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Abstract

Background: In medicine, clinicians treat individuals under an implicit assumption that

high-risk patients would benefit most from the treatment (‘high-risk approach’).

However, treating individuals with the highest estimated benefit using a novel machine-

learning method (‘high-benefit approach’) may improve population health outcomes.

Methods: This study included 10 672 participants who were randomized to systolic blood

pressure (SBP) target of either <120 mmHg (intensive treatment) or <140 mmHg (stan-

dard treatment) from two randomized controlled trials (Systolic Blood Pressure

Intervention Trial, and Action to Control Cardiovascular Risk in Diabetes Blood Pressure).

We applied the machine-learning causal forest to develop a prediction model of individu-

alized treatment effect (ITE) of intensive SBP control on the reduction in cardiovascular

outcomes at 3 years. We then compared the performance of high-benefit approach (treat-

ing individuals with ITE>0) versus the high-risk approach (treating individuals with

SBP�130 mmHg). Using transportability formula, we also estimated the effect of these

approaches among 14 575 US adults from National Health and Nutrition Examination

Surveys (NHANES) 1999–2018.

Results: We found that 78.9% of individuals with SBP �130 mmHg benefited from the inten-

sive SBP control. The high-benefit approach outperformed the high-risk approach [average

treatment effect (95% CI), þ9.36 (8.33–10.44) vs þ1.65 (0.36–2.84) percentage point; differ-

ence between these two approaches, þ7.71 (6.79–8.67) percentage points, P-value<0.001].

The results were consistent when we transported the results to the NHANES data.

Conclusions: The machine-learning-based high-benefit approach outperformed the high-

risk approach with a larger treatment effect. These findings indicate that the high-benefit

approach has the potential to maximize the effectiveness of treatment rather than the

conventional high-risk approach, which needs to be validated in future research.
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Introduction

Medicine has been prioritizing the treatment of patients

with a high risk of adverse health outcomes such as cardio-

vascular diseases (CVD) and mortality—high-risk

patients—with an implicit assumption that high-risk

patients benefit most from the intervention.1,2 This as-

sumption has led to the development of numerous predic-

tion models that predict the absolute risk of adverse health

outcomes, such as the Framingham risk score.3 This ap-

proach has historically not been challenged, due to the in-

herent difficulty of estimating the actual benefit of

treatment at the individual level—individualized treatment

effect (ITE). However, in recent years, there has been sub-

stantial advance in the machine-learning-based approach

to estimate how treatment effects vary based on observable

characteristics of individuals. Estimating such heteroge-

neous treatment effects (HTEs) enables us to investigate

whether and the extent to which the beneficial effect of in-

tervention varies across individuals.4–6 One such method,

the causal forest, uses an ensemble of ‘trees’ or partitions

optimized to detect HTEs. This approach allows us to esti-

mate the ITE for a particular patient as a function of indi-

vidual characteristics.7–9 In theory, treating patients with a

high estimated ITE (‘high-benefit approach’), instead of

treating patients with a high risk of adverse health out-

comes (‘high-risk approach’), has the potential to maxi-

mize the effectiveness of the treatment and improve

population health outcomes. However, to our knowledge,

no study to date has investigated whether the high-benefit

approach leads to improved population health outcomes

compared with a traditional high-risk approach using na-

tionally representative data.

The SPRINT (Systolic Blood Pressure Intervention

Trial) showed that intensive systolic blood pressure (SBP)

treatment (goal SBP <120 mmHg) was, on average, associ-

ated with a lower risk of CVD events and all-cause mortal-

ity among people without diabetes,10,11 leading to

lowering the diagnostic threshold of SBP from 140 mmHg

to 130 mmHg in the American College of Cardiology

(ACC)/American Heart Association (AHA) hypertension

guidelines.12 This change has been controversial, given

that approximately half of the American people were diag-

nosed as hypertensive using this threshold.13 Another ran-

domized controlled trial (RCT) that focused on individuals

with diabetes, ACCORD-BP (Action to Control

Cardiovascular Risk in Diabetes Blood Pressure) trial,

found no evidence that intensive SBP control was associ-

ated with a lower probability of CVD events.14 In clinical

practice, individuals with high blood pressure are likely to

receive antihypertensive treatments, despite the fact that

not all patients with blood pressure above a diagnostic

threshold benefit from lowering SBP. A few studies have

estimated HTEs of intensive SBP treatment15–19; however,

the evidence is lacking as to whether the high-benefit ap-

proach improves the effectiveness of our blood pressure

management. By providing intensive SBP treatment to

those participants with a large estimated ITE, instead of

participants with a high SBP, the high-benefit approach

has the potential to improve the effectiveness and efficiency

of the treatment, leading to a larger number of CVD events

being prevented at the population level.

In this context, using data from two randomized con-

trolled trials (SPRINT and ACCORD-BP) and one national

cohort of American people [NHANES (the National

Key Messages

• Using the two large clinical trial data and one nationally representative sample of adults in the USA, we found that

individuals with the highest risk of cardiovascular outcomes were not always the ones who benefited most from

intensive blood pressure control.

