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a b s t r a c t

We consider the optimal control problem of steering an agent population to a desired distribution over
an infinite horizon. This is an optimal transport problem over dynamical systems, which is challenging
due to its high computational cost. In this paper, by using entropy regularization, we propose Sinkhorn
MPC, which is a dynamical transport algorithm integrating model predictive control (MPC) and the so-
called Sinkhorn algorithm. The notable feature of the proposed method is that it achieves cost-effective
transport in real time by performing control and transport planning simultaneously, which is illustrated
in numerical examples. Moreover, under some assumption on iterations of the Sinkhorn algorithm
integrated in MPC, we reveal the global convergence property for Sinkhorn MPC thanks to the
entropy regularization. Furthermore, focusing on a quadratic control cost, without the aforementioned
assumption we show the ultimate boundedness and the local asymptotic stability for Sinkhorn MPC.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The problem of controlling a large number of agents has
ecome a more and more important area in control theory with
view to applications in sensor networks, smart grids, intel-

igent transportation systems, and systems biology, to name a
ew (Alasseur, Ben Taher, & Matoussi, 2020; Chowdhury, Jing,
Cappelleri, 2015; Chung, Paranjape, Dames, Shen, & Kumar,

018). One of the most fundamental tasks in this problem is to
tabilize a collection of agents to a desired distribution shape with
inimum cost. This can be formulated as an optimal transport

OT) problem (Villani, 2003) between the empirical distribution
ased on the state of the agents and the target distribution
ver dynamical systems. The OT problem over dynamical systems
onsists of finding an assignment of agents to targets and control
nputs that drive the agents to the assigned targets in order to
inimize the total cost of interest. The difficulty of this problem

ies in the large scale of the collective dynamics.

iterature review: The assignment problem has been extensively
tudied in the context of combinatorial optimization, and many
ethods to find the optimal assignment have been proposed such
s the well-known Hungarian algorithm (Kuhn, 1955) and auction

✩ The material in this paper was presented at the 2022 American Control Con-
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for publication in revised form by Associate Editor Bin Zhou under the direction
of Editor Ian R. Petersen.
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algorithm (Bertsekas, 1992). These algorithms have been applied
to multi-agent assignment problems; see e.g., Mosteo, Montijano,
and Tardioli (2017) and Yu, Chung, and Voulgaris (2014) and
references therein. In the literature, the dynamics of agents are
simplified as the single integrator dynamics, and easily com-
putable assignment costs, e.g., distance-based cost, are considered
in general. On the other hand, when considering more general
dynamics and cost functions for the stabilization to targets, it is
difficult to obtain the associated assignment costs and optimal
controls. This is because, in most cases, infinite horizon optimal
control (OC) problems stabilizing agents to desired targets are
computationally intractable. A promising approach to overcome
this problem is model predictive control (MPC) (Mayne, 2014), in
which the current control input is determined by solving, at each
sampling instant, a finite horizon OC problem using the current
state as the initial state. For example in Morgan, Subramanian,
Chung, and Hadaegh (2016), MPC is used to solve a finite horizon
assignment problem over dynamical systems in real time. Now
it is important to emphasize that when performing MPC for a
dynamic OT problem, it is desirable to update the target assign-
ment for agents at each time as well as control inputs. However,
when the number of the agents is large, solving the assignment
problem at each sampling instant is computationally very expen-
sive even with the Hungarian algorithm. Even worse, the changes
of the assignment along the controlled state trajectories are not
continuous, and this makes it difficult to ensure the stability of
the dynamics under MPC.

On the other hand, recently, a different approach to solve a dy-
namical assignment problem using OT theory has attracted much
attention (Bakshi, Fan, & Theodorou, 2020; Chen, Georgiou, &
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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avon, 2018; Krishnan & Martínez, 2018). In this approach, a large
opulation limit is considered, and infinitely many agents are rep-
esented as a probability density of the state of a single system.
hen, the dynamical assignment problem boils down to a density
ontrol problem (Chen, Georgiou, & Pavon, 2017; De Badyn et al.,
021; Ito & Kashima, 2022a) finding a feedback control law that
teers an initial state density to a target density with minimum
ost. Consequently, this approach can avoid the difficulty due to
he large scale of the collective dynamics. Nevertheless, it has
he drawback that even for linear systems, the density control
equires to solve a nonlinear partial differential equation such
s the Monge–Ampère equation or the Hamilton–Jacobi–Bellman
quation, which are generally difficult to solve.

ontributions: With this in mind, we deal with the collective
ynamics directly without taking the number of agents to in-
inity, but utilizing the results of computational OT. Specifically,
n Cuturi (2013), several favorable computational properties of an
ntropy-regularized version of OT are highlighted. In particular,
ntropy-regularized OT problems can be solved efficiently by
n iterative algorithm called the Sinkhorn algorithm. Inspired
y this, we propose a dynamical transport algorithm integrating
PC and the Sinkhorn algorithm, which we call Sinkhorn MPC.
his method incorporates the Sinkhorn iterations into MPC as a
ynamic controller and can be seen as simultaneously solving an
ssignment problem while executing control actions. The contri-
utions of this paper coming from the introduction of Sinkhorn
PC are as follows:

(1) By combining MPC and the Sinkhorn algorithm, the com-
putational effort for determining destinations of agents at
each time is reduced substantially;

(2) Thanks to the smoothing effect of the entropy regulariza-
tion, we reveal the global convergence property of Sinkhorn
MPC with a sufficiently large number of Sinkhorn itera-
tions;

(3) For a quadratic control cost, we show the ultimate bound-
edness and the local asymptotic stability for Sinkhorn MPC
without the assumption of the number of Sinkhorn itera-
tions.

Compared to a preliminary version of this work (Ito & Kashima,
022b), the most notable improvement of the current paper is
hat we consider continuous-time systems and derive (2) the
lobal convergence property for Sinkhorn MPC, which is one of
he most crucial properties of dynamical transport algorithms.
n addition, we provide several illustrative examples, which de-
cribe the usefulness of Sinkhorn MPC, and we give the proof of
emma 1, which is omitted in the preliminary version.

rganization: The remainder of this paper is organized as follows.
n Section 2, we introduce OT between discrete distributions. In
ection 3, we provide the problem formulation. In Section 4, we
escribe the idea of Sinkhorn MPC. In Section 5, numerical exam-
les illustrate the utility of the proposed method. Section 6 is de-
oted to the global convergence analysis of the proposed method.
n Section 7, for a quadratic control cost, we investigate fun-
amental properties of Sinkhorn MPC, such as local asymptotic
tability. Some concluding remarks are given in Section 8.

otation: Let R denote the set of real numbers. The set of all
ositive (resp. nonnegative) vectors in Rn is denoted by Rn

>0 (resp.
Rn

≥0). We use similar notations for the set of all real matrices
Rm×n and integers Z, respectively. The set of integers {1, . . . ,N}

is denoted by [[N]]. The Euclidean norm is denoted by ∥ · ∥. For
a positive semidefinite matrix A, denote ∥x∥A := (x⊤Ax)1/2. The
dentity matrix of size n is denoted by In or I when its size is
clear in the context. The matrix norm induced by the Euclidean
2

norm is denoted by ∥·∥2. For vectors x1, . . . , xm ∈ Rn, a collective
vector [x⊤

1 · · · x⊤
m]

⊤
∈ Rnm is denoted by [x1; · · · ; xm]. For

A = [a1 · · · an] ∈ Rm×n, we write vec(A) := [a1; · · · ; an].
For α = [α1 · · · αN ]

⊤
∈ RN , the diagonal matrix with diagonal

entries {αi}
N
i=1 is denoted by α�. The block diagonal matrix with

diagonal entries {Ai}
N
i=1, Ai ∈ Rm×n is denoted by {Ai}

�
i . Especially

when Ai = A, ∀i, {Ai}
�
i is also denoted by A�,N . Let (M, d) be a

metric space. The open ball of radius r > 0 centered at x ∈ M
is denoted by Br (x) := {y ∈ M : d(x, y) < r}. The element-wise
division of a, b ∈ Rn

>0 is denoted by a ⊘ b := [a1/b1 · · · an/bn]⊤.
The N-dimensional vector of ones is denoted by 1N . The gradient
of a function f with respect to the variable x is denoted by ∇xf .
For x, x′

∈ Rn
>0, define an equivalence relation ∼ on Rn

>0 by x ∼ x′

if and only if ∃r > 0, x = rx′.

