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In cut-flower cultivation, production planning is an important task because demand fluctuates throughout the 
year. For precise cultivation planning, understanding the cultivation status is necessary by the growing stage. 
However, manually counting all the roses in the greenhouse to determine the cultivation status is difficult without 
incurring considerable time and labor. Some studies have engaged in detecting the number of flowers, but these 
studies used close-up images and could not count flowers without omissions or overlapping in an entire farm. In 
addition, limited datasets for object detection based on cut-flower blooming stages are available. In this study, 
we propose the RoseBlooming dataset and an efficient rose-monitoring system called RoseTracker to bridge the 
gap between computer vision techniques and the horticulture cultivation industry. The RoseBlooming dataset 
is the innovative dataset of labeled images for cut flowers at the growing stage. RoseTracker can detect small 
roses from various angles while moving the camera, reduces detection omissions, and achieves an F1 score of 
0.950, thereby outperforming conventional models. For application, we used overhead images captured under 
actual growing conditions. RoseTracker and the RoseBlooming dataset contribute to constructing the rose-growth 
monitoring system in high demand worldwide.
1. Introduction

Production planning is an important task in cut-flower cultiva-

tion. Because cut flowers require freshness, producing them according 
to peak demand periods is valuable; peak demand periods fluctuate 
throughout the year depending on events such as celebrations. Sev-

eral studies have examined environmental conditions, and cut-flower 
growth [18,21]. As indicators for such environmental controls, it is nec-

essary to accurately assess current growth conditions. However, manu-

ally counting all the roses in a greenhouse requires considerable time 
and labor. An easy manner of obtaining rose cultivation status in green-

houses is in demand.

With the development of computer vision technology, several stud-

ies have been conducted on cut flowers using computer vision for flower 
detection [20,2,4]. However, these studies are few and detected only 
blooming flowers just before the harvest period, excluding those in the 
budding stage, which are unsuitable for the purpose of yield prediction. 
With the expanding scope of research on fruit flowers, more research 

* Corresponding author at: Graduate School of Agriculture, Kyoto University, Kyoto-city, 606-8502, Kyoto, Japan.

E-mail address: shinoda.lisa.47z@st.kyoto-u.ac.jp (R. Shinoda).

has been conducted. For buds detection [7], kiwifruit buds were de-

tected in blooming flowers. The primary aim of that study was robotic 
pollination; thus, they used close-up images. Previous studies have de-

tected the number of flowers in a relatively large area [22,9] for crop 
management decisions. However, understanding the growth status of 
an entire farm remains almost impossible using a single photograph. In 
addition, even if multiple images are taken of a farm and combined, 
some areas will be omitted or duplicated.

The main problem in applying existing research to harvest forecast-

ing is that they are unsuitable for a growth stage acquisition system of 
an entire farm. Using close-up images leads to high accuracy, but also 
to an inability to count them in an entire farm. To detect a wide range 
of areas, detection from videos is desirable; in particular, the concept of 
object tracking from videos is well suited for detecting objects without 
omissions or overlaps. Several studies have combined object detection 
and tracking on farms [5,14]. These existing studies have been con-

ducted for relatively large fruits, not cut flowers.
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Another problem is that, datasets on cut flowers by growth stage are 
limited in number. There are several publicly available flower datasets 
to classify the flower species [11,19,27]. However, there are a limited 
number of publicly available datasets for counting cutting flowers from 
a relatively large area. Also, accurate yield prediction requires a dataset 
with early growth stages such as buds, not only flowers. Therefore, ac-

tually performing stage-specific flower detection on farms is hindered. 
Furthermore, annotations must be conducted manually, which is time-

and labor-intensive.

To overcome these issues, we introduce the RoseBlooming dataset, 
and the rose growth-status gain model called RoseTracker. Rose-

Blooming dataset images are taken from overhead using selfpropelled 
sprayers. Since overhead images can be captured using selfpropelled 
sprayers and drones, the proposed system and dataset are easily de-

ployed in other greenhouses. This dataset contains two maturity level 
roses, including buds and flowers. We release this RoseBlooming dataset 
publicly available; the RoseBlooming dataset is an important dataset 
that will promote further research on stage-specific flower detection. 
By using this RoseBlooming dataset, we introduce RoseTracker, which 
counts roses depending on maturity levels by video. RoseTracker uses 
tracking techniques that can be used not only for object counting but 
also for more detailed object detection. Rosebuds can be hidden by 
overgrown leaves at certain angles, which makes it difficult to detect 
them from a single image. We believe that if we can detect objects from 
various angles while moving the camera and tracking the same object, 
we can overcome omissions in detecting small objects such as buds and 
flowers.