• In addition, a substantial number of individuals without hypertension benefited from the treatment.

• Our machine-learning-based high-benefit approach outperformed the high-risk approach with a larger treatment

effect.

• These findings indicate that the high-benefit approach has the potential to maximize the effectiveness of intensive

blood pressure control in the precision medicine era.

• Future studies are needed to examine whether selecting individuals receiving the treatment using the high-benefit

approach improves population health outcomes compared with the conventional high-risk approach.
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Health and Nutrition Examination Survey)], we compared

the population health outcomes when we selected individu-

als who received intensive SBP control using the high-risk

approach versus the high-benefit approach.

Methods

Data sources and study participants

We used three databases: the SPRINT trial,10 the

ACCORD-BP trial14 and the NHANES 1999–201820

(Figure 1). The anonymized SPRINT and ACCORD-BP

data were obtained through the National Heart, Lung, and

Blood Institute’s Biologic Specimen and Data Repository

Information Coordinating Center. The NHANES data

were available through the webpage of the National

Center for Health Statistics.

To evaluate the effect of intensive SBP control among

people with and without diabetes, we combined the data-

sets of the SPRINT (includes individuals without diabetes)

and the ACCORD-BP trial (includes individuals with dia-

betes). The SPRINT trial was a randomized clinical trial

comparing intensive versus standard SBP treatment among

9361 US adults without diabetes, conducted at 102 clinical

sites between 2010 and 2013. The ACCORD-BP trial was

also an RCT comparing intensive versus standard SBP

treatment, which included 4733 adults with diabetes and

glycated haemoglobin levels �7.5%, conducted at 77 clini-

cal sites in the USA and Canada between 2003 and 2009.

We selected 10 672 trial participants (6189 in the SPRINT

and 4483 in the ACCORD-BP) who had an event or were

followed for 3 years after the trial enrolment. Although the

eligibility criteria for both trials included SBP 130 to

180 mm Hg at screening, one-third of participants showed

SBP �132 mmHg at baseline of these trials (Supplementary

Figure S1, available as Supplementary data at IJE on-

line).10,11,14 The detailed protocol and study design of the

SPRINT trial and the ACCORD-BP trial have been previ-

ously reported.10,14,21

Next, we used the NHANES data to transport the

results from the SPRINT and the ACCORD-BP trials to

the national population in the USA. The NHANES is a

large-scale periodic survey of a representative sample of

the civilian non-institutionalized US population, conducted

by the National Center for Health Statistics (NCHS).20

Structured household interview data and physical exami-

nation results at a mobile examination centre have been

collected continuously and released in 2-year cycles since

Figure 1 The flow of the study sample. SPRINT, Systolic Blood Pressure Intervention Trial; ACCORD-BP, Action to Control Cardiovascular Risk in

Diabetes Blood Pressure; NHANES, National Health And Nutrition Examination Survey; SBP, systolic blood pressure; eGFR, estimated glomerular fil-

tration rate; CVD, cardiovascular disease. The SPRINT trial included 9361 adults without diabetes in the USA. The key inclusion criteria included: age

�50 years, SBP 130–180 mm Hg at screening and high CVD risk (i.e. the presence of clinical or subclinical CVD, chronic kidney disease, 10-year

Framingham risk score �15% or age �75 years). The ACCORD-BP included 4733 adults with diabetes and glycated haemoglobin levels �7.5%. The

key inclusion criteria included: age �40 years with clinical CVD or age �55 years at high CVD risk (atherosclerosis, albuminuria, left ventricular hyper-

trophy, or �2 CVD risk factors (dyslipidaemia, hypertension, smoking or obesity)), SBP 130–180 mm Hg on �3 antihypertensive use at screening and

urinary protein excretion <1.0 g/day. *Although the eligibility criteria for both trials included SBP 130–180 mm Hg at screening, one-third of partici-

pants showed SBP �132 mmHg at baseline in both SPRINT and ACCORD-BP.10,11,14 More details are described in Supplementary Figure S1 (available

as Supplementary data at IJE online)
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1999. Across 60 776 participants who were enrolled in the

NHANES between 1999 and 2018 and had SBP measure-

ments, we selected 14 575 adults aged �40 years at high

CVD risk [history of coronary heart disease, estimated glo-

merular filtration rate (eGFR) of 20–59 ml/min/1.73 m2,

10-year Framingham risk score �15% or age �75 years).

Intervention

Both in the SPRINT and in the ACCORD-BP trials, the

participants were randomly assigned to either the intensive

SBP treatment group (goal SBP <120 mmHg) or the stan-

dard SBP treatment group (goal SBP <140 mmHg) at a 1:1

ratio.10,14 Blood pressure was measured three times in a

seated position after 5 min of quiet rest, using an auto-

mated measurement system (Model 907, Omron

Healthcare, Kyoto, Japan) during each office visit in both

trials. For the selection of the treatment groups, analyses

adhered to the intention-to-treat approach.

