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Abstract

Although grid-based particle methods are widely used for engineering deformation problems, due to their robustness in large
deformation analyses, the computational cost of these methods is quite high compared with mesh-based methods. In 3D problems,
the computational cost becomes even higher, whereas some mechanical systems can be regarded as axisymmetric, allowing them to
be modeled as two-dimensional axisymmetric entities, resulting in a reduced computation cost. In order to decrease the computa-
tional cost further, arbitrary spatial discretization has been introduced to reduce the degrees of freedom in the system. The Particle-
Element Coupled Method (PEM), the coupled method of the Material Point Method (MPM) and the Arbitrary Particle Domain
Interpolation (APDI) method, enables a system to be discretized in arbitrary spatial resolutions. In this paper, PEM is extended
to axisymmetric problems, whose formulation and applicability to geomaterial deformation are presented. Firstly, the axisymmetric
MPM simulation of a granular column collapse experiment and its efficiency in computation are reported. Secondly, in the simu-
lation of footing penetration, it is shown that the axisymmetric MPM and the axisymmetric PEM can be used to analyze large
deformations that cannot be analyzed by mesh-based methods, such as the Finite Difference Method (FDM). The axisymmetric
PEM yields equivalent average pressure–displacement relationships and shear strain distributions, realizing a reduction in the com-
putation cost by half as much.
� 2022 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The representative grid-based particle methods are Par-
ticle in Cell (PIC) (Harlow, 1956) in fluid mechanics and
the Material Point Method (MPM) (Sulsky et al., 1994)
in solid mechanics, both of which are in wide use due to
their robustness in large deformation analyses. The charac-
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teristics of grid-based particle methods are: i) the physical
space and calculation space are clearly separated; ii) inter-
polation functions link the physical and calculation spaces;
and iii) interpolation functions have been defined from dis-
crete (mass points) to continuum (elements).

While the methods have been used successfully for large
deformation problems, the computational cost of the com-
munication between the physical and calculation spaces is
quite high compared with that of mesh-based analysis sys-
tems, such as the Finite Element Method, in which the phys-
ical and calculation spaces are identical. When subjecting
three-dimensional (3D) problems to a grid-based particle
Japanese Geotechnical Society.
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method, the computational cost becomes even higher, while
some mechanical systems (e.g., vertical problems such as
piles and circular tank/caisson installations) can be regarded
as axisymmetric, allowing them to be modeled as two-
dimensional axisymmetric entities from a geometrical view-
point, resulting in a reduced computation cost.

In order to reduce the computational cost further, arbi-
trary spatial discretization has been introduced to decrease
the proportional increase in the degrees of freedom (DOF)
in the system when uniform discretization is used. One such
spatial discretization system is the Particle-Element Cou-
pled Method (PEM), proposed by Kiriyama and Higo
(2020), that enables a system to be discretized in arbitrary
spatial resolutions. PEM is a numerical technique that dis-
cretizes the target system in two domains. One domain is
subjected to intensive large deformation discretized by par-
ticles, excluding mesh-tangling problems. The other
domain is subjected to small deformation and is discretized
by elements, resulting in arbitrary spatial discretization.

In their previous paper, Kiriyama and Higo (2020)
demonstrated 2- and 3- dimensional examples using
PEM. In the present paper, PEM is extended further to
axisymmetric problems. Its formulation is presented, and
the applicability of axisymmetric PEM to geomaterial
deformation and its efficiency in computation are reported.
In Section 2, the formulations of axisymmetric PEM are
presented. In Section 3, the performance of axisymmetric
MPM is reviewed and validated for deformation problems
of geomaterials. In Section 4, axisymmetric PEM is applied
to a large deformation problem.

2. Axisymmetric formulation of PEM

The Material Point Method (MPM) was initially pro-
posed by Sulsky et al. (1994). The axisymmetric formula-
tion of the method was also proposed by the same author
(Sulsky and Schreyer, 1996). There was a problem in the
calculation process of the original MPM, in which numer-
ical oscillations were generated when material points
crossed numerical grids. These oscillations were overcome
by the introduction of the Generalized Interpolation
Material Point (GIMP) method, in which the control
domain of the material point is considered
(Bardenhagen and Kober, 2004). An axisymmetric formu-
lation of the GIMP method was proposed by Nairn and
Guilkey (2014), and an application to pile penetration
into a geomaterial has since been reported (Lorenzo
et al., 2018). Convected Particle Domain Interpolation
(CPDI) was proposed by Sadeghirad et al. (2013), in
which a particle domain deforms arbitrarily considering
the stretch and rotation of the particle domain in two
dimensions, followed by Arbitrary Particle Domain Inter-
polation (APDI) proposed by Kiriyama and Higo (2020),
in which 2- and 3-dimensional arbitrary particle domain
interpolation functions are unified. Following the previous
reports, the axisymmetric formulations of MPM and
PEM in axisymmetric form are explained below.
2