Our main contributions are as follows:

• We release the RoseBlooming dataset that allows for stage-specific 
flower detection. The dataset, consisting of overhead images, con-

tains two rose cultivars and was filmed over a period of months. 
This is an innovative dataset that can be used to construct a flower-

growth monitoring system and predict the flower yield, which is in 
demand in the horticultural field.

• We propose a new detection model called RoseTracker that com-

bines object detection, object tracking, and the original regression 
model. This model detects roses using videos to enable the detec-

tion of each flower and bud from various angles —— even those 
hidden by leaves.

2. Related work

Flower Detection Palacios et al. [13] estimated the number of flowers 
per grapevine. They used SegNet for segmentation and predicted the 
number of flowers using a regression model. A normalized root mean 
squared error of 23.7% was achieved. These images were captured at 
night using an artificial illumination system. For daytime detection, Sun 
et al. [22] used a CNN to roughly locate a flower object and then used 
the difference in color between the flower and background to refine 
the network. This study focused on apple, peach, and pear blossoms, 
and the F1 score was 0.777 – 0.89. This method assumes that the back-

ground and flowers have different colors, which is inapplicable to bud 
detection, where the background is often the same green color. For bud 
detection, Li et al. [7] detected kiwifruit buds and flowers with an 
average precision of 96.66% and 98.57%, respectively. However, this 
experiment was intended for robotic pollination; thus, close-up images 
were used, which are unsuitable for monitoring the growth of an entire 
farm.

Object Tracking Xiong, Ge, and From [26] used YOLOv4 [3] and Deep-

SORT [25] for strawberry harvesting robots and improved the entire 
strawberry cultivation process. For object counting, Tan et al. [23] com-

bined YOLOv4 and a tracking method to count seedlings. They achieved 
high accuracy without 57.3% of the test videos having counting errors. 
Their method focused on processing speed and did not intend to exam-
2

ine the extent to which double counts or occlusions were included in 
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Fig. 1. The example images of two cultivars of roses. The left image is ‘Samourai 
08’, and the right image is ‘Blossom Pink’ rose. This growth stage is classified 
in the rose_large category.

Fig. 2. The data acquisition system.

the predicted number of counted objects. Several studies have focused 
on evaluating crop counts in detail. Itakura et al. [5] used YOLOv2 
[16] combined with a classical Kalman filter to track pears and apples, 
achieving F1 scores of 0.972 and 0.929, respectively. With a more ad-

vanced object tracking model, Parico and Ahamed [14] used YOLOv4 
and DeepSORT [24] to detect pears. These two studies were conducted 
using images taken relatively close to the object, and counting fruit in 
an entire farm is difficult. In addition, the target object was a mature 
fruit, which is considered easier to detect than rose buds.

Flower Datasets Flower datasets are limited in number. Several 
datasets are available for classifying flower types. The Oxford Univer-

sity group released the Oxford-17 [11], and Oxford-102 [12]. Other 
well-known datasets include the Jena Flower 30 [19], and HFD100 
[27] datasets. The HFD100 has more images — up to 10,738. How-

ever, these datasets are intended for classification problems and exclude 
buds. Therefore, our dataset, which includes buds and flowers obtained 
from actual farms, significantly contributes to the study of image recog-

nition in horticulture.

3. Materials and methods

This study consisted of four steps. (1) Data acquisition on rose farms 

and annotation of the data according to growth stage to create the 
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Fig. 3. The flower was designated as 𝑟𝑜𝑠𝑒_𝑠𝑚𝑎𝑙𝑙 while it was a bud through to 
the stage where the petals are parallel with the central axis of the flower; the 
flower was designated as 𝑟𝑜𝑠𝑒_𝑙𝑎𝑟𝑔𝑒 once the petals exceeded the parallel point.

Table 1

The data acquisition period and the number of images.

