, RMSE = 0.605°C, y = 0.787x 
+ 0.280 in Koshihikari; R2 = 0.7692, RMSE = 0.636°C, 
y = 0.770x + 0.062 in Takanari), while the other two 
methods presented with reduced accuracy (R2 = 0.785, 
RMSE = 0.679°C, y = 0.662x + 0.622 in Koshihikari by MLR; 
R2 = 0.785, RMSE = 0.684°C, y = 0.663x + 0.631 in 
Koshihikari by PLSR; R2 = 0.726, RMSE = 0.715°C, 
y = 0.655x + 0.716 in Takanari by MLR; R2 = 0.727, 
RMSE = 0.709°C, y = 0.653x + 0.699 in Takanari by 
PLSR). This trend was also observed for the predicted 
values for 21 July 2018, though the accuracies were 
lower than those for 2017 (R2 = 0.348, RMSE = 1.307°C, 
y = 0.372x + 0.834 in Koshihikari by MLR, R2 = 0.347, 
RMSE = 1.310°C, y = 0.370x + 0.830 in Koshihikari by 
PLSR, R2 = 0.590, RMSE = 1.034°C, y = 0.627x + 0.478 in 
Koshihikari by NN, R2 = 0.384, RMSE = 1.429°C, y = 0.385x 
+ 1.180 in Takanari by MLR, R2 = 0.386, RMSE = 1.424°C, 
y = 0.389x + 1.189 in Takanari by PLSR, and R2 = 0.617, 
RMSE = 1.126°C, y = 0.637x + 0.697 in Takanari by NN). As 

mentioned above, these predictions were most accurate 
when calculated using the NN method. Therefore, the 
NN model was applied in the subsequent analyses.

The differences in CTD between Takanari and 
Koshihikari (TTaka – TKoshi) under various meteorological 
conditions are shown in Figure 7. The RH, which is set 
on the x-axis, was restrained to 30% to 100%, while Rs was 
set on the y-axis and restrained to 0 W m−2 to 
1500 W m−2. The Ta was set to 25°C, 30°C, and 35°C in 
Figure 7(a-c), respectively. The plots describing the 
observed weather conditions in response to a Ta between 
24.5°C and 25.5°C, 29.5°C and 30.5°C, and 34.5°C and 
35.5°C are shown in Figure 8(a-c), respectively. Figure 8 
used the same x- and y-axes as Figure 7 to allow for direct 
comparisons. In Figure 7(a), CTD in Takanari was generally 
lower than Koshihikari when of RH was over 75% and Rs 

was under 900 W m−2. A similar weather condition was 
wholly observed when Ta was from 24.5°C to 25.5°C 
(Figure 8(a)). When the Ta was set to 30°C, CTD in 
Takanari was generally lower than Koshihikari when the 
RH was over 60% and Rs under 1050 W m−2, while the CTD 
for Koshihikari was generally lower than Takanari when 
RH was over 60% and Rs over 1050 W m−2 (Figure 7(b)). 
However, both conditions could be observed when Ta 

was from 29.5°C to 30.5°C (Figure 8(b)). When Ta was set 
to 35°C, CTD was generally decreased in the Koshihikari 

Figure 5. Comparison of the observed values (CTD true) and predicted values (CTD pred) in Koshihikari (a) by neural network (NN), (b) 
by multiple linear regression (MLR), and (c) by partial least square regression (PLSR) and in Takanari (d) by NN, (e) by MLR, and (f) by 
PLSR, on 22 July 2017.
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Figure 6. Comparison of the observed values (CTD true) and predicted values (CTD pred) in Koshihikari (a) by neural network (NN), (b) 
by multiple linear regression (MLR), and (c) by partial least square regression (PLSR) and in Takanari (d) by NN, (e) by MLR, and (f) by 
PLSR, on 21 July 2018.

Figure 7. Heatmaps showing the varietal difference in the simulated values of canopy surface temperature in Koshihikari and Takanari 
(TTaka – TKoshi). In each panel, RH was retrained to between 30% and 100% and Rs was sequenced from 0 to 1500 W m−2. The Ta was set 
to 25°C (a), 30°C (b), and 35°C (c). The color bar represents the TTaka – TKoshi values.