2. Background on optimal transport

Here, we briefly review OT between discrete distributions
µ :=

∑N
i=1 aiδxi , ν :=

∑M
j=1 bjδyj where a ∈ ΣN := {p ∈

RN
≥0 :

∑N
i=1 pi = 1}, b ∈ ΣM , xi, yj ∈ Rn, and δx is the Dirac

delta at x. Given a cost function c : Rn
× Rn(∋ (x, y)) → R,

which represents the cost of transporting a unit of mass from x
to y, the original formulation of OT due to Monge seeks a map
T : {x1, . . . , xN} → {y1, . . . , yM} that solves

minimize
T

∑
i∈[[N]]

c(xi, T(xi))

subject to bj =

∑
i:T(xi)=yj

ai, ∀j ∈ [[M]].
(1)

Especially when M = N and a = b = 1N/N , the optimal map
T gives the optimal assignment for transporting agents with the
initial states {xi}i to the desired states {yj}j, and then for example,
the Hungarian algorithm can be adopted to solve (1). However,
this method can be applied only to small problems because it has
O(N3) complexity.

On the other hand, the Kantorovich formulation of OT is a
linear program:

minimize
P∈T (a,b)

∑
i∈[[N]],j∈[[M]]

CijPij (2)

where Cij := c(xi, yj) and

T (a, b) :=
{
P ∈ RN×M

≥0 : P1M = a, P⊤1N = b
}
.

A matrix P ∈ T (a, b), which is called a coupling matrix, repre-
sents a transport plan where Pij describes the amount of mass
flowing from xi towards yj. In particular, when M = N and
a = b = 1N/N , there exists an optimal solution from which we
can reconstruct an optimal map for Monge’s problem (1) (Peyré
& Cuturi, 2019, Proposition 2.1). However, similarly to (1), for a
large number of agents and destinations, the problem (2) with
NM variables is challenging to solve.

In view of this, Cuturi (2013) employed entropy regularization
to (2):

minimize
P∈T (a,b)

∑
i∈[[N]],j∈[[M]]

CijPij − εH(P), (3)

where ε > 0 is a regularization parameter and the entropy of P is
defined by H(P) := −

∑
i,j Pij(log(Pij)−1). Define the Gibbs kernel

K associated with the cost matrix C = (Cij) as

K = (Kij) ∈ RN×M
>0 , Kij := exp

(
−Cij/ε

)
.

Then, a unique solution of the entropic OT problem (3) has the
form

∗ ∗ � ∗ �
P = (α ) K (β ) , (4)
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here the two scaling variables (α∗, β∗) ∈ RN
>0 × RM

>0 are
determined by

α∗
= a ⊘ [Kβ∗

], β∗
= b ⊘ [K⊤α∗

]. (5)

The variables (α∗, β∗) can be efficiently computed by the
Sinkhorn algorithm:

α[k + 1] = a ⊘ [Kβ[k]], β[k] = b ⊘
[
K⊤α[k]

]
(6)

where

lim
k→∞

α[k + 1]�Kβ[k]� = P∗, ∀α[0] = α0 ∈ RN
>0.

Now, let us introduce Hilbert’s projective metric

dH(β, β ′) := log max
i,j∈[[M]]

βiβ
′

j

βjβ
′

i
, β, β ′

∈ RM
>0, (7)

which is a distance on the projective cone RM
>0/∼ (see the No-

ation in Section 1 for ∼) and is useful for the convergence
nalysis of the Sinkhorn algorithm; see Peyré and Cuturi (2019,
emark 4.12 and 4.14). Indeed, for any (β, β ′) ∈ (RM

>0)
2 and any

K̄ ∈ RN×M
>0 , it holds

dH(K̄β, K̄β ′) ≤ λ(K̄ )dH(β, β ′) (8)

where

λ(K̄ ) :=

√
η(K̄ ) − 1√
η(K̄ ) + 1

< 1, η(K̄ ) := max
i,j,k,l

K̄ikK̄jl

K̄jkK̄il
.

hen it follows from (8) that

H(β[k + 1], β∗) = dH
(
b ⊘ [K⊤α[k + 1]], b ⊘ [K⊤α∗

]
)

= dH(K⊤α[k + 1], K⊤α∗)

≤ λ(K )dH(α[k + 1], α∗) ≤ λ2(K )dH(β[k], β∗),

hich implies VH(β) := dH(β, β∗) serves as a Lyapunov function
f (6), and limk→∞ β[k] = β∗

∈ RM
>0/∼.

. Problem formulation

In this paper, we consider the problem of stabilizing agents ef-
iciently to a given discrete distribution over dynamical systems.
his can be formulated as Monge’s OT problem.

roblem 1. Given initial and desired states {x0i }
N
i=1, {xdj }

N
j=1 ∈

Rn)N , find control inputs {ui}
N
i=1 and a permutation σ : [[N]] →

[[N]] that solve

minimize
σ

∑
i∈[[N]]

c i
∞
(x0i , x

d
σ (i)). (9)

Here, the cost function c i
∞

: Rn
× Rn

→ R is defined by

c i
∞
(x0i , x

d
j ) := min

ui

∫
∞

0
ℓi(xi(t), ui(t); xdj )dt (10)

subject to ẋi(t) = Aixi(t) + Biui(t), (11)

xi(t) ∈ Xi ⊆ Rn, ∀t ≥ 0, (12)

ui(t) ∈ Ui ⊆ Rm, ∀t ≥ 0, (13)

xi(0) = x0i , (14)

lim
t→∞

xi(t) = xdj , (15)

where xi(t) ∈ Rn denotes the state of the agent i, and Ai ∈

Rn×n, Bi ∈ Rn×m. ♦

Note that the running cost ℓi depends not only on the state xi
and the control input ui, but also on the destination xdj . Through-
out this paper, we assume the existence of an optimal solution of
3

OC problems. In addition, we assume that there exists a constant
input ūij under which xi = xdj is an equilibrium of (11). A
necessary condition for the infinite horizon cost c i

∞
(x0i , x

d
j ) to be

finite is that at xi = xdj and at least one such input ui = ūij,
there is not a cost incurred, i.e., ℓi(xdj , ūij; xdj ) = 0. For instance,
if Bi is square and invertible, ūij = −B−1

i Aixdj makes xi = xdj an
equilibrium.

In most cases, the infinite horizon OC problem c i
∞
(x0i , x

d
j ) is

computationally intractable. To avoid this difficulty, we use MPC,
which solves a tractable finite horizon OC problem with a predic-
tion horizon Th > 0 at each time:

c iTh (x̌i, x
d
j ) :=min

ui

∫ Th

0
ℓi(xi(t), ui(t); xdj )dt (16)

subj. to (11)–(13), xi(0) = x̌i, xi(Th) = xdj .

Denote the first control in the optimal sequence of the above
problem by uMPC

i (x̌i, xdj ). Also for x̌ = [x̌1; · · · ; x̌N ] ∈ RnN , denote
by σ (·; x̌) the optimal permutation of the following problem:

inimize
σ

∑
i∈[[N]]

c iTh (x̌i, x
d
σ (i)). (17)

Then the dynamics (11) under MPC for Problem 1 is given by

ẋi(t) = Aixi(t) + BiuMPC
i

(
xi(t), xdσ (i;x(t))

)
, ∀i ∈ [[N]], (18)

where x(t) := [x1(t); · · · ; xN (t)]. Note that along the trajectory
x(t), at several times, the permutation σ (·; x(t)) changes in gen-
eral. The state-dependent permutation σ (·; x(t)) is expected to
reduce the cost accumulated during the transport more than the
permutation σ (·; x0) that is fixed at the initial time t = 0. Despite
the merit, the state-dependency of the permutation poses the
following computational and theoretical difficulties:

• Solving the assignment problem (17) at each time leads to
the high computational burden when N is large;

• The optimal permutation σ (·; x) is not continuous in x. That
is, the target states {xdσ (i;x(t))}i for the agents change discon-
tinuously along the trajectory x(t), and this makes it difficult
to ensure the convergence of the dynamics (18).

n the remainder of this paper, we reveal that entropy regulariza-
ion mitigates the above problems.

. MPC with entropy-regularized optimal transport

.1. Introduction of the entropy regularization to MPC

Now, to avoid the issues observed in the previous section, we
mploy the entropy regularization. To this end, we first consider
he linear program:

minimize
∈T ( 1NN ,

1N
N )

∑
i,j∈[[N]]

Cij(x)Pij, (19)

where Cij(x) := c iTh (xi, x
d
j ), x = [x1; · · · ; xN ]. Then as mentioned

in Section 2, the optimal permutation σ can be obtained by the
optimal permutation matrix Pσ of (19) satisfying Pσ

ij = 1/N if
j = σ (i), and 0, otherwise. Next, we introduce the entropy regu-
larization to (19) as in (3). Then, based on the optimal coupling P∗

of the entropic OT problem, we determine a target state for each
agent. Specifically, we introduce a map xtmp

i : RN×N
≥0 → X (⊂ Rn)

as a policy to determine a temporary target xtmp
i (P∗) for agent i.

