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1 Introduction and summary

It is important to study how the bulk gravitational theory emerges from the CFT in the
AdS/CFT correspondence in order to understand what is the spacetime in the quantum
gravity. An explicit realization of this for the bulk fields is called the bulk reconstruction
and has been studied, for example, in [1–5], in particular for the free bulk theory limit.

A basic question of the bulk reconstruction is what is the reconstructable bulk fields from
CFT operators supported only in a subregion of the boundary spacetime. The subregion
duality [6–12] claims that the bulk fields supported in a subregion of the bulk spacetime,
called the entanglement wedge, can be reconstructed from CFT operators on the boundary
subregion, but the bulk fields outside it cannot be reconstructed. Here the boundary
subregion for the CFT operators corresponds to a boundary limit of the bulk subregion.
This reconstruction is called the entanglement wedge reconstruction and assumed to be
correct in many studies although it is claimed to be incorrect in [13, 14]. In particular,
for the Rindler patch of the AdS spacetime, the explicit bulk reconstruction formula was
given in [3] for the free bulk theory limit. In this AdS-Rindler reconstruction, the boundary
limit of the free scalar field on bulk AdS-Rindler is naively identified to the CFT primary
operator by the BDHM formula [15].

In this paper, we study the AdS-Rindler reconstruction and find that the naive identi-
fication by the BDHM formula is inconsistent. Indeed, the CFT operators naively given
by the BDHM formula for the AdS-Rindler reconstruction contain tachyonic modes, which
are inconsistent with the causality and unitarity of the CFT although these modes are
consistent as the bulk theory.1 Here, the important ingredient of this conclusion is that
we consider the large, but finite N CFT. Thus, the Planck length (over the AdS-scale)
is arbitrary small, but finite. This means that this inconsistency comes from the truly

1It is also argued in [16] that a difficulty in the bulk reconstruction arising from tachyonic modes in black
hole backgrounds (where the modes are called evanescent modes). In [17], it is also discussed that such
tachyonic modes are related to the ill-definedness of the smearing functions in the bulk reconstruction.
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non-perturbative effects of the quantum gravity. The free bulk theory, which corresponds to
the generalized free CFT, should be modified above the Planck energy because such a state
becomes a black hole and the free spectrum around the fixed background is no longer valid.

In the bulk point of view, there seem to be no problems to consider the mode expansion
in the AdS-Rindler patch. However, we show that the tachyonic modes in the AdS-Rindler
patch correspond to arbitrary high energy modes of the global AdS, for example, the trans-
Planckian modes. This means that the mode expansion of the Rindler patch is sensitive to
the UV completion of the theory which is the quantum gravity in our case. In other words,
the low energy modes of the AdS-Rindler patch do not correspond to the low energy modes
of the global AdS.

Therefore the subregion duality does not hold and the AdS-Rindler reconstruction
is incomplete. It is an important question which part of bulk local fields cannot be
reconstructed from the CFT operators in the Rindler patch. In the AdS-Rindler patch there
are null geodesics never reaching the asymptotic boundary. This type of null geodesics
starts from the past AdS-Rindler horizon and ends on the future one. We show that the
non-reconstructable tachyonic modes are related to these horizon-horizon geodesics.

Instead of using the AdS-Rindler coordinates, we can study which part of the bulk
local operators are able to be reconstructed by CFT operators in a subregion from the
global AdS (and the corresponding CFT on the cylinder) viewpoint. Indeed, in [13, 14]
using the bulk reconstruction developed in [5, 18, 19], such studies had been done. The
results obtained in this paper are perfectly consistent with the studies in [13, 14].

We believe that the results in this paper are substantial ingredients for the understanding
of spacetime in the AdS/CFT and the quantum gravity. We emphasize that the low energy
description of the bulk theory with the AdS-Rindler quantization should be modified in the
AdS/CFT. This is interesting because it is often believed that the low energy description
is valid even in the Rindler coordinate with the horizon because there is no curvature
singularity. We expect that such a violation is an essential property of (black hole) horizon
because it is due to the behavior of fields near the horizon, which is universal to general
black hole horizons not restricted to the Rindler one. This violation might be related to
the brick wall [20, 21], the fuzzball [22, 23] or the firewall [24] proposals for the black hole
horizon where the equivalence principle is supposed to be violated although there is no
curvature singularity.

We will set the AdS radius `AdS = 1 throughout the paper.

2 Review of AdS-Rindler

In this section, we will review the Rindler patch in the AdS spacetime and the free scalar
fields on it. Some references on the Rindler patch in the AdS/CFT are [25–28].

2.1 Coordinates

We summarize the coordinates of AdSd+1 used in this paper. Using the embedding coordi-
nates into R2,d, AdSd+1 is described as

−
(
X−1

)2
−
(
X0
)2

+
(
X1
)2

+ · · ·+
(
Xd
)2

= −1. (2.1)
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Figure 1. AdS-Rindler patch in the global AdS space.

The global coordinates (τ, ρ,Ω) are obtained by parameterizing the embedding coordi-
nates as

X−1 = 1
cos ρ cos τ, X0 = 1

cos ρ sin τ, X i = tan ρ x̂i(Ω), (2.2)

where Ω represents coordinates of (d− 1)-dimensional sphere Sd−1, and x̂i(Ω) (i = 1, . . . , d)
are the embedding of the sphere into Rd as

∑
i(x̂i)2 = 1. The coordinates τ and ρ run in

the range −∞ < τ <∞ and 0 ≤ ρ < π/2. In the coordinates, the metric takes

ds2 = 1
cos2ρ

(
−dτ2 + dρ2 + sin2ρ dΩ2

d−1

)
. (2.3)

For later convenience, we take the spherical coordinates Ω as

x̂1(Ω) = cos θ, x̂j(Ω) = sin θ ŷj(Ω) (j = 2, . . . , d) with 0 ≤ θ ≤ π, (2.4)

where Ω represents coordinates of (d− 2)-dimensional sphere, and ŷj(Ω) (j = 2, . . . , d) are
the embedding of the sphere into Rd−1 as

∑
j(ŷj)2 = 1.2

We divide AdSd+1 as in figure 1. A time slice (τ = 0) is divided into two subregions
R and L. We call the domain of dependence of R (and L) the right (left) AdS-Rindler
wedge. The coordinates of the right AdS-Rindler wedge (tR, ξ, χ,Ω) are given by the
parameterization

X−1 =
√

1 + ξ2 coshχ, X0 = ξ sinh tR, X1 = ξ cosh tR,

Xj =
√

1 + ξ2 sinhχ ŷj(Ω) (j = 2, . . . , d),
(2.5)

with −∞ < tR <∞, 0 ≤ ξ <∞, 0 ≤ χ <∞.3 In these coordinates, the metric becomes

ds2 = −ξ2dt2R + dξ2

1 + ξ2 +
(
1 + ξ2

)
dH2

d−1, (2.6)

2For d = 2, we take the range of θ is −π ≤ θ ≤ π and ŷ2(Ω) = 1.
3For d = 2, −∞ < χ <∞.

