
京都大学大学院理学研究科附属天文台技報

Technical Reports from Astronomical Observatory

Graduate School of Science, Kyoto University

Vol.7-1

SPECTRA: A flexible non-LTE radiative

transfer Python library, I. Solver for

statistical equilibrium and line formation

with slab model

Yuwei Huang*1 and Kiyoshi Ichimoto*1

2023年 7月12日 first version

*1
Astronomical Observatory, Kyoto University

SPECTRA:

A flexible non-LTE radiative transfer Python library, I. Solver

for statistical equilibrium and line formation with slab model

Yuwei Huang *1 and Kiyoshi Ichimoto †1

1Astronomical Observatory, Kyoto University, Kitashirakawa-oiwake-cho, Kyoto 606-8502, Japan

Abstract

Non-LTE radiative transfer numerical simulation is the key to understand the physics be-

hind the non-linearly coupled system consisting of the solar radiation and the plasma in

solar atmosphere. A highly flexible library (hereafter, SPECTRA for short) for Non-LTE ra-

diative transfer numerical simulation was developed in Python programming language, for

the purpose of solving problems scaling from statistical equilibrium, cloud model to non-

LTE radiative transfer. This library is also focusing on interactively interpreting the observed

spectroscopy data of the Sun and experimental plasma.

Keywords: non-LTE, radiative transfer, statistical equilibrium, solar spectrum

1 Introduction

Non-LTE radiative transfer is an essential ingredient for interpreting spectroscopic data of as-

tronomical objects. Numerically it is described by a set of non-linear equations, where the

radiation field and the physical quantities of local plasma are coupled with each other.

To date, Non-LTE radiative transfer codes are most developed in compiling language, such as

C/C++, Fortran, for the sake of performance and memory management (e.g. MULTI, 1 PROM7,2

RH3). In this case, code is packaged as an end-to-end program, where users are hardly allowed

to probe the intermediate output of the simulation or to make some modification to the source

code; compilation is needed whenever modification was made which is also known as ”Ahead-

*kou@kusastro.kyoto-u.ac.jp
†ichimoto@kwasan.kyoto-u.ac.jp

1

of-Time”(AOT) compilation. Recently, as CPUs become more and more powerful and the needs

of interaction between numerical simulation and real world data analysis, interpreter language

including Python and Julia, etc, comes into play in the field of scientific computing due to a

new compilation technique, ”Just-in-Time”(JIT) compilation, making it possible for interpreter

language to run as fast as compiling language.

SPECTRA is developed for the purpose of reproducing spectral data observed on the sun, on

other stars and in laboratory plasma and visualizing internal atomic/radiative processes to un-

derstand the physics behind the formation of spectra. SPECTRA has the following characteris-

tics:

1. Easy installation and execution: Python is a cross-platform language that the library

are available in all Windows, MacOS and Linux without making any modification (subsec-

tion 3.1). Simulation also could be performed through browser using the cloud service

without installation on local computer.

2. Easy accessing to the observation data: Python provides various packages for data

exchanging among almost all kinds of scientific data formats, including standard fits, hdf5,

netCDF, and IDL .sav formats.

3. Flexibility of customizing a user-defined simulation: with an understanding of the

structure of data class and high level function (subsection 3.3), a user-defined atomic

model and simulation could be easily constructed .

In the following sections, we describe the mathematical formulas and equations in section 2,

the library architecture in section 3, a standard solar background radiation intensity profile in

various wavelength range in section 4. Examples of customizing simulation with different kinds

of physics model are shown in section 5. Future prospect and the extendability of this library

are concluded in section 6.

2 Formulas and Equations

in SPECTRA, we adopt CGS system of unit, and the specific intensity I(x, t;n, ω) of radiation at

position x [cm], time t [s], travaling in direction n through unit area [cm2], into a unit solid angle

[sr], having a wavelength in the unit range [cm] is in an unit of [erg/cm2/sr/cm/s].