We call xtmp
i a navigator function. A typical navigator function to

approximate Monge’s OT map from a coupling matrix P is the so-
called barycentric projection (Peyré & Cuturi, 2019, Remark 4.11):
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Fig. 1. Three agents {xi}, desired states {xdj }, and temporary targets {xtmp
i (P)}

determined by the barycentric projection (20) for a given coupling matrix P .

xtmp
i (P) = N

N∑
j=1

Pijxdj , P ∈ RN×N
≥0 . (20)

Note that, for a permutation matrix Pσ , it holds N
∑N

j=1 P
σ
ij x

d
j =

xdσ (i). Fig. 1 illustrates the states of three agents {xi}, destina-
tions {xdj }, and temporary targets {xtmp

i (P)} determined by the
barycentric projection (20) for a given coupling matrix P .

Now, we propose to use the control law

ui(t) = uMPC
i

(
xi(t), x

tmp
i (P∗(x(t)))

)
where

P∗(x) := argmin
P∈T ( 1NN ,

1N
N )

∑
i,j∈[[N]]

Cij(x)Pij − εH(P). (21)

n summary, for any given navigator function xtmp
i and ε > 0, the

ynamics of the agents are written as

˙i(t) = Aixi(t) + BiuMPC
i

(
xi(t), x

tmp
i

(
P∗(x(t))

))
, ∀i ∈ [[N]], (22)

xi(0) = x0i , ∀i ∈ [[N]].

The entropy regularization enables to use the Sinkhorn algo-
rithm (6), which contributes to reducing the computational bur-
den of determining target states at each time. In addition, we will
see that the entropy regularization also enables to analyze the
global convergence property of (22) in Section 6.

4.2. Integrating MPC and the Sinkhorn algorithm

In the previous subsection, it was implicitly assumed that
at each time, the optimal coupling P∗(x(t)) is available for de-
termining temporary targets for agents. The Sinkhorn algorithm
achieves a speed-up in the computation of an optimal coupling.
However, in challenging situations in which the number of agents
is very large and the sampling time is small, only a few Sinkhorn
iterations are allowed. In such a case, an available approximate
coupling matrix may not be close enough to the optimal coupling,
and therefore the above assumption is not valid. To address
this issue, in this subsection, we propose to integrate MPC and
the Sinkhorn algorithm. Since the Sinkhorn algorithm works in
discrete time, we consider a time-discretized version of (11)
obtained by e.g., a zero-order hold discretization1:

xi[k + 1] = Aixi[k] + Biui[k], k ∈ Z≥0. (23)

1 Throughout this paper, we use bold symbols for discrete-time systems while
e use italic letters for continuous-time systems.
4

Then, the cost function c iτh with a finite horizon τh ∈ Z>0 is
efined by

c iτh (x̌i, x
d
j ) := min

ui

τh−1∑
k=0

ℓi
(
xi[k], ui[k]; xdj

)
(24)

ubj. to (23),

xi[k] ∈ Xi, ui[k] ∈ Ui, ∀k ∈ [[τh − 1]] ∪ {0},

xi[0] = x̌i, (25)

xi[τh] = xdj . (26)

Denote the first control in the optimal sequence of the above
problem by uMPC

i (x̌i, xdj ). Let x[k] := [x1[k]; · · · ; xN [k]] and

P∗(x) := argmin
P∈T ( 1NN ,

1N
N )

∑
i,j∈[[N]]

Cij(x)Pij − εH(P), (27)

where Cij(x) := c iτh (xi, x
d
j ). Note that if c iτh (xi, x

d
j ) is continuous in

xi for all i ∈ [[N]], then from the relations (4), (5), P∗ is continuous.
Hence, it is expected that if we take a sampling time for (23)
appropriately so that the difference between xi[k + 1] and xi[k]
is small, then the scaling variables (α∗

[k + 1], β∗
[k + 1]) for

∗(x[k + 1]) are close to the variables (α∗
[k], β∗

[k]) for P∗(x[k]).
This implies that (α∗

[k], β∗
[k]) yield good initial estimates of

(α∗
[k + 1], β∗

[k + 1]).
Based on this observation, we present a dynamical transport

lgorithm integrating MPC and the Sinkhorn algorithm. Let S[k] ∈

>0 be the number of Sinkhorn iterations at time k. For any given
avigator function xtmp

i and ε > 0, the proposed algorithm, which
e call Sinkhorn MPC is given as the following dynamics where
he Sinkhorn algorithm behaves as a dynamic controller.

inkhorn MPC:

i[k + 1] = Aixi[k] + BiuMPC
i

(
xi[k], x

tmp
i (P[k])

)
, ∀i ∈ [[N]], (28)

P[k] = α [k, S[k] + 1]� K (x[k])β [k, S[k]]� , (29)

Sinkhorn iterations:{
α [k, l + 1] = 1N/N ⊘ [K (x[k])β[k, l]] ,
β[k, l] = 1N/N ⊘

[
K (x[k])⊤α[k, l]

]
,

l ∈ [[S[k]]], (30)

α[k + 1, 1] = α[k, S[k] + 1], (31)

xi[0] = x0i , α[0, 1] = α0,

where

Kij(x) := exp

(
−

c iτh (xi, x
d
j )

ε

)
, x = [x1; · · · ; xN ],

nd the initial value α0 ∈ RN
>0 is arbitrary. ♦

The important point here is that for the initial value α[k + 1, 1]
of the Sinkhorn iterations at time k + 1, we use the final value
α[k, S[k] + 1] of the iterations at the previous time k. When the
difference between x[k + 1] and x[k] is small, α[k, S[k] + 1] will
be a good initial estimate of the scaling variable α∗

[k + 1] for
P∗(x[k+ 1]) even if S[k] is small. A convenient way to determine
S[·] is to fix it to a suitable constant Ŝ ∈ Z>0 in terms of
computation time.

The pseudocode of Sinkhorn MPC is described in Algorithm
1. Note that, of course, the proposed method can be applied to
systems that are not discretizations of continuous-time systems
and originally evolve in discrete time.
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Algorithm 1 Sinkhorn MPC

Input: {x0i }
N
i=1, {x

d
j }

N
j=1, α0, ε, τh, S[·]

1: Initialization: xi[0] := x0i , ∀i, α := α0
2: for k = 0, 1, 2, . . . do
3: for i, j ∈ [[N]] (run in parallel) do
4: Compute c iτh (xi[k], x

d
j ) defined in (24)

5: Kij := exp
(

−
c iτh (xi[k],x

d
j )

ε

)
6: end for
7: for l = 1, 2, . . . , S[k] do
8: β := 1N/N ⊘ [K⊤α]

9: α := 1N/N ⊘ [Kβ]

10: end for
11: P := α�Kβ�

12: for i ∈ [[N]] (run in parallel) do
13: Compute uMPC

i (xi[k], x
tmp
i (P)) and apply it to the agent i

14: end for
15: end for

5. Illustrative examples

5.1. Quadratic cost

This section gives examples for Sinkhorn MPC. First we con-
ider a quadratic cost

i(xi, ui; xdj ) = ∥ui − B−1
i (xdj − Aixdj )∥

2, (32)

where we assumed the invertibility of Bi, and let Xi = Ui = Rn.
Note that for a constant input ūij := B−1

i (xdj − Aixdj ), under
which xi = xdj is an equilibrium of (23), it holds ℓi(xdj , ūij; xdj ) =

0. Then, the dynamics under Sinkhorn MPC can be written as
follows (Lewis, Vrabie, & Syrmos, 2012, Section 2.2, pp. 37–39):

xi[k + 1] = Āixi[k] + (I − Āi)x
tmp
i (P[k]), (33)

uMPC
i (xi, x̂) = −B⊤

i (A
⊤

i )
τh−1G−1

i,τh
Aτh
i (xi − x̂)

+ B−1
i (x̂ − Aix̂), ∀i ∈ [[N]], ∀xi, x̂ ∈ Rn

with (29)–(31) where

Kij(x) = exp

(
−

∥xi − xdj ∥
2
Gi

ε

)
,

i := (Aτh
i )⊤G−1

i,τh
Aτh
i , Gi,τh :=

τh−1∑
k=0

Ak
i BiB⊤

i (A
⊤

i )
k,

Āi := Ai − BiB⊤

i (A
⊤

i )
τh−1G−1

i,τh
Aτh
i .

n the examples below, we use the barycentric target (20) as a
avigator function.
First, consider (11) with

i =

[
2 1.3

−0.5 1

]
, Bi = I2, ∀i ∈ [[N]]. (34)

y using the Euler method with a step size 0.02, we obtain

i =

[
1.04 0.026

−0.01 1.02

]
, Bi = 0.02I2, ∀i ∈ [[N]]. (35)

et N = 120, ε = 2.0, τh = 100, α0 = 1N . Here, we
onsider the case where the optimal coupling P∗ is available at
ach time. Specifically, rather than using S[·] fixed beforehand for
inkhorn MPC, we employ the stopping criterion for the Sinkhorn
terations (Peyré & Cuturi, 2019, Remark 4.14) given by

P[k]1 − 1 /N∥ + ∥P[k]⊤1 − 1 /N∥ < 0.005, (36)
N N 1 N N 1

5

Fig. 2. Trajectories xi[k] = [x(1)i [k] x(2)i [k]]⊤ of 120 agents for (35) (solid), initial
tates (filled triangles), steady states (filled circles), and desired states (black
ircles).

