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Background
Proteins realize their functions by interacting with other proteins and/or chemical 
compounds [1]. Protein-protein interactions play crucial roles in most biological pro-
cesses. In a protein-protein binding interface, the binding free energy is not uniformly 
distributed among the residues. Instead, there are hot spots, which contribute most 
to the binding energy in protein interfaces [2]. Detecting hot spots in protein-protein 
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interactions is meaningful in regulating protein-protein binding and may also contribute 
to disease control and drug design.

Experimentally, a hot spot residue is defined as having a change in binding energy 
��G ≥ 2.0 kcal/mol upon its mutation to alanine [3]. Several databases have been 
constructed to collect experimental hot spots from alanine scanning mutagenesis 
experiments, and two famous databases are the Alanine Scanning Energetics Database 
(ASEdb) [4] and the Binding Interface Database (BID) [5]. Another widely used data-
base is the SKEMPI database [6], which is new and continually updated (public access 
to ASEdb and BID is no longer supported). However, finding hot spots by experimental 
methods is time-consuming and costly; thus, a need for computational methods arises 
[7].

Several kinds of methods have been designed to predict hot spots. The first type is 
based on molecular dynamics simulations [8, 9]. Although these methods provide 
detailed analyses of protein interfaces and have good prediction results, they have diffi-
culty dealing deal with large-scale data because of the high computational cost. Another 
kind of method is based on energy estimation [10, 11], which estimates the energetic 
contribution to binding for every interface residue to predict hot spots. Compared to 
molecular dynamics simulation, energy estimation methods are more efficient in pre-
dicting hot spots from large protein complexes.

In recent years, machine learning methods have been frequently used in hot spot pre-
diction, such as extreme gradient boosting [12], random forests [13], and support vector 
machines (SVMs) [14]. The advantage of machine learning based methods is that they 
can filter and utilize various possible features to classify residues, together with a well-
designed model, and usually have high performance in hot spot prediction. However, 
since experimentally approved hot spot data are scarce, a large percentage of real hot 
spot residues are not recognized in hot spot datasets. In machine learning methods, the 
low rate of positive instances makes it difficult to train models. Additionally, in some 
methods such as [3, 15–17], to balance the ratio of positive instances to negative ones, 
only residues with less than 0.4 kcal/mol binding free energy are defined as non-hot 
spots, which further reduces the size of the training set.

On the other hand, there are some methods based on graph theory and network 
analysis. Tuncbag et  al. transformed residue interaction networks into minimum-cut 
trees and then identified the high-degree nodes as hot spots [18]. Li et al. searched for 
bicliques from the input network to find highly connected patterns, which have a high 
possibility of forming a group of hot spots [19]. The graph theory-based methods do not 
need existing hot spot data to train the models, avoiding the need for many experimental 
resources, and the prediction results can be a good guide for further biological experi-
ments. Unfortunately, the existing graph theory-based methods have very low recall. 
Although some hot spots can be precisely detected by these methods, many possible hot 
spots are ignored.

Here, we consider using other graph theory methods, which are based on the den-
sities of subgraphs, to analyze residue interaction networks. Generally, high density 
refers to a high connectivity between vertices, and it often relates to binding sites in 
complexes. By further evaluation, we find that our methods have an obvious advan-
tage in finding potential hot spots, as well as having similar precision to that of the 
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existing methods. The results of these densest subgraph-based methods (DS-based 
methods) can be a good reference for future bio-experiments.

Generally, a certain input network may contain multiple densest subgraphs. We can 
simply select one random densest subgraph as an output. In this research, we use DS 
to represent this random method. However, because of this randomness, it is difficult 
to ensure the performance of the DS. To obtain better performance in practice, we 
propose three variant methods based on the DS method (DS-based methods). The 
first method yields all the minimal densest subgraphs [20] as the result, and we use 
Min-DS to denote this method. Compared to DS, Min-DS has no randomness and 
has better precision and recall than DS. The second method, Max-DS, is based on a 
novel concept, namely, the maximal densest subgraph. The results of Max-DS include 
those of Min-DS, and it has higher recall but lower precision than Min-DS. To max-
imize the ability to find potential hot spots, we develop a third method, Min-SDS, 
which is also the main method in our research. This method is similar to Min-DS 
but has a weakened restriction in detecting the minimal densest subgraph. By further 
evaluation, we find that Min-SDS has the best recall and F2-score among all the graph 
theory-based methods and performs well in detecting unknown hot spots.

