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Recent studies have documented frequent evolution of clones carrying common 
cancer mutations in apparently normal tissues, which are implicated in cancer 
development1–3. However, our knowledge is still missing with regard to what additional 
driver events take place in what order, before one or more of these clones in normal 
tissues ultimately evolve to cancer. Here, using phylogenetic analyses of multiple 
microdissected samples from both cancer and non-cancer lesions, we show unique 
evolutionary histories of breast cancers harbouring der(1;16), a common driver 
alteration found in roughly 20% of breast cancers. The approximate timing of early 
evolutionary events was estimated from the mutation rate measured in normal 
epithelial cells. In der(1;16)(+) cancers, the derivative chromosome was acquired from 
early puberty to late adolescence, followed by the emergence of a common ancestor 
by the patient’s early 30s, from which both cancer and non-cancer clones evolved. 
Replacing the pre-existing mammary epithelium in the following years, these clones 
occupied a large area within the premenopausal breast tissues by the time of cancer 
diagnosis. Evolution of multiple independent cancer founders from the non-cancer 
ancestors was common, contributing to intratumour heterogeneity. The number  
of driver events did not correlate with histology, suggesting the role of local 
microenvironments and/or epigenetic driver events. A similar evolutionary pattern 
was also observed in another case evolving from an AKT1-mutated founder. Taken 
together, our findings provide new insight into how breast cancer evolves.

Revolutionized sequencing technologies have enabled a series of  
recent studies on clones evolving in apparently normal tissues, which 
are documented by sensitively detecting clone-defining somatic muta-
tions1–7. In view of cancer development, a key observation through 
these studies is that clonal outgrowth in normal or non-cancer tissues 
is common, often pervasive and frequently driven by common cancer 
mutations1. This immediately points to an important implication to 
the early history of cancer that one or more of those positively selected 
non-cancer clones should be destined for subsequent cancer devel-
opment1,8. Here, among key questions that studies on normal tissues 
cannot answer are when cancer arises from these non-cancer clones 
by acquiring what additional mutations, while other clones partially 
sharing common mutations are still normal or precancer, and what 
the difference in mutation profile is between cancer clones and those 
non-cancer relatives. Phylogenetic analyses using multisampling of  
cancer specimens have been used to infer the life history of cancer 
in terms of driver events. However, analyses of cancer tissue alone 

frequently obscure the order of early driver events that are often 
assigned together to a long major trunk in the phylogenetic tree9–11. 
Moreover, they do not help map the timing at which cancer clones 
emerged or track the fate of other related non-cancer clones. To answer 
these issues, analyses of both cancer and non-cancer lesions are abso-
lutely needed, although these are frequently hampered by the fact that 
at the time of cancer diagnosis or surgery, genetically related non-cancer 
clones are probably swept out by rapidly expanded cancer clones8,12,13.

Breast cancer is one of the most prevalent cancers among women. 
Annually, 2.3 million women are diagnosed with breast cancer world-
wide, with 685,000 deaths reported in 2020, and the incidence is still 
increasing in many countries14,15. Whereas so far there have been no large 
studies of clonal expansion in normal breast tissues, several reports 
have shown that, in some patients, cancer is accompanied by satellite 
benign breast lesions (BBLs), such as proliferative lesions with and 
without atypia, wherein both lesions share common genetic altera-
tions and hence a common ancestor16–20. The phylogenetic analysis of 
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such cases containing both cancer and associated BBLs could provide 
a unique opportunity to decipher the entire life history and evolution-
ary dynamics of breast cancer, which are instrumental in understand-
ing when and where the breast cancer ancestor is born and evolves to 
acquire the cancer phenotype, and also to establish new strategies to 
predict or even prevent breast cancer development21,22.

In the current study, we performed whole-genome sequencing (WGS) 
of multiple microscale samples obtained by laser-capture microdissec-
tion (LCM) from both cancer and clonally related BBLs, together with 
apparently normal lobules. Then, on the basis of the rate of mutation 
accumulation estimated from WGS of single-cell-derived organoids 
established from mammary epithelia, we reconstructed the phyloge-
netic trees including both cancer and non-cancer clones to infer the 
entire history of breast cancer.

Mutations in mammary epithelium
To estimate the rate of mutation accumulation in normal mammary 
epithelial cells with ageing, we established 71 single-cell-derived orga-
noids from epithelial cell adhesion molecule (EpCAM)-positive cells 
isolated from histologically normal mammary tissues in patients with 
breast cancer or from breast milk provided by healthy volunteers who 
were breastfeeding (Methods, Extended Data Fig. 1a, Supplementary 
Note 1 and Supplementary Fig. 1). Excluding six organoids for which 
polyclonal origins were suspected and another with a germline CDH1 
mutation, we finally evaluated somatic mutations for 64 organoids 
established from six pre- (n = 20) and nine postmenopausal (n = 32) 
patients with breast cancer and 12 from six healthy women (Fig. 1a 
and Extended Data Figs. 1 and 2). The mutation distribution in 15 orga-
noids showed a minor subpeak at a variant allele frequency (VAF) less 
than 0.25 corresponding to subclonal mutations acquired during cell 
culture, which were eliminated assuming a Gaussian mixture model 
(Methods). We identified a total of 58,385 single nucleotide variants 

(SNVs) and 3,955 small insertions and deletions (indels) as clonal 
somatic variants, including four PIK3CA mutations (Fig. 1a). When fit 
to the known Catalogue Of Somatic Mutations In Cancer (COSMIC) 
single base substitution (SBS) signatures, most SNVs were assigned 
to three clock-like signatures23, SBS1 (9.9%), SBS5 (80.7%) and SBS40 
(9.4%). SBS1 is characterized by the prominence of C>T transitions at 
CpG dinucleotides resulting from the spontaneous deamination of 
5-methyl-cytosine24, whereas SBS5 and SBS40 are ‘flat’ signatures of 
unknown aetiology24,25, which are difficult to separate from each other 
and, hence, designated collectively as ‘SBS5/40’ in the subsequent 
analyses. According to the linear regression model, the number of 
SNVs significantly depended on age at sample collection, years after 
menopause, parity and the presence of a driver mutation. SNVs were 
accumulated at 19.5 mutations per genome per year before menopause, 
which was reduced to 8.1 mutations per genome per year after meno-
pause, while the mutation number was reduced by 54.8 per delivery 
(Fig. 1b,c). The mutation rate was also affected by PIK3CA mutations, 
which increased the number of SNVs by 210.4, although this needs to be 
validated using additional PIK3CA-mutant clones, because the number 
of driver-mutated samples was still small (n = 4). The accumulation rate 
of indels was also reduced by 45%, from 1.3 mutations per genome per 
year before to 0.72 mutations per genome per year after menopause, 
while the mutation number was spared by 3.9 per delivery (Fig. 1d,e).

History of breast cancer evolution
The evolutionary history of breast cancer was then investigated using 
phylogenetic analysis using those surgical specimens that contained 
both pathologically confirmed cancer and multifocal (three or more) 
non-cancer proliferative lesions (greater than or equal to 3 mm in diame-
ter). After reviewing pathology reports of 156 patients with breast cancer,  
we found five patients for whom formalin-fixed paraffin-embedded 
(FFPE) specimens fulfilling the above-mentioned criteria had been 
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Fig. 1 | Mutations in normal mammary epithelium. a, Summary of SNVs found 
in 64 single-cell-derived organoids established from six healthy premenopausal 
breastfeeding women (healthy volunteers) and six premenopausal and nine 
postmenopausal patients with breast cancer (BC). Information about 
participant’s age, driver mutations and the presence or absence of WGA, are 
shown in the top panel. The stacked bar plots in the middle and bottom panels 
show the number of mutations and the proportion of indicated mutational 
signatures, respectively. b,d, The number of SNVs (b) and indels (d) in organoids 

(n = 64) are plotted for participant’s age. Regression lines assuming a zero 
intercept are applied to mean number of mutations for each participant (n = 21) 
and age, with R2 and P values from the two-sided F-test (grey dashed lines).  
c,e, Linear regression models were applied to 61 organoids with information on 
age at menopause and parity. Estimates of coefficients that significantly affect 
the number of mutations in the linear regression model are shown for SNVs  
(c) and indels (e), with 95% CI and P values from the two-sided t-test.
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preserved. We obtained multiple microscale samples (2.9 mm (0.5–10) 
in diameter on average) from both cancer and non-cancer lesions (13.8 
per patient) using LCM (Extended Data Fig. 3). We analysed a total of 
69 LCM samples for somatic mutations and copy-number alterations 
(CNAs) using WGS, based on which we reconstructed phylogenetic trees 
(Methods, Supplementary Notes 1 and 2 and Supplementary Figs. 2 
and 4). These samples comprised histologically normal lobules (n = 6), 
non-proliferative (n = 1) and proliferative lesions (n = 33), classic-type 
lobular carcinoma in situ (LCIS) (n = 1), ductal carcinoma in situ (DCIS) 
(n = 20) and invasive ductal carcinoma (IDC) (n = 8). All patients were in 
their 40s, premenopause and carried Luminal A-like IDC (n = 3) (KU539, 
KU779 and KU957) or oestrogen receptor (ER) (+) human epidermal 
growth factor receptor 2 (HER2) (−) DCIS (n = 2) (KU582 and KU873) 
(Supplementary Table 1). As was the case with normal organoids, the 
mutations in non-cancer lesions were dominated by SBS1 and SBS5/40 
mutations (Fig. 2a and Extended Data Figs. 4 and 5). A minority of lesions 
had varying contributions from APOBEC-related signatures (that is, 
SBS2 and SBS13, ref. 23) in peripheral branches, which supports the 

role of APOBEC-induced mutagenesis during relatively late phases of 
carcinogenesis (Extended Data Fig. 4c).

In all five cases, the phylogenetic trees comprised just one or two large 
clades, in which frequently acquiring unique driver alterations of their 
own, multiple progenies derived from a single common ancestor evolved 
to give rise to both cancer and BBLs. These progenies expanded over 
years and by the time of cancer diagnosis, occupied a large area in the 
affected breast, replenishing both cancer and non-cancer tissues as well 
as normal ones (Fig. 2a and Extended Data Fig. 5). Conspicuously, in four 
of the five cases, the most recent common ancestors (MRCAs) in each 
clade harboured der(1;16) (Fig. 2 and Extended Data Fig. 5a–c). Moreover, 
in KU779 and KU539, there were two independent der(1;16)(+) clones 
having distinct breakpoints, suggesting a strong selective advantage 
conferred by der(1;16) (Fig. 2a,d and Extended Data Fig. 5a). der(1;16) is 
a recurrent abnormal chromosome highly characteristic of Luminal A 
breast cancer, particularly those with invasive lobular histology (ILC)26 
and generated by an unbalanced translocation that fuses chromosome 
1q and 16p arms near centromere sequences, that is, der(1;16)(q10;p10), 
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leading to 1q gain and 16q loss in common (Fig. 2b,c). The widespread  
distribution of der(1;16) clones was further investigated using fluores-
cence in situ hybridization (FISH) by detecting unbalanced chromo-
somal copy numbers of 1q and 16q arms. Showing varying histologies, 
including non-cancer proliferative lesions, LCIS, DCIS and IDC, the 
der(1;16)(+) clones were widely distributed within the mammary gland, 
spanning 62 mm (range 35–90 mm) regions on average (Fig. 2a and 
Extended Data Figs. 3c and 5a–c). der(1;16) signals were also detected in 
histologically normal lobules (Fig. 2a and Extended Data Figs. 3c and 5b).