Training Validation Test

Number of images 312 106 101

Period 4/1-5/2 5/3-5/12 5/13-5/18

RoseBloomig dataset. (2) Building a detection model using YOLOv5 [6]

and assessing the results. (3) Using an object tracking model with the 
YOLOv5 weight to count all roses within a target area. In addition 
to SORT [1], a regression model was combined, and the RoseTracker 
model was created. (4) Conducting an ablation study for evaluation 
purposes.

3.1. RoseBlooming dataset

Data acquisition Data acquisition was conducted in a rose greenhouse 
at the Kizu Experimental Farm of Kyoto University in Kizugawa, Japan. 
The target cultivars were Rosa hybrida hort. ‘Samourai 08’ and ‘Blossom 
Pink’ roses (Fig. 1). The planting density in the greenhouse was eight 
plants per 𝑚2, and the branches were trimmed by cut-up arching. An ac-

tion camera (Gopro MAX, GoPro, Inc.) was attached to a self-propelled 
sprayer (Grinmate, Grintec Co., Ltd.) at the height of approximately 2.5 
𝑚 from the growing bench and moved in parallel to take videos of two 
rows of roses in the greenhouse (Fig. 2). Further, video was filmed in 
the area of two rows of growing benches (3 𝑚 × 20 𝑚) once every 1–2 
days in the late afternoon by manually turning on the power of the sys-

tem. The resolution of the video was 1920 ×1440. The videos were taken 
from April 1, 2021, to May 18, 2021.

Dataset Construction The data were divided into three datasets — 
training, validation, and test data — with an approximate ratio of 6:2:2 
(Table 1). Note that the flowering period is under 3 days; thus, the 
training and the test dataset differ in appearance. To compare the accu-

racy of rose flower tracking, we used the video taken on May 16, 2021, 
contained in the test data. For annotation, we used the VOTT [10] tool 
provided by Microsoft. The developmental stages of flowering branches 
were visually classified and annotated into two stages (Fig. 3). The 
flower was designated as rose_small while it was a bud through to the 
stage where the petals are parallel with the central axis of the flower; 
the flower was designated as rose_large once the petals exceeded the par-

allel point. An example image from the RoseBlooming dataset is shown 
in Fig. 4. As shown in Table 1, the RoseBlooming dataset contains 
519 images (312 training, 106 validations, and 101 test). The video 
is taken over two months; therefore, it contains the images under vari-

ous weather conditions. Fig. 5 shows the number of bounding boxes per 
image. Fig. 6 shows the total number of bounding boxes per category. 
As shown in Fig. 5, most of the images contain several bounding boxes, 
3

therefore, this dataset contains over 7,000 bounding boxes.
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3.2. Proposed method

An overall view of RoseTracker is shown in Fig. 7. Using the weights 
of the object detection model created from the RoseBlooming dataset, 
the object tracking model SORT is used to detect roses from the video 
by growth stage and obtain TrackIDs. Then merge the TrackIDs using 
the regression model to obtain the final output.

Object detection Given the system is to be used for daily management 
of crop management use, fast speed object detections are needed. We 
adopted the YOLOv5 model, which is one of the fastest operating ob-

ject detection models. The object detection model performs two tasks: 
positional regression, which determines the location of an object in an 
image, and class classification, which infers the object. A model that si-
multaneously performs these two tasks is called a one-shot detector, 
and YOLO is one of the most representative methods. YOLOv5 is a 
model of the YOLO system developed by Jocher et al. [6]. It was de-

veloped by the same company that developed the PyTorch [15] version 
of YOLOv3 [17]. YOLOv5 has four models: s, m, l, and x, depending on 
the detection accuracy and computational load, with s being the fastest 
and lightest model. We chose the YOLOv5-s model because of its fast 
operation, simple implementation, and less consumption of memory.

The main parameters were as follows: the epoch was set to 4000, 
batch size to 19, learning rate to 0.01, and training image size were 
1280 × 960 pixels. For comparison with YOLOv5, comparative exper-

iments were conducted using YOLOv4 [3]. For a fair comparison, the 
batch size, learning rate, and epoch of YOLOv4 were kept the same as 
those of YOLOv5. For data augmentation process, we follow the offi-

cial implementation on both models [3,6]. The YOLOv4 and YOLOv5 
evaluations included precision, recall, and average precision (AP).