– 3 –



J
H
E
P
1
1
(
2
0
2
2
)
0
4
1

where dH2
d−1 = dχ2 + sinh2 χdΩ2

d−2 is the metric of (d− 1)-dimensional hyperbolic space
Hd−1. The AdS-Rindler horizon is at ξ = 0, and the geometry (2.6) is called the topological
black hole [29, 30]. More precisely, if we introduce U = X0 − X1 = −ξe−tR and V =
X0 +X1 = ξetR , the future horizon is parameterized by V with ξ → 0, tR →∞, and the
past one is parameterized by U with ξ → 0, tR → −∞. The asymptotic boundary (ξ →∞)
of this wedge is RtR ×Hd−1, which can be mapped by a conformal transformation to the
Minkowski-Rindler wedge [26, 30].4

Similarly, the coordinates of the left AdS-Rindler wedge (tL, ξ, χ,Ω) are obtained by

X−1 =
√

1 + ξ2 coshχ, X0 = −ξ sinh tL, X1 = −ξ cosh tL,

Xj =
√

1 + ξ2 sinhχ ŷj(Ω) (j = 2, . . . , d),
(2.7)

where −∞ < tL <∞. Formally, the left wedge L can be obtained from R by tL = tR − iπ.
On the right AdS-Rindler wedge, we can express the global coordinates (τ, ρ, θ,Ω) in

terms of the AdS-Rindler coordinates (tR, ξ, χ,Ω) as

tan τ = ξ sinh tR√
1 + ξ2 coshχ

, cos ρ = 1√
(1 + ξ2) cosh2 χ+ ξ2 sinh2 tR

,

tan θ =
√

1 + ξ2 sinhχ
ξ cosh tR

.

(2.8)

The asymptotic boundary of the AdS-Rindler patch is a spacetime subregion in the cylinder
Rτ × Sd−1 which is the asymptotic boundary of the global patch as

tan τ = sinh tR
coshχ , tan θ = sinhχ

cosh tR
. (2.9)

This is a diamond-shaped subregion restricted to 0 ≤ |τ ± θ| ≤ π/2. In particular, the
asymptotic boundary at tR = 0 is a hemisphere (0 ≤ θ ≤ π/2),5 in the time-slice Sd−1 at
τ = 0. We represent this spacelike subregion in the time-slice τ = 0 by A, and the spacetime
diamond subregion by D(A). Correspondingly, we also represent the bulk time slice tR = 0
in the AdS-Rindler patch by a which is a subregion in the global patch time slice τ = 0,
and does the region covered by the AdS-Rindler patch by D(a).

The diamond subregion D(A) in the cylinder is conformal to RtR ×Hd−1 via (2.9) as

−dτ2 + dΩ2
d−1 = e2Φ

(
−dt2R + dH2

d−1

)
, (2.10)

where we have defined the conformal factor eΦ, which will often appear below, as

eΦ(tR,χ) := 1√
cosh2 χ+ sinh2 tR

= 1√
cosh u cosh v

, (2.11)

where u = tR − χ, v = tR + χ. Note that from (2.8) we have

lim
ξ→∞

(ξ cos ρ) = eΦ. (2.12)
4Extending this conformal map to a coordinate transformation in the bulk, entanglement entropy for the

AdS-Rindler wedge for bulk scalar fields is computed in [31].
5For d = 2, the subregion is in the range −π/2 ≤ θ ≤ π/2.
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2.2 Free scalar fields in AdS-Rindler patch

Here we summarize the canonical quantization of free scalar field φ with mass m in the
(d+ 1)-dimensional AdS-Rindler patch.

The equations of motion, (� −m2)φ = 0, take the following form in the right AdS-
Rindler patch:[

− 1
ξ2∂

2
tR

+ 1√
−g

∂ξ
(√
−g

(
1 + ξ2

)
∂ξ
)

+ 1
1 + ξ2∇

2
H −m2

]
φ = 0 (2.13)

with
√
−g = ξ(1 + ξ2)

d−2
2 . The positive frequency modes are given by

vω,λ,µ = e−iωtRψ̃ω,λ(ξ)Yλ,µ(χ,Ω). (2.14)

Here, ω is a positive continuous parameter. Yλ,µ(χ,Ω) are the harmonic functions6 on Hd−1,
which satisfy

∇2
HYλ,µ(χ,Ω) = −

[
λ2 +

(
d− 2

2

)2]
Yλ,µ(χ,Ω). (2.15)

ψ̃ω,λ(ξ) are chosen so that they do not blow up at the boundary ξ =∞, and are given by

ψ̃ω,λ(ξ) = Nω,λ

Γ(ν+1)ξ
iω(1+ξ2)−

iω
2 −

∆
2 2F1

(
iω−iλ+ν+1

2 ,
iω+iλ+ν+1

2 ;ν+1; 1
1+ξ2

)
,

(2.16)

where

∆ := d

2 +

√
m2 + d2

4 , ν := ∆− d

2 =

√
m2 + d2

4 . (2.17)

Note that the right-hand side of (2.16) is real if we take the normalization constant Nω,λ

real (it is invariant under the flip ω → −ω). Near ξ = 0, ψ̃ω,λ(ξ) behave as

ψ̃ω,λ(ξ) ∼ Nω,λ

 Γ(−iω)ξiω

Γ
(
−iω+iλ+ν+1

2

)
Γ
(
−iω−iλ+ν+1

2

) + Γ(iω)ξ−iω

Γ
(
iω−iλ+ν+1

2

)
Γ
(
iω+iλ+ν+1

2

)
 .
(2.18)

We fix the real constant Nω,λ in (2.16) so that we have

(vω,λ,µ, vω′,λ′,µ′)R = δ(ω − ω′)δ(λ− λ′)δµ,µ′ , (2.19)

where ( , )R is the Klein-Gordon inner product in the AdS-Rindler patch defined as

(φ1, φ2)R = i

∫ ∞
0
dξ

∫
Hd−1

dV
(1 + ξ2)

d−2
2

ξ
(φ∗1∂tRφ2 − (∂tRφ∗1)φ2) . (2.20)

6We normalize Yλ,µ(χ,Ω) such that∫
Hd−1

dV Yλ,µ(χ,Ω)Y ∗λ′,µ′(χ,Ω) = δ(λ− λ′)δµ,µ′ .
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This normalization means∫ ∞
0
dξ

(1 + ξ2)
d−2

2

ξ
ψ̃ω,λ(ξ)ψ̃ω′,λ(ξ) = 1

2ωδ(ω − ω
′), (2.21)

and also ∫ ∞
0
dω 2ω ψ̃ω,λ(ξ)ψ̃ω,λ(ξ′) = ξ

(1 + ξ2)
d−2

2
δ(ξ − ξ′). (2.22)

Evaluating (2.22) at ξ ∼ ξ′ ∼ 0 using (2.18), the normalization constant is fixed as

Nω,λ =
|Γ
(
iω−iλ+ν+1

2

)
| |Γ

(
iω+iλ+ν+1

2

)
|

√
4πω|Γ(iω)|

. (2.23)

Note that ψ̃ω,λ(ξ) in (2.18) behaves as a plain wave with x = ln ξ near the horizon x ∼ −∞
and the dominant contributions of the integration of ξ in (2.21) come from the region
near x ∼ −∞.

For later use, we will evaluate Nω,λ for ω � 1 and |λ| � 1. Using the formula
|Γ(iy)| = ( π

y sinh(πy))
1
2 and |Γ(x + iy)| →

√
2πyx−

1
2 e−π|y|/2 for y → ∞ with x fixed where

x, y are real, we find Nω,λ →
(
ω2−λ2

4

) ν
2 e−

π
4 (|ω−λ|+|ω+λ|−2|ω|) in the limit ω, |λ| → ∞. Here,

we introduce the normalization constant

NCFT
ω,λ =


(
ω2−λ2

4

) ν
2 for ω2 ≥ λ2

0 for ω2 < λ2
(2.24)

which naturally appears in large N CFTs on Minkowski space as we will see below. Then,
we find

Nω,λ →


NCFT
ω,λ for ω2 ≥ λ2(
ω2−λ2

4

) ν
2 e−

π
2 (|λ|−ω) for ω2 < λ2

(2.25)

in the limit ω, |λ| → ∞.
We can expand the field φ in the right wedge as

φ(tR, ξ, χ,Ω) =
∫
dω

∫
dλ
∑
µ

(
aω,λ,µvω,λ,µ + a†ω,λ,µv

∗
ω,λ,µ

)
. (2.26)

Then, aω,λ,µ satisfies [
aω,λ,µ, a

†
ω′,λ′,µ′

]
= δ(ω − ω′)δ(λ− λ′)δµ,µ′ . (2.27)

The important point is that the AdS-Rindler energy ω can take any positive value
independently of λ, µ. Thus, there are modes such that ω2 < λ2, and we will call
them tachyonic modes.7 In the next section, we will argue that the tachyonic modes

7In AdS2, there are no tachyonic modes [32].
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(ω2 < λ2) cannot exist in the CFT on RtR × Hd−1 which is the boundary of the AdS-
Rindler patch. We also will see in section 4 that the tachyonic modes mainly constitute
the wave packets propagating from the past horizon to the future one without reaching the
asymptotic boundary.