2

2.1 Radiative process

In case of bound-bound transition, considering the transition between lower level i to upper

level j, given the ambient mean intensity Jλ, the radiative de-decitation and excitation rates4

are described by

Rji = Aji +Bji

∫ ∞

0
ψji(λ)Jλdλ (1)

Rij = Bij

∫ ∞

0
ϕji(λ)Jλdλ (2)

where ψji is the emission profile; ϕij is the absorption profile. Currently only CRD (Complete

frequency redistribution) is available, so we have

ψji(λ) ≡ ϕij(λ) (3)

For hydrogen atom, Einstein coefficient Aji could be calculated by using theoretical formula.5

Otherwise, Einstein coefficient Aji is given by experiment results, and the corresponding Ein-

stein coefficient Bji and Bij are calculated using the Einstein relation4

Bji = Aji/(2hc
2 λ5) (4)

Bij = Bji
gj
gi

(5)

where gi and gj are the statistical weight of the lower and upper levels, respectively.

In case of bound-free transition (photoionization), consider the transitions between lower level

i and upper continuum level j, given the ambient mean intensity Jλ, electron temperature T ,

photoionization cross section αij(λ), the normalized LTE energy level population fraction nLTE
i

and nLTE
j , the radiative transition rates for a single atom are described by

Rij = 4π

∫ λ0

0
αij(λ)(hc/λ)

−1Jλdλ (6)

3

for radiative ioniozation,4

Rstim
ji =

nLTE
i

nLTE
j

4π

∫ λ0

0
αij(λ)(hc/λ)

−1Jλe
−hc/kTλdλ (7)

for stimulated radiative recombination,4

Rspon
ji =

nLTE
i

nLTE
j

4π

∫ λ0

0
αij(λ)(hc/λ)

−1(2hc5/λ3)e−hc/kTλdλ (8)

for spontaneous radiative recombination.4

The sources of Einstein coefficient Aji and photoionization cross section αij for the atomic

model are shown in Table 1.

2.2 Collisional process

Given the ambient electron temperature T , electron density Ne and the effective collisional

strength Ωij , the collisional excitation rate4 is described by

NeCij = Ne
8.6× 10−6 Ωij

giT 0.5
e−dEij/kT (9)

and the collisional ionization rate4 is described by

NeCij = NeΩijT
0.5e−dEij/kT (10)

where dEij is the excitation/ionization energy for the transition between levels i and j.

In both cases, the downward collisional rate coefficient Cji follows the relationship of detailed

balance4

Cji = Cij
nLTE
i

nLTE
j

(11)

The sources of effective collisional strength Ωij of the our atomic model are listed in Ta-

ble 1.

4

Table 1: source of atomic data for atomic models. TC: theoretically calculated;5 OP: Opacity
Project;6 NIST: NIST Atomic database;7 RH: atomic data in RH code3

Aji αij Ωij

H TC TC TC
He NIST RH RH
Ca NIST OP+RH RH

2.3 Statistical equilibrium

Given the electron densityNe, the radiative transition ratesRij , Rji and the collisional transition

rates Cij , Cji, the energy level population ni , which is normalized by the number density of the

atom in interest, is calculated by solving a set of kinetic equilibrium equations4

ni
∑
j ̸=i

(Rij + Cij) =
∑
j ̸=i

nj(Rji + Cji) (12)

Since the set of above system of equations is not linearly independent, the equation belonging

to the highest level is replaced by

∑
i

ni = 1 (13)

3 About the library

3.1 Installing the library

The easiest way to install this library is using git to pull the latest version of SPECTRA8 and

conda9 to manage the Python environment.

1. create a new environment using conda with command

$ conda create -n spectra python=3.10

replace the environment name spectra to whatever you like. The Python version is required

to be larger than 3.9.

2. make the path of spectra directory visible to this Python environment

$ echo /path/to/spectra/ > "/path/to/miniconda3/envs/spectra \

5

/lib/python3.10/site-packages/module.pth"

3. activate environment

$ conda activate spectra

4. install minimum third-party dependency into current environment

$ pip install numba numpy scipy debtcollector ipykernel

5. make the python kernel in this environment visible to jupyter notebook

$ ipython kernel install --user --name spectra

For detailed installation instrcutions in Unix andWindows Systems, refer to the install.txt located

in github repository.8

3.2 library architecture

The SPECTRA library consists of four main folders (Listing 1).

• data/ : contains input data and configuration files.

– atmos/ : contains the atomospheric model, e.g., FAL and user defined models.