2.1. Axisymmetric MPM

In this section, a short description of the axisymmetric
formulation of MPM is given, following Sulsky and
Schreyer (1996). A cylindrical coordinate system is consid-
ered with coordinates (r; h; z) and z along the symmetry
axis.

The momentum equation is described as.

q _v ¼ r � rþ qb ð1Þ
where q, v, r, and b are the density, velocity, Cauchy stress
tensor, and specific body force, respectively. Multiplying by
a test function, and using the divergence theorem, the weak
form of the momentum equation is described as.Z
X

qw � _vdA ¼ �
Z
X

qrs : rwdAþ
Z
@X

w � sdsþ
Z
X

qw � bdA
ð2Þ

where w, A, and s are the test function, a discretized ele-
ment of area X(A ¼ r � dr � dz), and the prescribed traction,
respectively. The weak form of the governing equation is
discretized by the MPM numerical process using the fol-
lowing interpolation functions:
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where Nn, mij, Np, and mp are the number and mass matri-
ces of the spatial nodes and material points, respectively,
and rs and s are the specific stress (r ¼ qrs) and the dis-
crete applied traction, respectively. xp is the material point
coordinate. Sip and rSip are the nodal base functions asso-
ciated with node (i) at the material point (p) and its gradi-
ent, respectively.

The first term on the right-hand side of Eq. (3) can be
written in terms of the internal force as.
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Especially with axisymmetric cylindrical coordinates,

the components of the internal force are
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The numerical procedure after the discretization of the
governing equation is performed by the update stress first
method (USF) (Sulsky et al., 1994), update stress last
method (USL) (Bardenhagen, 2002), or update stress aver-
age method (USAVG) (Nairn, 2003), etc. In the following
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simulations, USAVG is implemented in explicit form along
with the Euler time integration as the numerical procedure
for MPM.

2.2. Axisymmetric PEM

Regarding the deformation characteristics of geomateri-
als, deformation tends to concentrate in a specific area
where shear strain localization occurs, and intensive large
deformation can be expected in this region. In order to sim-
ulate this localized shear deformation, a fine spatial dis-
cretization of the material points is necessary. However,
providing sufficient material points to simulate localization
causes an excessive increase in the computational cost even
with an axisymmetric calculation. While localization tends
to occur in a specific area, relatively smaller deformation
can be expected in other areas. Therefore, it is computa-
tionally efficient to define a fine spatial discretization only
in the area where large deformation is expected, with a
coarse arrangement in other areas. Following this idea,
Kiriyama and Higo (2020) proposed the mixed use of dif-
ferent interpolation functions in different areas, which
enables the discretization of the system with varying spatial
resolutions. This method is called the Particle-Element
Coupled Method (PEM). It entails arranging the material
points with a uGIMP or cpGIMP interpolation function
in the area where large deformation is expected, while the
material points with a CPDI or APDI interpolation func-
tion are arranged elsewhere. Here, uGIMP stands for the
unchanged/uniform GIMP interpolation, in which the con-
trol domain is constant throughout the whole process,
while cpGIMP stands for contiguous particle GIMP inter-
polation, in which the control domain is updated during
the simulation (Bardenhagen and Kober, 2004). The u/
cpGIMP interpolation method does not fully consider the
stretching or rotation of the material points, meaning it
has more of a ‘particle’ characteristic than an element char-
acteristic. Both CPDI and APDI, considering stretching
and rotation, treat material points as ‘elements’.