For free theories without UV cutoff, the scalar φ(tR, ξ, χ,Ω) with the AdS-Rindler
quantization (2.26) is the same as that at the same point with the global quantization.
Then, the reduced density matrix for the vacuum state of the global-AdS Hamiltonian is
the thermal state for the AdS-Rindler Hamiltonian. However, this is not true if a UV cutoff
exists as we argue in the next section. In fact, if we consider quantum gravity, the free
field description on the fixed background is just an effective theory below a UV cutoff, e.g.,
the Planck energy. For holographic CFTs with large but finite N which we are interested
in, there must be a UV cutoff in the bulk, and then the transformation between the two
quantization (global and AdS-Rindler) is not valid as we will see.

3 Incompleteness of AdS-Rindler bulk reconstruction

To simplify the discussion, we focus on d = 2. Then, the asymptotic boundary of the
AdS-Rindler patch is (conformal to) R1,1 with metric ds2 = −dt2R + dχ2. In this case, the
expansion of the bulk scalar in (2.26) takes

φ(tR, ξ, χ) =
∫ ∞

0
dω

∫ ∞
−∞

dλ
1√
2π
ψ̃ω,λ(ξ)

[
aω,λe

−iωtR+iλχ + a†ω,λe
iωtR−iλχ

]
. (3.1)

Here, we assumed that this bulk free scalar φ(tR, ξ, χ) is valid even in the UV limit, i.e. it
is UV complete. We will show below that the tachyonic modes (ω2 < λ2) cannot exist in
the CFT on R1,1. To be more precise, the boundary limit of the bulk local operator (3.1)
cannot be the CFT primary field, and thus the BDHM map fails for the AdS-Rindler case.

The (global) HKLL bulk reconstruction [3] is based on the BDHM map [15]. The map
relates the asymptotic form of bulk local operator in the global AdS φ(τ, ρ, θ) to a large N
CFT operator OCFT

∆ as

lim
ρ→π/2

cos(ρ)−∆φ(τ, ρ, θ) = OCFT
∆ (τ, θ), (3.2)

up to a numerical constant. For the AdS-Rindler patch, a naive BDHM map would be

lim
ξ→∞

ξ∆φ(tR, ξ, χ) = O∆(tR, χ). (3.3)

In fact, it gives the correct conformal transformation of the generalized free approximation
of OCFT

∆ (τ, θ) for the conformal map (2.10): OGF
∆ (τ, θ) = e−∆ΦO∆(tR, χ). Here OGF

∆ (τ, θ)
is the generalized free approximation of the primary field on the boundary CFT OCFT

∆ (τ, θ).
This is because φ(τ, ρ, θ) is identified as φ(tR, ξ, χ) in the right AdS-Rindler wedge and
cos ρ→ eΦ

ξ near the boundary as (2.12).
In the free bulk theory approximation, using the expansion (3.1), O∆(tR, χ) can be

written as

O∆(tR, χ) =
∫ ∞

0
dω

∫ ∞
−∞

dλ
Nω,λ√

2πΓ(ν + 1)

[
aω,λe

−iωtR+iλχ + a†ω,λe
iωtR−iλχ

]
. (3.4)
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Then, as done in the original HKLL paper [3], the bulk ladder operators aω,λ can be
expressed by O∆ as

aω,λ =
∫ ∞
−∞

dtR
2π

∫ ∞
−∞

dχ

2π

√
2πΓ(ν + 1)
Nω,λ

eiωtR−iλχO∆(tR, χ). (3.5)

However, O∆(tR, χ) has to have modes e−iωtR+iλχ to obtain nonzero aω,λ. This is impossible
for ω2 < λ2 if O∆(tR, χ) is a CFT primary operator on R1,1 because the existence of such
modes implies a tachyonic state, where the mass squared ω2 − λ2 is negative, in the CFT
spectrum. We generally exclude tachyonic states because QFTs containing tachyonic states
are problematic. For example, by Lorentz transformations, tachyonic states are mapped to
states with zero energy but a finite momentum (ω = 0, λ > 0), and they lead to an infinite
degeneracy of the vacuum state. Tachyonic states also contradict with the standard Källén–
Lehmann representation of the two-point function in relativistic QFTs. Thus, in standard
CFTs on R1,1, local operators do not have modes e−iωtR+iλχ with ω2 < λ2. Therefore, CFT
on R1,1 cannot reconstruct the ladder operators aω,λ for the tachyonic modes (ω2 < λ2).

Indeed, because the metric on D(A) is conformal to that on R1,1 by the transforma-
tion (2.9), the scalar primary field at a point (tR, χ) can be obtained by the conformal
transformation of the primary field OCFT

∆ (τ, θ) on the cylinder as

OCFT,flat
∆ (tR, χ) := e∆ΦOCFT

∆ (τ, θ). (3.6)

We know the large N spectrum of the holographic CFT on the Minkowski space R1,1. The
primary field OCFT,flat

∆ (tR, χ) for the large N CFT on R1,1 should be the same as that
obtained by the HKLL reconstruction on the Poincare patch:

OCFT,flat
∆ (tR, χ) =

∫ ∞
|λ|

dω

∫ ∞
−∞

dλ
NCFT
ω,λ√

2πΓ(ν + 1)

[
aCFT
ω,λ e−iωtR+iλχ + aCFT

ω,λ
†
eiωtR−iλχ

]
,

(3.7)

where aCFT
ω,λ are also normalized annihilation operators and NCFT

ω,λ is defined in (2.24). What
is important here is that OCFT,flat

∆ in (3.7) does not contain tachyonic modes. Thus, we
conclude O∆(tR, χ) 6= OCFT,flat

∆ (tR, χ) and the Hilbert spaces for these two operators are
completely different.