– atom/ : contains the atomic data files for atoms, in a folder named as <element>_<ionization-

stages> for each atom. See documentation 10 for details.

– intensity/atlas/QS/ : contains the binary file of the intensity profile and wavelength

mesh of solar background radiation. See section 4 for details.

– conf/ : contains configuration files, which defines the paths to the atomic data files.

Required as an input argument to initialize a specific atom object. See section 5 for

details.

• notebooks/ : jupyter notebook gallery of simulations and analysis.

• spectra_src/ : contains several folders of source code. The details of the data structures

and functions could be found in documentation. 10

6

– Atomics/ : module of basic atomic process, e.g., Boltzman distribution, electron col-

lisional excitation coefficient, etc.

– Math/ : module of mathematical formulas, e.g., special functions, numerical integral

methods, etc.

– RadiativeTransfer/ : module of numerical radiative transfer methods.

– Struct/ : module of data structures, e.g., Atom, Atmosphere, etc.

– Util/ : module of utilities, e.g., functions to import atomic data from RH code and

NIST atomic database, etc.

– Visual/ : module of visualization, e.g., transition rate heat map, Grotrian diagram, etc.

– Experimental/ : temporary folder for experimental features and functions to maintain

the backward compatibility.

– Functions/ : high level functions, e.g., statistical equilibrium simulation, non-LTE slab

model simulation (cloud model in case of homogeneous slab)

• test/ : examples in python scripts, benchmarks of optimization with using numba library,

and unittest.

3.3 Design pattern

The source code mainly consists of three components:

1. data class

2. low level function

3. high level function

Data class is a structured data type, such as an ”Atom” class (Listing 2), which carries the

array of level parameters, array of line/continuum transition parameters and etc. To perform a

simulation, we need the following four kinds of data classes:

1. Atom (Listing 2) : atomic data (energy level and transition data, etc.).

2. Wavelength_Mesh (Listing 4) : wavelength mesh of line/continuum transitions.

7

3. Atmosphere0D (Listing 5) : plasma physical parameters. 0D dimension model as for a

uniform slab; Infinite slab 1D dimension model where spatial variation is considered.

4. Radiation (Listing 3) : Solar spectrum Atlas (as background or ambient radiation) and its

wavelength mesh

Listing 1: main directory architecture in tree view

|---data

|---atmos

|---FAL

|---atom

|---Ca_I-II-III

|---Ca_II

|---C_III

|---H

|---He

|---O_V

|---Si_III

|---...

|---conf

|---intensity

|---atlas

|---QS

|---notebooks

|---spectra_src

|---Atomic

|---Experimental

|---Function

|---SEquil

|---SlabModel

|---Math

|---RadiativeTransfer

|---Struct

|---Util

|---AtomicDataUtils

|---RH2Spectra

8

|---NIST2Spectra

|---AtomUtils

|---Visual

|---test

|---examples

|---numba

|---unittest

|---...

Listing 2: Atom class

@_dataclass(**STRUCT_KWGS)

class Atom:

Z : T_INT # atomic number

Mass : T_FLOAT # atomic mass

Abun : T_FLOAT # solar abundance

nLevel : T_INT # number of levels

nLine : T_INT # number of line transition

nCont : T_INT # number of continuum transition

nTran : T_INT # number of total transition

"Radiative" transitions is defined in data file *.RadiativeLine

where type of line shape, number of wavelength mesh, etc.

are customized.

nRL : T_INT # number of "Radiative" transition

Level : T_ARRAY # struct array of Level infomation

Line : T_ARRAY # struct array of Line transition infomation

Cont : T_ARRAY # struct array of Continuum transition information

_has_continuum : T_BOOL # whether has continuum

_atomic_data_source : ATOMIC_DATA_SOURCE # experiment or theoretical

_atom_type : T_E_ATOM # hydrogen or normal atom

9

ctj : configuration , term, angular momentum J

_ctj_table : CTJ_Table # table of ctj of Levels/Transitions

_idx_table : Index_Table # table of index <-> ctj

struct of Collisional excitation data

CE : Collisional_Transition

struct of Collisional ionization data

CI : Collisional_Transition

PI : Photo_Ionization # struct of photoionization data

struct of mesh information("Radiative" line)