In line with previous reports9,10, all cancer clones found in the large DCIS 
and IDC lesions in KU779 (nos. 7a–e and 11a–e) were branched off from a 
long common trunk with short branches, which otherwise obscured the 
past history of these cancer clones (Fig. 2a). However, many normal and 
BBL samples collected at the same time enabled the analysis of the early 
history of these cancer clones, although the very recent history was still 
unclear. In addition, we were able to estimate the approximate timing 
of early branch points in the tree using the mutation rate measured for 
normal mammary epithelial cells. In particular, the timing of the acquisi-
tion of der(1;16) was more accurately pinpointed than that of other driver 
events, by maximizing the posterior probability of the observed numbers 
of duplicated and unduplicated mutations on 1q arm in der(1;16)(+) 
MRCA (Extended Data Fig. 6a–d and Methods). On an average, der(1;16) 
in six clones was estimated to be acquired at 10.6 (range 5.8−16.9) years of 
age (Fig. 2a and Extended Data Fig. 5a–c). We also estimated the average 
timing at which MRCA emerged as 26.5 (range 18.1–34.4) years of age, 
assuming a constant mutation rate until the emergence of the MRCA. 
For example, two distinct der(1;16) detected in a 48-year-old woman 
(KU779) were estimated to occur in two mammary cells at the ages of 5.8 
and 10.0 years, respectively (Fig. 2a). These ancestor cells then gave rise 
to the MRCAs at the ages of 18.1 and 22.3 years, respectively, from which a 
number of non-cancer progenies evolved, followed by the appearance of 
cancer founders at least 10 years after the initial acquisition of der(1;16). 
In the remaining case (KU582) lacking der(1;16), the MRCA carrying an 
AKT1 mutation emerged by 4.4 years of age. It was 9.0 years later when 
the most recent common non-cancer ancestor of cancer clones was 
confirmed (Extended Data Fig. 5d). Targeted-capture sequencing of 
additional LCM samples for mutations in the main trunk confirmed that 
AKT1-mutated lobules derived from the MRCA widely expanded over 
the 65 mm area, showing a variety of histologies, including proliferative 
and non-proliferative as well as DCIS lesions (Extended Data Figs. 3c 
and, 5d). Of particular interest is the observation that multiple cancer 
founders (nos. 7a–e, 10, 14 and 15 in Fig. 2a, for example) independently 
evolved from non-cancer ancestors (blue arrows in Fig. 2a and Extended 
Data Fig. 5a,c,d) (KU779, KU539, KU957 and KU582). This suggests that a 
cancer population can be initiated at different time points by multiple 
independent cancer founders originating from common ‘non-cancer’ 
ancestors (Extended Data Fig. 6e).

Because these cancer and non-cancer lesions shared many driver 
alterations, in addition to der(1;16) and an AKT1 mutation, and had an 
identical germline background, WGS of these lesions provides a unique 
opportunity to investigate the critical genetic events that discrimi-
nate among IDC, DCIS, non-cancer proliferative lesions and histologi-
cally normal lobules. In some cases, additional driver alterations were 
observed only in high grade lesions but not in non-cancer clones in 
the most recent clade, whereas the opposite was true of other lobules 
(Fig. 2a and Extended Data Fig. 5). In KU873, for example, a DCIS clone 
(in no. 3) had two driver mutations in GATA3 and CBFB in addition to 
der(1;16) and a PTEN mutation, whereas no additional driver mutations 
were found in the remaining seven non-cancer lesions except for no. 
8 carrying a GATA3 mutation (Extended Data Fig. 5b). Conversely, in 
KU779, a DCIS lobule (no. 14) had no known driver alterations other 
than der(1;16), whereas lobules in the same clade (nos. 3, 4, 8, 9 and 13)  
were still proliferative lesions without progression to DCIS or IDC, 
although they acquired an additional PIK3CA (E726K) with or without 
a RUNX1 (P267fs) and another PIK3CA (H1047R) mutation, or a PIK3CA 

(E545K) mutation (Fig. 2a). In KU539, the DCIS clone in no. 5 had two 
driver mutations in PIK3CA and CBFB in addition to a GATA3 mutation 
and der(1;16), although the invasive cancer clone (in no. 4) in the same 
clade had no additional driver alterations (Extended Data Fig. 5a).  
Similarly, no additional driver alterations were found in DCIS clones 
(in nos. 1 and 2) in KU957, whereas proliferative but non-cancer lesions 
(nos. 4 and 7) carried an additional copy of chromosomes 10 and 15q, 
respectively, with no. 4 also carrying an IDH1 mutation (Extended Data 
Fig. 5c). Overall, the most common additional mutations acquired 
during evolution were those affecting PIK3CA and GATA3 (Extended 
Data Fig. 5e), which showed no clear correlations with cancer clones, 
although they are among the most frequent mutations in breast  
cancer27,28. Thus, no consistent patterns of additional driver mutations 
were observed between cancer and non-cancer clones.

Characterization of der(1;16)(+) cancers
The unexpected enrichment of der(1;16) in the five index cases sug-
gested that the widespread expansion of satellite lesions of varying 
histology was a common feature of der(1;16)(+) breast cancer. To con-
firm this, we screened another set of 33 specimens of Luminal A-like 
invasive cancer (n = 28) or its putative precursor lesion (ER(+)HER2(−) 
DCIS) (n = 5) for der(1;16) using FISH and identified an additional eight 
der(1;16)(+) specimens, two from premenopausal and six from post-
menopausal patients (Fig. 3a and Extended Data Figs. 7 and 8). As was 
the case with der(1;16)(+) clones in the index specimens (Fig. 2a and 
Extended Data Fig. 5a–c), which were all from premenopausal patients, 
the two der(1;16)(+) clones in premenopausal patients showed a macro-
scopic expansion over an area greater than 20 mm in diameter (Fig. 3b 
and Extended Data Fig. 7), supporting the above-mentioned hypothesis. 
By contrast, most of the remaining der(1;16)(+) clones from six post-
menopausal patients were found in cancer lesions, rarely involving 
non-cancer lesions and, if ever, the surrounding der(1;16)(+) non-cancer 
lesions were confined within small lobules less than 10 mm in diameter 
(Fig. 3a,b and Extended Data Fig. 8a–e). To exclude the possibility that 
this was due to the late acquisition of der(1;16), we estimated the timing 
of der(1;16) acquisition in five of the six postmenopausal patients on the 
basis of phylogenetic analysis. Of interest, the mean age of the acqui-
sition of der(1;16) in the five postmenopausal patients was estimated 
as 11.7 years (0–18.7), which is comparable to the 10.6 years (5.8–16.9) 
(P = 0.54) in premenopausal patients (Fig. 3c,d). Thus, we speculate 
that there should have been a larger expansion of der(1;16)(+) clones, 
including non-cancer lesions, before menopause, which, however, 
regressed after menopause in the face of reduced oestrogen levels.

At the onset of puberty, the mammary glands start to proliferate 
rapidly and undergo a remarkable expansion until the end of adoles-
cence29,30. Thus, to see whether the large expansion of der(1;16)(+) 
clones could be explained only by the physiological enlargement of 
the growing mammary glands in this period, we evaluated the extent 
to which der(1;16)(−) non-cancer clones can expand after puberty. 
For this purpose, we microdissected multiple non-cancer lobules of 
the surgically resected and fresh-frozen specimens from three newly 
recruited premenopausal patients with breast cancer (Supplementary 
Table 1 and Methods). On average, 2.1 (1–6) LCM samples were collected 
from each of the 10 × 10 mm2 areas aligned over 40–50 mm lengths 
from three consecutive tissue slices separated from adjacent slices by 
10 mm (Fig. 4a and Extended Data Fig. 9). In total, we collected 77 LCM 
samples, comprising 66 histologically normal lobules, eight prolifera-
tive and three classic-type LCIS lesions, which were subjected to WGS 
(Methods, Supplementary Note 1 and Supplementary Fig. 3). Six of the 
eight proliferative lobules harboured one or more breast cancer driver 
mutations (Fig. 4b,c). Driver mutations were also found in histologically 
normal lobules, although less common (12 of 66, P = 2.0 × 10−3), in which 
PIK3CA and PIK3R1 were significantly mutated (dN/dS > 1.0) (Fig. 4c 
and Supplementary Table 10). The presence of driver mutations was 
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associated with a higher clonality as suggested by a significantly larger 
median VAF of mutations in driver-mutated versus unmutated samples 
(0.33 versus 0.25, P = 1.8 × 10−3), supporting the role of driver mutations 
in positive selection (Fig. 4d). One patient had a known pathogenic ger-
mline BRCA2 variant that, however, did not seem to influence the clonal-
ity in normal lobules (Extended Data Fig. 9a,d). Among 48 clones that 
were estimated to have emerged by 1 year of age, 13 (27.1%) involved two 
or more lobules, of which three clones affected the lobules more than 
10 mm apart (Fig. 4e,f). By contrast, only five (9.3%) of 54 clones that 
emerged after 13 years affected two or more lobules, all of which were 
still confined within an area less than or equal to 10 mm in diameter. 
These observations indicate that most of the der(1;16)(−) clones that 
emerge after puberty stay within a single lobule or, if not, are confined 
to adjacent lobules and rarely expand to a larger area as observed for 
those carrying der(1;16). Thus, the large expansion of all der(1;16)(+)  
clones is not explained only by the physiological development of the 
breasts during puberty but suggests the driver role of der(1;16). The 
role of der(1;16) in clonal expansion is further highlighted by the unex-
pected detection of der(1;16) in three LCIS lesions in KU1215, which was 
shared with an ILC lesion located in another quadrant and shown to have 
expanded over the region spanning more than 70 mm in diameter in 
the subsequent FISH analysis (Extended Data Fig. 9b,c).

Role of der(1;16) in clonal expansion
Finally, we characterized clinical and pathological features of  
der(1;16)(+) breast cancers and also investigated its role in breast cancer 
pathogenesis, using published data of 610 breast cancer cases from  
The Cancer Genome Atlas (TCGA) (Extended Data Fig. 10). According to 
the copy-number measurement based on exome sequencing2, der(1;16) 
was detected in 119 (19.5%) cases as a concomitant whole-arm 1q gain 
and 16q loss (Extended Data Fig. 10b). In accordance with previous 
reports26,31, most of the der(1;16)(+) cases (86.6%) were classified as 
Luminal A-type cancers (Extended Data Fig. 10c), in which der(1;16) was 

more enriched in the ILC tumours compared to that in the IDC tumours 
(49.6 versus 12.7%, P = 3.2 × 10−16) (Extended Data Fig. 10e). Whereas 
Luminal A tumours generally have a favourable prognosis, der(1;16)(+) 
tumours were associated with a significantly longer overall survival than 
der(1;16)(−) Luminal A tumours (a median of 33.1 months, compared with 
28.3 months, P = 1.0 × 10−3) (Extended Data Fig. 10h). In multivariable 
analysis, der(1;16) remained to be a significant predictor of prolonged 
overall survival, even after adjustment for age and stage (P = 2.4 × 10−3, 
Supplementary Table 16). These pathological subtypes and mutation 
profiles were largely recapitulated in the der(1;16)(+) tumours that were 
analysed (Extended Data Fig. 8f). After excluding PIK3CA, which was 
frequently mutated in both der(1;16)(+) and der(1;16)(−) cases, the most 
frequent mutational targets in der(1;16)(+) Luminal A tumours included 
CDH1, and GATA3 and CBFB in ILC and IDC tumours, respectively. MAP2K4 
and TP53 mutations were less common compared to those in der(1;16)(−) 
tumours (Extended Data Fig. 10i,j and Supplementary Table 17). CDH1 
is a putative target of 16q deletion26,32 and was mutated in 86 (14.1%) of 
the 610 TCGA cancer cases. Among these, most cases (94%) had bial-
lelic alteration, in which most were associated with der(1;16) (n = 46), 
followed by other 16q loss (n = 21) and 16q UPD (n = 14). Heterozygous 
mutation was found in only five cases. Except for one frameshift change, 
all were variants of unknown significance that were rarely registered 
in the COSMIC database. These findings indicate that CDH1 is a bona 
fide recessive tumour suppressor gene, and haploid loss of CDH1 alone 
may not be sufficient for positive selection or clonal expansion during 
breast cancer development. Regarding this, we analysed the effect of the 
allelic imbalance caused by der(1;16) on gene expression in 323 Luminal 
A cancer cases, including 103 der(1;16)(+) cases from the TCGA. The 
mean expression levels of 1q and 16q genes were substantially increased 
or decreased in der(1;16)(+) cases compared to those in cases without 
1q gain or 16q loss, respectively (Extended Data Fig. 10k). In particular, 
the mean expression levels of CDH1 in der(1;16)(+) cases without CDH1 
mutations were almost halved compared with those in cases without 
16q loss. However, the effect of haploid gain and loss was not confined 
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to CDH1 but also seen in other known or putative oncogenes and tumour 
suppressor genes27,28, although the effect was highly variable across 
genes. Thus, the exact molecular targets of der(1;16) are still elusive.