Outcomes

We used the SPRINT composite primary outcome during a

3-year follow-up, which included myocardial infarction,

acute coronary syndrome, stroke, acute decompensated

heart failure and CVD death.21 Because the primary out-

come in the ACCORD-BP was the composite of myocar-

dial infarction, stroke and CVD death, we additionally

included unstable angina and acute decompensated heart

failure, to construct the SPRINT composite primary out-

come in the ACCORD-BP subset as well.

Baseline covariates

The variables collected by self-report at enrolment in

SPRINT, ACCORD-BP and NHANES include: age (years),

sex (male, female), race/ethnicity (non-Hispanic White,

non-Hispanic Black, Hispanic, others), education status

(less than college, college or above), insurance status (in-

sured or not), living arrangements (living alone or living

with others), and smoking status (yes, no). Clinical and

laboratory information [i.e. blood pressure, body mass in-

dex (BMI), total cholesterol, high-density lipoprotein

(HDL) cholesterol, eGFR (<45, 45 to <60, 60 to <90 and

�90 ml/min/1.73 m2] previous history of CVD, statin use

and number of antihypertensives use] was also collected at

enrolment in each study. For the purpose of this study, we

labelled diabetes as 0 for the SPRINT participants and 1

for the ACCORD-BP participants according to the eligibil-

ity criteria in these trials. In NHANES, we classified diabe-

tes as fasting glucose level �126 mg/dL, haemoglobin A1c

�6.5%, use of antihyperglycaemic therapies or self-report

of a physician’s diagnosis at enrolment.22 Missing data on

these baseline covariates were imputed with a random for-

est approach within each dataset.23

Statistical analysis

First, we confirmed that covariates were balanced between

the intensive and standard treatment groups in our com-

bined dataset of the SPRINT and the ACCORD-BP. Next,

we applied the causal forest method (using grf package in

R) for the dataset to develop the prediction model for ITE

(on the risk difference scale) of intensive SBP treatment on

CVD events during 3 years of follow-up. We constructed

an ensemble of 2000 causal trees that identify subgroups

with different treatment effects. When building each tree

using all of the above-mentioned covariates, we employed

the double-sample tree specification in which we had the

following two steps. First, we randomly selected the 50%

subsample without replacement from the original data to

build each tree. Second, to reduce bias due to overfitting in

tree predictions, we further split the fractional subsample

into halves—an approach known as ‘honest’ splitting—

and used the first half subsample to construct the tree and

the second half subsample to make predictions. The model

was built by 10-fold cross-fitting so that estimates for each

fold were computed using trees that were fit without obser-

vations from that fold.24 Each parameter of the causal for-

est model was tuned by 10-fold cross-validation. The

calibration performance of our causal forest model was

evaluated by computing the best linear fit of the regression

of the observed treatment effect on the mean forest predic-

tion and the out-of-bag predicted treatment effect, using

the augmented inverse probability weighting and the ordi-

nary least squares. The discrimination performance of our

model was evaluated by calculating c-for-benefit.25 The

variable importance was calculated by a simple weighted

sum of how many times each variable was split at each

depth in the causal forest. More details on causal forest

analysis can be found elsewhere.6–9

Second, we applied the causal forest model built in the

combined data of SPRINT and ACCORD-BP to estimate

the ITE of intensive SBP treatment on CVD events for each

participant. First, we examined the relationship between

baseline SBP (‘risk’) and estimated ITE (‘benefit’). Next,

we categorized the trial participants into two groups

according to the current SBP threshold by the ACC/AHA

hypertension guideline12: high-risk group (SBP

�130 mmHg) vs low-risk group (SBP <130 mmHg). Based

on the estimated ITE using the causal forest model that

was fit with other folds, we also categorized participants

into two groups as hypothetical treatment strategies: high-

benefit group (estimated ITE >0) vs low-benefit group
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(estimated ITE �0). We then compared the high-benefit

approach and the high-risk approach using: (i) the number

of individuals treated; (ii) the estimated average treatment

effect; (iii) the number needed to treat (NNT); and (iv) the

estimated number of CVD events prevented. We also com-

pared the performance of the high-benefit approach with

the high-risk approaches, using 10-year CVD risk score

based on the Framingham risk score (�20%) and the 2013

ACC/AHA pooled cohort equations (�10%)26 instead of

SBP.

Last, to obtain the treatment effect of intensive SBP con-

trol and compare the performance between the high-

benefit approach and the high-risk approach among

NHANES participants, we applied the transportability for-

mula by calculating the inverse-odds-weight: inverse of

odds of being in the trial sample instead of the target

population, to emulate the target population (NHANES)

from the trial sample (SPRINT/ACCORD-BP).27–29

Detailed analytical steps and transportability formula are

shown in Figure 2. All statistical analyses were performed

with R version 4.0.2. The 95% confidence intervals (CIs)

were calculated using 1000 bootstrapped samples. This

study was exempted by the institutional review board at

the University of California, Los Angeles (IRB #20–

002223).

Sensitivity analyses

We conducted the following three sensitivity analyses.