RL : Radiative_Line

Listing 3: Radiation class

@_dataclass(**STRUCT_KWGS_UNFROZEN)

class Radiation:

backRad : T_ARRAY # 2d, (2, n_wavelength)

PI_intensity : T_ARRAY # 2d, (nCont, _N_CONT_MESH)

Listing 4: Wavelength_mesh class

@_dataclass(**STRUCT_KWGS_UNFROZEN)

class Wavelength_Mesh:

##: initialized given the Atom.Cont

could be modified due to doppler shift

currently , we assume that Cont_mesh will

not be affected by doppler shift

Cont_mesh : T_ARRAY # 2d

Cont_Coe : T_ARRAY # struct

##: initialized given the atmosphere model

1d, doppler width unit, without doppler shift

Line_mesh : T_ARRAY

10

Line_mesh_idxs : T_ARRAY # 2d, (nLine, 2)

1d, un-normalized. `/= dopWidth_cm ` --> normalized

Line_absorb_prof: T_ARRAY

Line_Coe : T_ARRAY # struct

##: we need Line_mesh_share to deal with non-uniform atmoshere

Line_mesh_share : T_ARRAY # 1d,

Line_mesh_share_idxs : T_ARRAY # 2d, (nLine, 2)

Listing 5: Atmosphere class

@_dataclass(**STRUCT_KWGS_UNFROZEN)

class Atmosphere0D:

Nh : T_FLOAT # hydrogen number density, [cm^{-3}]

Ne : T_FLOAT # electron number density, [cm^{-3}]

Te : T_FLOAT # electron temperature , [K]

Vd : T_FLOAT # doppler velocity , [cm/s]

Vt : T_FLOAT # micro turbulence velocity , [cm/s]

Ti : T_FLOAT = -1.0 # ion temperature , [K]

if Ti smaller than 0, use Te instead

ndim : T_INT = 0 # dimension

is_uniform : T_BOOL = True # is spatial uniform

Tr : T_FLOAT = 6.E3 # radiation temperature , [K]

whether to use Tr to calculate background radiation

use_Tr : T_BOOL = False

Pg : T_FLOAT = 0.05 # [Ba] = 0.1 [Pa] gas pressure

whether to utilize doppler shift in continuum

doppler_shift_continuum : T_BOOL = False

A low level function is a function that takes a native data type, such as integer, float, double

array, etc., as input argument, while a high level function is a function that normally takes a data

class as input argument and calls the corresponding low level functions to process the data

contained in the data class. The distinction between low level and high level functions is nec-

11

essary, because the ”JIT” optimization is currently only available to functions with native data

type (including numpy array) as input arguments, since a data class is much more complicated

than an array to be analyzed when being ”compiled” into machine code in the runtime.

For example, a low level function spectra_src.Atomic.SEsolver.solve_SE_ (Listing 6) to solve sta-

tistical equilibrium takes the radiative transition matrix R and collisional transition matrix C as

input. While the corresponding high level function spectra_src.Function.SEquil.SELib.cal_SE_

(Listing 7) takes the data classes as inputs, and then calls the corresponding low level function

for detailed calculation (1. radiative and collisional transition rates in bound-bound and bound-

free transitions; 2. solving linear equations for statistical equilibrium), and finally returns the

data classes including the level population and transition rate as a result.

Listing 6: low level function for solving statistical equilibrium

def solve_SE_(Rmat : T_ARRAY, Cmat : T_ARRAY) -> T_ARRAY:

nLevel = Rmat.shape[0]

A = Cmat[:,:] + Rmat[:,:]

b = _numpy.zeros(nLevel, dtype=DT_NB_FLOAT)

#---

diagnal components

#---

for k in range(nLevel):

A[k,k] = -A[:,k].sum()

#---

abundance definition equation

#---

A[-1,:] = 1.

b[-1] = 1.

nArr = _numpy.linalg.solve(A, b)

return nArr

12

Listing 7: high level function for solving statistical equilibrium

def cal_SE_(atom : _Atom.Atom, atmos : _Atmosphere.Atmosphere0D ,

wMesh : _WavelengthMesh.Wavelength_Mesh ,

radiation : _Radiation.Radiation ,

Nh_SE : T_UNION[T_ARRAY, None],

):