Discussion
Through phylogenetic analyses, we successfully traced the evolution 
of breast cancer and precursor lesions, from the acquisition of initial 
driver alterations to the development of clinically diagnosed disease. 
The absolute timing and the order of early driver events were more accu-
rately estimated than in previous studies9–11,33,34 by analysing both cancer 
and non-cancer lesions and by using the rate of mutation accumulation 

measured for normal mammary epithelium. As demonstrated in a 
recent study on myeloproliferative neoplasms35, the first driver events 
occurred long before the cancer diagnosis, around puberty or late 
adolescence or, in one case, as early as in early infancy. However, unlike 
the case with the myeloproliferative neoplasms study, discrimination 
between cancer and non-cancer clones along the evolutionary tree was 
enabled to some time point after the acquisition of initial driver events. 
In most cases, the appearance of the MRCA of cancer and non-cancer 
clones was no earlier than the patient’s 20s to early 30s. Thus, it seems 
to still take more than 10 years from the acquisition of the initial driver 
alterations (at 6–17 years of age) before the initial cancer founders 
appear. Expanding along the mammary ducts, these clones ultimately 

Case KU1206 (51 y.o., premenopausal)
DCIS (high grade, ER+) 

DCIS

A
B

C
10 mm

a

b

0

0.1

0.2

0.3

0.4

0.5

0.6

Driver(−)
(n = 54)

Driver(+)
(n = 12)

Driver(−)
(n = 2)

Driver(+)
(n = 6)

M
ed

ia
n 

V
A

F

Normal lobules Proliferative lesions

P = 1.8 × 10–3

P = 6.6 × 10–1

P = 3.1 × 10–2

P = 7.1 × 10–2

P = 1.8 × 10–4

d Germline BRCA2 positive (1 case)None (2 cases)

Normal lobules
(n = 66)

Proliferative lesions
(n = 8)

P
ro

p
or

tio
n 

of
 lo

b
ul

es
w

ith
 d

riv
er

 a
lte

ra
tio

ns

0

0.2

0.4

0.6

0.8

1.0

e

0

0.2

0.4

0.6

0.8

1.0

Clones at 1 y.o.
(n = 48)

P
ro

p
or

tio
n 

of
 c

lo
ne

s
d

et
ec

te
d

 in
 ≥

2 
lo

b
ul

es

Clones at 13 y.o.
(n = 54)

P = 2.1 × 10–2

P = 2.0 × 10–3

f

c

0

5

10

PIK3CAPIK3R1MAP3K1GATA3 TP53 1q gain
Driver alterations

N
um

b
er

 o
f c

lo
ne

s
w

ith
 m

ut
at

io
ns

Detected in normal lobules

Detected in normal lobules and
proliferative lesions
Detected in proliferative lesions

Germline

BRCA2 positive (1 case)
None (2 cases)

0

10

20

30

40

50

Clones at 1 y.o.
(n = 48)

Clones at 13 y.o.
(n = 54)

M
ax

im
um

 d
ia

m
et

er
 (m

m
) P = 2.2 × 10–1

d
11

126
7

8
10

15

14

9

13

1
54

32

24

2118 20

22

25
23

1917
16

A

C

Skin

Nipple

B

Fibroglandular tissueAdipose tissue

SBS2SBS1 SBS5/40
SBS signature

Clones at 13 y.o., 
expanding in ≥2 lobules

Clones9930438720

84999993

99
99

99

4
76 87

0

200

400

600

800

S
N

V
 n

um
b

er P
IK
3C

A
 (E

81
K

)

P
IK
3C

A
 (H

10
47

R
)

P
IK
3C

A
 (Q

54
6P

)

P
IK
3C

A
 (N

10
44

K
)

1

2

11
12

4

16

17

18

14

15 20
21

22

19 23

24

6

13 7

9

10

8

25
3

P
IK
3R

1 
(Y

21
7f

s)

5

PIK3CA (H1047R)

Histology

Proliferative without atypia

Normal

BBL

Fig. 4 | Clonal expansion of non-cancer clones without der(1;16).  
a, Phylogenetic tree (left) and corresponding geographical maps of clones 
detected in non-cancer lobules multi-sampled from the contralateral quadrant 
of the cancer-containing quadrant in a premenopausal patients with breast 
cancer without pathogenic germline variants (KU1206) (middle shows an 
overview of the surgical specimen, right shows split faces of the sliced specimens 
indicated by black dotted lines in the overview image). SBS signatures, bootstrap 
values, driver mutations, histological results and numbers are shown as in 
Fig. 2a. Numbers with the same colour depict samples belonging to the same 
clones that were present at the age of 1 year. As for clones that were present at 
the age of 13 years and detected in two or more lobules, corresponding shared 
branches in the trees and samples in the split faces are highlighted by colours 
and depicted with colours around circles, respectively. Scale bar, 10 mm.  

b, Proportion of lobules with driver alterations in histologically normal lobules 
(n = 66) and proliferative lesions (n = 8), with P values calculated using two-sided 
Fisher’s exact test. c, Number of clones carrying each driver alteration detected 
in the normal lobules and/or proliferative lesions. d, Median VAF in histologically 
normal lobules and proliferative lesions with and without driver alterations, 
with P values from the two-sided Mann–Whitney U-test. e,f, Proportion of 
der(1;16)(–) non-cancer clones detected in two or more lobules (e), and the 
maximum diameter of the area where each clone was observed (f); the clones 
present at the age of 1 year and 13 years, with P values from two-sided Fisher’s 
exact test (e) and the two-sided Mann–Whitney U-test (f), respectively. Whiskers 
in b and e indicate the 95% CI from the binomial distribution. The colours of 
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occupied an unexpectedly large area in the breast by the time of cancer 
diagnosis. Of note, the cancer clones often evolved multifocally from 
clonally related but still ‘non-cancer’ ancestors. Being distinct from 
the classical linear model for the evolution of a single cancer founder, 
such a branching pattern of evolution of multiple cancer founders from 
within a non-cancer population might be more common than expected 
during cancer development (Extended Data Fig. 6e). Another finding of 
interest is the lack of consistent correlations between histologies and 
the number and/or type of driver events. Although we cannot exclude 
the possibility of the presence of undetected driver mutations and 
structural variations, this may suggest the role of epigenetic changes36 
and/or locally defined microenvironments in cancer development.

It should be noted that such a unique pattern of cancer evolution 
could be biased by the selection of specimens harbouring multiple 
satellite BBLs for LCM, which was highly enriched for der(1;16). The 
analysis of additional cases with der(1;16) confirmed that the presence 
of persistent non-cancer clones in a large area is an intrinsic feature of 
der(1;16)(+) breast cancer at least in premenopausal cases. The parallel 
evolution of multiple independent der(1;16) clones in two cases sup-
ports the strong driver role of der(1;16) in puberty or late adolescence. 
Accounting for 20% of all breast cancers and one- and two-thirds of 
Luminal A and invasive lobular breast cancers, respectively, der(1;16) 
defines a major subtype of breast cancers. However, it is still open to 
question whether or not this pattern of cancer evolution is also com-
mon in other breast cancer subtypes. It was observed at least in an 
AKT1-mutated case (KU582). Mutations affecting PIK3CA and PIK3R1 
are among the most frequent targets of somatic mutations in breast 
cancer27,28 and also common in apparently normal mammary lobules 
(10 out of 66 lobules) (Fig. 4a and Extended Data Fig. 9a,b). However, 
none of the clones carrying these mutations showed a widespread 
expansion. Further investigations are needed to clarify this.

Another finding of interest is the mutational profile of mammary 
epithelium, which is distinct from that in other tissues1,37,38. Through-
out a woman’s lifespan, the mammary epithelium undergoes dynamic 
changes that are synchronized with menstrual cycles as well as preg-
nancy, delivery and breastfeeding thereafter29,30,39–42, which is also 
reflected by its unique mutation profile. A significantly reduced 
mutation rate after menopause might be explained by the reduced 
cell turnover associated with the cessation of menstrual cycles and/
or reduced oestrogen levels. In agreement with this is the negative 
effect on accumulation of mutations imposed by pregnancy or delivery, 
during which menstrual cycles are spared. The findings on mutation 
profile are also in agreement with the epidemiological findings that 
late menopause and low parity correlate with an elevated risk of breast 
cancer development43–45. However, the reduction of 50 SNVs per parity  
seems substantially larger than expected from the typical period  
(1.1–1.5 years) when menstrual cycles are interrupted by pregnancy and 
breastfeeding (roughly 30 SNVs)46. This raises the possibility that after 
the effacement of markedly proliferated mammary glands after delivery 
or breastfeeding, the mammary epithelium might be reconstructed 
by newly recruited, ‘dormant’ stem cells, in which the SNV burden had 
been spared. Such dormant stem cells have been proposed to explain 
the disappearance of clones carrying tobacco signatures in bronchial 
epithelium after cessation of tobacco smoking47.

In summary, we revealed mutational processes in the mammary 
epithelium and the entire life history of breast cancer, highlighting a 
unique role of der(1;16) in the major subset of Luminal A breast cancer. 
Our findings may contribute to the understanding of breast carcino-
genesis and the development of new strategies for prediction, early 
diagnosis and even prevention of breast cancer.
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Methods

Data reporting
No statistical methods were used to determine the sample size. The 
experiments were not randomized. Pathologists were blinded to the 
genetic alterations in each sample during histopathological evaluation.

Participants and materials
We enroled 207 female patients with breast cancer who underwent 
surgery at the Kyoto University Hospital and eight healthy breastfeed-
ing women who delivered at the Kyoto University Hospital or Adachi 
Hospital. Written informed consent was obtained from all the partici-
pants. The study was reviewed and approved by the ethics committees 
of the Kyoto University and Adachi Hospital, and all the participants 
consented to publication of data. The characteristics of the participants 
are summarized in Supplementary Table 1. Invasive cancer lesions in 
FFPE surgical specimens were immunostained for ER (no dilution), PR 
(no dilution), HER2 (no dilution) and Ki-67 (1:100 dilution), for which 
histological grade was also evaluated according to the modified Scarff–
Bloom–Richardson grading system48, to surrogate cancer subtypes. 
The cut-off for ER and PR-positivity was set at greater than or equal to 
1%. For HER2 status, immunohistochemistry scores of 0 and 1+ were 
considered negative, whereas 3+ was considered positive. Tumours 
with scores of 2+ were further evaluated by means of dual colour in situ 
hybridization, wherein an HER2/CEP17 ratio greater than or equal to 
2.2 was considered positive. The Ki-67 labelling index was determined 
in the hotspots. Surrogate subtype classification was defined as fol-
lows: Luminal A-like, ER(+) and HER2(−) and histological grade 1 or 2 
and Ki-67 less than or equal to 15%; Luminal B-like, ER(+) and HER2(−)  
and histological grade 3 or Ki-67 greater than 15%; Luminal HER2, ER(+) 
and HER2(+); HER2-enriched, ER(−) and HER2(+); triple-negative breast 
cancer (TNBC), ER(−) and HER2(−). Only the nuclear grade was evalu-
ated for DCIS classification according to the WHO Classification of 
Tumours of the Breast49; ER, PR, HER2 and Ki-67 were not routinely evalu-
ated. BBLs were also evaluated according to the World Health Organiza-
tion (WHO) classification and classified as follows: non-proliferative 
lesions (fibroadenoma without atypia, columnar cell change and  
apocrine metaplasia), proliferative lesions without atypia (usual ductal 
hyperplasia, columnar cell hyperplasia, sclerosing adenosis, radial 
scar and papilloma) and proliferative lesions with atypia (flat epithelial 
atypia, atypical ductal hyperplasia and atypical lobular hyperplasia). 
Classic-type LCIS was also classified as BBL per the recent clinical prac-
tice wherein LCIS and atypical lobular hyperplasia were grouped as 
‘lobular neoplasia’, which is considered to be a risk factor for cancer 
development but is not an obligate precursor of invasive cancer22,50. 
When a lesion consisted of two or more differentially classified epi-
thelia, the most severe diagnostic category was assigned. Breast can-
cers were classified by referring to the medical records, whereas BBLs 
and cancer lesions subjected to genetic analysis were independently 
reviewed by three experienced pathologists blinded to the genetic 
alterations. In case a unanimous agreement was not reached for the 
lesions, the most experienced pathologist reviewed them again and 
determined the consensus diagnosis.