First, given the possible selection bias due to loss to follow-

up, we also conducted a sensitivity analysis calculating

inverse-probability censoring weights from baseline

Figure 2 Steps to estimate the treatment effect of the high-risk approach and the high-benefit approach in the NHANES participants, using data from

SPRINT/ACCORD-BP trials. SPRINT, Systolic Blood Pressure Intervention Trial; ACCORD-BP, Action to Control Cardiovascular Risk in Diabetes Blood

Pressure; NHANES, National Health And Nutrition Examination Survey
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covariates and applying the weights in our causal forest

model.30 Second, to incorporate the uncertainty around es-

timated ITEs, we built a causal forest model for each boot-

strap sample to calculate and compare the average

treatment effects and 95% CI of the high-benefit approach

and high-risk approach. Third, to transport the trial results

to the US general population, we applied the NHANES

survey weight in our transportability formula using the

two-stage weighting approach.31 Last, we compared the

performance of the high-benefit approach with the high-

risk approach using a threshold of 20% for the 10-year

CVD risk score based on the 2013 ACC/AHA pooled co-

hort equation (instead of a 10% threshold used in the main

analysis).

Results

Participant characteristics

Across 10 672 trial participants in the SPRINT and

ACCORD-BP, the mean (standard deviation) age was 65.5

(8.4) years, and 40.8% were female. Baseline characteris-

tics were balanced between the intensive and standard

treatment groups in our pooled data (Table 1).

Causal forest model to predict ITE of intensive

SBP control from trial results

During 3 years of follow-up in the SPRINT and ACCORD

trials, 905 (8.4%) patients experienced composite CVD

Table 1 Baseline characteristics of participants in the trial (SPRINT or ACCORD-BP) according to the treatment assignment

Variables Intensive treatment group (target SBP

<120 mmHg; N¼5334)

Standard treatment group (target SBP

<140 mmHg; N¼5338)

Age, mean (SD), year 65.4 (8.3) 65.6 (8.5)

Female, % 2191 (41.1) 2161 (40.5)

Race/ethnicity, %

Non-Hispanic White 3165 (58.3) 3102 (58.1)

Non-Hispanic Black 1378 (25.8) 1469 (27.5)

Hispanic 489 (9.2) 479 (9.0)

Other 302 (5.7) 288 (5.4)

Education status, %

Less than college 3592 (67.3) 3538 (66.3)

College or above 1742 (32.7) 1800 (33.7)

Uninsured, % 673 (12.6) 666 (12.5)

Living alone, % 1317 (24.7) 1382 (25.9)

Smoking, % 676 (12.7) 719 (13.5)

SBP, mean (SD), mmHg 139.2 (15.8) 139.5 (15.5)

BMI, mean (SD), kg/m2 31.1 (5.4) 31.0 (5.2)

Total cholesterol, mean (SD), mg/dL 191.8 (43.0) 190.9 (42.1)

HDL cholesterol, mean (SD), mg/dL 49.7 (14.2) 49.9 (14.6)

eGFR, mL/min/1.73 m2, %

�90 1548 (29.0) 1539 (28.9)

60 to <90 2665 (50.0) 2666 (49.9)

45 to <60 768 (14.4) 796 (14.9)

<45 353 (6.6) 337 (6.3)

Clinical CVD, % 1233 (23.1) 1193 (22.4)

Statin use, % 2781 (52.1) 2872 (53.8)

Antihypertensive use medications, %

0 534 (10.1) 559 (10.9)

1 1786 (33.5) 1800 (33.7)

�2 3014 (56.5) 2959 (55.4)

History of diabetesa 2239 (42.0) 2244 (42.0)

10-year Framingham CVD risk %, median (IQR) 22.7 (19.6) 22.6 (19.4)

10-year ASCVD risk %, median (IQR) 22.3 (12.8) 22.5 (13.0)

SPRINT, Systolic Blood Pressure Intervention Trial; ACCORD-BP, Action to Control Cardiovascular Risk in Diabetes Blood Pressure; BMI, body mass index;

SBP, systolic blood pressure; HDL, high-density lipoprotein; eGFR, estimated glomerular filtration rate; CVD, cardiovascular disease; SD, standard deviation;

IQR, interquartile range; ASCVD, atherosclerotic cardiovascular disease.
aHistory of diabetes was labelled as 0 for the SPRINT participants and 1 for the ACCORD-BP participants.
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outcomes [intensive SBP treatment, 410/5334 (7.7%);

standard SBP treatment, 495/5338 (9.3%)]. The prediction

based on the causal forest model was well calibrated and

suggested the presence of heterogeneity of the beneficial

effects of intensive SBP control to reduce CVD events

(Supplementary Figures S2 and S3, available as

Supplementary data at IJE online); in the best linear fit

model for the observed treatment effect, the coefficient of

the mean forest prediction was 1.02 (P-value<0.001, i.e.

significantly greater than 0 and close to 1, indicating that

the mean forest prediction was correct) and the coefficient

of the out-of-bag predicted treatment effect was 0.54

(P-value¼0.045, i.e. significantly greater than 0, indicat-

ing that the forest captured heterogeneity). The forest pre-

diction also showed high discrimination performance, as

demonstrated by a high C-for-benefit of 0.90 (95% CI,

0.84 to 0.97). The variable importance calculation showed

that age, BMI, HDL and total cholesterol levels and base-

line SBP were frequently split when building the causal for-

est model (Supplementary Figure S4, available as

Supplementary data at IJE online).