Result
Dataset

We mainly use the data from the SKEMPI 2.0 dataset [6], which records 7085 pieces 
of mutation information on 341 protein complexes, to define the hot spots in protein 
complexes. Specifically, if a residue has ��G = �Gmut −�Gwt ≥ 2.0 kcal/mol in an 
alanine-mutation experiment, then this residue is recognized as a hot spot [4]. Here, 
�Gwt and �Gmut are the binding free energies upon complex formation of the wild-
type and alanine-mutated proteins, respectively. �G can be calculated by 
�G = RT lnKd , where R is the ideal gas constant, T is the absolute temperature, and 
Kd is the affinity of the wild-type (wt) or mutant (mut) complexes. Thus, we have 

�Gwt = (8.314/4184)∗(273.15+25.0)∗ln(wt),�Gmut = (8.314/4184)∗(273.15+
25.0) ∗ ln(mut)

 

[21].
The residue interaction network data are based on PDB spatial data [22]. In a pro-

tein complex, any two residues in different chains are regarded as contacting each 
other if there exist two atoms a and b from each residue such that their distance 
d(a, b) ≤ r(a)+ r(b)+ 2.75Å , where r is the van der Waals radius, and 2.75Å is the 
diameter of a water molecule [19]. To build a residue interaction network for each 
protein complex, only the residues that contact at least one other residue are selected 
as vertices of the network, and an edge is added between any two contacting vertices.

The atom spatial data in PDB are based on crystal artifacts, sometimes they may not 
directly reflect the natural protein quaternary structure of complexes [23, 24]. To avoid 
the problem of choosing proper biological assemblies among asymmetric units, we 
selected 223 complexes from the 341 complexes, each of which has only one possible 
biological assembly, to construct residue interaction networks. We further selected 67 
networks with at least 3 bio-experimentally approved hot spots for evaluation.
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In addition, we used another independent hot spot dataset, AB-bind [25], for evalua-
tion, which contains 1101 mutation records on 27 complexes. Using the same data selec-
tion strategy, 5 complexes were selected for result evaluation.

Experiments and evaluation

We implemented the DS, Min-DS, Max-DS, Min-SDS, Biclique, and Mincut methods on 
the built networks.

The DS method finds a random densest subgraph of the input network; the Min-DS 
method finds all the minimal densest subgraphs [20]; the Max-DS method finds the 
maximal densest subgraph; and the Min-SDS method finds a set of nonintersecting sub-
graphs with high densities.

Biclique and Mincut are existing methods. The Biclique method [19] finds all the 
bicliques of the input network. In our experiments, only the bicliques that contain at 
least 3 vertices on each side are selected as the result. The Mincut method [18] first 
builds the mincut tree of the input network, and then the high-degree (at least degree 3) 
nodes in the tree are selected as the result.

The average results of all six methods are shown in Fig. 1 ( θ = 0.85 for Min-SDS). A 
detailed definition of each standard metric can be found in Additional file 1. The data of 
the results of all the methods can be found in Additional files 2, 3, 4, 5.

Compared to the existing methods, our DS-based methods have much better F-scores. 
Although Mincut has the best precision, its recall is very low compared to the other 
methods. In hot spot research, there is a lack of bio-experiments detecting whether a 
residue is a hot spot. Even if some experiments on a residue have been performed and 
indicated ��G < 2.0kcal/mol , it is difficult to determine that this residue is not a hot 
spot. Many potential hot spots may be false-negatively tagged by bio-experiments. In 
this situation, higher recall should be more beneficial than higher precision.