Note that the two point function of the global AdS, 〈0|T (OCFT
∆ (τ, θ)OCFT

∆ (τ ′, θ′))|0〉,
can be reproduced by OCFT,flat

∆ (tR, χ) on the corresponding points as

〈0|T
(
OCFT

∆ (τ,θ)OCFT
∆

(
τ ′,θ′

))
|0〉=

e−∆(Φ(tR,χ)+Φ(t′R,χ′)) trA
(
ρAT

(
OCFT,flat

∆ (tR,χ)OCFT,flat
∆

(
t′R,χ

′))) , (3.8)

where |0〉 is the CFT vacuum on the cylinder, and ρA = trĀ(|0〉〈0|) is the reduced density
matrix in the CFT Hilbert space on A. This is just the usual relation between the CFT
on the cylinder and that on the Rindler subregion.8 The two point function can be also

8If we consider the Poincare AdS3, instead of the global AdS3, the map between the two coordinates for
the CFT is just the two dimensional Minkowski-Rindler map and the corresponding ρA is known to be the
thermal density matrix.
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approximately reproduced by O∆(tR, χ) in the low energy region as

〈0|T
(
OCFT

∆ (τ,θ)OCFT
∆

(
τ ′,θ′

))
|0〉' e−∆(Φ(tR,χ)+Φ(t′R,χ′)) tra

(
ρaT

(
O∆ (tR,χ)O∆

(
t′R,χ

′))) ,
(3.9)

where ρa = trā(|0, bulk〉〈0, bulk|) is the density matrix in the bulk free scalar Hilbert space
on a, with the vacuum |0, bulk〉 in the global AdS. This comes from the usual relation
between the bulk scalar on the global AdS and the one on the AdS-Rindler subregion,
〈0|T (φ(τ, ρ, θ)φ(τ ′, ρ′, θ′))|0〉 = tra(ρaT (φ(tR, ξ, χ)φ(t′R, ξ′, χ′))), with the boundary limit
of the points of the operator insertions.9 Then, the n-point functions are also reproduced
in the large N limit by the factorization. We also note that the AdS-Rindler HKLL
reconstruction [3] with treating the smearing function as a distribution [33] works well.
However, the “CFT” operators used there are constructed from the bulk local operators
by the naive BDHM map (3.3), i.e. O∆(tR, χ), which is different from the CFT operators
OCFT,flat

∆ (tR, χ). It is worth emphasizing that the correlation functions of O∆(tR, χ) and
OCFT,flat

∆ (tR, χ) are different although (3.9) holds. Indeed, it is obvious that

〈0a|T (O∆(tR, χ)O∆(t′R, χ′))|0a〉 6= 〈0A|T (OCFT,flat
∆ (tR, χ)OCFT,flat

∆ (t′R, χ′))|0A〉,
(3.10)

where |0a〉 is the vacuum of the bulk theory in the region a and |0A〉 is the vacuum of the CFT
in the region A (i.e. the Minkowski vacuum on R1,1), because the coefficient Nω,λ in (3.4) is
different from NCFT

ω,λ in (3.7) and the Hilbert spaces are different even in the low energy. The
equation (3.9) is valid only for the special states ρa, ρA as the low-energy approximation.
In particular, the bulk correlation function 〈0a|T (φ(tR, ξ, χ)φ(t′R, ξ′, χ′))|0a〉 cannot be
reproduced from OCFT,flat

∆ (tR, χ) because of the lack of tachyonic aω,λ with ω < |λ|.

What is wrong with O∆(tR, χ)? Because O∆(tR, χ) is obtained by the conformal
transformation from OGF

∆ (τ, θ) which is the generalized free approximation of OCFT
∆ (τ, θ), it

seems natural to assume that O∆(tR, χ) = OCFT,flat
∆ (tR, χ) in the low energy, and indeed it

has been assumed, in particular to consider the subregion duality, the entanglement wedge
reconstruction and the error correction code in the holographic theory. The reason why
it is violated is that the generalized free theory is the large N limit approximation and
such a spectrum is only the low energy approximation and not realized for the high energy
states. This is clear for states with the Planck energy which correspond to black holes. This
means that the CFT operator OCFT

∆ (τ, θ) obtained from the bulk local operators in the
global AdS by the BDHM map is not correct for the high energy modes. In particular, the
(high momentum) tachyonic modes in O∆(tR, χ) are composed by such nonexistent high
energy modes of the global AdS or the CFT on the cylinder, and then they are absent in
the CFT in D(A).

In general, we claim that the low energy states and operators in the Rindler patch
depend on the UV completion of the theory, which implies that the quantum gravity effects

9We assumed the expected completeness of the modes of the (UV complete) bulk free field in the left
and right Rindler wedges.
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are important for them if the theory includes the gravity. In order to see this, let us
first consider the free scalar field with mass m in d+ 1-dimensional Minkowski spacetime
ds2 = −dt2+dx2+dyidyi where i = 1, 2, · · · , d−1, instead of the scalar fields in AdS because
these two models are very similar for the aspects discussed here. (A difference is that the
“tachyonic” modes are not special for the Minkowski case.) The usual right Rindler patch
is given by tR = tanh−1(t/x), ζ = ln

√
x2 − t2. We denote the ladder operators associated

with the global modes ei(−
√
k2+kiki+m2t+kx+kiyi) as ak,ki where k is the momentum in

x-direction and those with the right Rindler modes ei(−ωtR+kiyi)Kiω(
√
kiki +m2ζ) as aω,ki .

The Bogoliubov transformation aω,ki =
∑
k,k′i

(α∗ω,ki;k,k′iak,k′i + β∗ω,ki;,k,k′i
a†k,k′i

) is known (see
e.g. [34]) to be

αω,ki;k,k′i =
∏
i δ(ki − k′i)√

2π
√
k2 + kiki +m2(1− e−2πω)

(√
k2 + kiki +m2 − k√

kiki +m2

)iω
, (3.11)

and βω,ki;k,k′i = e−πωαω,ki;k,k′i . For large |k|, we can approximate

αω,ki;k,k′i ∼
∏
i δ(ki − k′i)√

2π(1− e−2πω)
1
|k|

1
2
eiω(− ln(|k|)+ln(

√
kiki+m2/2)) (3.12)

for k > 0 and αω,ki;k,k′i ∼
∏
i
δ(ki−k′i)√

2π(1−e−2πω)
1
|k|

1
2
eiω(ln(|k|)−ln(

√
kiki+m2/2)) for k < 0. Let us

consider the “norm” of αω,ki;k,k′i in the global vacuum |0〉:

trR
(
e−2πHRaω,kia

†
ω,ki

)
trR (e−2πHR) = 〈0|

∑
k,k′i

α∗ω,ki;k,k′i
ak,k′i


∑
k̃,k̃′i

α∗
ω,ki;k̃,k̃′i

ak̃,k̃′i


†

|0〉=
∑
k,k′i

|αω,ki;k,k′i |
2,

(3.13)

where HR and trR are the Hamiltonian and the trace of the right Rindler wedge. More
precisely, we smear ki directions (and ω direction later) of aω,ki , for example by the
Gaussian factor, as

∫
dkie

− 1
2ε2

(ki−k̄i)(ki−k̄i)aω,ki . Then, coefficients become non-singular as

αω;k,k′i ≡
∫
dkie

− 1
2ε2

(ki−k̄i)(ki−k̄i)αω,ki;k,k′i ∼
e
− 1

2ε2
(k′i−k̄i)(k′

i
−k̄i)√

2π(1−e−2πω)
1
|k|

1
2
eiω(ln(|k|)−ln(

√
k′ik
′i+m2/2)).

We can see that, for large |k|,
∑
k |αω;k,k′i |

2 behaves as
∑
k

1
|k| which is divergent.10 This

implies that the Rindler mode aω,ki cannot be constructed if we neglect the global modes
with arbitrary high momentum and energy. Thus, if the free scalar theory is a low energy
effective theory, (even the low energy sector of) the spectrum of the theory on the Rindler
wedge depends on the UV completion of the theory. In particular, if the theory couples

10This divergence is regularized by the smearing:
∫
dkie

− 1
2ε2 (ki−k̄i)(ki−k̄i)−R

2
2 (ω−ω̄)2

aω,ki . Then, the
“norm” behaves like

∑
k

1
|k|e
− 1

2R2 (ln |k|)2
∼ R where the smearing of the energy is very small 1/R� 1 where

R may be regarded as an IR regularization. (Here, we neglect the 1/(1− e−2πω) factor by taking a large ω̄.)
The dominant contributions are from ln |k| ∼ R. Note that if we take 1/R� 1, the contributions from the
high momentum and energy modes are negligible. For the localized wave packets, we need to take 1/R� 1.
This implies that we can neglect such modes for the (smeared) local operators apart from the horizon.
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to a gravity, it depends on quantum effects of the gravity, which are specified by the dual
CFT for the AdS/CFT case.