To establish normal epithelial cell-derived organoids, fresh normal 
breast tissue and matched blood samples were obtained from 15 patients 
with breast cancer who underwent total mastectomy, and excess breast 
milk and oral mucosa were obtained from eight healthy breastfeed-
ing women. For the analysis of cancer-related clonal evolution, 156 
patients with cancer who underwent surgery without any preoperative 
treatment were screened by searching terms related to proliferative 
lesions in the pathological reports, based on which five archival FFPE 
surgical specimens and matched blood DNA or FFPE normal lymph 
nodes were provided by the Kyoto Breast Cancer Research Network 
(KBCRN) Breast Oncology Research Network (BORN)-BioBank. We also 
obtained an additional 33 FFPE surgical specimens and five matched 

FFPE normal lymph node or skin samples from the BORN-Biobank, for 
which tumour cores in the tissue microarray had already been evalu-
ated for surrogate subtype classification. To investigate the structures 
of der(1;16)(−) non-cancer clones, fresh-frozen tissues and matched 
blood samples were obtained from three breast cancer patients who 
had undergone total mastectomy; FFPE surgical specimens were also 
used for one of three patients. The sample information is summarized 
in Supplementary Table 2.

External datasets
Whole-exome sequencing (WES) data (.bam files) of paired tumour and 
germline control samples from female patients with invasive breast 
cancer (n = 661) were downloaded from TCGA data portal (https://por-
tal.gdc.cancer.gov/). The .bam files were converted to the fastq format 
using biobambam51 (v.0.0.191) and processed using the Genomon2  
pipeline (v.2.6) for mutation calling (below) and our in-house pipeline 
‘CNACS’ for copy-number analysis as described by Yokoyama et al.2. 
RNA-sequencing (RNA-seq) data in the transcripts per million (TPM) 
format were also downloaded from the TCGA data portal. Clinicopatho-
logical information of these samples was also downloaded from TCGA 
data portal, whereas the information about PAM50 messenger RNA 
subtypes was extracted from the study by Ciriello et al.32; if data were 
lacking, information was extracted from TCGA Network27. Samples  
included in this study are summarized in Supplementary Table 2.

Organoid culture
Single normal epithelial cell-derived organoids were established 
according to the protocols described by Lim et al.52, Wong et al.53 and 
Dekkers et al.54, with some modifications. First, single-cell suspensions 
were obtained from normal breast tissues of patients with breast cancer 
or the breast milk of healthy breastfeeding women. Fresh mammary 
tissue from the contralateral quadrant of the cancer-containing one 
was obtained from surgical specimens, which were confirmed to be 
pathologically normal by three pathologists reviewing the haematoxy-
lin and eosin (HE)-stained fresh-frozen and FFPE sections. The tissue 
was minced manually and digested for 8–10 h at 37 °C with 150 U ml−1 
collagenase I (Thermo Fisher Scientific (Thermo)), 50 U ml−1 hyaluro-
nidase (Merck) and 100 U ml−1 DNase I (Roche) in Dulbecco’s modified 
Eagle’s medium (DMEM)/F-12 supplemented with 5% fetal bovine serum 
(FBS), 0.5 mM glutamine (Thermo), 5 μg ml−1 insulin (Merck), 10 ng ml−1 
epidermal growth factor (EGF) (PeproTech) and 500 ng ml−1 hydrocorti-
sone (Merck)52. The resulting cell suspension was sequentially digested 
with 0.25% trypsin and 1 mM EDTA (1 min, 37 °C), and 5 mg ml−1 dispase 
(Thermo; 1 min, 37 °C). A single-cell suspension was obtained by means 
of filtration through a 40 μm cell strainer (Corning) after removing red 
blood cells using RBC Lysis Solution (QIAGEN). Excess breast milk was 
stored at 4 °C and transported to the laboratory within 24 h. Milk was 
diluted 1:1 with PBS and centrifuged at 1,000g for 10 min (ref. 53). The 
supernatant, including milk fat, was discarded and the cell pellet was 
washed 3–5 times with PBS; a single-cell suspension was then obtained 
by means of filtration through a 40 μm cell strainer.

Next, mammary epithelial cells were isolated from the single- 
cell suspension using CD326 EpCAM MicroBeads (Miltenyi Biotec 
(Miltenyi)) (1:5 dilution) and the MACS Cell Separation System (Miltenyi)  
according to the manufacturer’s instructions. For the cell suspension 
obtained from the breast milk of healthy participants without available 
paired oral mucosa, the negative selection was performed using CD45 
MicroBeads (Miltenyi) (1:5 dilution) before EpCAM-positive epithelial 
cell isolation to use CD45-positive leukocytes as paired control samples 
for WGS.

The isolated epithelial cells were cultured using two different 
methods. In culture method 1, the cells were resuspended in Matrigel  
(Corning) at a density of 5,000–20,000 cells per ml for tissue-derived 
cells and 20,000–80,000 cells per ml for milk-derived cells; 100 μl 
suspension was seeded into each well of six-well plates, which was filled 
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with 2 ml DMEM/F-12 supplemented with 1× B27 supplement (Thermo), 
0.5 mM glutamine, 5 μg ml−1 insulin, 10 ng ml−1 EGF, 500 ng ml−1 hydro-
cortisone, 20 ng ml−1 cholera toxin (Merck), 100 U ml−1 penicillin and 
100 μg ml−1 streptomycin52. The cells were cultured for 13–37 days 
(median 17 days) until the organoids grew to equal to or more than 
80 μm in diameter and were collected. In culture method 2, the  
epithelial cells that had been stocked frozen in CELLBANKER 1 (Takara 
Bio (Takara)) were suspended in 25 μl Matrigel and plated on 48-well 
plates, wherein each well was filled with the culture medium based on 
the previous protocols54 with modifications: 250 μl DMEM/F-12 supple-
mented with 10 mM HEPES, 1× B27 supplement, 2 mM glutamine, 10 nM 
Gastrin I (Merck), 1 mM N-acetylcysteine (FUJIFILM Wako Pure Chemical 
(FUJIFILM)), 1 μg ml−1 R-Spondin 1 (R&D Systems), 5 nM Neuregulin 1 
(PeproTech), 20 ng ml−1 FGF-10 (PeproTech), 5 ng ml−1 EGF, 100 ng ml−1 
Noggin (PeproTech), 500 nM A83-01 (Tocris Bioscience), 5 μM Y-27632 
(FUJIFILM), 0.5 μg ml−1 hydrocortisone (Selleck Chemicals), 100 nM 
β-Oestradiol (Cayman Chemical Company), 10 μM Forskolin (Merck), 
100 U ml−1 penicillin, 100 μg ml−1 streptomycin and 10% Afamin-Wnt-3A 
serum-free conditioned medium55. After 15–82 days (median 20 days) 
of primary culture, single-cell-derived organoids were established by 
seeding dissociated cells at a limiting dilution, treated with TrypLE 
Express (Thermo) and then cultured for 13–88 days (median 15 days).  
In total, we established 71 single-cell-derived organoids from 15 patients 
with breast cancer and eight healthy participants.

LCM
FFPE surgical specimens from patients with breast cancer were pre-
pared for LCM using the protocol described by Uehiro et al.56. Individual 
10 μm-thick FFPE specimens were placed on PEN membrane (4 μm)- 
coated glass slides (Leica Microsystems (Leica)) and immunohisto-
chemically stained with pan-cytokeratin antibody cocktails (AE1/
AE3) no. 412811 (NICHIREI) (no dilution). HistoZyme (Diagnostic  
BioSystems) was used for antigen retrieval, and the VECTOR Red  
Alkaline Phosphatase Substrate Kit (VECTOR Laboratories) was used 
for visualization. For the analysis of der(1;16)(−) non-cancer lobules, 
surgical specimens of premenopausal patients with breast cancer who 
underwent total mastectomy were sliced into 10-mm-wide slices and 
10 × 10 mm2 tissues were consecutively obtained from the slices of the 
contralateral quadrant of the cancer-containing one and immediately 
frozen. Frozen tissues were sectioned using a cryostat CM1950 (Leica). 
Ten micrometre-thick sections were placed on PEN membrane-coated 
slides and stained with Mayer’s Hematoxylin solution (FUJIFILM) and 
Eosin Y (FUJIFILM). LCM of the stained FFPE and frozen tissue slides was 
performed using the LMD7000 or LMD7 system (Leica). The patholo-
gists reviewed the HE-stained slides, and CK5- and E-cadherin-stained 
slides (1:100 and 1:50 dilutions, respectively) if needed, for each of the 
10–15 sequentially sectioned 10-μm-thick LCM slides and diagnosed 
each dissected lesion.

WGS
The DNA extracted from each single organoid established in culture 
method 1 was divided into two aliquots, each of which was indepen-
dently subjected to whole-genome amplification (WGA) with the 
REPLI-g Single Cell Kit (QIAGEN) and analysed by means of WGS and 
subsequent validation sequencing3. DNA from the fresh organoids 
successfully expanded in culture method 2, peripheral blood, oral 
mucosa and leukocytes derived from breast milk was extracted using 
the QuickGene DNA whole blood kit (Kurabo Industries), Gentra  
Puregene Kit (QIAGEN), QIAamp DNA Blood Mini Kit (QIAGEN) or 
QIAamp DNA Micro Kit (QIAGEN). DNA from FFPE and fresh-frozen 
LCM samples was extracted using the GeneRead DNA FFPE Kit (QIAGEN) 
and Maxwell 16 Cell LEV DNA Purification Kit (Promega), respectively.

WGS libraries were prepared as follows: 100 ng of the WGA DNA 
extracted from single organoids in culture method 1 was used to pre-
pare a library using the TruSeq Nano DNA Library Prep Kit (Illumina) 

or Lotus DNA Library Prep Kit (Integrated DNA Technologies (IDT)); 
5–50 ng of DNA extracted from fresh organoids in culture method 
2 was used to prepare a library using the xGen Prism DNA Library 
Prep Kit (IDT); 10–200 ng of DNA extracted from FFPE LCM samples 
was used to prepare a library using the SMARTer ThruPLEX DNA-seq 
Kit (Takara) or xGen Prism DNA Library Prep Kit; 2.5–30 ng of DNA 
extracted from fresh-frozen LCM samples was used to prepare a library 
using the Lotus DNA Library Prep Kit. These libraries were sequenced 
on a NovaSeq 6000 system (Illumina) or DNBSEQ-G400RS (MGI Tech) 
in 100–150-basepair (bp) paired-end mode, according to the manufac-
turer’s instructions. In total, paired WGA samples from 65 organoids, 
six fresh organoid samples, 84 FFPE LCM samples, 79 fresh-frozen 
LCM samples and 36 matched germline controls were used. The tar-
get coverage was 35× for FFPE samples and 30× for other types of 
sample, and the actual average coverage was as follows: 35× (19–59×) 
in WGA organoid samples, 45× (40–61×) in fresh organoid samples,  
46× (24–100×) in FFPE LCM samples, 34× (18–63×) in frozen LCM sam-
ples and 41× (28–73×) in germline samples.

Raw sequence data were processed into .bam files using Genomon2, 
as previously described2. In brief, sequencing reads were aligned to 
the human reference genome (GRCh37) using the Burrows–Wheeler 
Aligner57 (v.0.7.8) with default parameter settings. The PCR dupli-
cates were eliminated using biobambam. For organoid samples, 
mouse-derived sequencing reads resulting from Matrigel contami-
nation were removed using Xenome58 (v.1.0.0), and only the reads clas-
sified as ‘human-mapped’ were processed into .bam files. Mutation 
calling for WGA organoid samples was performed after merging each 
pair of two .bam files of WGA samples derived from a single organoid 
using Samtools59 (v.1.10); each mutation call was then reviewed back 
to the original two .bam files using GenomonMutationFilter2 (v.0.2.1); 
mutations detected in both the WGA samples with two or more variant 
reads each were considered true somatic mutations, whereas mutations 
detected in only one sample were eliminated as WGA-related errors. 
The mutations listed in our in-house mouse-derived variant list were 
eliminated as artefacts due to Matrigel contamination.