Another disadvantage of Mincut is that its results tend to be in one connected com-
ponent. However, a protein complex may have multiple binding sites, which means 
that several distinct subgraphs may contain hot spots, while in most cases, the Mincut 
method focuses on only one of them.

As an example, complex 1AHW [26] consists of 3 molecules, and each molecule 
has 2 chains (AD, BE and CF). These 6 chains compose a heterohexamer (preferred) 

Fig. 1 Clustered column chart of the performances of each method on SKEMPI (A) and AB‑bind (B). The 
result distributions on the two charts are similar. In both datasets, Min‑SDS has the best recall and F‑score, 
and all DS‑based methods outperform the existing methods in terms of F2‑score
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biological assembly composition. By checking the residue interaction network, 5 large 
connected subgraphs are found to exist: A-B, D-E, A-F, A-B-C and D-E-F (subgraph 
A-B means that all the residues in this subgraph come from chain A or B, and the 
other terms have similar meanings). In these subgraphs, A-B-C and D-E-F are highly 
connected, and both of them have high possibilities of containing hot spots. In fact, 
all the experimentally approved hot spots are gathered in the A-B-C subgraph. How-
ever, in practice, the Mincut method only predicts residues in the D-E-F area and thus 
performs poorly in this instance. For details, see Fig. 2.

Our DS-based methods, especially the Min-SDS method, are not restricted to only 
one connected area, and thus all highly connected areas can be selected. For instance 
1AHW, the result of the Min-SDS method distributes in both A-B-C and D-E-F sub-
graphs, successfully covers the approved hot spots, and predicts the possible hot 
spots in the D-E-F area.

Since the Min-SDS method removes the restriction of ‘densest’, it has the best advan-
tage in finding possible hot spots. In our experiments, the tolerance θ of Min-SDS 

Fig. 2 The results of Mincut and Min‑SDS on the graph of complex 1AHW. TP: red outline, yellow fill; FP: black 
outline, yellow fill; TN: black outline, white‑fill; FN: red outline, blue fill. These figures show only part of the 
1AHW network
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was set to 0.85; i.e., all minimal subgraphs with a density higher than 0.85 ∗ D were 
selected, where D is the maximum density of the input graph.

We tested the performance of Min-SDS on different θ values from 0.5 to 1.0, and the 
results are shown in Fig. 3. With the decrease in θ , the precision decreases while the 
recall increases. The F2-score peaks when θ = 0.85 ; this score is the best among those 
of all DS-based methods, and is obviously better than those of the existing methods.

By further analyzing the 3D view of the protein complexes, we can see that the Min-
SDS method does have the advantage of predicting unknown hot spots. In the same 
instance, 1AHW, the Min-SDS method predicts 36 residues in the D-E-F area. Of these 
residues, 18 form hydrogen bonds with residues from another chain (Fig. 4). To estimate 
whether a residue is a hot spot, the change in the binding energy from residue mutation 
is the only metric used. The energy of a hydrogen bond varies from ≈ 5 ∼ 6 kcal/mol 
for the isolated bond to ≈ 0.5 ∼ 1.5 kcal/mol for proteins in solution [27], close to the 
threshold 2.0 kcal/mol . When a residue forms a hydrogen bond to another chain, the 
mutation of this residue will obviously influence the generation of the wild-type hydro-
gen bond, which should significantly change the binding energy between the chains. 
Thus, many of the predicted residues in the D-E-F area have the potential to be hot spots.

Conclusion
In this study, we develop three densest subgraph-based methods for protein-protein 
interaction hot spot prediction. Compared to the existing graph theory-based meth-
ods, our methods perform much better in terms of recall and F-score. In particular, 

Fig. 3 The average performances of Min‑SDS on different θ values (x‑axis). The F2‑score peaks at θ = 0.85
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our Min-SDS method has an obvious advantage in terms of recall and has the best 
F2-score among all the graph theory-based methods. In addition, our Min-DS and 
Max-DS methods outperform the existing methods in terms of F-score, providing 
useful network analysis methods for researchers.