Fig. 3. Trajectories of 14 agents out of 120 agents for (35) (solid), initial states
(magenta crosses), and desired states (black circles).

where ∥ · ∥1 denotes the ℓ1-norm. For given initial and desired
tates, the trajectories of the agents governed by (33) with (29)–
31), (35), (36) are illustrated in Figs. 2, 3. It can be seen that
he agents converge sufficiently close to the target states. We will
tudy the convergence property in Sections 6, 7. The number of
inkhorn iterations S̄[k] satisfying (36) at each time k is shown
n Fig. 4. The number of iterations is drastically reduced from
¯[0] ≃ 520 to S̄[1] ≃ 100 in one time step, and S̄ continues
o decrease as k increases. This clarifies that the optimal scaling
ariables (α∗

[k], β∗
[k]) can be used for good initial estimates of

α∗
[k + 1], β∗

[k + 1]) as expected in Section 4.2.
The computation time for one Sinkhorn iteration and the num-

er of Sinkhorn iterations S̄[0] at the initial time with different
are shown in Table 1. The algorithm has been implemented

n MATLAB on MacBook Pro with Apple M1 Pro. Table 1 also
hows the computation time for solving an optimal assignment
roblem to obtain the permutation σ (·; x[k]) by the Hungarian
lgorithm (Cao, 2022). As can be seen, the Hungarian algorithm
s not scalable and thus not suitable for MPC. Hence, introducing
he entropy regularization to MPC contributes to reducing the
omputational burden.
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Table 1
Computation time for one Sinkhorn iteration and the Hungarian algorithm, and the number of iterations S̄[0].

Computation time for one
Sinkhorn iteration

S̄[0] with
ε = 2.0

S̄[0] with
ε = 4.0

Hungarian algorithm
(Cao, 2022)

N = 120 0.0060 ms 527 267 0.1 s
N = 500 0.21 ms 381 189 0.6 s
N = 1000 0.83 ms 379 186 3.0 s
N = 3000 3.0 ms 256 129 57.0 s
ε

a
w

l
i
o
o
t
t
2
f
S
t

5

n

Fig. 4. Trajectories x(2)i [k] of 14 agents (top) and the number of Sinkhorn
terations at each time S̄[k] (bottom, semi-log plot) for (35).

5.2. Effect of the number of Sinkhorn iterations and the regulariza-
tion parameter on Sinkhorn MPC

Here, we describe how the number of Sinkhorn iterations S
affects the behavior of Sinkhorn MPC. To this end, consider a
simple case for (32) with N = 14, τh = 20, ε = 0.1, and

Ai = 1, Bi = 0.1, ∀i ∈ [[N]]. (37)

Then the trajectories of the agents with S[k] = 1, ∀k and S[k] =

5, ∀k are illustrated in Fig. 5. Also, the trajectories without the
regularization (ε = 0) following the discretized version of (18)
are shown with the black dotted lines. In this example, for all the
cases, x[k] converges to almost the same point close enough to
the desired distribution. The total energy cost

∑
i,k ∥ui[k]∥2 for

the case without the regularization is 21.6. It can be seen from
Fig. 5 that one iteration per time step is not enough to determine
an appropriate destination for each agent while performing con-
trol and results in the total energy cost 34.7. On the other hand,
the trajectories for five iterations are similar to the trajectories
without the regularization, and the total energy cost is 19.1. Note
that since we use MPC, the total cost for Sinkhorn MPC can be
smaller than for the case without the regularization as in this
example.

Next, we investigate the effect of the regularization param-
eter ε on Sinkhorn MPC. We continue to consider (37) and set
N = 7, S[k] = 1, ∀k. Then the trajectories of the agents with
ε = 0.4, 0.9 are shown in Fig. 6(a). As can be seen, the over-
shoot/undershoot is reduced for larger ε while the limiting values
of the states deviate from the desired states. In other words,
the parameter ε reflects the trade-off between the stationary
and transient behaviors of the dynamics under Sinkhorn MPC. In
fact, it is known that the convergence of the Sinkhorn algorithm
deteriorates as ε → +0 (Peyré & Cuturi, 2019, Remark 4.14); see
Table 1. This degrades the transient behaviors under Sinkhorn

MPC. Taking larger S[k] remedies this issue. The steady states ℓ

6

Fig. 5. Trajectories xi[k] of 14 agents for (37) with S[k] ≡ 1 (chain) and S[k] ≡ 5
(solid), respectively, and desired states (black circles). The black dotted lines
indicate trajectories without the regularization (ε = 0) following (18).

Fig. 6. (a) Trajectories xi[k] of 7 agents for (37) with ε = 0.9 (chain) and
= 0.4 (solid), respectively, trajectories without the regularization (dotted),

nd desired states (black circles). (b) Semi-log plot of steady states limk→∞ xi[k]
ith different ε ∈ [10−1, 102

] (solid) and desired states (dashed).

imk→∞ xi[k] for a fixed set of initial states as a function of ε are
llustrated in Fig. 6(b). Note that for different initial states, we
btained the same result or the one flipped upside down. The
btained behavior is due to the fact that as ε becomes larger,
he optimal coupling of the entropic OT problem is more blurred
o the maximum entropy coupling 1N1⊤

N /N2 (Peyré & Cuturi,
019, Proposition 4.1). The behavior of the equilibrium points
or Sinkhorn MPC as ε → +0 will be revealed in Lemma 1 in
ection 7. Although we have considered the simple setting (37),
he above observations apply to the general case.

.3. Non-quadratic cost

Lastly, we investigate the behavior of Sinkhorn MPC for the
on-quadratic cost and the bounded input spaces:

(x , u ; xd) = ∥x − xd∥2
+ ∥u − B−1(xd − A xd)∥ , (38)
i i i j i j i i j i j 1
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Fig. 7. Trajectories of 15 agents for (38) with ε = 2.0 (solid) and desired states
(black circles).

Ui =

{
ui = [u(1)

i u(2)
i ]

⊤
∈ R2

: |u(j)
i | ≤ 5, j = 1, 2

}
,

i = R2, ∀i ∈ [[N]].

ere ℓ1-norm encourages ui to be identically equal to B−1
i (xdj −

ixdj ) for a long time and is used for sparse optimal control (Ito,
keda, & Kashima, 2021; Nagahara, Quevedo, & Nešić, 2016). For
he computation of cτh and uMPC

i , we used cvx package with
ATLAB (Grant & Boyd, 2020). Set N = 15, ε = 2.0, τh =

0, S[k] = 20, ∀k and consider (35). Then, Fig. 7 shows the
rajectories under Sinkhorn MPC with the barycentric target (20).
s can be seen, the agents have achieved the desired distribution.
his result shows that Sinkhorn MPC achieves the transport also
or the non-quadratic cost.

. Global convergence property of Sinkhorn MPC

In the remainder of this paper, we investigate the fundamental
roperties of Sinkhorn MPC. In this section, we consider the case
here the sampling time for obtaining (23) is small and S is large
nough so that the dynamics (22) is well approximated by the
iscretized system (28). Then, we analyze the global convergence
roperty of the dynamics (22). To this end, we suppose the
ollowing condition holds.

ssumption 1. For all i ∈ [[N]], Xi = Ui = Rn, Bi is invertible,
nd the function ℓi satisfies

i(xi, ui; xj)
{
= 0 if xi = xj and ui = −B−1

i Aixi,
> 0 otherwise.

(39)

♦

Then, a point xe = [xe1; · · · ; xeN ] ∈ RnN satisfying

xei = xtmp
i (P∗(xe)), ∀i ∈ [[N]] (40)

is an equilibrium of (22). Indeed, by (39) and (40), the constant
input ui(t) ≡ −B−1

i Aixei , under which the state process starting
from xi(0) = xei is the constant xi(t) ≡ xei , is the unique optimal
solution of the OC problem (16) with x̌i = xei , x

d
j = xtmp

i (P∗(xe)) =

xei . Therefore,

uMPC
i

(
xei , x

tmp
i (P∗(xe))

)
= −B−1

i Aixei ,

and

Aixei + BiuMPC
i

(
xei , x

tmp
i (P∗(xe))

)
= 0.