The property that the low energy Rindler modes contain arbitrary high energy modes
is reminiscent of the brick wall proposal [20, 21], where a divergence in the large N limit
arises from the near-horizon behaviors of fields. We expect that this is the essential nature
of (black hole) horizons. In order to see this, first let us define the lightcone coordinates:
ũ = t− x, ṽ = t+ x and u = tR − ζ, v = tR + ζ, in which the Rindler horizon are |u| → ∞
or |v| → ∞. The relations between these are

ũ = −e−u, ṽ = ev, (3.14)

which implies that δũ = e−uδu, δṽ = evδv where δu, for example, means small variation of
u. Thus, near the Rindler horizon (for example, u� 1) a lightcone momentum (∼ 1/δu)
in the Rindler patch corresponds to a large lightcone momentum (∼ 1/δũ) in the global
coordinates with the ratio eu � 1. This explains why the low energy Rindler modes contain
arbitrary high energy modes intuitively. Furthermore, this is expected to be a universal
property of horizons and actually a similar problem happens for the AdS-Rindler horizon
as we will see.

Let us return to the AdS/CFT case and consider the Bogoliubov transformation between
the global AdS modes aglobal

nm and the AdS-Rindler modes aω,λ. We will see that AdS-Rindler
modes contain infinitely high momentum global AdS modes as the above Minkowski case.
Intuitively, the problem comes from behaviors of fields near the AdS-Rindler horizon as
similar to the Minkowski-Rindler case.

The bulk local operator φ(τ, ρ, θ) can be expanded by the modes in the global AdS
aglobal
nm as

φ(τ, ρ, θ) =
∑
n,m

(
aglobal †
nm eiωnmτe−imθ + aglobal

nm e−iωnmτeimθ
)
ψbulk
nm (ρ) (3.15)

where n is a non-negative integer, m is an integer,

ωnm = 2n+ |m|+ ∆, (3.16)

and ψbulk
nm (ρ) are modes in ρ-direction whose explicit form is not used here.11 Here, we

will use the following relation between the O∆(tR, χ) and OCFT
∆ (τ, θ) which should give the

correct Bogoliubov coefficients:

aω,λ = Γ(ν + 1)√
2πNω,λ

∫ ∞
−∞

dtR

∫ ∞
−∞

dχeiωtR−iλχO∆(tR, χ) (3.17)

= Γ(ν + 1)√
2πNω,λ

∫ ∞
−∞

dtR

∫ ∞
−∞

dχeiωtR−iλχe∆Φ(tR,χ)OCFT
∆ (τ, θ), (3.18)

where OCFT
∆ (τ, θ) can be expanded [13, 14] as

OCFT
∆ (τ, θ) =

∑
n,m

ψCFT
nm

(
aglobal †
nm eiωnmτe−imθ + aglobal

nm e−iωnmτeimθ
)
, (3.19)

11It is given by ψbulk
nm (ρ) = 1

Nnm sin|m|(ρ) cos∆(ρ)P |m|,∆−1
n (cos(2ρ)), where Nnm is the numerical constant

given in [35] and P |m|,∆−1
n is the Jacobi polynomial.
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with

ψCFT
nm =

√
2Γ(n+ ∆)Γ(n+ |m|+ ∆)

πΓ(∆)2Γ(n+ 1)Γ(n+ |m|+ 1) . (3.20)

Then, the coefficient of aglobal
nm in the expansion of aω,λ, (3.18), is

Γ(ν + 1)ψCFT
nm√

2πNω,λ

∫ ∞
−∞

dtR

∫ ∞
−∞

dχeiωtR−iλχ−iωnmτ+imθ
(
cosh2 χ+ sinh2 tR

)−∆/2
, (3.21)

where τ = tan−1 sinh tR
coshχ , θ = tan−1 sinhχ

cosh tR . Let us concentrate on high momentum and
energy modes, i.e. ω � 1, |λ| � 1. Then, the integrals in (3.21) almost vanish because of
the phase cancellation except the region in which the phase is almost a constant. Using the
coordinates u = tR − χ, v = tR + χ instead of tR, χ, the region of stationary phase is given
by the conditions12

0 = ∂u(ωtR − λχ− ωnmτ +mθ) = 1
2

(
ω + λ− ωnm +m

cosh u

)
,

0 = ∂v(ωtR − λχ− ωnmτ +mθ) = 1
2

(
ω − λ− ωnm −m

cosh v

)
.

(3.22)

For ω2 − λ2 ≥ 0, the conditions (3.22) almost always have solutions at appropriate
points {u, v} for any (large) n,m. In particular, for n2 � ω2 + λ2,m2 � ω2 + λ2 the
corresponding points are |u| � 1 and |v| � 1 except the case that n − |m| is small. For
the generic case, the stationary points are given by e|u| ∼ ωnm+m

ω+λ and e|v| ∼ ωnm−m
ω−λ . For

the exceptional case, the corresponding points are |v| � 1 as e|v| ∼ ωnm−m
ω−λ with finite u

for m < 0 or |u| � 1 as e|u| ∼ ωnm+m
ω+λ with finite v for m > 0. (These points are near the

Rindler horizon.)
Let us evaluate (3.21) using the stationary phase approximation. We can see from (3.22)

that the second derivatives of the phase ωtR − λχ− ωnmτ +mθ is 1
2((ωnm +m) sinhu

cosh2 u
δu2 +

(ωnm−m) sinh v
cosh2 v

δv2) which is approximated to 1
2((ω+ λ) tanh u(δu)2 + (ω− λ) tanh v(δv)2)

near the stationary points. They do not depend on ωnm,m in the limit |m| → ∞. We can
also see that ψCFT

nm ∼
√
n(n+ |m|)∆−1 for n, |m| � 1 and ψCFT

nm ∼
√
|m|∆−1 for |m| � 1.

Finally, the factor (cosh u cosh v)−∆/2 behaves like e−
∆
2 (|u|+|v|) for |u|, |v| � 1, e−

∆
2 |u| for

|u| � 1, or e−
∆
2 |v| for |v| � 1. Therefore, the (m,n)-dependence of the coefficient (3.21) is

evaluated as 1/(n(n+ |m|))1/2 for large n, |m| and 1/|m|1/2 for large |m|. Note that both
of
∑
n,m 1/(n(n+ |m|)) and

∑
m 1/|m| are divergent.

It is also important to note that the phase factor which depends on both |m| and ω, λ
is approximately iωtR − iλχ = i((ω + λ)u+ (ω − λ)v)/2 ∼ i((ω + λ) ln(ωnm +m) + (ω −
λ) ln(ωnm −m))/2 for |u|, |v| � 1. This is also similar to the Minkowski case. Thus, the
mode aglobal

nm with an arbitrary large ωnm, |m| contributes to aω,λ as we have seen for the
Minkowski-Rindler case.

For ω2 − λ2 < 0 (tachyonic), the condition in (3.22), 0 = ω − λ− (ωnm −m)/ cosh v,
cannot be solved even approximately because ωnm − m ≥ 0 where we take λ > 0 for

12The derivative of the other factor in (3.21) is δ ln((coshu cosh v)−∆/2) = −(∆/2)(tanhu δu+ tanh v δv)
in which tanhu, tanh v are not large.
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simplicity. Thus, coefficients (3.21) are exponentially suppressed by |λ| − ω for any n,m
which may be consistent with the fact that Nω,λ is exponentially small as (2.25). In this
case, the largest contributions for λ > 0 are from

0 = ω + λ− (ωnm +m)/ cosh u,

0 = −(ωnm −m)/ cosh v.
(3.23)

Thus, the mode aglobal
nm with an arbitrary large ωnm, |m| contributes to aω,λ because these

are same as the above by formally substituting ω−λ = 0. Note that for this tachyonic mode,
these large ωnm, |m| modes are the dominant contributions. For these tachyonic modes, as
we have seen, there are no saddle points for the integration for the overlap between the
global and Rindler modes. Thus, the high energy global modes contribute dominantly. This
indicates that the tachyonic modes are composed by these modes which do not exist in the
low energy effective theory. This matches with the fact that the tachyonic modes do not
exist in the CFT.