Object tracking SORT [1] is one of the most famous object tracking 
models that use the Kalman filter to predict positions. In SORT, each 
object is approximated as the inter-frame displacement of each object 
using a linear constant velocity model. The state of each target is de-

scribed as:

𝑥 = [𝑢, 𝑣, 𝑠, 𝑟, �̇�, �̇�, �̇�]𝑇 (1)

where 𝑢 and 𝑣 represent the horizontal and vertical pixel locations of 
the center of the target, respectively, and 𝑠 and 𝑟 represent the scale 
and aspect ratio of the bounding box, respectively. �̇�, �̇�, �̇� indicate the 
amount of change in each value per time. The aspect ratio is considered 
constant. If no detection is associated with the target, its state is simply 
predicted using the linear velocity model without a correction method.

In our dataset, roses were considered to move in a constant-velocity 
linear motion from the bottom to the top of the screen. Because SORT 
expects the target to move in various manners, we changed some pa-

rameters from the default values as follows:

max_age: the number of frames in which an unmatched tracker ex-

ists. We increased this value to 100 because targets moved from the 
bottom of the screen to the top; thus, they did not disappear in the 
middle of the screen (default is 1).

iou_threshold: the minimum value of the associated intersection-

over-union (IOU) distance between each detection and all predicted 
bounding boxes from existing targets. This value was lowered to 0.1 
as the SORT prediction was simple in this study owing to the nearly 
constant-velocity linear motion of the rose (default is 0.3).

Videos taken on the same dates as the validation data were used 
to adjust these parameters. Some models, such as DeepSORT, use the 
information on object features to reassign IDs when tracking is off. How-

ever, SORT, which does not use features, was employed in this dataset 
because of the dense concentration of similar-looking buds and flowers.

Merging track IDs In addition to SORT, a custom algorithm was ap-

plied to prevent incorrect ID switching. We took advantage of the fact 

that roses do not change the direction of their movement or framed-out 
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Fig. 4. (Left) An example image from RoseBlooming Dataset; (Right) The corresponding annotated image: Pink bounding boxes indicate rose_large; yellow bounding 
boxes indicate rose_small.
Fig. 5. The number of bounding boxes per image in RoseBlooming dataset.

Fig. 6. The number of bounding boxes per category in RoseBlooming dataset.

along mid-frame in the video data. The 𝑦-axis represented the camer-

a’s direction of motion, and consequently, the 𝑦-coordinate increased as 
the rose moved forward. The 𝑥-axis represents the direction perpendic-

ular to the 𝑦-axis. Assuming that the rose followed a constant velocity 
linear motion along the 𝑦-axis, the trackID should not disappear in the 
4

middle of the shooting range of the camera. Then, linear interpolation 
was used to interpolate and extrapolate the (𝑥,𝑦)-coordinates of bro-

ken tracking IDs from the (𝑥,𝑦)-coordinates and frame numbers of the 
detection results.

With these operations, we now have the (𝑥,𝑦)-coordinate with frame 
number, assuming unbroken tracking for each trackID. If two track-

IDs had (𝑥,𝑦)-coordinates that were less than a threshold apart at any 
frame number, they were considered the same trackID. This threshold 
was determined by examining the validation data and set to 15 pixels. 
Compared with the execution time of SORT, the execution time of this 
process is short, and even when implemented as an application, the ex-

ecution time should not have a significant impact. Fig. 8 illustrates this 
merging track IDs method as a flowchart.

3.3. Evaluation

Ablation study We conducted an ablation study to verify the effec-

tiveness of the RoseTracker model. RoseTracker consists of three parts: 
object detection, object tracking, and improvement of the track ID with 
regression models. In the ablation study, i) YOLOv5 alone, ii) YOLOv5 
combined with SORT, and iii) YOLOv5 combined with SORT and a 
regression model (RoseTracker) were compared. Because YOLOv5 sup-

ports object detection by image, we collected overhead images for each 
section of the greenhouse and counted the detected roses to ensure 
that there was no overlap. Therefore, precision and recall were based 
on counting and not the bounding-box areas. The combined YOLOv5 
and SORT models and the RoseTracker were tested for accuracy on an 
overhead video taken of the greenhouse, and counting correctness was 
evaluated. Although tracking IDs were automatically assigned to each 
rose in the video, we checked the video to see if any IDs were switched 
or if the IDs were mistakenly assigned for detailed evaluation.