The formulation of PEM is described in the following.
The system is assumed to be divided into two subdomains:
one is the primary deformable domain in which large
deformation is expected; the other is the subsidiary deform-
able domain in which smaller deformation is expected. The
governing equation is divided into the following two equa-
tions with a continuity condition along the common
boundary:Z
X1

qw1 � _vdX1 ¼ �
Z
X1

qrs : rw1dX1 þ
Z
@X1

w1 � sdS1

þ
Z
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3

where w1 and w2 are the test functions for the independent
divided domains. The spatial continuity condition along
their common boundary is described as.

uv;1 ¼ uv;2 on @X1 \ @X2 ð9Þ
where uv is the displacement at a vertex of each discretized
domain. The interaction terms are included in Eqs. (7) and
(8) in the original paper, while the interaction terms are
cancelled out after the discretization and gathering of the
grid force at the grid point, as long as the same spatial dis-
cretization is maintained along the boundary. Eq. (9) is the
condition for the cancellation of the interaction terms,
which requires the same spatial resolution along the com-
mon boundary. This means that the particles/elements with
control domains of the same size are arranged side by side
along the boundary; otherwise, holey-particle problems
occur (Brannon, 2014).

The two independent governing equations, Eqs. (7) and
(8), are discretized independently, so that different interpo-
lation functions can be applied. This means that the differ-
ent parts of the system use different interpolation functions
independently, realizing the mixed use of different interpo-
lation functions. This methodology is applicable even in
2D, axisymmetric, and 3D coordinate systems. While any
combination of them is applicable in the above numerical
process, it is noted that the spatial continuity should be sat-
isfied by discretizing the boundary elements of both
domains at the same spatial resolution.

3. Performance of axisymmetric MPM

Prior to the application of the axisymmetric PEM to
deformation problems, it is necessary to understand the
performance of the existing interpolation functions in
axisymmetric form. Various interpolation functions have
been proposed for grid-based particle methods (Sulsky
et al., 1994; Bardenhagen and Kober, 2004; Sadeghirad
et al., 2013; Kiriyama and Higo, 2020). In axisymmetric
formulations, these interpolation functions are imple-
mented in the manner described in Section 2. In order to
understand the performance of each interpolation function
in axisymmetric form, the following sand column collapse
experiments are simulated.

3.1. Granular column collapse simulation

The experiment used for validation is comprised of a
series of observations of a granular column collapse by
Lajeunesse (2004), in which granular columns (of glass
beads), with various aspect ratios, are formed in an acrylic
cylinder. By instantaneously removing the cylinder, the col-
umns are subjected to free horizontal spreading. In the
experiment, snapshots of the granular column collapse
and deposition are obtained using a high-speed digital cam-
era focused on the sides of the columns.

Of the various experimental aspect ratios, columns with
initial aspect ratios of 0.56, 0.8, and 5.4 are simulated by
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axisymmetric MPM, in which the cpGIMP interpolation
function is used. The analysis cases and conditions are
described in Fig. 1, and the material properties are listed
in Table 1. The columns are modeled as axisymmetric
cylinders with the axisymmetric axis located along the left
boundary of the numerical grids. The constitutive model
for the geomaterials is implemented using an elasto-
plastic formulation with the Mohr-Coulomb criterion for
both yield and potential functions. Young’s modulus (E)
and the internal frictional angle (/), given in Table 1, are
determined by carrying out a sensitivity analysis for Case
1 beforehand. The dilatancy angle (w) is set to be constant
at zero because the simulated granular material shows no
Fig. 1. Initial configuration and numerical

Table 1
Numerical conditions and material properties of granular column collapse.

Material Radius Height Aspect ratio Young’s modulus P
No. R H a E v

m m – kPa –

1 0.0705 0.03948 0.56 100 0
2 0.0705 0.05640 0.80 100 0
3 0.0280 0.15120 5.40 100 0

4

plastic volumetric change at high strain. The columns are
subjected to gravitational force and, after reaching initial
equilibrium, the fixed condition along the column sides is
removed, allowing the columns to spread horizontally.

Fig. 2 compares the experimental results (Lajeunesse,
2004) with the numerical simulations for the three aspect
ratios, with the outlines of the granular column collapse
shown by solid lines at time intervals of 0.02 s. The hori-
zontal and vertical axes in the figure are normalized by
dividing the radial coordinate (r) and height (h), respec-
tively, by the initial column radius (Ri). These results
demonstrate that the numerical method can well simulate
the experimental observations throughout the process of
conditions of granular column collapse.

oisson’s ratio Unit weight Internal frictional angle Cohesion
c / c

kN/m3 deg. kPa

.333 15.10 25 0.0

.333 16.14 25 0.0

.333 15.79 25 0.0



Fig. 2. Outlines of column collapse. Numerical simulations by axisymmetric MPM(cpGIMP) results are compared with snapshots of sand column
collapse (Lajeunesse, 2004). Time interval is 0.02(s). Blue and red lines correspond to the initial and final deposition outlines, respectively, of the column. *
(i) is originally in Lajeunesse, 2004, and edited for comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