The following proposition ensures the existence of a point satis-

fying (40).

7

Proposition 1. Assume that the codomain X of xtmp
i is a compact

convex set in Rn and for all i ∈ [[N]], xtmp
i : RN×N

≥0 → X is contin-
uous. Assume further that for all i, j ∈ [[N]], c iTh (xi, x

d
j ) is continuous

in xi. Then, the set R := {xe ∈ RnN
: xei = xtmp

i (P∗(xe)), ∀i ∈ [[N]]}

is non-empty.

Proof. Define a map h : RnN
→ RnN as

h(x) :=
[
xtmp
1 (P∗(x)); · · · ; xtmp

N (P∗(x))
]
, x ∈ RnN . (41)

It is obvious from (4), (5), and the continuity of c iTh that P∗ is
continuous. Since xtmp

i and P∗ are continuous, h is also continuous.
The set of all fixed points of h coincides with R. For brevity, we
abuse notation and regard XN as a subset of RnN . Let hX : XN

→

XN be the restriction of h to XN . Now we use Brouwer’s fixed
point theorem (see e.g., Florenzano, 2003, Corollary 1.1.1). That
is, since hX is a continuous map from a compact convex set XN

into itself, there exists a point xe ∈ XN such that xe = h(xe). □

Next, as a tool for the convergence analysis of (22), we con-
sider the entropic OT cost

E(x, xd) := min
P∈T ( 1NN ,

1N
N )

∑
i,j∈[[N]]

Cij(x)Pij − εH(P), (42)

where xd := [xd1; · · · ; xdN ]. Assume that for any i, j ∈ [[N]],
c iTh (xi, x

d
j ) is continuously differentiable with respect to xi. Then,

thanks to the regularization, E(x, xd) is continuously differen-
tiable (Peyré & Cuturi, 2019, Eq. (9.6)) with respect to x, and

∇xiE(x, x
d) =

N∑
j=1

P∗

ij (x)∇xic
i
Th (xi, x

d
j ). (43)

This is in clear contrast to the case without the entropy regu-
larization (ε = 0), in which the optimal coupling P∗(x) is not
continuous similarly to the optimal permutation σ (·; x), and thus
E with ε = 0 is not differentiable. This difference is crucial for
analyzing the global convergence property of (22) as shown in
Theorem 1. If navigator functions {xtmp

i } are designed appropri-
ately, then it is expected that the state x(t) following (22) moves
in a direction where the cost E(x(t), xd) decreases. In fact, the
following result shows that this is indeed the case and, as a result,
ensures the convergence to the set of equilibria. We say that x(t)
converges to a set M ⊂ RnN as t → ∞ if for each ϵ > 0, there
exists τ > 0 such that infp∈M ∥x(t) − p∥ < ϵ for all t ≥ τ . The
proof of Theorem 1 is shown in Appendix A.

Theorem 1. Suppose that Assumption 1 holds. Assume that for any
i ∈ [[N]] and x̂ ∈ Rn, c iTh (xi, x̂) is continuously differentiable with
respect to xi and Th. Also assume that for any i, j ∈ [[N]],

c iTh (xi, x
d
j ) → +∞ as ∥xi∥ → +∞. (44)

Assume further that for any i ∈ [[N]], there exists a constant ai > 0
such that for any x = [x1; · · · ; xN ] ∈ RnN ,

N∑
j=1

P∗

ij (x)∇1c iTh (xi, x
d
j ) = ai∇1c iTh

(
xi, x

tmp
i (P∗(x))

)
, (45)

where ∇1c iTh denotes the gradient of c iTh with respect to the first
variable. Then, for any initial state x(0) = x0 ∈ RnN , the solution x(t)
of (22) converges to the set R =

{
xe ∈ RnN

: xei = xtmp
i (P∗(xe)),

∀i ∈ [[N]]} as t → ∞. ♦

Remark 1. In the proof of Theorem 1, the linearity of the
system (11) is not used at all. Hence, the same proof works for
nonlinear systems of the form:
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ẋi = fi(xi) + gi(xi)ui,

here gi(xi) is square and invertible for any xi ∈ Rn. ♦

emark 2. Assume that R consists of only isolated points. Then
by Theorem 1, for any initial state, x(t) converges to one of the
equilibrium points in R as t → ∞. ♦

Remark 3. Let us consider the general case where the number of
agents N is not equal to the number of targets M , and the agents
and targets have mass distributions that are not necessarily uni-
form, i.e., a ̸= 1N/N, b ̸= 1M/M . Then, P∗ in the dynamics (22)
s replaced by

¯ ∗(x) := argmin
P∈T (a,b)

∑
i∈[[N]],j∈[[M]]

Cij(x)Pij − εH(P). (46)

Even in this case, the same proof as in Theorem 1 works. That is,
under the assumptions in Theorem 1, for any initial state x(0) =

x0 ∈ RnN , x(t) converges to R as t → ∞. In other words, Sinkhorn
MPC can be applied to general OT problems whereas MPC with
e.g., the Hungarian algorithm works only for OT problems that are
equivalent to assignment problems. This is one of the advantages
of the proposed method. ♦

The condition (45) gives a guideline for the design of xtmp
i .

However, it is not necessary for xtmp
i to satisfy (45) to ensure

the convergence. In fact, in Section 5, we observed that for the
non-quadratic cost (38), the barycentric projection (20), which is
not designed based on (45) achieves the transport to the target
distribution.

Next, as a specific example, we consider a quadratic cost

ℓi(xi, ui; xdj ) = ∥ui + B−1
i Aixdj ∥

2. (47)

Then the corresponding control law uMPC
i and the cost function c iTh

can be written as follows (Lewis et al., 2012, Section 3.3, pp. 138–
140):

uMPC
i (xi, x̂) = −B⊤

i Gi(xi − x̂) − B−1
i Aix̂, (48)

c iTh (xi, x̂) = ∥xi − x̂∥2
Gi

, ∀xi, x̂ ∈ Rn, ∀i ∈ [[N]], (49)

where

Gi := eA
⊤
i ThG−1

i,Th
eAiTh , Gi,Th :=

∫ Th

0
eAitBiB⊤

i e
A⊤
i tdt.

Thus, the condition (45) is rewritten as

2
N

Gi

(
xi − N

∑
j

P∗

ij (x)x
d
j

)
= 2aiGi

(
xi − xtmp

i (P∗(x))
)
.

his is fulfilled by ai = 1/N and the barycentric projection (20).
The cost function (47) does not satisfy Assumption 1 because

t does not depend on the variable xi. Nevertheless, similarly to
Theorem 1, the following convergence result holds. The proof is
given in Appendix A.

Corollary 1. Consider the quadratic cost (47) with Xi = Ui = Rn

for all i ∈ [[N]] and the barycentric target (20). Then, for any
initial state x(0) = x0 ∈ RnN , the solution x(t) of (22) con-
verges to the set R = {xe ∈ RnN

: xei = N
∑N

j=1 P
∗

ij (x
e)xdj ,

∀i ∈ [[N]]} as t → ∞. ♦

The above result justifies that the barycentric projection (20),
which is typically used to approximate Monge’s OT map from a
coupling matrix, gives an appropriate direction where the cost
E(x(t), xd) becomes smaller under Sinkhorn MPC for the quadratic
cost (47).

Theorem 1 and Corollary 1 ensure the global convergence of
the proposed method that uses the optimal coupling P∗(x(t)) at
8

each time. Hence, in terms of the convergence, it is desirable to
perform a sufficiently large number of Sinkhorn iterations at each
time to obtain a coupling close enough to P∗(x(t)). On the other
hand, as observed in Fig. 4, once we perform a sufficiently large
number of iterations at some point, we can obtain a coupling
close enough to P∗(x(t)) at later times by a smaller number of iter-
ations. This implies that we can reduce the computational burden
at later times while maintaining the convergence property.

7. Boundedness and local asymptotic stability for Sinkhorn
MPC with a quadratic cost

In this section, we consider the general case where the number
of the Sinkhorn iterations S is not necessarily large, and thus P[k]
may not be close enough to the optimal coupling P∗(x[k]). Then,
we elucidate the fundamental properties of Sinkhorn MPC on
discrete-time systems (23). Specifically, we reveal that even when
S is small, the ultimate boundedness and the local asymptotic
stability for Sinkhorn MPC hold for the quadratic cost (32) and
Xi = Ui = Rn. Hereafter, we assume the invertibility of Bi. In
addition, for notational simplicity, we deal only with the case
where just one Sinkhorn iteration is performed at each time,
i.e., S[k] = 1, ∀k. Nevertheless, by similar argument, all of the
results in this section are still valid when more iterations are per-
formed. For convenience, we recall the dynamics under Sinkhorn
MPC with S[k] ≡ 1:

xi[k + 1] = Āixi[k] + (I − Āi)x
tmp
i (P[k]), ∀i ∈ [[N]], (50)

P[k] = α[k + 1]�K (x[k])β[k]�, (51)

α[k + 1] = 1N/N ⊘ [K (x[k])β[k]] , (52)

β[k] = 1N/N ⊘
[
K (x[k])⊤α[k]

]
, (53)

xi[0] = x0i , α[0] = α0.