In the entire WGS analysis, mutation calling was performed by means 
of paired analysis using a ‘three-caller combination’ to improve the sen-
sitivity and true positive rate, wherein mutations were called by three 
different callers (Genomon2, Mutect2 (ref. 60) (GATK4, ref. 61 (v.4.1.2)), 
and Strelka2 (ref. 62) (v.2.9.3)) independently; the mutations detected 
by two or three callers were considered ‘high-confidence’ mutations. 
As described previously2, Genomon2 first discards the low-quality, 
unreliable reads and variants with mapping quality of less than 20 and/
or base call quality of 15 or lower. Next, the variants that did not meet 
the following criteria were further excluded as sequencing errors: (1) a 
sufficient depth (six or more) in both samples and the matched controls; 
(2) VAFs greater than 0.1, 0.15 and 0.12 in WGA and/or fresh organoid, 
FFPE LCM and fresh-frozen LCM samples, respectively; (3) variant reads 
three, five and four or more in WGA and/or fresh organoid, FFPE LCM 
and fresh-frozen LCM samples, respectively; (4) VAFs less than 0.07 
and variant reads one or less in matched controls; (5) a strand ratio 
not equal to 0 or 1; (6) Fisher’s P < 10−1.5 for WGA and/or fresh organoid 
samples and <10−1.3 for FFPE and fresh-frozen LCM samples; (7) EBCall63 
P < 10−5, <10−4, <10−5 and <10−3 for WGA organoid, fresh organoid, FFPE 
LCM and fresh-frozen LCM samples, respectively, which were evalu-
ated with a ‘control panel’ consisting of WGS data of 39, 20, 42 and 14 
blood or normal tissue samples of unrelated participants prepared 
using the corresponding library preparation kits; for the analysis of 
WGA organoid and FFPE LCM samples, which were expected to contain 
a lot of sample type-specific artefacts, a ‘control panel’ consisting of an 
increasing number of normal samples of corresponding sample type 
was used to eliminate artefacts. The .bam files were further edited by 
means of Samtools to remove sequencing reads with mapping quality 
below 20 and duplicated reads and then analysed using Mutect2 and 
Strelka2. Mutation calling using Mutect2 was performed as follows: 



initially, variants were called by Mutect2 using panel of normals made 
from ‘control panel’ data, to filter out sequencing noise; the raw output 
of Mutect2 was subsequently processed by means of FilterMutectCalls  
and FilterByOrientationBias in the default settings to filter out the 
remaining sequencing errors. We excluded the variants that were not 
supported by (1) a sufficient read depth (eight or more) in both samples 
and the matched controls; (2) VAFs greater than 0.1, 0.15 and 0.12 in WGA 
and/or fresh organoid, FFPE LCM, and fresh-frozen LCM samples, respec-
tively; (3) allelic depths for the alternative alleles four or more in WGA 
and/or fresh organoid and fresh-frozen LCM samples and five or more in 
FFPE LCM samples; (4) VAFs less than 0.07 and allelic depths for the alter-
native alleles two or less in matched controls; (5) Phred-scaled quality for 
the possibility of sequencing errors (SEQQ) greater than 40 (for SNVs);  
(6) Phred-scaled quality of strand bias artefact (STRANDQ) greater 
than 70 for WGA and/or fresh organoid samples and greater than 50 
for FFPE and fresh-frozen LCM samples (for SNVs). Mutation calling 
using Strelka2 was performed in the default settings, and the variants 
that were not supported by (1) a sufficient read depth (ten or more) in 
both samples and the matched controls; (2) VAFs greater than 0.1, 0.15 
and 0.12 in WGA and/or fresh organoid, FFPE LCM and fresh-frozen LCM 
samples, respectively; (3) the alternative alleles five or more in WGA 
and/or fresh organoid and fresh-frozen LCM samples and six or more 
in FFPE LCM samples; (4) VAFs less than 0.07 and the alternative alleles 
two or less in matched controls; (5) a somatic Empirical Variant Score 
(SomaticEVS) greater than 17 for SNVs, greater than 16 for indels in WGA 
organoid samples and greater than 6 for indels in fresh organoid, FFPE 
LCM and fresh-frozen LCM samples, were excluded. The variants identi-
fied by each caller were annotated using ANNOVAR64; the variants that 
were listed in the 1000 Genomes Project dataset or gnomAD database 
with a minor allele frequency of more than or equal to 0.001 and vari-
ants within segmental duplications reported in the GenomicSuperDups 
database or repetitive sequences reported in the University of California,  
Santa Cruz (UCSC) Genome Browser65 were further excluded, except 
for the driver mutations defined below, to achieve a high true positive 
rate. After that, each variant was reviewed in .bam files of each sam-
ple and the matched control as well as ‘control panel’ samples using 
GenomonMutationFilter: variants that were not supported by (1) VAFs 
greater than 0.1, 0.15 and 0.12 in WGA and/or fresh organoid, FFPE LCM 
and fresh-frozen LCM samples, respectively; (2) the variant reads of 
three, four and five or more in fresh organoid samples, WGA organoid 
and fresh-frozen LCM samples and FFPE LCM samples, respectively;  
(3) variant read one or less in matched controls; (4) average VAFs less 
than or equal to 0.05 and total variant read of ten or less in ‘control panel’ 
samples; (5) VAFs in samples 15 times or more higher than average VAFs 
in ‘control panel’ samples, were further excluded as sequencing arte-
facts. Variants clustered within a short length (150 bp) were subjected 
to visual inspection using the Integrative Genomics Viewer66 to further 
eliminate sequencing errors. Somatic driver mutations were defined as 
loss-of-function mutations in tumour suppressor genes or mutations 
reported in the COSMIC database with ten or more mutated tumours in 
all types of cancer or five or more mutated tumours in breast cancers.

For the evaluation of germline variants, germline samples were ana-
lysed using Genomon2 in the unpaired mode. The variants in breast 
cancer susceptibility genes that were registered as ‘pathogenic’ or 
‘likely-pathogenic’ in the ClinVar database were considered pathogenic 
variants.

Copy-number analysis
CNAs were analysed using Control-FREEC67 (v.11.0) with the contami-
nationAdjustment option, except for the WGA organoid samples in 
which detection of small copy-number changes was difficult due to 
WGA-related artefacts. The copy-number gains and losses, and the 
uniparental disomies were visually confirmed using normalized copy 
numbers and beta allele frequency plots. CNA results are summarized 
in Supplementary Table 3.

Estimation of mutation rate in normal epithelial cells
The mutation accumulation rate was estimated using clonal mutations 
detected in each single-cell-derived organoid, which was thought to 
have been inherited from the original single cell. We excluded six orga-
noids in which polyclonal origins were suspected (median VAF less than 
0.4); furthermore, we excluded an organoid from a participant carrying 
a CDH1 germline pathogenic variant from the analysis. Clonal mutations 
were defined by the following method: (1) the Gaussian mixture model 
was adapted to VAF distribution of SNVs in each organoid (n = 64) using 
the R package mclust68 (v.5.4.7) to determine the optimal number of 
mixture components, one or two, by which the organoids consisting 
of two components with VAF peaks greater than or equal to 0.4 and 
less than 0.25 were classified as ‘bimodal’, and those consisting of one 
or two components with VAF peaks greater than or equal to 0.4 were 
classified as ‘unimodal’ and (2) all the mutations in ‘unimodal’ organoids 
(n = 49) were considered clonal mutations; by contrast, mutations with 
VAF values lower than the intersection point of two components in 
‘bimodal’ organoids (n = 15) were eliminated as subclonal mutations 
acquired during cell culture.

A linear regression model without intercept was fitted to estimate 
the effects of age and known breast cancer risk factors on the number 
of clonal SNVs and indels in 61 organoids, wherein the reciprocal of the 
number of analysed organoids per case was weighted for each organoid. 
Initially, we tested the effects of years before menopause (age at sample 
collection in premenopausal women and age at menopause in post-
menopausal women), years after menopause (zero in premenopausal 
women and the difference between age at sample collection and age at 
menopause in postmenopausal women), the presence of driver muta-
tion, presence of breast cancer, known breast cancer risk factors (body 
mass index, parity, alcohol consumption per day, smoking pack-years 
and number of first- and second-degree relatives with breast cancers) 
and the factors that might affect the sensitivity of mutation call (sample  
type (WGA or fresh organoids) and the fraction of genomic region 
with more than or equal to 15× coverage) on the number of mutations 
simultaneously. Then, we removed the least significant variable one 
by one by comparing models with and without each variable until the 
removal of any variable led to a significant difference (P < 0.05) by 
analysis of variance. Finally, we defined the final model with the least 
significant coefficients. Years before and after menopause were both 
extracted as significant coefficients on mutation number in the final 
models for SNVs and indels, which showed significant improvement 
compared to the models that did not incorporate the age at menopause 
(by analysis of variance). All statistical analyses are summarized in 
Supplementary Table 4.

Phylogenetic analysis
In the multi-sampling analysis, phylogenetic trees were reconstructed 
using somatic mutation data, copy-number information and mutant 
cell fraction (MCF) across all LCM samples in each subject. First, the 
Gaussian mixture model was adapted to VAF distribution of mutations 
within diploid regions to decompose major and minor clones. Then, 
MCF was calculated by doubling the mean value of the largest Gaussian  
distribution.

Before reconstructing a phylogenetic tree using MEGA69 (v.11.0.11), 
we made an input matrix comprising all mutations detected across all 
samples, combined with their mutation status for all samples, which was 
determined according to the depth, number of supportive reads and 
copy-number status, as follows: (1) for samples with two or more sup-
portive reads, the mutation status was assigned as ‘mutation_present’; 
(2) for samples with only one supportive read, the mutation status was 
assigned as ‘mutation_unknown’; (3) for samples with no supportive 
reads, (a) when chromosomal loss or other loss of heterozygosity was 
present at the mutation locus, the mutation status was assigned as 
‘mutation_unknown’; (b) when no supportive read for the mutation 
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was well expected (P > 0.05) according to the binomial distribution 
determined by sequencing depth, total copy number (TCN) and MCF, 
the mutation status was also assigned as ‘mutation_unknown’ and  
(c) otherwise, the mutation status was assigned as ‘mutation_absent’. 
On the basis of these criteria, we confirmed high accuracy for mutation 
status assignment as ‘mutation_present’ or ‘mutation_absent’ by valida-
tion sequencing (below) for 780 randomly selected mutations in two 
cases, wherein mutation status in two and nine samples, respectively, 
was evaluated for each mutation (accuracy 99.4%, 3,055 out of 3,072 
mutation statuses); the results of validation sequencing are summa-
rized in Supplementary Table 5. Then, a maximum parsimony tree was 
established using MEGA with 1,000 bootstrap replicates.

Subsequently, we used the R package treemut35 (v.1.1) to assign each 
mutation to a branch using the expectation maximization method 
based on the number of supportive reads and the sequencing depth for 
all potential mutations for all samples, as well as the tree information 
from MEGA (branching pattern and branch length). However, because 
treemut was originally developed for the analysis of monoclonal diploid 
samples and assumes that VAF = 0.5 for mutated loci and VAF = 0 for 
wild-type loci, we corrected variant read counts on the basis of adjusted 
VAF (aVAF), MCF, TCN and minor copy number (MCN) for bulk LCM 
samples, as if they consisted of a clonal population derived from a 
single cell. At first, mutant allele number (MAN) in a single mutant cell 
was calculated assuming an MCF of 100%, using the following formula:

MAN = VAF × (MCF × TCN + (1–MCF) × 2)/MCF.