Tracking Evaluation In this study, four indicators were used to eval-

uate the counting accuracy. i) Correct detection (Correct): This is the 
number of correctly counted roses. YOLOv5 uses eight images to detect 
the target greenhouse area with no overlap, and the correct count for 
YOLOv5 alone is the sum of the number of correct detections for the 
eight images. For video, the count increases by one if a unique tracking 
number is assigned to each rose and never switched to another track 
number. ii) Double count (Double): This is determined when the track-

ing ID is switched in the video. Because this does not occur in YOLOv5 
alone, that only uses images, it was set to 0. iii) Omission: This indi-

cates the number of undetected roses. iv) Wrong detection (Wrong): 

The number of objects detected as roses that are not roses. In addition, 
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Fig. 7. An overview of the RoseTracker model.
Fig. 8. Flowchart of the merging track IDs part. A threshold value is set to 15 
pixels.

the ablation study calculated the precision, recall, F1, and AP (Average 
Precision) score using the following equations:

𝑇𝑃 𝐶𝑜𝑟𝑟𝑒𝑐𝑡
5

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 + 𝐹𝑃

=
𝐶𝑜𝑟𝑟𝑒𝑐𝑡+𝑊 𝑟𝑜𝑛𝑔 +𝐷𝑜𝑢𝑏𝑙𝑒

(2)
Table 2

The results for object detection. Small and large represent rose_small and 
rose_large, respectively.

Model Precision Recall AP

small large

YOLOv5-s 0.79 0.72 0.601 0.938

YOLOv4 0.70 0.69 0.596 0.937

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝐶𝑜𝑟𝑟𝑒𝑐𝑡+𝐷𝑜𝑢𝑏𝑙𝑒+𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛
(3)

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(4)

𝐴𝑃 =

1

∫
0

𝑝(𝑟)𝑑𝑟 (5)

4. Results and discussion

4.1. Object detection

Table 2 shows the detection results of YOLOv4 and YOLOv5. Ex-

amples of detection results are shown in Fig. 9. The results for each 
class showed that all indicators for rose_small were lower than those for 
rose_large. In YOLOv5, the AP value was 0.601 for rose_small, and 0.938 
for rose_large. The lower result for rose_small may be owed to the smaller 
rose sizes as the flowers had not yet blossomed, making their detection 
difficult. This also allows small roses to easily hide among leaves. Fur-

thermore, rose_small includes green buds, increasing the difficulty in 
distinguishing their boundary from that of the leaves, whereas flowers 
corresponding to rose_large have a prominent petal color. YOLOv5 out-

performed YOLOv4 in all categories. The storage size of the YOLOv5 
model was 14.2 MB, which was much smaller than that of YOLOv4’s 
244.3 MB; thus, YOLOv5 was used for RoseTracker based on the mod-

el’s accuracy and lightness. Fig. 10 presents the precision-recall curve 
of YOLOv5 on the validation dataset and the loss curve during training.
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Table 3

The results from the ablation study for object counting.

Class Model Correct Double Count Omission Wrong Detection Precision Recall F1

YOLOv5 74 0 28 1 0.987 0.725 0.836

all classes YOLOv5 + SORT 84 12 6 2 0.857 0.824 0.840

RoseTracker 95 1 6 2 0.969 0.931 0.950

YOLOv5 40 0 26 0 1.000 0.606 0.755

𝑟𝑜𝑠𝑒_𝑠𝑚𝑎𝑙𝑙 YOLOv5 + SORT 55 5 6 2 0.887 0.833 0.859

RoseTracker 60 0 6 2 0.968 0.909 0.938

YOLOv5 34 0 2 1 0.971 0.944 0.958

𝑟𝑜𝑠𝑒_𝑙𝑎𝑟𝑔𝑒 YOLOv5 + SORT 29 7 0 0 0.806 0.806 0.806

RoseTracker 35 1 0 0 0.972 0.972 0.972

Fig. 9. Example images of YOLOv5 detections on test dataset. The class name and the probability value of belonging to the class are displayed.
6

Fig. 10. (Left) The Precision-Recall curve of YOLOv5 on the validation dataset; (Right) Loss curve of YOLOv5 on the training dataset.
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Fig. 11. Images of RoseTracker tracking results. Each bounding box has a tracking number and a class name. If the ID number switches during tracking, the class 
7

with the highest number of detections is selected.
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Fig. 12. Example of RoseTracker preventing omission. (Left) An example image of YOLOv5 detection; (Right) An example image of RoseTracker detection and 
tracking. RoseTracker detects and tracks from different angles in the video, lowering the Omission value.