T. Kiriyama, Y. Higo Soils and Foundations 62 (2022) 101180
the granular column collapse. Focusing on the residual
height (Hf ) and horizontal spread (Rf � Ri), the simulation
results are compared with the empirical equations for the
column collapse in Fig. 3. Here, both axes are normalized
by the initial radius (Ri). The empirical equations are those
reported by Lajeunesse et al. (2006) and Lube et al. (2004)
as follows:
5

Lajeunesse et al. (2006)

Hf

Ri
¼ a a � k1

k1 a > k1

�
ð10Þ

Rf � Ri

Ri
¼ k2a a � k4

k3a1=2 a > k4

�
ð11Þ



Fig. 3. Comparison between axisymmetric MPM (cpGIMP) and empir-
ical equation.

T. Kiriyama, Y. Higo Soils and Foundations 62 (2022) 101180
Lube et al. (2004)

Hf

Ri
¼ a a � 0:86

0:88a1=6 a > 0:86

�
ð12Þ

Rf � Ri

Ri
¼ 1:24a a � 1:7

1:6a1=2 a > 1:7

�
ð13Þ

k1–k4 are set here as (k1 ¼ 0:7, k2 ¼ 1:24, k3 ¼ 1:8,
k4 ¼ 2:11) by the present authors.

According to Fig. 3, the simulation shows a good agree-
ment with the empirical equations in terms of the residual
height (Hf ), while it overestimates the horizontal spread
(Rf � Ri). This overestimation may result from the use of
the continua theory in the numerical method, which is
not consistent with the material behavior near the furthest
collapse front, where the granules behave discretely around
the axisymmetric axis.

3.2. Comparison of axisymmetric and 3D simulations

The axisymmetric formulation has advantages in that
the DOF and computation requirements are fewer than
those for the 3D analysis. In order to understand how effi-
cient the axisymmetric formulation is, in terms of the DOF
and computation time, the numerical results obtained by
both the axisymmetric and 3D MPM(cpGIMP) simula-
tions are compared. The target system is the same as that
of the set of experiments by Lajeunesse (2004) simulated
in the previous section. In the 3D analysis, the granular col-
umns are simulated as quarter models with the same spatial
resolution as the axisymmetric model and using the same
material properties given in Table 1.

Fig. 4 shows the total displacements at (i) 0.04 s, (ii)
0.10 s, (iii) 0.16 s, and (iv) the final deposition, respectively.
According to this figure, the material behaves continuously
in both the axisymmetric and 3D MPM(cpGIMP) simula-
tions until 0.16 s. At the final deposition, the material
remains continuous throughout the deposition in the
axisymmetric case, while it is deposited discretely in 3D
around the collapse front. The displacements in Fig. 4
are consistent until 0.16 s, while at the final deposition,
the 3D simulation granules deposit at a greater distance
than the axisymmetric simulation granules. This discrep-
ancy arises from the differing assumptions about the mate-
rial behavior around the axisymmetric axis: either
continuous or discrete. That is, the axisymmetric formula-
tion assumes continuous behavior, while the 3D formula-
tion assumes discrete behavior. Thus, for problems
involving discrete behavior around the axisymmetric axis,
it is necessary to use a 3D model, while an axisymmetric
analysis is still applicable if it is acceptable to assume con-
tinuous behavior even around the axisymmetric axis.

Table 2 compares the computational requirements for
running these axisymmetric and 3D models. The number
of particles modeled in the axisymmetric model is one order
less than that in the 3D model, and the computation time is
two orders less. This shows the clear reduction in computa-
6

tional and modeling costs when using the axisymmetric
model.
4. Applicability of axisymmetric PEM

The applicability of the axisymmetric formulation of the
PEM to deformation problems of geomaterials is discussed
in this section, focusing on the footing penetration prob-
lem. Firstly, the axisymmetric MPM(GIMP) and the Finite



0.0 6.87 0.0 34.2 0.0 61.5 0.0 90.4

Axisymmetric

0.0 7.73 0.0 39.3 0.0 69.6 0.0 118

3D

(i) 0.04s          (ii) 0.10s              (iii) 0.16s                (iv) Final deposition

(a) Case 1: aspect ratio a=0.56

0.0 7.22 0.0 37.4 0.0 71.4 0.0 118

Axisymmetric

0.0 8.26 0.0 41.7 0.0 79.4 0.0 171

3D

(i) 0.04s          (ii) 0.10s              (iii) 0.16s                (iv) Final deposition