Although the Mincut method has the best precision, its predictions tend to be 
concentrated in one connected subgraph, which significantly reduces the recall in 
practice. In comparison, the results of our DS-based methods are not restricted to 
one connected component, which is important in dealing with complexes with mul-
tiple binding sites.

Compared to machine learning methods, our DS-based methods do not depend 
on insufficient bio-experimental data and thus have the advantage of being able to 
search unknown hot spots without many data resources.

Our DS-based methods use only spatial coordinate information to detect impor-
tant vertices in a given interaction network. The high recall scores make them good 
choices for some other high-false-negative-rate networks analyses, and they can be 
easily applied to various network analysis fields.

Method
Problem transformation

For a given protein complex, we first convert the residue spatial coordinate informa-
tion to an undirected graph, where the vertices correspond to the residues and the 
edges correspond to the contacts between residues. Then, the hot spot prediction 
problem is transformed into the problem of searching for critical vertices in an input 
graph, and the selected vertices correspond to the predicted hot spot residues.

Densest subgraph

Given an undirected graph G = (V ,E) , where V = {1, 2, ..., n} is the set of vertices and E 
is the set of edges of G, the density of G is defined as ρ(G) =

|E|
|V |

 . Let S be a subgraph of 

Fig. 4 A 3D view of the D‑E‑F area of 1AHW A A 3D view of the quaternary structure of 1AHW in the D‑E‑F 
area; B Hydrogen bonds between chains D and F
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G. If S has the maximum density among all possible subgraphs of G, then S is a densest 
subgraph of G. A certain graph G may have multiple densest subgraphs.

In [28], a linear programming (LP)-based method was proposed to search for a densest 
subgraph of G. For each edge (i, j) ∈ E , a real-valued variable xi,j ∈ [0, 1] is set, and for 
each vertex i ∈ V  , a real-valued variable yi ∈ [0, 1] is set. Then, the following LP method 
returns a solution that contains the information of a random densest subgraph of G: 
BasicLP(V, E)

For an optimal solution of BasicLP, the set of vertices S = {i ∈ V |yi > 0}induces a dens-
est subgraph of G. We also use DS to denote this LP-based method.

Furthermore, we have the following proposition:

Proposition 1 For any optimal solution of BasicLP, the set of vertices 
S = {i ∈ V |yi ≥

1
|V |

} induces a densest subgraph of G.

Accordingly, in practice, we select the vertices with yi ≥ 1
|V |

 rather than yi > 0 as the 
output because of the numerical error of the Gurobi solver [29].

The proof of Proposition 1 can be found in Additional file 1.

Minimal densest subgraph

Given an undirected graph G = (V ,E) , let S be a densest subgraph of G. If for any 
subgraph S′ of S, ρ(S′) < ρ(S) , then S is a minimal densest subgraph. One graph may 
include multiple minimal densest subgraphs. In [20], Balalau et  al. presented an LP-
based method to find all minimal densest subgraphs for an input graph. We use Min-DS 
to denote this method.

Maximal densest subgraph

Given an undirected graph G = (V ,E) , let S be a densest subgraph of G. If any densest 
subgraph of G is a subgraph of S, then S is the maximal densest subgraph.

Proposition 2 For any undirected graph, exactly one maximal densest subgraph exists.

The proof of Proposition 2 can be found in Additional file 1.
We can find the maximal densest subgraph of an input graph G = (V ,E) by an integer 

linear programming (ILP)-based method. For each edge (i, j) ∈ E , we set a real-valued vari-
able xi,j ∈ [0, 1] ; for each vertex i ∈ V  , we set a real-valued variable yi ∈ [0, 1] and a Boolean 
variable zi . Let D be the maximum density of G (we can obtain D by BasicLP). Then, we 
have the following ILP:

Maximize
(i,j)∈E

xi,j

Subjectto xi,j ≤ yi ∀(i, j) ∈ E

xi,j ≤ yj ∀(i, j) ∈ E

i∈V
yi ≤ 1

xi,j ≥ 0, yi ≥ 0 ∀i, j
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MaxILP

This ILP method is denoted as Max-DS. Furthermore, we have proposition 3.