Reconstructable operators. The bulk local field φ(τ, ρ, θ) is equivalent to φ(tR, ξ, χ)
in the right AdS-Rindler wedge if we assume φ(τ, ρ, θ) is valid for the UV limit. More
precisely, as the bulk free theory without a UV cutoff, we have the formal operator
equality, φ(τ, ρ, θ) = φ(tR, ξ, χ)⊗ 1ā in the right AdS-Rindler patch, where 1ā is the identity
operator on the left AdS-Rindler patch. We can extract φ(tR, ξ, χ) by a projection as
φ(tR, ξ, χ) = Pa(φ(τ, ρ, θ)) where Pa(O) = trā(O)/ trā(1ā).13

However, as explained, the bulk operator φ(tR, ξ, χ) = Pa(φ(τ, ρ, θ)) cannot be recon-
structed from CFT on A. The reconstructable part of the bulk local field in the right
Rindler wedge might be

φpart(tR, ξ, χ) = PA(φ(τ, ρ, θ)), (3.24)

where PA(O) = trĀ(O)/ trĀ(1), which also remove the identity operator in the Hilbert
space on Ā like Pa in above. This satisfies the following BDHM like relation,

lim
ξ→∞

ξ∆φpart (tR, ξ, χ) = PA
(
e∆ΦOCFT

∆ (τ, θ)
)

= OCFT,flat
∆ (tR, χ) , (3.25)

because OCFT
∆ (τ, θ) is a CFT operator supported on the region A on which PA acts trivially.

Here we assume that the mode expansion of PA(φ(tR, ξ, χ)) with the modes PA(aω,λ) can be
used although it is not fully justified. Then, we find the following BDHM like relation also,

lim
ξ→∞

ξ∆φpart (tR, ξ, χ) = PA
(

lim
ξ→∞

ξ∆φ (tR, ξ, χ)
)

= PA (O∆ (tR, χ)) . (3.26)

Equating these two relations, we find PA(aω,λ) = NCFT
ω,λ

Nω,λ
aCFT
ω,λ by noticing that the both

of aCFT
ω,λ and aω,λ have the same energy ω and momentum λ conjugate to tR, χ.14 Then,

13We can instead φ(tR, ξ, χ) = 〈0ā|φ(τ, ρ, θ)|0ā〉 because φ(τ, ρ, θ) is linear in the creation and annihila-
tion operators.

14Note also that PA(aω,λ) approximately identified with aCFT
ω,λ for non-tachyonic high momentum and

energy modes because of (2.25).
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we find

φpart(tR, ξ, z) =
∫ ∞
−∞

dλ

∫ ∞
|λ|

dω
1√
2π

NCFT
ω,λ

Nω,λ
ψ̃ω,λ(ξ)

[
aCFT
ω,λ e−iωtR+iλχ + aCFT

ω,λ
†
eiωtR−iλχ

]
,

(3.27)

where the tachyonic modes are absent. This bulk operator φpart can be reconstructed from
the CFT. The expression is

φpart(tR, ξ, z) =
∫ ∞
−∞

dλ

∫ ∞
|λ|

dω

∫ ∞
−∞

dt′R
2π

∫ ∞
−∞

dχ′

2π fω,λ(ξ)

×
[
e−iω(tR−t′R)+iλ(χ−χ′) + eiω(tR−t′R)−iλ(χ−χ′)

]
OCFT,flat

∆ (t′R, χ′) (3.28)

where

fω,λ(ξ) = ξiω(1 + ξ2)−
iω
2 −

∆
2 2F1

(
iω − iλ+ ν + 1

2 ,
iω + iλ+ ν + 1

2 ; ν + 1; 1
1 + ξ2

)
.

(3.29)

We then define the smearing function as

K(t′R, χ′; tR, ξ, χ) :=
∫ ∞
−∞

dλ

∫ ∞
|λ|

dω
[
e−iω(tR−t′R)+iλ(χ−χ′) + eiω(tR−t′R)−iλ(χ−χ′)

]
fω,λ(ξ).

(3.30)

This smearing function makes sense unlike the smearing function in [3] where the integral
contains the region λ2 � ω2 and diverges. To overcome the divergence, an analytic
continuation to complex χ is proposed in [3]. It is also proposed in [33] to treat the smearing
function as a distribution. We do not need these treatments because we do not have the
problematic region λ2 � ω2 in our integral (3.30). Thus, we can interchange the order of
integration over (λ, ω) and (t′R, χ′) in (3.28), and obtain

φpart(tR, ξ, z) =
∫ ∞
−∞

dt′R
2π

∫ ∞
−∞

dχ′

2π K(t′R, χ′; tR, ξ, χ)OCFT,flat
∆ (t′R, χ′). (3.31)

It is important to note that φpart(tR, ξ, z) is not a bulk local operator because it does
not contain a part of bulk modes. Hence, we cannot reconstruct bulk local operators from
the CFT on R1,1. The missing modes are tachyonic modes. As we will see in section 4,
these modes give the main contribution of the wave packets propagating from the past
horizon to the future one without reaching the AdS boundary. It means that the CFT on
the subregion D(A) in the cylinder cannot reconstruct these wave packets. Of course, if we
use CFT operators on the entire cylinder, we can construct bulk operators, and thus can
describe such wave packets from the CFT.

The incompleteness also means that the CFT reduced density matrix on the subregion
A of the entire time-slice of the cylinder is not dual to the bulk reduced density matrix on
the time-slice a of the AdS-Rindler patch, ρCFTA 6= ρbulka , even in the low energy region. In
order to obtain the correspondence, we need to regard operators generated by (3.31) as the
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bulk operators. It is not precise, but if we trace-out the tachyonic modes in the bulk theory
on the Rindler wedge, the density matrices becomes similar as

ρCFTA ∼ trω2<λ2 ρbulka , (3.32)

because ω, |λ| � 1 the modes can be approximately identified. In this sense, a weak
version [13, 14] of the subregion duality holds: any low-energy operators supported only on
the boundary subregion D(A) can be described by low-energy bulk ones on D(a), although
the inverse is not possible.

The identification rule is schematically summarized as follows. First, the low energy
Hilbert space HCFT of the large N CFT on the cylinder can be identified with the bulk
one Hbulk on the global AdS as HCFT = Hbulk. Those Hilbert spaces can be formally
decomposed into the tensor products of the subregions as HCFT = HCFT

A ⊗ HCFT
Ā

and
Hbulk = Hbulk

a ⊗ Hbulk
ā . Then, our claim is HCFT

A 6= Hbulk
a . Nevertheless, HCFT

A ⊂ Hbulk
a

holds, and we may obtain a subregion identification HCFT
A = PA(Hbulk

a ) by reducing the
bulk space Hbulk

a by the projection PA or tracing-out the tachyonic modes.

Higher dimensions. We can also show that the tachyonic modes (ω2 < λ2) are absent in
CFT on higher-dimensional space RtR×Hd−1. It is clear for high frequency modes ω, λ� 1
because we can ignore the curvature of Hd−1 for these modes, and modes ω2 − λ2 < 0 are
tachyonic in R1,d−1.