 (b) Case 2: aspect ratio a=0.8

0.0 9.25 0.0 48.6 0.0 115 0.0 172

Axisymmetric

0.0 10.5 0.0 50.1 0.0 118 0.0 273

3D

(i) 0.04s          (ii) 0.10s              (iii) 0.16s                (iv) Final deposition

 (c) Case 3: aspect ratio a=5.4

Fig. 4. Total displacement contours by axisymmetric and 3D MPM(cpGIMP) during collapse of sand columns (unit: mm).
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Difference Method (FDM) (ITASCA, 2018) are compared
under large deformation, followed by the PEM simulation
7

in which there is a discussion on how the combination of
particles and elements affects the numerical results.



Table 2
Comparison of computations between axisymmetric and 3D models.

Modelling Number of entities Computation

Particle Grid min./hour

Case 1 2D axis. 2,802 20,000 16 min.
3D (a quarter model) 1,53,320 40,00,000 47 h

Case 2 2D axis. 3,922 20,000 21 min.
3D (a quarter model) 2,14,648 40,00,000 75 h

Case 3 2D axis. 4,202 20,000 23 min.
3D (a quarter model) 91,200 80,00,000 45 h

Fig. 5. Spatial discretizations in axisymmetric MPM(uGIMP) and FDM for footing penetration into base ground. The numbers show the length in
meters, followed by the number of grids (in axisymmetric MPM) or elements (in FDM) (unit:m).

T. Kiriyama, Y. Higo Soils and Foundations 62 (2022) 101180

8



Table 3
Material properties of footing penetration problem.

Young’s modulus Poisson’s ratio Unit weight Internal frictional angle Cohesion Dilatancy angle
E v c / c w
kPa – kN/m3 deg. kPa deg.

Footing 200,000 0.3 50 to 1500 – – –
soil 20,000 0.3 15 20 50 0/20

Fig. 6. Average pressure–displacement relationships by axisymmetric
MPM(uGIMP) and FDM under non-associated/associated flow.

0 1.0

q=1700
(kPa)

(i) Axisymmetric MPM(uGIMP) ledom

(a) Non-asso

0 1.0

q=1900
(kPa)

(i) Axisymmetric MPM(uGIMP) ledom

(b) Associ

Fig. 7. Comparison of maximum shear strain distributions between axisymmet
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4.1. Behavior of geomaterials beneath footings under large

deformation

Footing penetration is one of the classical deformation
problems of geomaterials. As explained in the literature
(Zienkiewicz et al., 1975; Chen and Mizuno, 1990; Bui
et al., 2008; Kiriyama and Higo, 2020), the footings and
base grounds of similar systems are prepared to allow for
a comparison of GIMP and FDM. Fig. 5 shows the numer-
ical models used for GIMP and FDM. The system is mod-
eled as axisymmetric with the axisymmetric axis on the left
side. The numbers in this figure indicate the length of each
part, followed by the number of grids/elements in the
GIMP/FDM. Fig. 5(a) is drawn by particle arrangement,
behind which a numerical grid is arranged regularly with
the same spatial resolution as FDM. The material
properties are listed in Table 3. Both non-associated and
0 0.5

q=1700
(kPa)

ledomMDF)ii(

ciated

0 0.5

q=1900
(kPa)

ledomMDF)ii(

ated

ric MPM(uGIMP) and FDM models with non-associated/associated flow.
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associated flow conditions are employed to understand
how plastic volumetric change affects the geomaterial
behavior. Here, ‘non-associated‘ means that the dilatancy
angle in the potential function is set to be constant at zero,
assuming the material shows no positive/negative plastic
volumetric strain, while ‘associated‘ means that the dila-
tancy angle in the potential function is set to be the same
as the internal frictional angle. The system is subjected to
a gravitational force of 1g, while the density of the footing
Fig. 8. PEM models for footing penetration into base ground (unit:m).

Fig. 9. Comparison of average pressure–displacement curves among
Particle (uGIMP) and PEM models under non-associated/associated flow.

10
is changed incrementally after the system reaches equilib-
rium under each external force level.