Next, adjusted TCN (aTCN) was determined as follows:
if MAN ≤ 0.5, aTCN = 2,
if MAN > (TCN − MCN), aTCN = (TCN − MCN) × 2,
otherwise, aTCN = (the nearest whole number from MAN) × 2.
Then, adjusted VAF (aVAF) was calculated by dividing MAN by aTCN.
Finally, corrected variant read counts were calculated by multiply-

ing depth by aVAF.
The resulting phylogenetic trees were drawn with the SNV number 

to infer the time course of clonal evolution by adapting the SNV accu-
mulation rate estimated in single-cell-derived organoids. Cancer driver 
mutations and CNAs were annotated manually in the trees as follows: 
in the cases in which more than one sample in a clade carried the same 
hot spot mutations with VAFs greater than 0.15 and variant reads of five 
or more for FFPE LCM samples, or VAFs greater than 0.12 and variant 
reads of four or more for fresh-frozen LCM samples, the mutation was 
assigned to the shared branch if it was accompanied by other shared 
mutations in that clade or assigned to the private branches if it was the 
only mutation shared by the samples in that clade; in the cases in which 
more than one sample in a clade shared CNAs, losses or gains of the 
same paternal or maternal alleles as determined by single-nucleotide 
polymorphism analysis were considered the same events and assigned 
to the shared branch, whereas those of the different paternal or mater-
nal alleles were considered different events and assigned to the pri-
vate branches. Information about whether each CNA was assigned to 
a shared or private branch is summarized in Supplementary Table 6.

The method of phylogenetic analysis using MEGA and treemut was 
validated by reconstructing the representative two trees (KU539 and 
KU779) using PyClone-VI (ref. 70) (v.0.1.0), wherein no major inconsist-
ency was observed between the two methods in terms of the topol-
ogy and assignment of driver mutations to corresponding branches  
(Supplementary Note 2).

Analysis of mutational signatures
Mutational signatures were extracted using the R package Muta-
tionalPatterns71 (v.3.4.0) in strict signature refitting mode. In the 
multi-sampling analysis, signature extraction was performed using 
SNVs on branches with 100 or more SNVs in the phylogenetic trees, 
wherein each branch was treated as an individual sample. Initially,  

SNVs were allocated to all known COSMIC SBS signatures (v.3.1). The 
overall contribution of each COSMIC SBS signature was calculated 
in organoid, FFPE LCM and fresh-frozen LCM samples. Then, SBS sig-
natures with a 5% or more contribution in one or more sample type 
were selected to prevent overfitting. Finally, SNVs were re-allocated to 
five SBS signatures (SBS1, SBS2, SBS5, SBS13 and SBS40). Because two 
clock-like ‘flat’ signatures, SBS5 and SBS40, are difficult to separate24,25, 
they were collectively designated as ‘SBS5/40’ in the subsequent analy-
ses. To validate the signatures extracted using MutationalPatterns, we 
also analysed SBS signatures using two more algorithms, the SigProfiler 
Bioinformatic Tools MatrixGenerator72 (v.1.1.27) and Extractor73 (v.1.1.1), 
and the R package HDP74 (v.0.1.5). In the SigProfiler analysis, de novo 
signatures were extracted using 1,000 nonnegative matrix factoriza-
tion iterations, followed by further decomposition to COSMIC SBS 
signatures (SBS1, SBS2, SBS5, SBS7a, SBS7b, SBS13 and SBS18). In the 
HDP analysis, SBS signatures were analysed using COSMIC SBS signa-
tures as priors, wherein six prior SBS signatures (SBS1, SBS2, SBS13, 
SBS16, SBS18 and SBS45) and two new signatures were extracted. The 
new signatures were further deconvoluted to COSMIC SBS signatures 
using the R package deconstructSigs75 (v.1.8.0), resulting in SBS1, SBS5 
and SBS7a. Because SBS7a, SBS7b, SBS16, SBS18 and SBS45 were not 
extracted by MutationalPatterns and were inconsistent between Sig-
Profiler and HDP in many parts, we considered these signatures with 
less confidence (Extended Data Fig. 4a). SBS1, SBS2, SBS5/40 and SBS13 
were extracted by means of all three extraction algorithms, and the 
contributions in each sample showed a similar pattern (Extended Data  
Fig. 4b).

Estimation of the timing of MRCA emergence and der(1;16) 
acquisition
The MRCA in the clonally related samples was identified on the basis of 
the phylogenetic tree. For common MRCAs of cancer and non-cancer 
clones (Fig. 2 and Extended Data Fig. 5), we assumed that the mutation 
accumulation rate was constant until the timing of emergence of the 
MRCA (TMRCA) and equal to that of normal cells. A point estimate of 
TMRCA was calculated by dividing the number of SNVs in MRCA (NMRCA) 
by the SNV accumulation rate before menopause in normal cells (R0), 
and the 95% CI (confidence interval) was calculated using the R0 values 
randomly sampled 1,000 times on the basis of a normal distribution 
estimated from the linear regression model in the single-cell-derived 
organoids.

For the timing of der(1;16) acquisition, that is, the timing of 1q gain 
(T1q_gain), we first obtained the number of duplicated mutations in MRCA 
using the MAN for each SNV on 1q, which was calculated as described 
above; if the average number of MAN of the related samples was 1.5 
or less, such a mutation was considered ‘unduplicated’ or otherwise 
considered ‘duplicated’; then, the number of ‘unduplicated’ and ‘dupli-
cated’ SNVs in MRCA was counted as N1 and N2, respectively. T1q_gain was 
estimated by maximizing the posterior probability of the observed 
number of N2 based on the simulation method wherein the value of 
T1q_gain was increased by 0.1 years from 0 to TMRCA or age at sampling and 
N2 was simulated 1,000,000 times using the R0 value that was randomly 
sampled 1,000 times as in TMRCA estimation, assuming that mutations 
occurred on each 1q allele at a constant rate (R0_1q = R0 × (the size of 1q 
gained)/(the size of the genome) × 0.5 (for haploid)) according to the 
Poisson distribution. For the clones with two 1q gains (KU957, TMA114 
and TMA125 (Extended Data Figs. 5c and 8a,b)), the timing of der(1;16) 
genome doubling (Tgd) was also simulated, wherein T1q_gain and Tgd were 
increased by 0.1 years from 0 to Tgd, and from T1q_gain to TMRCA or age at 
sampling, respectively. The SNVs with the average MAN of more than 
2.5 were considered ‘triplicated’ (N3). The values of T1q_gain and Tgd with 
the maximum probability for the observed N2 and N3 were considered 
to be point estimates of T1q_gain and Tgd, respectively. The details of the 
simulation are shown in Extended Data Fig. 6a–d, and the results are 
summarized in Supplementary Table 7.



FISH analysis
Unstained, 4 μm-thick FFPE sections were subjected to hybridization 
with bacterial artificial chromosome clone-derived probes for 1p.31.3, 
1q23.3 and 16q23.2 to detect all types of der(1;16)(+) clone with concur-
rent whole-arm 1q gain and 16q loss, wherein the 1p.31.3 signals were 
used as controls. For KU779, in which two independent der(1;16)(+) 
MRCAs were identified with WGS, FFPE sections were also subjected to 
hybridization with Vysis DNA probes for CEP6 (D6Z1) and CEP16 (D16Z3) 
(Abbott Laboratories) to distinguish the two clones by D16Z3 signal 
counts, wherein the D6Z1 signals were used as controls (Fig. 2a,d). The 
probes used are listed in Supplementary Table 8. The hybridized slides 
were stained with 4,6-diamidino-2-phenylindole and examined under a 
BZ-X800 fluorescence microscope (KEYENCE). The FISH-probed signals 
were counted in 100 or more nuclei or in three or more microscopic 
fields per lesion.

Measurement of the clonal expansion areas
In the der(1;16)(+) breast cancer cases, lesions originating from  
der(1;16)(+) MRCAs were identified by performing FISH on FFPE 
surgical specimens. For five of 141 der(1;16)(+) lesions identified by 
means of FISH, we confirmed that they actually carried both der(1;16) 
and more than 90% of shared mutations in the MRCAs by means of 
targeted-capture sequencing using Next-Generation Sequencing (NGS) 
Discovery Pools (IDT) and the xGen CNV Backbone Hyb Panel (IDT) 
(below) (Supplementary Table 9). In the case KU539 with two independ-
ent der(1;16)(+) MRCAs (Extended Data Fig. 5a), two clones could not 
be distinguished using FISH, unlike that in the case KU779 (Fig. 2a,d), 
but could only be distinguished by evaluating the shared mutations in 
the MRCAs by means of sequencing, wherein the der(1;16)(+) lesions 
evaluated by means of FISH were considered as carrying ‘undeter-
mined’ type of der(1;16) and were eliminated from the target lesions 
for measurement of the clonal expansion area. In the AKT1-mutated 
breast cancer case (Extended Data Fig. 5d), lesions originating from an 
AKT1-mutation(+) MRCA were identified by means of targeted-capture 
sequencing (below), wherein lesions carrying both AKT1 mutation 
and more than 50% of shared mutations in the MRCAs were defined as 
originating from the MRCA (Supplementary Table 9). In these cases, 
the distance between the most distant non-cancer lesions originat-
ing from the same MRCA was measured as the maximum diameter of 
the area over which the non-cancer clones had expanded. In der(1;16)
(+) cancer cases that were not accompanied by the formation of any 
der(1;16)(+) non-cancer lesions, the diameter was considered to be 
zero. For the fresh-frozen LCM samples, we first reconstructed phylo-
genetic trees as described above. Next, the cell fraction of mutations 
allocated to private branches was estimated using PyClone-VI. The 
mutations in shared branches and those in private branches whose 
cellular prevalence was high enough to determine clonal structure on 
the basis of the Pigeonhole principle, were used to detect clones that 
existed at the age of 1 or 13 years: only when the sum of their cellular 
prevalence exceeded 1.0, the two mutations were thought to be in the 
same structures. These clones unrelated to cancer were identified only 
through WGS, which might lead to lower sensitivity in the detection 
of clonally related lesions because of the limited number of observa-
tions compared to those obtained through FISH analysis. We measured 
the distance between clonally related lesions and the nearest clonally 
unrelated lesions in these cases as the maximum diameter of the area 
of clonal expansion to prevent underestimation.

Analysis of significantly mutated genes
Significantly mutated genes in the pathologically normal lobules, 
non-cancer proliferative lesions and cancer lesions in multi-sampled 
cases were analysed based on dN/dS using the R package dndscv76 
(v.0.0.1.0) to investigate the difference in mutational processes during 
the evolution of cancer. Mutations detected in the shared branches were 

counted once in each group of lesions. Genes with dN/dS > 1 and q < 0.1 
were considered to be significantly mutated (Supplementary Table 10).

Targeted-capture sequencing of breast cancer-associated genes
For the ten breast cancer cases in which tumour cores in the tissue 
microarray were defined as der(1;16)(+) by FISH analysis, tumour lesions 
were macro-dissected from FFPE surgical specimens and analysed by 
means of targeted-capture sequencing using the xGen Predesigned 
Gene Capture Pools (IDT) designed for 189 genes associated with breast 
cancer (Supplementary Table 11) and the xGen CNV Backbone Hyb 
Panel. Driver mutations were called using Genomon2 as described 
above: the variants that were not supported by (1) a sufficient depth 
(eight or more); (2) VAFs greater than 0.02 and variant reads of five or 
more and (3) EBCall P < 10−4 were excluded as sequencing artefacts 
and the variants that met the criteria of driver mutations used in WGS 
analysis were identified. In these cases, no pathogenic variants of breast 
cancer susceptibility genes were identified. Copy-number changes 
were evaluated on the basis of the sequencing data using CNACS as 
described above. Eight out of nine tumours successfully evaluated for 
copy-number changes were confirmed to carry der(1;16), detected as 
concurrent whole-arm 1q gain and 16q loss. The results are summarized 
in Supplementary Table 12.