7.1. Ultimate boundedness for Sinkhorn MPC

Here, we assume that for the codomain X of xtmp
i , there exists

a constant r̄ > 0 such that

∥x∥ ≤ r̄, ∀x ∈ X . (54)

For example, if X is the convex hull of {xdj }j, we can take r̄ =

maxj ∥xdj ∥. It is known that, under the assumption that Bi is
invertible, Āi is stable, i.e., the spectral radius ρi of Āi satisfies
ρi < 1 (Kwon & Pearson, 1975, Corollary 1). Using this fact, we
derive the ultimate boundedness of (50) with (51)–(53).

Proposition 2. Assume that there exists a constant r̄ > 0 satisfying
(54). Then, for any δ > 0, {x0i }i, and {νi}i satisfying νi > 0, ρi +νi <

, ∀i ∈ [[N]], there exist κi(νi) > 0, i ∈ [[N]] and τ (δ, {x0i }, {νi}) ∈

Z>0 such that the solution {xi}i of (50) with (51)–(53) satisfies

∥xi[k]∥ < δ +
κi r̄∥I − Āi∥2

1 − (ρi + νi)
, ∀k ≥ τ , ∀i ∈ [[N]]. (55)

Proof. Let ũi[k] := (I − Āi)x
tmp
i (P[k]). Then, it follows from (54)

hat

ũi[k]∥ ≤ r̄∥I − Āi∥2, ∀k ∈ Z≥0.

y Golub and Van Loan (2013, Lemma 7.3.2), for any νi > 0, there
xists κi(νi) > 0 such that

Āk
i ∥2 ≤ κi(ρi + νi)k, ∀k ∈ Z≥0.

Hence, the desired result is straightforward from

∥xi[k]∥ ≤ ∥Āk
i ∥2∥x0i ∥ +

k∑
∥Ās−1

i ∥2∥ũi[k − s]∥. □
s=1
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We emphasize that Proposition 2 holds for any navigator
function xtmp

i whose codomain X satisfies (54).

.2. Existence of the equilibrium points

In the remainder of this section, we focus on the barycentric
arget (20). For (x, β) ∈ RnN

×RN
>0 and Xd

:= [xd1 · · · xdN ] ∈ Rn×N ,
define

f1(x, β) := {Āi}
�
i x + N{In − Āi}

�
i (Xd)�,Nvec(P̃(x, β)),

f2(x, β) := 1N/N ⊘
[
K (f1(x, β))⊤(1N/N ⊘ [K (x)β])

]
,

P̃(x, β) := (1N/N ⊘ [K (x)β])� K (x)β�.

Then, the collective dynamics (50)–(53) is rewritten as

x[k + 1] = f1(x[k], β[k]), (56)

β[k + 1] = f2(x[k], β[k]). (57)

A point xe = [xe1; · · · ; xeN ] ∈ RnN is an equilibrium of
(56), (57) if and only if

(In − Āi)
(
xei − N

N∑
j=1

P∗

ij (x
e)xdj

)
= 0, ∀i ∈ [[N]].

Here note that P∗ satisfies

P∗

ij (x) = α∗

i Kij(x)β∗

j , α∗, β∗
∈ RN

>0, (58)

α∗
= 1N/N ⊘

[
K (x)β∗

]
, β∗

= 1N/N ⊘
[
K (x)⊤α∗

]
. (59)

The stability of Āi implies that it has no eigenvalue equal to 1, and
therefore In − Āi is invertible. Thus, the necessary and sufficient
condition for the equilibria is given by

xei − N
N∑
j=1

P∗

ij (x
e)xdj = 0, ∀i ∈ [[N]], (60)

which coincides with (40). Similarly to Proposition 1, we show
the existence of an equilibrium.

Corollary 2. The dynamics (56), (57) has at least one equilibrium
point (xe, βe) ∈ RnN

× (RN
>0/∼).

Proof. Note that if a point xe ∈ RnN satisfies (60), the correspond-
ing βe

∈ RN
>0/∼ is uniquely determined by βe

= β∗ in (59) with
x = xe (Peyré & Cuturi, 2019, Theorem 4.2). Note also that for any
i ∈ [[N]] and any x ∈ RnN , N

∑N
j=1 P

∗

ij (x)x
d
j belongs to the convex

hull X of {xdj }j. Then, by the same argument as in the proof of
Proposition 1, we obtain the desired result. □

Sometimes, in order to emphasize the dependence of (xe, βe)
on ε, we write (xe(ε), βe(ε)).

7.3. Local asymptotic stability for Sinkhorn MPC

Next, we analyze the stability of the equilibrium points. For
this purpose, the following lemma is crucial when ε is small. The
proof is shown in Appendix B.

Lemma 1. Assume that xdi ̸= xdj for all (i, j), i ̸= j, and Ai is
invertible for all i ∈ [[N]]. For a permutation σ : [[N]] → [[N]], define
xd(σ ) := [xdσ (1); · · · ; xdσ (N)] and a permutation matrix Pσ

= (Pσ
ij ) as

Pσ
ij := 1/N if j = σ (i), and 0, otherwise. Then for any permutation σ ,

there exists an equilibrium (xe(ε), βe(ε)) of (56), (57) such that xe(ε)
and P∗(xe(ε)) converge exponentially to xd(σ ) and Pσ , respectively,
as ε → +0, i.e., there exists ζ > 0 such that
9

lim
ε→+0

∥η(ε)∥2

exp(−ζ/ε)
= 0

or η(ε) = xe(ε) − xd(σ ) and η(ε) = P∗(xe(ε)) − Pσ . ♦

Denote by Exp(σ ) the set of all equilibria (xe(·), βe(·)) of (56),
57) having the property in Lemma 1 for a permutation σ .

For P̄ ∈ RN×N and x = [x1; · · · ; xN ] ∈ RnN , define

VP̄ (x) :=

N∑
i=1

xi − N
N∑
j=1

P̄ijxdj
2
Gi

.

Then, VP̄ is a Lyapunov function of (56) where P̃(x, β) is fixed by
P̄ (Mayne, Rawlings, Rao, & Scokaert, 2000). Indeed, we have

VP̄ (x[k + 1]) − VP̄ (x[k]) ≤ −

N∑
i=1

W1,i(xi[k], P̄)

1,i(xi, P̄) :=

B⊤

i (A
⊤

i )
τh−1G−1

i,τh
Aτh
i

(
xi − N

N∑
j=1

P̄ijxdj
)2.

iven an equilibrium (xe, βe), let us take the optimal coupling
e
:= P∗(xe) as P̄ , and for γ > 0, define

(x, β) := VPe (x) + γ dH(β, βe), (x, β) ∈ RnN
× (RN

>0/∼). (61)

he following theorem follows from the fact that, for sufficiently
mall or large ε > 0 and large γ > 0, V behaves as a Lyapunov
unction of (56), (57) with respect to (xe, βe). We give the proof
n Appendix B.

heorem 2. Assume that for all i ∈ [[N]], Ai is invertible. Then the
ollowing hold:

(i) Assume that (xe, βe) is an isolated equilibrium of (56), (57).
Then, for sufficiently large ε > 0, (xe, βe) is locally asymptoti-
cally stable.