Fig. 6 shows the average pressure–displacement rela-
tionships by uGIMP and FDM. The results agree well
under non-associated and associated flow conditions. The
vertical axis in the figure is the average contact pressure
under the footing, which is calculated by dividing the total
self-weight of the footing by the contact area. The settle-
ment given by uGIMP in Fig. 6 is monitored at a material
point immediately beneath the footing nearest the axisym-
metric axis, while the settlement given by FDM is moni-
tored at a grid-point immediately beneath the footing
along the axisymmetric axis. The discrepancy arises from
the differing numerical methods, implementation, monitor-
ing positions, and so on. According to Fig. 6, FDM simu-
lated the system over a limited range until 1700 kPa in the
non-associated flow and until 1900 kPa in the associated
flow. Thereafter, geometrical errors occurred after the con-
tact pressure level increased further. Fig. 7 shows the max-
imum shear strain distributions for both uGIMP and
FDM, in which the particles in uGIMP and the elements
in FDM are colored, respectively. The contour range is
adjusted so that the shear strain colors of the particles
and the elements are equivalent to each other. This shows
that uGIMP and FDM are in good agreement with each
other under both non-associated and associated flow con-
ditions. It is noticeable that uGIMP is able to simulate
Table 4
Summary of simulations and their computational costs.

Number of entities Computation time

Footing Base ground (h)

Particle Particle Element

GIMP model 400 4,800 0 36.5
PEM model-1 400 1600 410 19
PEM model-2 400 2400 360 23
PEM model-3 400 3200 310 28
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the system until the final loading condition of 3000 kPa in
this series, while FDM is not, meaning that the grid-based
particle method has advantages over the mesh-based
method because it is free from geometrical errors and is
able to continue the numerical process with more
robustness.
Fig. 10. Comparison of maximum shear strain distr

Fig. 11. Comparison of maximum shear strain dis
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4.2. Comparison of particle (uGIMP) model and PEM

models

It is worth noting that, in the particle-based method,
when the deformation is large, a significant part of the
domain remains in the regime of small deformation even
ibutions at 3000 kPa under non-associated flow.

tributions at 3000 kPa under associated flow.
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though the whole domain is modeled by particles. In order
to reduce the number of particles in the domain where the
particles undergo small deformation, PEM is further
extended to the axisymmetric system according to the
axisymmetric formulation in Section 2.

In order to understand the effectiveness and efficiency of
the axisymmetric PEM, three PEM models are prepared, as
described in Fig. 8, in which particles are arranged from the
center of the footing to one, two, and three times the foot-
ing radius away from the side of the footing, with other
areas being modeled as elements. The boundary and load
conditions, and the material properties applied to this
model, are the same as those described in Fig. 5 and in
Table 3.

Fig. 9 shows the resulting average pressure–displace-
ment relationships. Under both non-associated and associ-
ated conditions, the average pressure–displacement results
are comparable. Thus, for footing penetration problems,
any of the PEM models is effective compared with the par-
ticle model (uGIMP in Fig. 6). As shown in Table 4, PEM
model-1 can save close to half the computational effort
compared with the particle model. That is, from the view-
point of the computational cost (memory and time), PEM
model-1 may be said to be the most computationally effi-
cient. The difference among the three models is dependent
on the spatial resolution and deformation ability of the
geometry. Figs. 10 and 11 illustrate the maximum shear
strain distributions. In the case of the non-associated flow
(Fig. 10), an increase in shear strain is seen up to less than
twice the footing radius away from the footing side, while
in the case of the associated flow (Fig. 11), the range in
increased shear strain extends to more than three times
the radius. Under the associated flow, the geomaterial exhi-
bits positive dilation as it deforms in shear. In the footing
penetration system, that positive dilation generates addi-
tional lateral pressure, inducing the larger area of the base
ground subjected to passive earth pressure.

5. Conclusions

The aim of this work was to extend the Particle-Element
Coupled Method (PEM) to axisymmetric problems. The
axisymmetric grid-based particle method was validated by
a comparison with the experimental results for a granular
column collapse. The simulation showed a good agreement
with the experimental results in terms of the process of the
granular column collapse, residual height, and horizontal
spread. This means that the method is applicable as long
as the geomaterials do not exhibit any discrete behavior
in the circular direction.

The axisymmetric grid-based particle method was com-
pared with the mesh-based method (FDM), where it was
shown to provide a solution that is comparable with that
of FDM, but it also provided a robust solution under large
deformation, where the FDM numerical process cannot
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proceed. The method was then extended further to the
Particle-Element Coupled Method in an axisymmetric
form, demonstrating its applicability to geomaterials and
its efficiency in terms of the computational cost. The
axisymmetric PEM was shown to yield equivalent average
pressure–displacement relationships and shear strain distri-
butions to the axisymmetric particle method, realizing a
reduction in computation cost by half as much.
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