#[the body of the function is omitted due to space limitation]

radiative bound-free transition

Rik, Rki_stim, Rki_spon = _bf_R_rate_(Cont, Cont_mesh[:,:],

Te, nj_by_ni_Cont[:], alpha_interp[:,:], PI_intensity[:,:],

backRad[:,:], Tr, use_Tr, doppler_shift_continuum)

radiative bound-bound transition

Bij_Jbar, Bji_Jbar, wave_mesh_cm_shifted_all , absorb_prof_cm_all , \

Jbar_all = _B_Jbar_(Line, Line_mesh_Coe , Line_mesh[:],

Line_mesh_idxs[:,:],Te, Vt, Vd, Ne, Nh_I_ground , Mass,

atom_type , backRad[:,:], Tr, use_Tr)

collisional bound-bound and bound-free transition

Cij = _get_Cij_(Line, Cont, Te, atom_type ,

CE_Omega_table , CE_Te_table , CE_Coe, data_src_CE ,

CI_Omega_table , CI_Te_table , CI_Coe, data_src_CI)

Cji = _Collision.Cij_to_Cji_(Cij[:], nj_by_ni[:])

pack array data of radiative bound-bound and bound-free transition

Rij, Rji_stim, Rji_spon = _make_Rji_Rij_(Aji[:], Bji_Jbar[:],

Bij_Jbar[:], Rki_spon[:], Rki_stim[:], Rik[:])

format collisional transition rate matrix

Cmat = _numpy.zeros((nLevel,nLevel), dtype=DT_NB_FLOAT)

_SEsolver.set_matrixC_(Cmat[:,:],Cji[:],Cij[:],idxI[:],idxJ,Ne)

format radiative transition rate matrix

Rmat = _numpy.zeros((nLevel,nLevel), dtype=DT_NB_FLOAT)

_SEsolver.set_matrixR_(Rmat[:,:], Rji_spon[:], Rji_stim[:],

Rij[:], idxI[:], idxJ[:])

solve Ax=b linear equations for statistical equilibrium

n_SE = _SEsolver.solve_SE_(Rmat, Cmat)

pack the result

13

SE_con = _Container.SE_Container(

n_SE = n_SE,

n_LTE = n_LTE,

nj_by_ni = nj_by_ni,

wave_mesh_shifted_1d = wave_mesh_cm_shifted_all ,

absorb_prof_1d = absorb_prof_cm_all ,

Line_mesh_idxs = Line_mesh_idxs ,

Jbar = Jbar_all)

tran_rate_con = _Container.TranRates_Container(

Rji_spon = Rji_spon[:],

Rji_stim=Rji_stim[:],

Rij=Rij[:],

Cji_Ne = Cji[:] * Ne,

Cij_Ne = Cij[:] * Ne,

Rmat = Rmat,

Cmat = Cmat)

return SE_con, tran_rate_con

4 Solar background radiation

We constructed a continuous high resolution Solar spectrum as the background radiation in the

simulation. The detailed information of the data source of each wavelength range is described

in Table 2.

As shown in Figure 1, the full constructed Solar spectrum extends from 1 [Å] to 0.1 [cm]. The

intensity level alignment is performed in the following steps:

1. align intensity spectrum normalized by continuum in [3000,13400][Å] from BASS2000 11

to Allen’s continuum intensity. 12

2. the wide range Solar spectrum from ASTM E-490 13 covers from 1 [Å] to 0.1 [cm] with a

coarse resolution, therefore we align it to Allen’s continuum intensity to set a reference

for UV/EUV spectrum.

3. align spectrum from SORCE/XPS, 14 SDO/EVE/ELS, 15 SOHO/Sumer 16 and SORCE/SOL-

STICE 14 to the adjusted ASTM E-490 spectrum.

14

Figure 2 illustrates how the optical range of the spectrum is aligned to Allen’s continuum in-

tensity. Figure 3 shows the UV/EUV range of the spectrum, with a bunch of emission spectral

lines.

Note that absorption line suddenly disappeared beyond 11000[Å] due to the switch of spectrum

data source.