(ii) Assume that xdi ̸= xdj for all (i, j), i ̸= j. Assume further that
for some ε′ > 0, (xe(ε′), βe(ε′)) is an isolated equilibrium of
(56), (57) and for some permutation σ , (xe(·), βe(·)) ∈ Exp(σ ).
Then, for sufficiently small ε > 0, (xe(ε), βe(ε)) is locally
asymptotically stable. ♦

.4. Interpretation of Sinkhorn MPC as an alternating descent and
scent method

Lastly, we give an interpretation of Sinkhorn MPC. We con-
inue to work on the quadratic cost (32) with the barycentric tar-
et (20). First, similarly to (42) for the continuous-time systems,
onsider the entropic OT cost

(x, xd) := min
P∈T ( 1NN ,

1N
N )

∑
i,j∈[[N]]

Cij(x)Pij − εH(P), (62)

where Cij(x) = ∥xi − xdj ∥
2
Gi
. Since it holds

∇xiE(x, x
d) = 2Gi

N∑
j=1

P∗

ij (x)(xi − xdj ),

a point x satisfying the following is a stationary point of E.

xi − N
N∑
j=1

P∗

ij (x)x
d
j = 0, ∀i ∈ [[N]]. (63)

This is exactly the condition (60) for the equilibrium points xe of
(56), (57). Hence, Sinkhorn MPC can be viewed as a cost-effective
search method to find the stationary points of the associated
entropic OT cost E.
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Next, we introduce the dual problem associated with (62):

E(x, xd) = max
f,g∈RN

Q (f, g; x),

Q (f, g; x) := f⊤(1N/N) + g⊤(1N/N) − ε(ef/ε)⊤K (x)eg/ε,

here ef/ε ∈ RN denotes the element-wise exponential of f/ε.
et f[k] = ε log(α[k]), g[k] = ε log(β[k]) for scaling variables
f the Sinkhorn algorithm (6) where (log(α))i = log(αi). Then,
he Sinkhorn iterations (6) are equivalent to a block coordi-
ate ascent (Peyré & Cuturi, 2019, Remark 4.21), which updates
lternatively f and g to cancel the respective gradients

fQ (f, g; x) = 1N/N − ef/ε ⊙ (K (x)eg/ε),

gQ (f, g; x) = 1N/N − eg/ε ⊙ (K (x)⊤ef/ε),

here ⊙ denotes element-wise multiplication. On the other
and, the gradient with respect to xi is

∇xiQ (f[k + 1], g[k]; x)

=

∑
j∈[[N]]

αi[k + 1]βj[k] exp

(
−

c iτh (xi, x
d
j )

ε

)
∇xic

i
τh
(xi, xdj )

=

∑
j∈[[N]]

Pij[k]∇xic
i
τh
(xi, xdj ), (64)

which has the same form as (43). Now, let us consider the case
when the dynamics (11) is well approximated by the discretized
system (23). Then using the same derivation as for (A.3) in the
proof of Theorem 1, along the trajectory x(t) following

ẋi(t) = Aixi(t) + BiuMPC
i

(
xi(t), x

tmp
i (P[k])

)
, (65)

we have
d
dt

Q (f[k + 1], g[k]; x(t)){
< 0, xi(t) ̸= xtmp

i (P[k]), ∃i ∈ [[N]],

= 0, xi(t) = xtmp
i (P[k]), ∀i ∈ [[N]],

(66)

here Q is the continuous-time version of Q :

(f, g; x) := f⊤(1N/N) + g⊤(1N/N) − ε(ef/ε)⊤K (x)eg/ε

≃ Q (f, g; x).

Therefore, if the sampling time is small, the state trajectory x[k]
moves in a direction where Q (f[k+1], g[k]; x[k]) decreases. Note
that the above argument applies to the general cost under the
assumptions in Theorem 1.

In summary, Sinkhorn MPC can be interpreted as an alternat-
ing descent and ascent method to seek a solution of the minimax
problem

min
x∈RnN

max
f,g∈RN

Q (f, g; x),

where the minimizers satisfy (63).

8. Conclusion

In this paper, we presented the concept of Sinkhorn MPC,
which integrates MPC and the Sinkhorn algorithm to achieve scal-
able, cost-effective transport over dynamical systems. The numer-
ical examples described the usefulness of the proposed method.
Moreover, thanks to the entropy regularization, under some as-
sumptions, we ensured the global convergence for Sinkhorn MPC,
which is one of the most important properties of transport algo-
rithms. Furthermore, for linear systems with a quadratic cost, we
analyzed the ultimate boundedness and the local asymptotic sta-
bility for Sinkhorn MPC based on the stability of the constrained
MPC and the conventional Sinkhorn algorithm.
10
On the other hand, in the numerical example, we observed
that the regularization parameter plays a key role in the trade-off
between the stationary and transient behaviors for Sinkhorn MPC.
Hence, an important direction for future work is to investigate the
design of a time-varying regularization parameter to balance the
trade-off. In addition, although we focused on the case where an
OT problem is equivalent to an assignment problem, in Remark 3,
we mentioned that the convergence result for Sinkhorn MPC still
holds in more general settings. Hence, it is also interesting to
explore applications of Sinkhorn MPC for general OT problems.
In this paper, for simplicity, we assumed the invertibility of Bi for
the convergence analysis. Possible relaxation of this assumption
will be reported in a future publication.
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Appendix A. Proofs of Theorem 1 and Corollary 1

A.1. Proof of Theorem 1

We prove Theorem 1 by using LaSalle’s invariance princi-
ple (Khalil, 2002, Theorem 4.4).

Proposition 3. Suppose that there exist a constant d ∈ R and a
continuously differentiable function V : RnN

→ R such that the
sublevel set ΩV (d) := {x ∈ RnN

: V (x) ≤ d} is bounded, and
d
dt V (x(t))|x(t)=x′ ≤ 0 for all x′

∈ ΩV (d). Let

V (d) :=

{
x′

∈ ΩV (d) :
dV (x(t))

dt

⏐⏐⏐⏐
x(t)=x′

= 0

}
,

and let M be the largest invariant set in RV (d). Then every solution
of (22) starting in ΩV (d) converges to M as t → ∞. ♦

As a candidate for the above function V , we choose E(x, xd).
The time derivative of E(x(t), xd) along the trajectory of (22) is
given by
d
dt

E(x(t), xd) = ∇xE(x(t), xd)⊤ẋ(t)

= [∇x1E(x(t), x
d); · · · ; ∇xN E(x(t), x

d)]⊤ẋ(t)

=

N∑
i=1

N∑
j=1

P∗

ij (x(t))∇xic
i
Th (xi(t), x

d
j )

⊤

×

(
Aixi(t) + BiuMPC

i

(
xi(t), x

tmp
i

(
P∗(x(t))

)))
, (A.1)

where we used (43). By the same argument as in the proof
of Chen and Shaw (1982, Theorem 1), which derives the stability
for MPC with a terminal equality constraint, under the differen-
tiability of c iTh (xi, x̂) with respect to xi and Th, it can be shown
that

∇xic
i
Th (xi, x̂)

⊤
(
Aixi + BiuMPC

i (xi, x̂)
)

≤ −ℓi
(
xi, uMPC

i (xi, x̂); x̂
)
, ∀i ∈ [[N]], ∀xi, x̂ ∈ Rn. (A.2)

By (45) and (A.2), it holds
d
dt

E(x(t), xd) =

∑
i

ai∇1c iTh
(
xi(t), x

tmp
i

(
P∗(x(t))

))⊤
×

(
A x (t) + B uMPC

(
x (t), xtmp(P∗(x(t))

)))

i i i i i i
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E

a

∀

I

R

v

≤ −

∑
i

aiℓi
(
xi(t), uMPC

i

(
xi(t), x

tmp
i

(
P∗(x(t))

))
; xtmp

i

(
P∗(x(t))

))
.

Therefore, by (39) in Assumption 1,

d
dt

E(x(t), xd)
{
< 0, xi(t) ̸= xtmp

i

(
P∗(x(t))

)
, ∃i ∈ [[N]],

= 0, xi(t) = xtmp
i

(
P∗(x(t))

)
, ∀i ∈ [[N]].

(A.3)

Next, we show that for any d ∈ R such that the sublevel
set ΩE (d) := {x ∈ RnN

: E(x, xd) ≤ d} is non-empty, ΩE (d) is
bounded. Since for all P ∈ T (1N/N, 1N/N),

H(P) ≤ −

(∑
i,j

1
N2 log

(
1
N2

))
+ 1 = 2 logN + 1,

t holds for any x ∈ RnN ,

(x, xd) ≥

∑
i,j∈[[N]]

P∗

ij (x)c
i
Th (xi, x

d
j ) − ε(2 logN + 1)

≥

∑
i∈[[N]]

1
N

min
j

c iTh (xi, x
d
j ) − ε(2 logN + 1) =: E(x, xd).

Hence, for any d ∈ R,

ΩE (d) ⊆ {x ∈ RnN
: E(x, xd) ≤ d} =: ΩE (d).

In addition, by (44), ΩE (d) is bounded, and therefore ΩE (d) is also
bounded.

For any d ∈ R, let

RE (d) :=

{
x′

∈ ΩE (d) :
dE(x(t), xd)

dt

⏐⏐⏐⏐
x(t)=x′

= 0

}
=
{
x′

∈ ΩE (d) : x′

i = xtmp
i (P∗(x′)), ∀i ∈ [[N]]

}
.

Since any point in RE (d) is an equilibrium of (22) by (40), the
largest invariant set in RE (d) is RE (d) itself. Therefore, by (A.3)
nd Proposition 3, for any x(0) = x0 ∈ ΩE (d), x(t) converges to

the largest invariant setRE (d). By the arbitrariness of d, we obtain
the desired result.