Fig. 13. Example of RoseTracker preventing omission of the hidden rose flower by occlusion. (Left) Omission of rose flower due to the occlusion by another branch 
in the front; (Right) Detection of the same flower in another picture taken from a different angle. Red arrows indicate the rose flower, which is occluded in the left 
picture. Yellow dotted arrows indicate the rose flower in front, which was not also detected in the left picture due to the overlapping with the behind flower.
4.2. Rose counting system

The ‘all classes’ row in Table 3 shows the object tracking results 
of two class categories. From the F1 value, we can conclude that our 
model, RoseTracker, is the most effective with an F1 value of 0.950, 
which is higher than 0.836 achieved by YOLOv5. Using RoseTracker, 
we could reduce omissions from 28 to 6 compared to using YOLOv5 
alone. The object tracking technique using video enables the detection 
of buds and flowers obscured by leaves by considering various angles. 
In addition, RoseTracker using the regression equation, reduced dupli-

cations compared with SORT alone. Examples of RoseTracker tracking 
results are shown in Fig. 11. For example, in Frame 450, track ID 150 
(the lower right of the picture) in Frame 500 could not detect. How-

ever, in the Frame 500, 550, and 600 track ID 150 buds can be detected 
and assigned ID properly. This shows the effectiveness of the videos, 
which enable the detection of each flower and bud from various angles. 
Fig. 12 shows an example case where RoseTracker prevented omission. 
This indicates that the regression model using the tracking IDs obtained 
8

in SORT allowed for more detailed tracking using frame numbers in 
the video and coordinates, even without measuring the camera speed. 
In Fig. 13, RoseTracker also prevents the omission of the hidden rose 
flower by occlusion. In Frame 119, two rose are hidden by the leaves, 
but they can detect in Frame 70. The object tracking model performed 
an incorrect detection, but this can be attributed to the object detec-

tion being performed on many images spliced from the video. Despite 
the incorrect detection, our method increased the number of correct 
detections by 21 by reducing omissions compared with that of image 
detection.

Table 3 also shows results by class. As shown, our method is par-

ticularly effective for rose_small. The number of omissions in rose_small

was 6 for our proposed method, which is significantly less than 26 of 
YOLOv5 alone. These counting system improvements indicate that the 
proposed method that combines SORT and a regression model has con-

siderable power for providing a more accurate monitoring system of cut 
flowers such as rose buds on a farm.

In addition, object counting on video is more effective for actual 
farm applications than using YOLOv5 alone on images. The method 

using only YOLOv5 requires combining the images to obtain a picture 
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of the entire greenhouse, which involves considerable labor. An image 
must be captured directly above each section to ensure that the images 
do not overlap. From a filming perspective, object tracking using video 
can be easily applied in the cut-flower production industry.

5. Conclusion

In this paper, we provided the RoseBlooming dataset, which is an 
innovative cut-flower dataset annotated by growth stages. The Rose-

Blooming dataset will encourage the application of computer vision 
technology in the cut-flower industry, which has limited available 
datasets. We also proposed RoseTracker, which combines YOLOv5, 
SORT, and a regression model to obtain an accurate growth status. We 
significantly reduced the number of omissions, which indicates that the 
proposed object tracking technique using video enables the detection 
of buds and flowers obscured by leaves. Because the manner of taking 
video from above is easy, we believe that this method can be applied 
to other greenhouses and contributes to the construction of automatic 
growth monitoring and yield prediction systems. Such a growth moni-

toring system could be used to improve the efficiency of environmental 
control to adjust the harvest time and quality of cut flowers. The Rose-

Blooming dataset and the RoseTracker model bridge the gap between 
the horticultural field and image recognition.
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