Table 2: detailed information of the Solar spectrum. QS: Quiet Sun; FD: Full Disk

Wavelength range [Å] Instrument(date of observation) Region Resolution [Å]

1-333 XPS(2018/04/11) QS 1
333-670 EVE/ELS(2018/04/18) QS 0.2
670-1609 SOHO/Sumer QS 0.04
1609-3000 SOLSTICE(2018/04/11) FD 1
3000-11000 Jungfraujoch QS 0.002
11000-13400 Kitt Peak QS 0.004
13400-0.1[cm] ASTM E-490 FD 20

Figure 1: full range of the constructed Solar spectrum in log scale.

15

Figure 2: comparison between Allen’s continuum profile and the scaled solar spectrum in wave-
length range of [3000,11000] [Å] in linear scale

Figure 3: UV/EUV range of the constructed Solar spectrum.

5 Examples

In this section, we introduce the basic usage of SPECTRA. More comprehensive examples con-

taining outputs and data visulaization are collected in folder notebooks/.

Simulation normally starts from loading the atomic data by specifying the path to the *.conf

file, which contains the path to the directory of the specific atomic model and the filenames of

the provided atomic data. For example, the configuration of a Helium atom shown in Listing 8

contains

16

• folder: path to the directory where the data files are located.

• Level: atomic level data file.

• Aji: Einstein A coefficient data file.

• CEe: electron impact collisional excitation data file.

• CIe: electron impact collisional ionization data file.

• PI: photoionization cross section data file.

• RadiativeLine: radiative line transition data file.

• Grotrian: grotrian plot setup file.

A line transition with non-zero EinsteinAji coefficient has 41 wavelength mesh points and Gaus-

sian absorption profile in defualt. One is able to customize parameters like the type of absoption

profile, number of mesh points, etc., in the RadiativeLine data file.

Listing 8: configuration for atomic data

folder ../atom/He

Level He.Level

Aji He.Aji

CEe He.CE.electron

CIe He.CI.electron

PI He.Alpha

RadiativeLine He.RadiativeLine

Grotrian He.Grotrian

5.1 Statistical equilibrium

given the .conf file, to perform a statistical equilibrium simulation,

1. construct the data class of Atom and Wavelength_Mesh using Atom.init_Atom_

2. construct the data class of Atmosphere0D using Atmosphere.Atmosphere0D

3. construct the data class of Radiation using Radiation.init_Radiation_

4. perform Statistical equilibrium using SELib.cal_SE_with_Ne_Te_. In this case, statistical

equilibrium is calculated given the electron density Ne and electron temperature Te.

17

Listing 9: statistical equilibrium simulation

import os

import the necessary modules

from spectra_src.ImportAll import *

from spectra_src.Struct import Atom, Atmosphere , Radiation

from spectra_src.Function.SEquil import SELib

spicify the path to the configuration of the atomic data files

conf_path = os.path.join(CFG._ROOT_DIR , "data","conf","He.conf")

load atomic data and create data class for atom and wavelength mesh

is_hydrogen is set to False in case of non hydrogen atom

atom, wMesh, path_dict = Atom.init_Atom_(conf_path ,is_hydrogen=False)

create a 0 dimension atmosphere , or to say, optically thin.

specify physical parameters

atmos = Atmosphere.Atmosphere0D(Nh=1.E11, Ne=5.E10, Te=7.E3, Vd=0., Vt=5.E5)

load background radiation

radiation = Radiation.init_Radiation_(atmos, wMesh)

solve statistical equilibrium given

electron density and electron temperature

SE_con, Rate_con = SELib.cal_SE_with_Ne_Te_(atom,atmos,wMesh,radiation ,None)

5.2 Cloud model

Starting from Listing 9, by specifying the thickness (which is called depth in the function call)

of the slab and the output of statistical simulation, the emergent intensity from a cloud model

could be calculated by adding a single line of code.

Listing 10: cloud model simulation

[the body of the function is omitted due to space limitation]

given the level population contained in "SE_con"

calculate the emergent intensity from a cloud model

with thickness of 1000 [km]

Cloud_con = SlabModel.SE_to_slab_0D_(atom,atmos,SE_con,depth=1.E3*1.E5)

18

5.3 Visualization functions

Various visualization functions has been developed to help user understanding the population

distribution and the statistical equilibrium transition balancing in the atomic model.