WES and transcriptomic analysis of TCGA cohort
Germline variants and somatic mutations in TCGA breast cancer WES 
cohort were evaluated using Genomon2, as described for the WGS 
samples. Somatic mutations were evaluated for 610 sporadic cases as 
follows: the variants that were not supported by (1) a sufficient depth 
(eight or more) in both samples and matched controls; (2) VAFs greater 
than 0.05 and variant reads of four or more in samples; (3) VAFs below 
0.05 and variant reads of two or less in matched controls; (4) a strand 
ratio not equal to 0 or 1; (5) Fisher’s P < 10−1.3 and (6) EBCall P < 10−4 
were excluded as sequencing artefacts; the variants within repetitive 
sequences were further excluded; the variants clustered within a short 
length (150 bp) were subjected to visual inspection on the Integrative 
Genomics Viewer to further eliminate sequencing errors. Copy-number 
changes were evaluated using CNACS, as described above. Tumours 
with concurrent flat whole-arm 1q gain and 16q loss were considered 
der(1;16) positive (Extended Data Fig. 10b). If there were any apparent  
breakpoints in the middle of the 1q or 16q arm, the tumours were con-
sidered der(1;16) negative.

To investigate the effect of allelic imbalance of der(1;16), that is,  
trisomy 1q and monosomy 16q, on gene expression, TPM values of genes 
on 1q or 16q in der(1;16) positive tumours were compared with those in 
tumours without +1q or −16q, respectively. Tumours with mutations in 
CDH1, CBFB and CTCF were excluded from the analysis of genes on 16q.

Estimation of sensitivity and evaluation for true positive rate in 
WGS mutation calling
The sensitivity of WGS mutation calling was estimated by calculating 
the fraction of unique heterozygous germline polymorphisms in a 
sample detected by means of paired analysis using another partici-
pant’s germline sample to mimic a matched control (Supplementary 
Note 1). The estimated sensitivity for each sample type is summarized 
in Supplementary Table 13.

The true positive rate of WGS mutation calling was evaluated using 
targeted-capture sequencing for randomly selected mutations in WGA 
organoid and fresh-frozen LCM samples, and randomly selected private 
mutations and all of the shared mutations assigned to the MRCAs in five 
cases for FFPE LCM samples. Libraries were prepared using the xGen 
Prism DNA Library Prep Kit for WGA organoid and FFPE LCM samples; 
extra WGS libraries were reused for fresh-frozen LCM samples because 
of the small amount of DNA extracted, followed by target capture using 
NGS Discovery Pools or xGen Custom Hyb Panel-Accel (IDT), and then 
sequenced on a DNBSEQ-G400RS. The sequence data were processed 
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into .bam files through Genomon2, as described above, and each muta-
tion was reviewed using GenomonMutationFilter, wherein mutations 
with sequencing depths of 100 or more in both test and germline con-
trol samples were evaluated. A mutation was considered to be validated 
when (1) the VAF in the test sample was five or more times higher than 
that in the corresponding germline control sample; (2) the VAFs in the 
test sample greater than or equal to 0.05 and (3) for WGA organoid 
samples only, (1) and (2) was achieved in both of the two paired WGA 
samples. The true positive rates were 96.6% for organoid WGA samples 
(134 out of 139 SNVs and 9 out of 9 indels), 97.3% for private mutations 
in FFPE LCM samples (209 out of 215 SNVs and 7 out of 7 indels) and 
99.7% for fresh-frozen LCM samples (308 out of 309 SNVs and 23 out 
of 23 indels). As for the validation of the MRCA mutations in FFPE LCM 
samples, we successfully evaluated 10,190 of 10,629 mutations (95.9%); 
the true positive rate was 99.3% (9,657 out of 9,728 mutations) for SNVs 
and 98.7% (456 out of 462 mutations) for indels. The results of validation 
sequencing and true positive rate are summarized in Supplementary 
Tables 14 and 15, respectively.

Statistical analysis
Statistical analyses were performed using the R software (v.3.6.3). All 
P values were calculated using a two-sided analysis. Fisher’s exact test 
or Mann–Whitney U-test was used for group comparisons. Survival 
analysis for TCGA dataset was performed using the R package sur-
vival77 (v.3.2.11), wherein the overall survival time was determined from 
the date of diagnosis of breast cancer to the time of last follow-up or 
death, and survival curves were estimated using the Kaplan–Meier 
product-limit method. The differences in overall survival between 
the patients with der(1;16)-positive and der(1;16)-negative Luminal  
A breast cancer were tested for statistical significance using the log- 
rank test. We also performed multivariate analysis using a Cox pro-
portional hazards regression model to evaluate the effect of der(1;16) 
on survival when adjusted for age and stage. The results of survival 
analysis are summarized in Supplementary Table 16. Multiple testing 
was corrected based on the Benjamini–Hochberg method to compare 
the frequency of driver mutations in TCGA Luminal A cancer cases with 
and without der(1;16) (Supplementary Table 17).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All WGS data have been deposited in the European Genome-phenome 
Archive under accession number EGAS00001006282. Data for estima-
tion of mutation rate, phylogenetic analysis and timing estimation are 
available at https://doi.org/10.5281/zenodo.8015913 (ref. 78). TCGA 
datasets including WES .bam files, RNA-seq data in the TPM format 
and clinicopathological information were downloaded from TCGA 
data portal (https://portal.gdc.cancer.gov/), whereas the informa-
tion about PAM50 mRNA subtypes was extracted from the study by  
Ciriello et al.32; if data were lacking, information was extracted from 
TCGA Network27. The publicly available GRCh37 (hg19, https://www.
ncbi.nlm.nih.gov/assembly/GCF_000001405.13/) was used as a human 
reference genome in this study. We referred to the 1000 Genomes Pro-
ject dataset (1000g2015aug, downloaded through ANNOVAR64), the 
gnomAD database (gnomad_genome, downloaded through ANNO-
VAR64), the GenomicSuperDups database (downloaded through  
ANNOVAR64), repetitive sequences reported in the UCSC Genome 
Browser65, the COSMIC database (https://cancer.sanger.ac.uk/cosmic) 
and ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/), for vari-
ant annotation. COSMIC SBS signatures (v.3.1) were also obtained from 
COSMIC (https://cancer.sanger.ac.uk/signatures/downloads/). Source 
data are provided with this paper.

Code availability
The R codes for estimation of mutation rate, phylogenetic analysis, and 
estimation of the timing of the MRCA emergence and der(1;16) acquisi-
tion are available at https://doi.org/10.5281/zenodo.8015913 (ref. 78).
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Extended Data Fig. 2 | VAF distribution of SNVs in single cell-derived 
organoids. a, VAF densities of SNVs in representative organoids. Organoids 
with median VAF values ≥0.4 were defined as clonal, wherein the existence of 
subclones and VAF density of each clone were evaluated using Gaussian mixture 
models. In bimodal organoids with subclones, mutations with VAF values lower 

than the intersection point of the two clones were eliminated as subclonal 
mutations. b, VAF densities of SNVs identified in 71 single cell-derived organoids 
are depicted. The germline variants and somatic driver genes mutated in each 
sample are indicated.
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Extended Data Fig. 5 | Life history of breast cancers in premenopausal 
patients. a–d, Phylogenetic trees and the corresponding geographical maps  
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cases in another set of samples. a–e, Phylogenetic trees (a–d) and 
corresponding geographical maps of clones (a–e) detected in the surgical 
specimens of five postmenopausal der(1;16)(+) breast cancer patients who 
underwent lumpectomy (middle: overview of the surgical specimens, right: 
split faces of the sliced specimens indicated by dotted lines in the overview 
images). All the representations follow those in Fig. 2a. †, cancer lesions in 
TMA125 (b) carried one der(1;16) derivative and another 1q gain, and the  

order of these alterations could not be determined; thus, timing of the first and 
second 1q gain was estimated; UPD, uniparental disomy. f, Landscape of driver 
mutations in der(1;16)(+) non-cancer and cancer lesions, including 64 WGS 
samples multi-sampled from nine cancer cases and three targeted sequencing 
samples from three cancer cases. Multiple samples obtained from a single 
tumour focus are enclosed in black dotted squares. Mutations enclosed in 
black bold squares represent shared mutations.



Article

Case KU1215 (45 y.o., premenopausal) 
ILC (pT1b (multifocal) N0M0, Luminal B-like )

A B C
Fresh
frozen

FED
FFPE

G
H

10 mm

A B C

Additional
sampling

b

c

10 mm
D

E

16
22

23
29

28
B

G

H

F
Nipple

Skin
Cranial

d

10 mm

A 1 3

6

4

7 85

2

B

10
15

13

20 21

9

11 14

12 16

22

23

28

29
17

18
19

C

26
2724 25

Additional
sampling
(Cancers)

Skin
Cranial

SBS2SBS1 SBS5/40
SBS signature

0.0

0.1

0.2

0.3

0.4

0.5

0.6

None
(n = 34)

BRCA2
positive
(n = 20)

Germline

M
ed

ia
n 

VA
F

P = 5.6 × 10-1

a Case KU1195 (42 y.o., premenopausal) (Germline; BRCA2 R2318X)  
DCIS (low grade, ER+) 

10 mm

A
B

C

C

A

25
17 18

2219

23
16

24

20

21

B

5 6

4
2

3
71

12
1310

8 14
15

11
9

Skin
Nipple10 mm

Clones at 13 y.o., 
expanding in ≥2 lobules

0

200

400

600

800

1,000

SN
V 

nu
m

be
r 20

1q+21 19
17

16 13

1

4 10
18

8

9
12

5

6

11

7

3

14 15

2

22

23

24

25

M
A

P
3K

1 (Q
1406fs, Q

700X)

P
IK

3C
A (E542K)

99
99

71 33 7
99

64 50 20

99

5249 99
96

99
19

0

200

400

600

800

1,000

1,200

SN
V 

nu
m

be
r

5

99

99

46

99

99

99

99

99

99

64
9219

4 60857652

23
16

1

13

4

7

8

20

TP
53 (Q

375X)

P
IK

3C
A (H

1047R
)

G
A

TA
3 (X308_Splice)

P
IK

3C
A (H

1047R
)

P
IK

3R
1 (I672fs)

G
A

TA
3 (X308_Splice), 1q+, 2q-*

C
D

H
1

(Q
519fs)

21

2

3

5

6
18

19

9

11

14

10
12

17 15 24
25

26

27

22

28

29

der(1;16)
19.8 yr  

LG  

MRCA
41.9 yr

der(1;16) 
Clone

Others

Clones at 13 y.o., 
expanding in ≥2 lobules

Histology

Proliferative without atypia

Normal

Proliferative with atypia

DCIS
ILC

Non-proliferative
BBL

Cancer
LCIS

Extended Data Fig. 9 | Clonal expansion in lobules without der(1;16).  
a,b, Phylogenetic trees and the corresponding geographical maps of clones 
detected in multi-sampled lobules of two premenopausal breast cancer patients 
with a pathogenic BRCA2 variant (KU1195 (a)) and without pathogenic germline 
variants (KU1215 (b)). All the representations follow those in Fig. 4a. In the case 
of KU1215 (b), three der(1;16)(+) LCIS lesions (#16, #22, and #23) were detected 
unexpectedly; thus, additional sampling was performed in red-coloured  
tissue to investigate the correlation between der(1;16)(+) LCIS and cancers.  