High-risk approach vs high-benefit approach

A total of 6270 participants (78.9% in the high-risk group

and 73.2% in the high-benefit group) showed both SBP

�130 mmHg and ITE >0 (Figure 3), suggesting that a large

number of individuals who met the clinical criteria of hy-

pertension benefited from intensive SBP control.

Individuals with ITE>0 (the high-benefit group; n¼ 8563)

were more likely to be older, female, and to have lower

eGFR than those with ITE� 0 (the low-benefit group;

n¼ 2109; Table 2). They also had higher HDL cholesterol

levels, lower percentage of clinical CVD, statin use and his-

tory of diabetes compared with the low-benefit group. We

found a similar pattern when we stratified the participants

into high-risk and low-risk groups (Table 3).

When we compared the performance between the high-

risk approach and the high-benefit approach (Table 4A), we

found a larger average treatment effect in the high-benefit ap-

proach than in the high-risk approach [the high-benefit ap-

proach, þ9.36% age point (95% CI, 8.33 to þ10.44); the

high-risk approach (based on SBP �130 mmHg), þ1.65%

age point (95% CI, þ0.36 to þ2.84); the high-risk approach

Figure 3 Relationship between systolic blood pressure and individualized treatment effects of intensive blood pressure control in the trial samples
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(based on 10-year Framingham CVD risk score �20%),

þ2.23% age point (95% CI, þ0.68 to þ3.70); the high-risk

approach (based on ACC/AHA pooled cohort equation

�10%), þ1.91% age point (95% CI, þ0.64 to þ3.06)]. The

NNT to prevent one case of the composite CVD outcomes

was 11 in the high-benefit approach, 61 in the high-risk ap-

proach (based on SBP), 45 in the high-risk approach (based

on Framingham score), and 52 in the high-risk approach

(based on ACC/AHA pooled cohort equation), respectively.

The distribution of baseline covariates among the entire

trial samples (SPRINT/ACCORD-BP) and the target popu-

lation (NHANES) is shown in Supplementary Table S1

(available as Supplementary data at IJE online). These

covariates were well balanced between these populations

when we applied the inverse-odds weighting in the trans-

portability formula (Supplementary Figure S5, available as

Supplementary data at IJE online). Consistent with the

main analysis, the NNT was 11 in the high-benefit ap-

proach and 57–64 in the high-risk approach (Table 4B).

Sensitivity analyses

We found similar results (i) when we considered right-

censoring using inverse-probability censoring weights

(Supplementary Table S2, available as Supplementary data

at IJE online), (ii) when we built a causal forest model

Table 2 Baseline characteristics of trial participants according to high-risk vs low-risk and high-benefit vs low-benefit

Variables High-risk vs low-risk High-benefit vs low-benefit

High-risk Low-risk High-benefit Low-benefit

SBP�130 mmHg SBP<130 mmHg ITE>0 ITE�0

(N¼7943) (N¼2729) (N¼8563) (N¼2109)

Age, mean (SD), years 65.8 (8.6) 64.6 (8.0) 65.9 (8.7) 63.6 (7.1)

Female, % 3281 (41.3) 1071 (39.3) 3633 (42.4) 719 (34.1)

Race/ethnicity, %

Non-Hispanic White 4613 (58.1) 1654 (60.6) 5011 (58.6) 1256 (59.6)

Non-Hispanic Black 2096 (26.4) 751 (27.5) 2350 (27.4) 497 (23.6)

Hispanic 777 (9.8) 191 (7.0) 790 (9.2) 178 (8.4)

Other 457 (5.7) 133 (4.9) 412 (4.8) 178 (8.4)

Education status, %

Less than college 5303 (66.8) 1827 (67.0) 5675 (66.3) 1455 (69.0)

College or above 2640 (33.2) 902 (33.0) 2888 (33.7) 654 (31.0)

Uninsured, % 1043 (13.1) 296 (10.9) 1016 (11.9) 323 (15.3)

Living alone, % 2006 (25.3) 693 (25.4) 2182 (25.5) 517 (24.5)

Smoking, % 1005 (12.7) 390 (14.3) 1111 (13.0) 284 (13.5)

SBP, mean (SD), mmHg 145.7 (12.5) 120.9 (7.0) 139.4 (16.4) 139.2 (12.3)

BMI, mean (SD), kg/m2 30.9 (5.3) 31.5 (5.3) 31.2 (5.2) 30.6 (5.6)

Total cholesterol, mean (SD), mg/dL 192.5 (42.5) 187.8 (42.4) 190.8 (42.0) 193.4 (44.5)

HDL cholesterol, mean (SD), mg/dL 50.2 (14.6) 48.7 (13.7) 51.4 (14.5) 43.6 (12.3)

eGFR, mL/min/1.73 m2, %

�90 2317 (29.2) 770 (28.2) 2405 (28.1) 682 (32.3)

60 to <90 3963 (50.0) 1368 (50.1) 4306 (50.3) 1025 (48.6)

45 to <60 1154 (14.5) 2333 (15.0) 1274 (14.9) 290 (13.8)