Figure 8. Plots describing the weather conditions observed over the course of the entire study. In each panel, RH was restrained 
between 30% and 100% and Rs was sequenced from 0 to 1500 W m−2. The panels (a), (b), and (c) show the plots of each of these 
conditions in response to a Ta of between 24.5 and 25.5°C, 29.5 and 30.5°C, and 34.5 and 35.5°C, respectively.
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variant compared to the Takanari cultivar when the RH 
was under 50% or over 75%, or Rs was under 900 W m−2. 
However, the CTD in Koshihikari was higher than Takanari 
when RH ranged from 50% to 75% and Rs was over 
900 W m−2 (Figure 7(c)). Both conditions were also 
observed when Ta was from 34.5°C to 35.5°C (Figure 8(c)).

Discussion

CTD was positively correlated with Ta and negatively 
correlated with RH (Figure 4), this is likely because higher 
temperatures are associated with lower RH and higher 
vapor pressure deficits (VPD), which induces higher 
latent heat flux, producing increased transpiration and 
reduced CTD. This result implies that the acceleration of 
transpiration by VPD exceeds the effect of stomatal 
closure, although a high VPD generally induces stomatal 
closure in most plants (Jalakas et al., 2021; Kimm et al., 
2020; Ohsumi et al., 2008). Rs moderately correlates with 
Ta and higher Rs values are believed to contribute to 
greater transpiration, leading to higher Ta and photo-
synthetic rates. However, there was no direct correlation 
between Rs and CTD in our evaluations. The response of 
the stomata to sudden fluctuating light is relatively slow 
(Ohkubo et al., 2020; Sakoda et al., 2021; Tanaka et al., 
2019; Taniyoshi et al., 2020), and this may have resulted 
in a time lag between light fluctuation and observable 
CTD. The difference between the Rs values recorded by 
the sensor and solar irradiation in the canopies may also 
have influenced.

The relationships between the observed and pre-
dicted CTD values based on MLR, PLSR, and NN model-
ing were much better than the direct correlation 
analyses estimating the relationships between various 
meteorological components and CTD (Figures 4–6). This 
is because Tc is more obviously affected by complex 
combinations of multiple meteorological components 
than single meteorological conditions, thus the applica-
tion of large datasets accumulated over long periods 
allows a better understanding of these complex relation-
ships. This means that our data models were better 
equipped to evaluate the relationships between CTD 
and specific weather conditions.

The predicted CTD values fit the observed values for 
2017 and 2018 (Figures 5 and 6); however, the prediction 
accuracy on 21 July 2018, was lower than that on 
22 July 2017. This is likely because 21 July 2018, produced 
CTD values ranging from −8 to 4°C, reducing the range of 
these values when compared to other studies, where the 
minimum CTD value was approximately −4°C (Fukuda 
et al., 2018; Zheng et al., 2020). It is worth noting that 
21 July 2018, was extremely hot and dry, which may have 
led to a remarkably high VPD (Figure 3). This may have 

caused a considerable increase in the transpiration rate and 
thus a lower CTD (Figure 6), which could not be accurately 
predicted using any of the three computational methods 
described in this study. This may go some way to explain-
ing the reduced accuracy for extremely low CTD values in 
this study, as these values fall outside of 94.8% of the total 
data sets, making these data points very rare (Figure 1(a)).

On 22 July 2017, and 21 July 2018, the slopes of the 
linear regression were closer to 1 in the prediction model 
created using NN than those produced using MLR and 
PLSR (Figures 5 and 6). In addition, the R2 and RMSE 
values of the NN were better than those of the other 
two methods. The advantage of the NN model is its 
prediction range, where NN accommodated a CTD 
range of −4 to +2°C, while the MLR and PLSR models 
only supported a CTD range of −4 to 0°C. Because the 
majority of the CTD values over 0°C were observed 
under field conditions, it is thought that the NN predic-
tion model is likely to be the best method for predicting 
CTD under these conditions. This is further supported by 
the fact that this NN model can predict CTD, an impor-
tant indicator of crop growth and physiological condi-
tion, using only open-field scale meteorological data. 
The established NN model had better prediction accu-
racy within the CTD range from −4 to +2°C (Table S1), 
which covered 94.8% of all the observed data. Although 
the CTD prediction model in the present study is 
thought to be practical under most of weather condi-
tions, further accumulation of data following extreme 
conditions (i.e. CTD under −4°C or over +2°C) are neces-
sary to improve the robustness of our model.The simu-
lated CTD values for the Takanari cultivar were generally 
lower than those of Koshihikari when Rs was under 
900 W m−2 (Figure 7), which was largely consistent 
with the observed data (Figure 8) and previous studies 
showing that the greater leaf photosynthetic capacity of 
Takanari is supported by high stomatal conductance and 
leaf nitrogen content (Hirasawa et al., 2010; Ohsumi 
et al., 2007a), stomatal density (Ohsumi et al., 2007b), 
hydraulic conductivity (Taylaran et al., 2011), and conse-
quently, low leaf/canopy surface temperatures (Horie 
et al., 2006; Ikawa et al., 2017; Takai et al., 2010). 
However, the simulated CTD values for the Takanari 
cultivar were significantly increased when compared to 
the CTD values of Koshihikari when Ta was 30°C and Rs 