Listing 11 and Figure 4 gives an example of generating a Grotrian plot with radiative net tran-

sition rates of a 9-level hydrogen atomic model. The full tutorial could be found in /notebook-

s/StatisticalEquilibrium/Hydrogen_atom.ipynb in the github repository.8

Listing 11: Grotrian and net transition rate plot of a 9-level hydrogen atomic model

from spectra_src.Struct import Atom, Atmosphere , Radiation

from spectra_src.Function.SEquil import SELib

from spectra_src.Visual import Grotrian

import os

conf_path = os.path.join(CFG._ROOT_DIR , "data/conf/H.conf")

atom, wMesh, path_dict = Atom.init_Atom_(conf_path , is_hydrogen=True)

atmos = Atmosphere.Atmosphere0D(Nh=1E12, Ne=1E11, Te=1E4,

Vd=0E5, Vt=5E5, use_Tr=False)

radiation = Radiation.init_Radiation_(atmos, wMesh)

SE_con, Rate_con = SELib.cal_SE_with_Ne_Te_(atom, atmos,

wMesh,radiation , None)

extract the line/continuum transition indexing

ni_Line = SE_con.n_SE[atom.Line["idxI"]][:]

nj_Line = SE_con.n_SE[atom.Line["idxJ"]][:]

ni_Cont = SE_con.n_SE[atom.Cont["idxI"]][:]

nj_Cont = SE_con.n_SE[atom.Cont["idxJ"]][:]

ni = np.append(ni_Line, ni_Cont)

nj = np.append(nj_Line, nj_Cont)

extract the level indexing

idxI = np.append(atom.Line["idxI"], atom.Cont["idxI"])

idxJ = np.append(atom.Line["idxJ"], atom.Cont["idxJ"])

user difined function to scale Y-axis

linear scale in default

19

scaleFunc = lambda x: x**(7)

scaleFunc_inv = lambda x : x**(1/7)

initilize the grotrian object

gro = Grotrian.Grotrian(atom, path_dict["Grotrian"],

_scaleFunc=scaleFunc , _scaleFunc_inv=scaleFunc_inv ,)

make a figure with only energy levels plotted

gro.make_fig(_figsize=(10,6),_dpi=150, _f=50)

define a color map and colorbar scale

cmap = plt.get_cmap('cool')

norm = LogNorm(1E-5, 1E-1, clip=True)

calculate the radiative net transition rate

rate_rad = - Rate_con.Rij * ni + \

(Rate_con.Rji_stim + Rate_con.Rji_spon) * nj

add arrows of transition to the plot

gro.plot_transition_rate(_idxI=idxI,

_idxJ=idxJ,

_rate=rate_rad ,

_direction="j->i",

_cmap=cmap, _norm=norm, _abserr=1E-5)

add colorbar to the plot

gro.add_colorbar(_cmap=cmap, _norm=norm)

20

Figure 4: radiative net transition rate of a 9-level hydrogen atomic model. the number labeled
close to each level is the quantum number n; vertical axis is the energy in [eV] but scaled in an
user defined scale; normally horizontal axis is order by quantum number L and multiplet, since
sub-levels are degenerated in this hydrogen atomic model, the horizontal position of levels are
adjusted for better display

Figure 5 shows the heat map of the Radiative/Collisional transition rate among 27-level helium

atomic model (transitions among the first 21 levels are plotted). The upper left and the lower

right of diagonal in each panel correspond to the upward and downward transitions, respec-

tively. Statistical equilibrium is calculated given a hydrogen density of 1 × 1011 [cm−3] and an

electron temperature of 8000 [K]. The full tutorial could be found in /notebooks/StatisticalE-

quilibrium/spectra_multi_atom.ipynb in the github repository.8

21

Figure 5: Heat map of the Radiative/Collisional transition rate among 27-levels of the helium
atomic model (transitions among the first 21 levels are plotted). X and Y ticklabels are the term
and Angular Momumtum J for upper and lower levels, respectively. Levels are sorted according
to ionization stage and

type of multiplet.