<45 509 (6.4) 1210 (6.7) 578 (6.7) 112 (5.3)

Clinical CVD, % 1774 (22.3) 652 (23.9) 1609 (18.8) 817 (38.7)

Statin use, % 4071 (51.3) 1582 (58.0) 4400 (51.4) 1253 (59.4)

Anti-hypertensive use, %

0 910 (11.5) 203 (7.4) 874 (10.2) 239 (11.3)

1 2640 (33.2) 946 (34.7) 2854 (33.3) 732 (34.7)

�2 4393 (55.3) 1580 (57.9) 4835 (56.5) 1138 (54.0)

History of diabetesa 3316 (41.8) 1167 (42.8) 3289 (38.4) 1194 (56.6)

10-year Framingham CVD risk %, median (IQR) 25.1 (20.3) 16.5 (14.6) 21.7 (18.7) 27.3 (24.1)

10-year ASCVD risk %, median (IQR) 21.9 (19.4) 14.8 (13.3) 19.6 (18.2) 20.6 (17.0)

BMI, body mass index; SBP, systolic blood pressure; HDL, high-density lipoprotein; eGFR, estimated glomerular filtration rate; CVD, cardiovascular disease;

SD, standard deviation; IQR, interquartile range; ASCVD, atherosclerotic cardiovascular disease; ITE, intensive treatment effect.
aHistory of diabetes was labelled as 0 for the SPRINT (Systolic Blood Pressure Intervention Trial) participants and 1 for the ACCORD-BP (Action to Control

Cardiovascular Risk in Diabetes Blood Pressure) participants.
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within each of 1000 bootstrap samples (Supplementary

Table S3, available as Supplementary data at IJE online)

and (iii) when we applied NHANES survey weights in our

transportability analysis (Supplementary Table S4, avail-

able as Supplementary data at IJE online). The average

treatment effect in the high-benefit approach was 7.44%

age points larger than that in the high-risk approach for

the sensitivity analysis using a threshold of 20% for the

10-year CVD risk score based on the ACC/AHA pooled

cohort equation (Supplementary Table S5, available as

Supplementary data at IJE online).

Discussion

Using the machine-learning causal forest model applied to

two large RCTs’ data and one nationally representative

sample of US adults, we found that the benefit of intensive

SBP control to reduce CVD outcomes varied across

Table 3 Baseline characteristics of trial participants according to high-benefit vs low-benefit among the high-risk group and the

low-risk group, respectively

Variables High-risk group Low-risk group

SBP�130 mmHg SBP<130 mmHg

(N¼7943) (N¼2729)

High-benefit Low-benefit High-benefit Low-benefit

ITE>0 ITE�0 ITE>0 ITE�0

(N¼6270) (N¼1673) (N¼2293) (N¼436)

Age, mean (SD), years 66.4 (8.8) 63.8 (7.3) 64.9 (8.2) 63.0 (6.5)

Female, % 2710 (43.2) 571 (34.1) 923 (40.3) 148 (33.9)

Race/ethnicity, %

Non-Hispanic White 3624 (57.8) 989 (59.1) 1387 (60.5) 267 (61.2)

Non-Hispanic Black 1704 (27.2) 392 (23.4) 646 (28.2) 105 (24.1)

Hispanic 636 (10.1) 141 (8.4) 154 (6.7) 37 (8.5)

Other 306 (4.9) 151 (9.0) 106 (4.6) 27 (6.2)

Education status, %

Less than college 4155 (66.3) 1148 (68.6) 1520 (66.3) 307 (70.4)

College or above 2115 (33.7) 525 (31.4) 773 (33.7) 129 (29.6)

Uninsured, % 767 (12.2) 276 (16.5) 249 (10.9) 47 (10.8)

Living alone, % 1606 (25.6) 400 (23.9) 576 (25.1) 117 (26.8)

Smoking, % 769 (12.3) 236 (14.1) 342 (14.9) 48 (11.0)

SBP, mean (SD), mmHg 146.3 (12.9) 143.2 (10.2) 120.4 (7.2) 123.6 (5.0)

BMI, mean (SD), kg/m2 31.0 (5.2) 30.5 (5.6) 31.6 (5.3) 30.9 (5.4)

Total cholesterol, mean (SD), mg/dL 192.0 (42.1) 194.9 (43.9) 187.9 (41.6) 187.7 (46.4)

HDL cholesterol, mean (SD), mg/dL 52.0 (14.6) 43.6 (12.8) 49.7 (14.1) 43.4 (10.0)

eGFR, mL/min/1.73 m2, %

�90 1772 (28.3) 545 (32.6) 633 (27.6) 137 (31.4)

60 to <90 3160 (50.4) 803 (48.0) 1146 (50.0) 222 (50.9)

45 to <60 918 (14.6) 236 (14.1) 356 (15.5) 54 (12.4)

<45 420 (6.7) 89 (5.3) 158 (6.9) 23 (5.3)

Clinical CVD, % 1124 (17.9) 650 (38.9) 485 (21.2) 167 (38.3)

Statin use, % 3104 (49.5) 967 (57.8) 1296 (56.5) 286 (65.6)