For general frequencies, we use the fact that the spacetime RtR ×Hd−1 is conformally
flat. CFTs on the conformally flat spacetime can be described by the CFTs on Minkowski
spacetime because of the traceless property of the energy momentum tensor which couples to
the Weyl factor of the metric variation. For the free CFT case, we can see it explicitly. The
d’Alembert operator �R1,d−1 in the Minkowski spacetime is mapped, up to the conformal
factor, to

�RtR
×Hd−1 − ξconfR, (3.33)

where the last term is the conformally curvature coupling term with

ξconf = d− 2
4(d− 1) , (3.34)

and R is the Ricci scalar for RtR × Hd−1 given by R = −(d − 1)(d − 2). The modes
e−iωtRYλ,µ(χ,Ω) are eigenmodes of the operator (3.33) as[

�RtR
×Hd−1 − ξconfR

]
e−iωtRYλ,µ(χ,Ω) =

(
ω2 − λ2

)
e−iωtRYλ,µ(χ,Ω). (3.35)

Thus, modes with ω2 − λ2 < 0 are tachyonic, and should be absent in CFT on RtR ×Hd−1.
Therefore, the holographic CFT cannot reconstruct the tachyonic modes.

Global AdS to Poincare AdS. Instead of the Rindler patch of the global AdS, we
can consider the Poincare patch of the global AdS and consider corresponding CFT. This
CFT corresponding to the Poincare patch should be CFT on Minkowski space because
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the metric on the boundary is conformally Minkowski space. For the Poincare patch, it
is well known that there are no tachyonic modes in the bulk free theory in the Poincare
patch. The BDHM map on the patch gives the CFT operator OCFT

∆ (t, x) of (3.7) in the
Minkowski space. Thus, the situation is different from the Rindler patch. We can also see
that the bulk modes in the Poincare patch do not depend on very high momentum modes
in the global AdS, as we will see below.

The Poincare patch for AdS3 in the global AdS3 is defined by

t = sin τ
cos τ + cos θ sin ρ, x = sin θ sin ρ

cos τ + cos θ sin ρ, z = cos ρ
cos τ + cos θ sin ρ, (3.36)

where −∞ < t, x,<∞ and 0 < z <∞. On the boundary z → 0, they become

t = sin τ
cos τ + cos θ , x = sin θ

cos τ + cos θ . (3.37)

Using the lightcone coordinates u = t− x, v = t+ x and ũ = τ − θ, ṽ = τ + θ, the relations
can be written as

u = tan ũ2 , v = tan ṽ2 , (3.38)

which implies that dũ = 2
1+u2du and dṽ = 2

1+v2dv. The metric on the boundary is given
by ds2 = dũdṽ = 4

(1+u2)(1+v2)dudv. We denote the annihilation operator associated with
the mode eiωt−iλx in the Poincare patch by aPω,λ. Then, as (3.21) for the Rindler case, the
coefficient of aglobal

nm in the expansion of aPω,λ is

2∆Γ(ν + 1)ψCFT
nm√

2πNCFT
ω,λ

∫ ∞
−∞

dt

∫ ∞
−∞

dx eiωt−iλx−iωnmτ+imθ
((

1 + u2
) (

1 + v2
))−∆/2

. (3.39)

The phase cancellation occurs at

0 = ω + λ− (ωnm +m) 2
1 + u2 , 0 = ω − λ− (ωnm −m) 2

1 + v2 . (3.40)

Thus, qualitatively the Poincare case is very similar to the Rindler case. However, the
important differences are that there are no tachyonic modes ω2 < λ2 in the Poincare patch
and the phase factor which depends on both |m| and ω, λ is approximately iωt−iλx = i((ω+
λ)u+ (ω − λ)v)/2 ∼ i(

√
(ω + λ)(ωnm +m) +

√
(ω − λ)(ωnm −m))/(2

√
2) for |u|, |v| � 1.

This implies that the smearing of ω by an IR regularization R gives a cut-off of the high
momentum modes as |m| < R, n < R.

4 Null geodesics in the AdS-Rindler patch

In this section, we see that in the AdS-Rindler patch there are null geodesics never reaching
the asymptotic boundary. This type of null geodesics starts from the past AdS-Rindler
horizon and ends on the future one. The existence of null geodesics never reaching the
asymptotic boundary is a characteristic difference from the global AdS where all null
geodesics reaching the asymptotic boundary. We will show that the non-reconstructable
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modes ω2 < λ2 in (2.26) are related to the horizon-horizon geodesics, and also modes
ω2 > λ2 are to geodesics reaching the asymptotic boundary. Thus, the existence of the
horizon-horizon geodesics is a reason why the AdS-Rindler reconstruction is incomplete
unlike the global case. The relation between the null geodesics and the bulk reconstruction
is also discussed in [36].

Let us find the null geodesics in the AdS-Rindler patch, where the coordinates are
(tR, ξ, χ,Ω) as summarized in subsection 2.1. For simplicity, we consider only geodesics
with constant Ω. Then, when we solve the geodesic equation, we can effectively regard that
the geodesic moves in a three-dimensional space as (tR(s), ξ(s), χ(s)) where s is an affine
parameter of the geodesic, and also can regard that ∂χ is a Killing vector. Thus, along the
geodesic, we have the following two conserved quantities ω, λ corresponding to two Killing
vectors ∂tR , ∂χ as

ω̃ = ξ2dtR
ds

, λ̃ =
(
1 + ξ2

) dχ
ds
. (4.1)

We set the ratio of the two quantities as

b := λ̃

ω̃
. (4.2)

The geodesic also has to satisfy the null condition

−ξ2
(
dtR
ds

)2
+

(
dξ
ds

)2

1 + ξ2 +
(
1 + ξ2

)(dχ
ds

)2
= 0. (4.3)

Combining these equations, we obtain

(
dξ

dtR

)2
= ξ2

[
1 +

(
1− b2

)
ξ2
]
. (4.4)

The behavior of the geodesic depends on whether the ratio |b| is greater than 1 or not.

Case (i): |b| > 1. In this case, the range of ξ must be in 0 ≤ ξ ≤ 1√
b2−1 so that the

right hand side of (4.4) is positive. Thus, any geodesics with |b| > 1 can never reach the
asymptotic boundary ξ =∞. Eq. (4.4) is easily solved as

ξ(tR) = 1√
b2 − 1 cosh(tR − t0)

, (4.5)

where t0 is an integration constant. This geodesic comes from the past horizon and goes to
the future horizon without reaching the boundary. We also show that χ(tR) is given by

χ(tR) = χ0 + 1
2 log b+ tanh(tR − t0)

b− tanh(tR − t0) , (4.6)

where χ0 is an integration constant.
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Case (ii): |b| = 1. In this case, the geodesics are given by

ξ(tR) = e±(tR−t0), χ(tR) = χ0 + tR − t0
2 ± log cosh(tR − t0)

2 . (4.7)

For the upper sign, the geodesic starts from the past horizon and ends on the asymptotic
boundary. Similarly, for the lower sign, it starts from the boundary and ends on the
future horizon.

Case (iii): |b| < 1. In this case, the solution of (4.4) is

ξ(tR) = 1√
1− b2| sinh(tR − t0)|

. (4.8)

Thus, it comes from the horizon at tR = −∞ and reaches the boundary at a finite time, or
it starts from the boundary at a time and approaches the horizon at tR =∞. We also note
that χ(tR) is given by

χ(tR) = χ0 + 1
2 log 1 + b tanh(tR − t0)

1− b tanh(tR − t0) . (4.9)

Therefore, in the AdS-Rindler patch, there are null geodesics never reaching the
asymptotic boundary [Case (i)]. We will call these the horizon-horizon geodesics, while the
other geodesics [Case (ii) and (iii)] the boundary-horizon geodesics.