Figure 6 shows how the fraction of specific ionization stage changes for a 9-level hydrogen

atomic model, a 27-level helium atomic model and a 7-level calsium atomic model, given a

range of hydrogen density and electron temperature. The full tutorial could be found in /note-

books/StatisticalEquilibrium/spectra_multi_atom.ipynb in the github repository.8

Figure 6: 2D map of the fraction of H I, He I and Ca II as a function of electron temperature
and hydrogen density, which comes from the reusult of statistical equilibrium simulation of 9-
level hydrogen atomic model, 27-level helium atomic model and 7-level calsium atomic model,
respectively. White contour lines correspond to the gas pressure [dyn/cm2]

6 Summary and Future work

This non-LTE radiative transfer library is developed to explain the multi-wavelength spectro-

scopic data in Solar observation. Currently the statistical equilibrium(CRD) module is com-

22

pleted, functionality related PRD (Partial redistribution) and radiative transfer are still under

test. After combining the non-LTE statisticalequilibrium and radiative transfer, we are looking

forward to extend the library to include polarization.

23

References

[1] Carlsson, M. Uppsala Astronomical Observatory Reports 1986, 33.

[2] Gouttebroze, P.; Heinzel, P.; Vial, J. C. 1993, 99, 513–543.

[3] Han Uitenbroek, radiative transfer code RH. https://www2.hao.ucar.edu/events/

workshop/spectropolarimetry-2022/inversion-codes/rh-code, 2010.

[4] Hubeny, I.; Mihalas, D. Theory of Stellar Atmospheres. An Introduction to Astrophysical

Non-equilibrium Quantitative Spectroscopic Analysis; 2015.

[5] Johnson, L. C. 1972, 174, 227.

[6] The Opacity Project Team, Opaity Project TOP database. https://cds.unistra.fr/

/topbase/topbase.html, 1995.

[7] Kramida, A., Ralchenko, Yu., Reader, J. and NIST ASD Team, NIST Atomic Spectra

Database (version 5.10). https://www.nist.gov/pml/atomic-spectra-database, 1995;

Affiliations: National Institute of Standards and Technology, Gaithersburg, MD.

[8] Y. Huang, github repository of SPECTRA. https://github.com/kouui/spectra, 2022.

[9] Continuum Analytics, Inc. (dba Anaconda, Inc.), Package, dependency and environment

management for any language—Python, R, Ruby, Lua, Scala, Java, JavaScript, C/ C++, For-

tran, and more. https://docs.conda.io/en/latest/index.html, 2017.

[10] Y. Huang, documentation of SPECTRA. https://kouui.github.io/spectra, 2023.

[11] Malherbe, J.-M.; Cornu, F.; Bualé, I. arXiv e-prints 2023, arXiv:2305.14804.

[12] Allen, C. W. Astrophysical Quantities; 1976.

[13] Tobiska, W. K.; Bouwer, S. D. Advances in Space Research 2006, 37, 347–358.

[14] Ahmad, S.; Johnson, J.; Serafino, G. Solar spectral and total irradiance data from the SORCE

mission. 34th COSPAR Scientific Assembly. 2002; p 2806.

[15] Hock, R. A.; Woods, T. N.; Eparvier, F. G.; Woodraska, D. L. Accessing and Using SDO EVE

Data. Solar Heliospheric and INterplanetary Environment (SHINE 2010). 2010; p 127.

24

https://www2.hao.ucar.edu/events/workshop/spectropolarimetry-2022/inversion-codes/rh-code
https://www2.hao.ucar.edu/events/workshop/spectropolarimetry-2022/inversion-codes/rh-code
https://cds.unistra.fr//topbase/topbase.html
https://cds.unistra.fr//topbase/topbase.html
https://www.nist.gov/pml/atomic-spectra-database
https://github.com/kouui/spectra
https://docs.conda.io/en/latest/index.html
https://kouui.github.io/spectra

[16] Schuehle, U. H. Solar Ultraviolet Measurements of Ultraviolet Radiation (SUMER) instru-

ment on SOHO: design, performance predictions, and calibration aspects. X-Ray and Ul-

traviolet Spectroscopy and Polarimetry. 1994; pp 47–52.

25

	Introduction
	Formulas and Equations
	Radiative process
	Collisional process
	Statistical equilibrium

	About the library
	Installing the library
	library architecture
	Design pattern

	Solar background radiation
	Examples
	Statistical equilibrium
	Cloud model
	Visualization functions

	Summary and Future work