was over 1200 W m−2 (Figure 7(b)) or when Ta was 35°C, 
RH was between 50% and 75%, and Rs was over 
900 W m−2 (Figure 7(c)). Many of these behaviors were 
confirmed in the observed data (Figure 8) and were 
largely consistent with the fact that reduced RH 
increases VPD. The simulated values on CTD in 
Koshihikari and Takanari under the same set of environ-
ments are shown in Figure S1.
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Generally, the stomatal aperture in plants decrease 
under high VPD conditions (Inoue et al., 2021). 
A previous study reported that stomatal conductance 
decreased in Takanari when compared with 
Nipponbare, a typical japonica cultivar, under drought 
stress (Ohsumi et al., 2008). This is also supported by our 
previous observations that Takanari demonstrate 
a midday depression in leaf photosynthesis (Adachi 
et al., 2019a) and canopy transpiration (Kondo et al., 
2021). Thus, the stomata of Takanari are thought to be 
more sensitive to extremely high VPD conditions than 
those of Koshihikari. Another possible reason for the 
reversal phenomenon may be the difference of aerody-
namic characteristics in Koshihikari and Takanari. 
Takanari has larger leaf area, lower canopy height, and 
greater aerodynamic resistance under windless condi-
tions (ra*) than Koshihikari (Kondo et al., 2021). In other 
words, canopies of Takanari have structures that tend to 
prevent heat transfer to and from the atmosphere. In 
some cases of dry conditions, stomata of plants are 
closed, where the genotypic differences of photosyn-
thetic traits were almost canceled. Under these condi-
tions, the genotypic difference of heat diffusion 
attributed to canopy structures is thought to be 
a dominant factor affecting CTD. The reversal phenom-
enon was simulated under the conditions of Rs over 
900 W m−2 and Ta at 30°C, but not in Ta at 35°C 
(Figure 8). Further physiological research on Koshihikari 
and Takanari may be needed to reveal reasons for this 
inconsistency.

Despite the fact that our novel NN model enables 
fairly accurate prediction of CTD using only micro-
meteorological data, it remains limited in terms of 
genotypic and environmental diversity. This is 
because our model is specific to only two cultivars, 
both cultivated in Kyoto, Japan: Koshihikari and 
Takanari. One option to overcome this limitation is 
to extend the dataset by collecting CTD data for 
other cultivars and environments. However, collect-
ing a comparable amount of data for new cultivars 
and environments is a time-consuming task. Another 
option for solving this problem is fine-tuning. In 
fine-tuning, we apply all the layers from the pre- 
trained NN model except for the last one and 
replace the final layer in the model with a new 
layer that has weights trained for its new targets. 
Previous studies have reported that the same level 
of prediction performance as full training can be 
achieved using a reduced dataset (Cetinic et al., 
2018; Howard & Ruder, 2018; Tajbakhsh et al., 
2016). Therefore, this technique may be useful in 
improving the versatility of this model moving 
forward.

Conclusion

Our NN model was able to predict CTD under field 
conditions using only meteorological data with practical 
accuracy under the conditions of CTD from −4°C to +2°C, 
covering 94.8% of all the observed data. This model 
accurately described the CTD values for Koshihikari and 
Takanari under moderate meteorological conditions and 
clearly modeled the varietal differences in response to 
specific environmental conditions. Thus, this newly 
established method may enable the evaluation of 
canopy gas exchange and its varietal characteristics in 
field-grown rice while reducing both labor and cost and 
expanding area of measurement with high time- 
resolution. Further collection of datasets under extreme 
conditions, in novel genotype, and at new location is 
needed to improve the versatility of this method.
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