Anti-hypertensive use, %

0 711 (11.3) 199 (11.9) 163 (7.1) 40 (9.2)

1 2049 (32.7) 591 (35.3) 805 (35.1) 141 (32.3)

�2 3510 (56.0) 883 (52.8) 1325 (57.8) 255 (58.5)

History of diabetesa 2375 (37.9) 942 (56.3) 914 (39.9) 253 (58.0)

10-year Framingham CVD risk %, median (IQR) 24.2 (19.0) 29.9 (25.6) 15.8 (14.2) 19.7 (16.0)

10-year ASCVD risk %, median (IQR) 21.7 (19.7) 22.3 (17.8) 14.5 (13.4) 16.0 (11.8)

BMI, body mass index; SBP, systolic blood pressure; HDL, high-density lipoprotein; eGFR, estimated glomerular filtration rate; CVD, cardiovascular disease;

SD, standard deviation; IQR, interquartile range; ASCVD, atherosclerotic cardiovascular disease; ITE, intensive treatment effect.
aHistory of diabetes was labelled as 0 for the SPRINT (Systolic Blood Pressure Intervention Trial) participants and 1 for the ACCORD-BP (Action to Control

Cardiovascular Risk in Diabetes Blood Pressure) participants.
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Table 4 High-benefit approach vs high-risk approach

A

Trial sample (N¼10 672) High-benefit approach High-risk approach 1 High-risk approach 2 High-risk approach 3

(Based on SBP) (Based on CVD risk score) (Based on CVD risk score)

Treat individuals

with individualized

treatment effect >0

Treat individuals with systolic

blood pressure �130 mmHg

Treat individuals with 10-year

Framingham CVD risk �20%

Treat individuals with

10-year ASCVD risk �10%

No. of individuals treated 8563 7943 6167 8917

Sample average treatment

effect (95% CI)

þ9.36 pp (þ8.33 to þ10.44) þ1.65 pp (þ0.36 to þ2.84) þ2.23 pp (þ0.68 to þ3.70) þ1.91 pp (þ0.64 to þ3.06)

Difference (95% CI) ref þ7.71 pp (þ6.79 to þ8.67) þ7.13 pp (þ6.02 to þ8.29) þ7.45 pp (þ6.64 to þ8.30)

Number needed to treat

(95% CI)

11 (10 to 12) 61 (35 to 276) 45 (27 to 147) 52 (33 to 155)

B

Target population (N¼14 575) High-benefit approach High-risk approach 1 High-risk approach 2 High-risk approach 3

(Based on SBP) (Based on CVD risk score) (Based on CVD risk score)

Treat individuals

with individualized

treatment effect >0

Treat individuals with

systolic blood

pressure �130 mmHg

Treat individuals

with 10-year Framingham

CVD risk �20%

Treat individuals with 10-year

ASCVD risk �10%

No. of individuals treated 11 320 8829 9924 12 690

Population average treatment

effect (95% CI)

þ8.85 pp (þ6.78 to þ10.79) þ1.55 pp (�0.54 to þ3.50) þ1.76 pp (�1.00 to þ4.22) þ1.67 pp (�0.56 to þ3.63)

Difference (95% CI) ref þ7.31 pp (þ5.66 to þ8.95) þ7.10 pp (þ5.72 to þ8.67) þ7.16 pp (þ6.14 to þ8.28)

Number needed to treat

(95% CI)

11 (9 to 15) 64 (29 to1) 57 (24 to1) 60 (28 to1)

Outcome was the reduction in % of primary composite CVD outcomes during a 3-year follow-up. The 95% confidence intervals (CIs) were calculated using 1000 bootstrapped samples. The average treatment effect and

number needed to treat of each approach were obtained using the sample from the combined database of SPRINT and ACCORD-BP (trial sample), along with inverse-odds weights to emulate the trial sample to the NHANES

participants. Number needed to treat was calculated by 1/average treatment effect. The 10-year ASCVD risk for high-risk approach 3 was calculated by ACC/AHA pooled cohort equation.

SPRINT, Systolic Blood Pressure Intervention Trial; ACCORD-BP, Action to Control Cardiovascular Risk in Diabetes Blood Pressure; NHANES, National Health And Nutrition Examination Survey; SBP, systolic blood

pressure; CVD, cardiovascular disease; ASCVD, atherosclerotic cardiovascular disease; pp, percentage points.
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individuals. We found no relationship between the risk

(SBP at the baseline) and the benefit (estimated ITE). The

average treatment effect of our hypothetical high-benefit

approach was higher than that of the high-risk approach,

leading to the 4–5 times smaller NNT to prevent one case

of the composite CVD outcomes in the high-benefit ap-

proach compared with the high-risk approach. We also

found consistent results when we transported the trial

results to the NHANES cohort. These findings highlight

the possibility that selecting individuals receiving the treat-

ment using the high-benefit approach has the potential to

substantially increase the effectiveness of the treatment and

improve population health outcomes.