Let us consider scalar waves well localized on null geodesics and see what modes
dominantly contributes to the waves. The mass of scalar, m, is negligible because we use the
geometrical optics approximation supposing that the mode frequencies ω, λ are sufficiently
larger than the mass and the curvature scale of AdS, ω, λ� m, `−1

AdS = 1.
As an example, we consider d = 2 below. Near a point (tR, ξ, χ) = (t0, ξ0, χ0) = xµ0 on

a null geodesics, we introduce the locally flat coordinates as

t̄ = ξ0tR, ξ̄ = ξ√
1 + ξ2

0

, χ̄ =
√

1 + ξ2
0χ. (4.10)

In the coordinates, the velocity of the χ̄-direction at the point xµ0 is

v̄χ = dχ̄

dt̄
=

√
1 + ξ2

0

ξ0

dχ

dt
= bξ0√

1 + ξ2
0

, (4.11)

where we have used (4.1). The velocity of the ξ̄-direction is v̄ξ = ±
√

1 + (1− b2)ξ2
0 .

Let us determine the dominant mode for wave-packet localized to this geodesic. It is
enough to use the locally flat coordinates because we supposed that the mode frequencies
are sufficiently large so that geometrical optics approximation is valid. We can use plain
waves in the locally flat coordinates for the mode expansion at least near xµ0 . The dominant
modes propagating along the geodesic should have the velocities v̄ξ, v̄χ and are given by

e−iω̄(t̄−v̄ξ ξ̄−v̄χχ̄) (4.12)
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near xµ0 . In particular, it has the component

e−iω̄(t̄−v̄χχ̄) = e−iω̄ξ0(tR−bχ). (4.13)

Comparing it to the mode expansion (3.1) with label ω, λ, we conclude that the wave
well-localized to the null geodesic with the parameter b consists of modes satisfying λ/ω = b.
Thus, the sign ω2 − λ2 corresponds to that of 1 − |b|. The tachyonic modes ω2 < λ2 are
the dominant contributions to the horizon-horizon geodesics. Therefore, the CFT on the
asymptotic boundary of the AdS-Rindler patch cannot describe the bulk wave packets
localized to these geodesics.

5 View from the global AdS

We have seen that the wave packets localized to the boundary-horizon geodesics consist
mainly of modes ω2 > λ2, and those localized to the horizon-horizon geodesics do mainly of
modes ω2 < λ2. Combining the discussion in section 3, we conclude that the CFT on the
subregion D(A) can describe the bulk wave packets localized to boundary-horizon geodesics
but cannot do those localized to horizon-horizon geodesics.

Instead of using the AdS-Rindler coordinate, we can study which part of the bulk local
operators are able to be reconstructed by CFT operators in the subregion D(A) from the
global AdS (and the corresponding CFT on the cylinder) viewpoint. Indeed, in [13, 14]
such studies have been done and the above conclusion was already obtained. Below, we will
shortly review this view from the global AdS.

First, it is easy to see that the bulk local operator cannot be reconstructed from the
CFT operators supported on a subregion D(A), where A is a subspace of the whole space
Sd−1, except A = Sd−1. This implies that the subregion duality is not correct as follows.
Let us consider the bulk local operator at ρ = 0, which is the center of the AdS on t = 0
slice and a boundary subregion D(A) whose causal wedge contains this center. Then, the
bulk local operator at the center are rotational symmetric, where we can smear the operator
keeping the rotational symmetry.15 This rotational symmetry is identified as the rotational
symmetry of the CFT, and the CFT operator which reconstructs the bulk operator should
be rotational symmetric. It means that the operator is homogeneous in the whole space
Sd−1. On the other hand, it is obvious that the CFT operators supported on a subregion
D(A) cannot be rotational symmetric and homogeneous. Thus, in order to reconstruct the
bulk local operator at the center, we need the CFT operators on whole Sd−1. We note here
that the center is not a special point of AdS because an arbitrary point can be moved to the
center by an AdS isometry. Thus, the reconstruction of any bulk local operators requires
the CFT operators on whole Sd−1.16

15The low energy subspace of the states is invariant under the rotation because the rotation commutes
with the Hamiltonian. Thus, the bulk local operator, which is a low energy operator, can be taken
rotation invariant.

16If we take the boundary limit of the bulk local operator, it becomes the CFT primary operator at
the point.
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Next, we will consider which part of the bulk local operator can be reconstructed from
a boundary subregion. In order to do, it is useful to consider which bulk well-localized
wave packets can be reconstructed from CFT operators supported on a subregion D(A).
In [13, 14] using the bulk reconstruction developed in [5, 18, 19], a CFT description of bulk
well-localized wave packets was given. For the holographic CFT on the cylinder Rτ × Sd−1,
let us consider states well localized to a very small subregion B in Sd−1 at a time τ = τ0.
For example, B is a ball region around Ω = Ω0 as |Ω− Ω0| < εB. Such states are written
(in the Schrödinger picture) as

|φB, τ0〉 =
∫
dd−1Ω fB(Ω)O∆(Ω) |0〉 (5.1)

where |0〉 is the vacuum state for the Hamiltonian H associated with time τ , and fB(Ω) is
a smearing function so that only the subregion B is relevant for the integration in (5.1),
e.g., the Gaussian distribution centered at a point Ω = Ω0 ∈ B.17 The time-evolved state
of |φB, τ0〉 is given by

|φB, τ〉 =
∫
dd−1Ω fB(Ω)e−iH(τ−τ0)O∆(Ω) |0〉 . (5.2)

It was shown in [13, 14] that the above CFT state |φB, τ〉 for a very small subregion B,18

represents a state well localized to a wave packet moving in the radial direction (ρ-direction)
in the bulk. In particular, supposing −π/2 < τ0 < 0 and the center of B is at Ω = Ω0,
the bulk wave packet almost-localized to a radial-directed null geodesic starting from the
boundary point Ω = Ω0 at τ = τ0 and passing the point (ρ = π/2 + τ0,Ω = Ω0) at τ = 0.19

Similarly, we can also reconstruct bulk wave packets along other-directed null geodesics
starting from a boundary (almost) local region (see [13, 14] for details).

What is important here is that bulk (almost) local states along a bulk null geodesics
can be represented by (almost) local states on a small region B in CFT, if the geodesics
starting from the boundary region B. This leads to that, we can reconstruct the bulk wave
packets along null geodesics from CFT states which have the support on a subregion C at
τ = 0 if the null geodesics reach D(C), which is the domain of dependence of C. Conversely,
we cannot reconstruct the bulk wave packets from the CFT states on C if the null geodesics
do not reach D(C) because the state which is given at the small region B is not within C
at τ = 0. This is consistent with the fact that we cannot reconstruct the horizon-horizon
geodesics in the AdS-Rindler patch D(a) from the CFT on the associated subregion D(A)
because the horizon-horizon geodesics do not reach D(A).

17To avoid the divergence coming from the local state, we also need the smearing for the time direction,
such that the length scale of it should be much smaller than εB . We also assume that the support of the
smearing function (or the width of the Gaussian) is larger than the length scale of the UV cutoff, which will
be the Planck scale, so that high energy states do not appear in (5.1).

18B is small but should be larger than the length scale of the UV cutoff as noted in footnote 17.
19Here, what we really construct is a sum of the bulk wave packets moving in the radial direction with all

energies below the UV cut-off and the averaging over Ω0 in Sd−1 approximately gives the bulk local state
at ρ = τ = 0 for τ0 = −π/2, i.e.

∫
dd−1Ω e−iH(τ+π/2)O∆(Ω) |0〉 ∼ φ(ρ = 0) |0〉 up to a numerical constant.

Thus, we can regard (5.1) as a component of a decomposition of the bulk local state.
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