Proposition 3 For an optimal solution H = (xH , yH , zH ) of MaxILP, the set of vertices 
{i|zi ∈ zH , zi = 1} induces the maximal densest subgraph of G.

The proof of Proposition 3 can be found in Additional file 1.
We can also use an LP-based method to find the maximal densest subgraph. First, we 

modify BasicLP to the following LP (the definition of the variables is the same as in 
BasicLP):

MaxLP (V, E, D, R)

(1)
Maximize

∑
i∈V

zi

Subjectto xi,j ≤ yi ∀(i, j) ∈ E

(2)xi,j ≤ yj ∀(i, j) ∈ E

(3)
∑

i∈V
yi ≤ 1

(4)xi,j ≥ 0, yi ≥ 0 ∀i, j

(5)
∑

(i,j)∈E
xi,j ≥ D

(6)yi −
zi

|V |
≥ 0 ∀i ∈ V

(7)
Maximize

∑
(i,j)∈E

xi,j

Subjectto xi,j ≤ yi ∀(i, j) ∈ E

(8)xi,j ≤ yj ∀(i, j) ∈ E

(9)
∑

i∈V
yi ≤ 1

(10)xi,j ≥ 0, yi ≥ 0 ∀i, j

(11)
∑

(i,j)∈E
xi,j ≥ D

(12)yi ≥
1

|V |
i ∈ R
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Here, D is the density of the input graph, and R is a subset of V. Compared to BasicLP, 
we add constraints (11)–(13) to the program. Constraint (11) requires that the solution 
leads to a densest subgraph; constraint (12) requires that all the vertices in R should be 
selected to the solution; constraint (13) requires that at least one vertex that is not in R 
should be selected.

We set the objective value as the return of BasicLP and use {i|i ∈ V , zi = 1} or ∅ (if no 
feasible solution is found) as the return of MaxLP.

Then, we have the algorithm FindMaximal.

The correctness of FindMaximal is obvious. In the worst case, we need to run MaxLP 
O(n) times, and thus we can solve the problem in polynomial time.

In practice, the MaxILP and FindMaximal methods have very similar time costs, and 
thus the evaluation is based on the results of MaxILP, which is easier to implement 
(although both methods have the same results because of the uniqueness of the maximal 
densest subgraph).

Minimal sub‑densest subgraph

In some protein complexes, multiple binding interfaces may exist, while in the residue 
interaction network, the interface areas may have different densities. If we always search 
the densest subgraph, some hot spots in some binding interfaces may be ignored.

Here, we consider weakening the restrictions of in Min-DS to find more potential hot 
spots. The skeleton of Min-DS is as follows [20]: 

1. result := ∅.
2. Find a minimal densest subgraph R.
3. If ρ(R) < ρ(G) , then return result; otherwise, set result = result ∪ R, remove R from 

the graph, and then jump to step 2.

In step 3, if Min-DS has a smaller density than the input graph, then the process stops. 
Here, we consider adding a tolerance θ to step 3 as follows: 

1. result := ∅.
2. Find a minimal densest subgraph R.

(13)
∑

i∈V−R
yi ≥

1

|V |
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3. If ρ(R) < θ ∗ ρ(G) , where 0 < θ < 1 , then return result; otherwise, set 
result = result ∪ R, remove R from the graph, and then jump to step 2.

We call the result the minimal sub-densest subgraphs, and this method is named 
Min-SDS.

Experimental environment

We implemented all the methods in Python 3.10 with an Intel(R) Core(TM) 
i5-10210U CPU and 8.00 GB RAM. The LP and ILP processes are based on Gurobi 9 
[29].

Abbreviations
DS  Densest subgraph method
DS‑based  Densest subgraph‑based method
Min‑DS  Minimal densest subgraph method
Max‑DS  Maximal densest subgraph method
Min‑SDS  Minimal sub‑densest subgraph method
LP  Linear programming
ILP  Integer linear programming
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