Given the wide heterogeneity in the impact of medical

interventions on health outcomes, the identification of

individuals who are expected to receive material benefit

from the treatment is critically important in clinical deci-

sion making.16,32–34 Historically, high-risk patients have

been perceived to have the largest benefit from treat-

ment,1,2 and clinicians often decided who to treat based on

their blood pressure levels. However, we found that a sub-

stantial number of trial participants with SBP <130 mmHg

at baseline evaluation (despite showing SBP �130 mmHg

at the initial evaluation to determine the eligibility of the

trial participation) benefited from controlling SBP to under

120 mmHg. In addition, we could lower NNT by around

one-fifth by focusing on individuals with the highest esti-

mated benefit from the intervention using the high-benefit

approach compared with the high-risk approach (based on

SBP or CVD risk scores). These findings indicate that treat-

ing only individuals with high SBP or high CVD risk may

not be the most efficient way to prevent future cardiovas-

cular events through blood pressure management.

Our approach using causal forest algorithm in the trial

data would maximize the utility of the RCT findings to-

wards a tailored approach in clinical medicine, by allowing

us to identify individuals who are expected to receive bene-

fits from the treatment without the cost of throwing away

patients’ information.7,9 In clinical medicine, we ‘dichoto-

mize’ the population into those individuals with and with-

out hypertension—even though the risk of adverse health

outcomes increases linearly without abrupt changes as

blood pressure increases35—and treat only those individu-

als with hypertension. However, our findings indicate that

such an approach may be inefficient, given that not all

individuals with a high SBP benefit from the treatment,

whereas a substantial number of individuals who are la-

belled as normal (non-hypertensive) would actually benefit

from the treatment had they been treated. Even in precision

medicine, in which health care is ‘individually tailored on

the basis of a person’s genes, lifestyle and environment’,36

health care often focuses on individuals with a diagnosis of

disease and leaves out those who do not meet the diagnos-

tic criteria of the disease. Our findings indicate that the

high-benefit approach has the potential to improve popula-

tion health outcomes without additional resources by treat-

ing individuals with a high estimated benefit of the

treatment, regardless of whether they meet the diagnostic

criteria of hypertension.

Our findings extend the long-standing debate on

whether the high-risk approach or the population-based

approach is more effective in the prevention of CVD. The

high-risk approach has been more dominant in clinical

medicine, leading to the development of a large number of

prediction models for estimating the risk of CVD

events.3,37,38 However, there have been several limitations

to this approach. For example, the high-risk approach

addresses only a small number of individuals with substan-

tially high health risks, and it does not address a large

number of individuals with a small elevated risk who con-

tribute a large share of the burden of CVD. It may falsely

reassure some people by labelling them as ‘low risk’, and

disincentivize them from receiving or adhering to beneficial

risk-lowering interventions.39 The population-based ap-

proach assumes that decreasing risk for everyone is more

effective in reducing the burden of disease than focusing on

high-risk individuals, because the larger number of people

with a small elevation in risk usually contributes more to

the burden of disease than a small number of people ex-

posed to high risk.40 This approach also has limitations, in-

cluding that small benefits to individuals can be

outweighed by small risks associated with the intervention,

and this approach may lead to poor motivation among

individuals and physicians.41 The high-benefit approach

proposed in this study has the potential to overcome these

limitations by directly estimating ITE and treating individ-

uals with a large estimated benefit from treatment. Given

the previous cost-effective analysis of the SPRINT,42 these

benefits are expected to be weighed against the increased

implementation costs due to additional office visits, labo-

ratory tests and medications. It is also important to note

that our findings should not slow down the treatment of

individuals with a high risk of CVD but low benefit from

intensive SBP control. They rather suggest the need for

establishing an alternative approach to intensive SBP

control to effectively prevent CVD for such high-risk and

low-benefit individuals.

Limitations

Our study has limitations. First, we could not rule out the

possibility that unmeasured individuals’ characteristics

might modify the treatment effect in the SPRINT/

ACCORD trials because the causal forest model only
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enables us to detect HTEs through measured variables.

Second, because some of the baseline characteristics in our

data were self-reported, we might have a risk of measure-

ment error in this information. Third, given the difference

in the inclusion and exclusion criteria between the SPRINT

and the ACCORD trials, we might have detected HTEs

partially due to the study design rather than social or phys-

iological mechanisms. Fourth, because both SPRINT and

ACCORD-BP focused on middle-aged and older adults,

we cannot necessarily generalize our findings to young

adults aged <40 years. Fifth, although we estimated ITEs

for each fold based on the algorithm fitted without obser-

vations from that fold, future research is needed to fully

take account of the uncertainty of the estimated ITEs and

to validate our findings using other databases.

Conclusions

Using data from two large clinical trials investigating the

benefit of intensive SBP control and one nationally repre-

sentative data of US adults, we found that individuals with

the highest risk of adverse health outcomes were not al-

ways the ones who benefited most from the treatment.

Furthermore, our hypothetical high-benefit approach out-

performed the high-risk approach, with 4–5 times lower

NNT. Our findings indicate that the machine-learning-

based high-benefit approach could identify individuals

who would benefit most from the intervention, leading to

a lower number of cardiovascular outcomes at the popula-

tion level.
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