A.2. Proof of Corollary 1

Note that c iTh (xi, x̂) given by (49) is continuously differentiable
with respect to xi and Th, and satisfies (44). Then by the same
argument as in the proof of Theorem 1, we obtain

d
dt

E(x(t), xd)

≤ −
1
N

∑
i

uMPC
i

(
xi(t), x

tmp
i

(
P∗(x(t))

))
+ B−1

i Aix
tmp
i

(
P∗(x(t))

)2.
Let R′

:= {x ∈ RnN
: uMPC

i (xi, x
tmp
i (P∗(x))) = −B−1

i Aix
tmp
i (P∗(x)),

i ∈ [[N]]}. Then, it holds

d
dt

E(x(t), xd)
{
< 0, x(t) /∈ R′,

= 0, x(t) ∈ R′.
(A.4)

n addition, by (48), we have
′
=
{
x ∈ RnN

: xi = xtmp
i (P∗(x)), ∀i ∈ [[N]]

}
= R.

Finally, by applying again the same argument as in the proof of
Theorem 1, we obtain the desired result.

Appendix B. Proofs of Lemma 1 and Theorem 2
11
B.1. Proof of Lemma 1

Here, we abuse notation and identify P ∈ RN×N
≥0 as p =

ec(P) ∈ RN2

≥0. It is known that the set of vertices of the Birkhoff
polytope P := T (1N/N, 1N/N) is equal to the set of all permuta-
tion matrices (Birkhoff, 1946). Now, define

ξ (x) := min
P∈T ( 1NN ,

1N
N )

∑
i,j∈[[N]]

Cij(x)Pij. (B.1)

Then, the set of optimal solutions of (B.1) is the intersection of P
and the hyperplane H(x) := {P ∈ RN×N

≥0 :
∑

i,j Cij(x)Pij = ξ (x)}.
Note that since Ai is invertible, Gi is also invertible. Then,

by Cij(x) = ∥xi − xdj ∥
2
Gi

and the assumption xdi ̸= xdj , for any
σ , the problem (B.1) with x = xd(σ ) admits a unique optimal
solution Pσ , i.e., P ∩ H(xd(σ )) = {Pσ

}. In addition, since the
normal vector vec(C (x)) of the hyperplane H(x) is continuous with
respect to x, we can take a neighborhood Br (xd(σ )) where (B.1)
with x ∈ Br (xd(σ )) has the unique solution Pσ . By the uniqueness
and Cominetti and San Martín (1994, Proposition 5.1), for any
x ∈ Br (xd(σ )), P∗(x) converges exponentially to Pσ as ε → +0.
Therefore, for any δ > 0, we can choose sufficiently small ε > 0
such that

h(x) ∈ Xσ ,δ, ∀x ∈ Br (xd(σ )), (B.2)

Xσ ,δ :=
{
x ∈ RnN

: xd(σ ) − δ1nN ≤ x ≤ xd(σ ) + δ1nN
}
,

where h is defined in (41), and the inequality sign between vec-
tors should be understood element-wise. Hence, by considering
the restriction of h to Xσ ,δ , the same argument as in the proof
of Proposition 1 shows that for sufficiently small δ and ε, there
exists at least one equilibrium xe(ε) ∈ Xσ ,δ ⊂ Br (xd(σ )). In
addition, xe(ε) converges to xd(σ ) by letting δ tend to zero, which
implies ε → +0.

Moreover, the exponential convergence of P∗(x) for any x ∈

Br (xd(σ )) implies that |P∗

ij (x
e(ε)) − Pσ

ij | decays exponentially fast
to 0 as ε → +0. Lastly, for the convergence rate of xe(ε), we have

∥xei (ε) − xdσ (i)∥ =

N N∑
j=1

P∗

ij (x
e(ε))xdj − N

N∑
j=1

Pσ
ij x

d
j


≤ N

N∑
j=1

|P∗

ij (x
e(ε)) − Pσ

ij |∥x
d
j ∥, ∀i ∈ [[N]].

Thus, xe(ε) converges exponentially to xd(σ ) as ε → +0.

B.2. Proof of Theorem 2

We prove only (ii) as the proof is similar for (i). In this proof,
we regard (x(·), β(·)) as a trajectory in a metric space RnN

×

(RN
>0/∼) with the metric d((x, β), (x′, β ′)) := ∥x−x′

∥+dH(β, β ′).
Fix any (xe, βe) ∈ Exp(σ ) satisfying the assumption in (ii). By
definition, it is trivial that V in (61) is positive definite on a neigh-
borhood of (xe, βe). Moreover, for any (x, β) ∈ RnN

×(RN
>0/∼), we

have

V (f1(x, β), f2(x, β)) − V (x, β)

≤

N∑
i=1

{Āi

(
xi − N

∑
j

P̃ij(x, β)xdj
)

+ N
∑

j

(P̃ij(x, β) − Pe
ij )x

d
j

2
Gi

−

xi − N
∑

j

Pe
ijx

d
j

2
Gi

}
+ γ (−W3(x, β) + W4(x, β) + W5(x, β))

≤

N∑
i=1

(
−W1,i(xi, P̃(x, β)) + W2,i(x, β)

)
+ γ (−W (x, β) + W (x, β) + W (x, β)) =: W (x, β),
3 4 5
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here we used the triangle inequality for dH, and

2,i(x, β) := 2
(
xi − N

∑
j∈[[N]]

P̃ij(x, β)xdj
)⊤

(Āi − In)⊤Gi

× N
∑
j∈[[N]]

(P̃ij(x, β) − Pe
ij )x

d
j ,

W3(x, β) := [1 − λ(K (x))λ (K (f1(x, β)))] dH(β, βe),

W4(x, β) := dH(K (f1(x, β))⊤αe, (K e)⊤αe),
W5(x, β) := λ (K (f1(x, β))) dH(K (x)βe, K eβe),
K e

:= K (xe), αe
:= 1N/N ⊘ [K eβe

].

In the sequel, we explain that sufficiently small ε and large γ
enable us to take a neighborhood Br (xe, βe) where

(x, β) < 0, ∀(x, β) ∈ Br (xe, βe)\{(xe, βe)}, (B.3)

which means the asymptotic stability of (xe, βe) (Krabs & Pickl,
2010, Theorem 1.3).

First, a straightforward calculation yields, for any i, j ∈ [[N]], l ∈
[[n]] and any (x, β) ∈ RnN

× (RN
>0/∼),⏐⏐⏐⏐ ∂

∂xi,l
P̃ij(x, β)

⏐⏐⏐⏐ ≤
2Nḡi,j,l

ε
P̃ij(x, β)

(
1
N

− P̃ij(x, β)
)

,

xi = [xi,1 · · · xi,n]⊤,

¯i,j,l := max
k̸=j

|g⊤

i,l (x
d
j − xdk)|, Gi = [gi,1 · · · gi,n]⊤.

By Lemma 1, under the assumption xdi ̸= xdj , i ̸= j, P̃ij(xe(ε), βe(ε))
converges exponentially to 0 or 1/N as ε → +0. Hence, the vari-
ation of W2,i with respect to x around (xe(ε), βe(ε)) can be made
arbitrarily small by using sufficiently small ε = ε1. In addition,
since γ > 0 can be chosen independently of ε, sufficiently large
γ = γ̄ enables us to take a neighborhood Br1 (x

e, βe) where
N∑
i=1

(
−

1
2
W1,i

(
xi, P̃(x, β)

)
+ W2,i(x, β)

)
+ γ

(
−

1
2
W3(x, β)

)
< 0, ∀(x, β) ∈ Br1 (x

e, βe)\{(xe, βe)}. (B.4)

Next, it follows from (xe, βe) ∈ Exp(σ ) that

∇xiKij|x=xe(ε) = −
2
ε
exp

(
−

∥xei (ε) − xdj ∥
2
Gi

ε

)
× Gi(xei (ε) − xdj ) → 0, as ε → +0.

ince W4 and W5 depend on (x, β) only via K , their variation
round (xe(ε), βe(ε)) can be made arbitrarily small by taking
ufficiently small ε > 0. Therefore, under the assumption that
xe(ε), βe(ε)) is isolated, for any given γ > 0, we can take ε =

2(γ ) such that there exists a neighborhood Br2 (x
e, βe) where

N∑
i=1

(
−

1
2
W1,i(xi, P̃(x, β))

)
+ γ

(
−

1
2
W3(x, β) + W4(x, β) + W5(x, β)

)
< 0,

∀(x, β) ∈ Br2 (x
e, βe)\{(xe, βe)}. (B.5)

By combining (B.4) and (B.5), we obtain (B.3) for r = min
{r1, r2}, γ = γ̄ , and ε = min{ε1, ε2(γ̄ )}, which completes the
proof.
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