LG, low grade DCIS. c, Geographical maps of clones detected with FISH using 
FFPE specimens in the case shown in b (KU1215). Coloured bars in the overview 
image and colours around the circles in split faces depict the clones to which 
samples belong. Circles numbered with black characters are samples analysed 
via WGS, whereas unnumbered circles show the lesions analysed only via FISH. 
d, Median VAF in histologically normal lobules carrying no somatic driver 
alterations in breast cancer patients with and without pathogenic germline 
variants, with P-values from the two-sided Mann–Whitney U test.



a
661 TCGA BRCA cases
with WES & PAM50 data

48 cases with
pathogenic
germline variants
were excluded

Somatic mutations (Genomon2)
Copy number alterations (CNACS)

Re-analysis of WES bam files

3 cases with
low-quality
CNACS data
were excluded

Analysed (610 cases)

b c

d Morphology

Others
IDC IDC & ILC (mixed)
ILC

e

i

f g

h

Chr1

to
ta

l C
N

al
le

lic
ra

tio
0

2
4

0
1

2

hetero SNPs

1 2 43 5 6 7 10 128 9 11 13 14 1615 17 1819 22 X20 21

to
ta

l C
N

al
le

lic
ra

tio
0

2
4

0
1

2

hetero SNPs

Chromosome

Chr16

to
ta

l C
N

al
le

lic
ra

tio
0

2
4

0
1

2

hetero SNPs

Molecular
subtype
Normal-like
Basal-like
HER2-enriched
Luminal B
Luminal A

All
(n = 610)

der(1;16) (−)
(n = 491)

der(1;16) (+)
(n = 119)

IDC all
(n = 424)

der(1;16) (−)
(n = 370)

der(1;16) (+)
(n = 54)

Pr
op

or
tio

n 
(%

)

ILC all
(n = 119)

der(1;16) (−)
(n = 60)

der(1;16) (+)
(n = 59)

0
25
50
75

100

0
25
50
75

100

All morphology

IDC

0
25
50
75

100 ILC

P = 5.0 × 10-4

P = 5.0 × 10-4

P = 2.1 × 10-2

0

25

50

75

100

All
(610)(n)

Luminal
A

(323)

der(1;16)
(−)

(220)

der(1;16)
(+)

(103)

Pr
op

or
tio

n 
(%

)

Luminal A

P = 5.0 × 10-4

0

25

50

75

100

(n)

Pr
op

or
tio

n 
(%

)

All
(610)

Luminal
A

(323)

Luminal
B

(116)
HER2
(47)

Basal-
like

(102)

Normal-
like
(22)

IDC
(188)

ILC
(97)

Luminal A

P = 8.1 × 10-1

IDC
(424)

ILC
(119)

All subtype

P = 1.1 × 10-8
P = 1.8 × 10-5

P = 8.0 × 10-15

P = 3.2 × 10-16 P = 2.1 × 10-7
(−)
(+)

der(1;16) 

040

PIK3R1
SF3B1
CTCF
NF1

TBX3
ARID1A
AKT1
CBFB
SPEN
FOXA1
RUNX1
PTEN

MAP2K4
NCOR1
TP53

KMT2C
MAP3K1
GATA3
CDH1

PIK3CA
0 40

**

*

Luminal A IDC (n = 188)

040

PIK3R1
SF3B1
CTCF
NF1

TBX3
ARID1A
AKT1
CBFB
SPEN
FOXA1
RUNX1
PTEN

MAP2K4
NCOR1
TP53

KMT2C
MAP3K1
GATA3
CDH1

PIK3CA
0 40 80

Mutation rate (%) Mutation rate (%)
Luminal A ILC (n = 97)

(−) (+)der(1;16) 

0 20 40 60

Mutation rate
(%)

IDC IDC & ILC (mixed)
Missense Frameshift indelNonsense

Splice site Multiple
Morphology Driver mutations

(−) (+)
der(1;16) 

ILC Others Inframe indel
der(1;16)

Morphology

PIK3CA
CDH1

GATA3
MAP3K1
KMT2C

TP53
NCOR1

MAP2K4
PTEN

RUNX1
FOXA1
SPEN
CBFB
AKT1

ARID1A
TBX3

NF1
CTCF

SF3B1
PIK3R1

0

20

40

60

80

100

Ag
e 

(y
r)

der(1;16)
(−)

(n = 220)

der(1;16)
(+)

(n = 103)

P = 4.3 × 10-1

0

25

50

75

100

Pr
op

or
tio

n 
(%

)

der(1;16)
(−)

(n = 220)

der(1;16)
(+)

(n = 103)

P = 8.1 × 10-1NA
Stage IVStage III
Stage IIStage I

Number at risk
der(1;16) (−)
der(1;16) (+)

220     68      19       5        2        0     
103     37      10       3        1        1   

der(1;16) (−)
der(1;16) (+)

Time (months)
0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll 

Su
rv

iv
al

 ra
te

P = 1.0 × 10-3

Genes on 16q

Genes on 1q

PSEN2
BCL9

APH1A
NCSTN

USH2A
PYGO2
AKT3

RYR2
LAMC1

−4

−2

0

2

4

Lo
g2

 ra
tio

 o
f e

xp
re

ss
io

n
(d

er
(1

;1
6)

 tu
m

or
s 

/ 
1q

 d
ip

lo
id

 tu
m

or
s)

Oncogene
NOTCH signalling pathway
WNT signalling pathway

−3

−2

−1

0

1

2

3

4

CTCF
CBFB

WWOX
FANCA

CDH1

Lo
g2

 ra
tio

 o
f e

xp
re

ss
io

n
(d

er
(1

;1
6)

 tu
m

or
s 

/ 
16

q 
di

pl
oi

d 
tu

m
or

s) Tumor supressor gene
Inhibitor of WNT pathway

kj

Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Features of der(1;16)(+) breast cancer in TCGA cohort. 
a, Schema of re-analysis of TCGA breast cancer (BRCA) cohort (Methods).  
b, Representative copy number plots in der(1;16)(+) cancers analysed using 
CNACS. c, Distribution of PAM50 molecular subtypes in all cancers (n = 610), 
IDC (n = 424), and ILC (n = 119), with and without der(1;16), with P-values from 
two-sided Fisher’s exact test. d, Distribution of morphology, which was 
compared between der(1;16)(−) and der(1;16)(+) Luminal A cancers using  
two-sided Fisher’s exact test. e, Proportion of der(1;16)(+) cancer in each PAM50 
molecular subtype, and IDC and ILC in all subtypes and Luminal A, respectively, 
with P-values from two-sided Fisher’s exact test. f,g, Distribution of age (f) and 
stage (g) in der(1;16)(−) and der(1;16)(+) Luminal A cancer cases, with P-values 
from two-sided Mann–Whitney U test and Fisher’s exact test, respectively.  
Box plots show the median, first and third quartiles, with whiskers that extend 
to the furthest value within a 1.5× interquartile range. h, Kaplan-Meier survival 

analysis of der(1;16)(−) and der(1;16)(+) Luminal A cancer cases with P-values 
from two-sided log-rank test. i, Landscape of driver mutations in der(1;16)(−) 
and der(1;16)(+) Luminal A cancers (n = 220 and 103, respectively). Frequency  
of each mutation is indicated on the right-hand side. j, Frequency of driver 
mutations among der(1;16)(−) and der(1;16)(+) cancers in Luminal A IDC (n = 188) 
and Luminal A ILC (n = 97), respectively. **, q<0.05; *, q<0.1 (from two-sided 
Fisher’s exact test with Benjamini–Hochberg adjustment). k, Ratio of average 
expression of genes on 1q in der(1;16)(+) Luminal A tumours (n = 103) to those in 
1q-diploid Luminal A tumours (n = 77) was depicted on the top, and the ratio of 
genes on 16q in der(1;16)(+) Luminal A tumours (n = 51) to those in 16q-diploid 
Luminal A tumours (n = 83) was depicted on the bottom. Coloured dots indicate 
known oncogenes, tumour suppressor genes, or other genes on the NOTCH 
and WNT signalling pathways.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Detailed descriptions of the software and analysis have been provided in Online Methods. Sequencing data was processed using Genomon2. 
External bam files were converted to fastq format using biobambam. Mutation calling was performed using Genomon2, Mutect2 (GATK4), 
and Strelka2. Copy number analysis using sequencing data was performed using Control-FREEC and in-house pipeline CNACS. Number of 
clonal mutations in single cell-derived organoids was estimated using mclust. Phylogenetic analysis was performed using MEGA, treemut, and 
PyClone-VI. Mutational signature was evaluated using MutationalPatterns, SigProfiler Bioinformatic Tools MatrixGenerator and Extractor, 
HDP, and deconstructSigs. Significantly mutated genes were identified using dndscv. Statistical analyses were performed using R (3.6.3). 
Survival analysis was performed using the R package survival. 
 
CNACS is deposited in GitHub (https://github.com/OgawaLabTumPath/CNACS). 
 
List of programs and softwares: 
Genomon2 pipeline: version 2.6.2 (https://genomon.readthedocs.io/ja/latest/) 
- Burrows-Wheeler Aligner: version 0.7.8 (https://sourceforge.net/projects/bio-bwa/) 
- biobambam: version 0.0.191 (https://www.sanger.ac.uk/science/tools/biobambam) 
- GenomonMutationFilter: version 0.2.1 (https://github.com/Genomon-Project/GenomonMutationFilter) 
Xenome: version 1.0.0 (https://github.com/data61/gossamer) 
Samtools: version 1.10 (https://github.com/samtools/samtools) 
GATK4: version 4.1.2 (https://github.com/broadinstitute/gatk/releases) 
Strelka2: version 2.9.3 (https://github.com/Illumina/strelka) 
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ANNOVAR: 2020-06-07 (https://annovar.openbioinformatics.org/en/latest/) 
Integrative Genomics Viewer (IGV): version 2.3.8 (http://software.broadinstitute.org/software/igv/) 
Control-FREEC: version 11.0 (https://github.com/BoevaLab/FREEC/releases) 
mclust: version 5.4.7 (https://cran.r-project.org/web/packages/mclust/index.html) 
MEGA: version 11.0.11 (https://www.megasoftware.net/) 
treemut: version 1.1 (https://github.com/NickWilliamsSanger/treemut) 
PyClone-VI: version 0.1.0 (https://github.com/Roth-Lab/pyclone-vi) 
MutationalPatterns: version 3.4.0 (https://bioconductor.org/packages/release/bioc/html/MutationalPatterns.html) 
SigProfiler Bioinformatic Tools MatrixGenerator: version 1.1.27 (https://github.com/AlexandrovLab/SigProfilerMatrixGenerator) 
SigProfiler Bioinformatic Tools Extractor: version 1.1.1 (https://github.com/AlexandrovLab/SigProfilerExtractor) 
HDP: version 0.1.5. (https://github.com/nicolaroberts/hdp) 
deconstructSigs: version 1.8.0 (https://github.com/raerose01/deconstructSigs) 
dndscv: version 0.0.1.0 (https://github.com/im3sanger/dndscv) 
R: version 3.6.3 (https://cran.r-project.org/) 
survival: version 3.2.11 (https://cran.r-project.org/web/packages/survival/index.html) 
 
The R codes for phylogenetic analysis and estimation of the timing of the MRCA emergence and der(1;16) acquisition are available in 
Supplementary Notes 3 and 4, respectively.  
The R codes for estimation of mutation rate in normal cells are available at https://doi.org/10.5281/zenodo.8002434. 
 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All WGS data have been deposited in the European Genome-phenome Archive (http://www.ebi.ac.uk/ega/) under accession number EGAS00001006282. 
Data for estimation of mutation rate and phylogenetic analysis are available at https://doi.org/10.5281/zenodo.8002434. 
Data for the Figures and Extended Data Figures are available as Source Data.  
 
WES bam files, RNAseq data in the TPM format, and clinicopathological information of TCGA datasets were downloaded from TCGA data portal (https://
portal.gdc.cancer.gov/), whereas the information about PAM50 mRNA subtypes was extracted from the study by Ciriello et al. (DOI: 10.1016/j.cell.2015.09.033); if 
data were lacking, information was extracted from TCGA Network (DOI: 10.1038/nature11412).  
The publicly available GRCh37 (hg19, https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/) was used as human reference genome in this study.  
We referred to the 1000 Genomes Project dataset (1000g2015aug, downloaded through ANNOVAR (DOI:10.1093/nar/gkq603)), the gnomAD database 
(gnomad_genome, downloaded through ANNOVAR), the GenomicSuperDups database (downloaded through ANNOVAR), repetitive sequences reported in the 
UCSC Genome Browser (DOI:10.1101/gr.229102), COSMIC (the Catalogue Of Somatic Mutations In Cancer) database (https://cancer.sanger.ac.uk/cosmic), and 
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/), for variant annotation.  
COSMIC SBS signatures (v3.1) were obtained from COSMIC (https://cancer.sanger.ac.uk/signatures/downloads/).

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We analysed specimens derived from female breast cancer patients and healthy women to investigate clonal evolution of 
normal mammary epithelial cells into breast cancer in women.

Population characteristics We enrolled 207 female breast cancer patients who underwent surgery at the Kyoto University Hospital, aged 26 to 92, and 
eight healthy breastfeeding women who delivered at the Kyoto University Hospital or Adachi Hospital, aged 22 to 37. The 
characteristics of the participants are summarised in Supplementary Table 1. 

Recruitment To estimate the rate of mutation accumulation in normal mammary epithelial cells, we enrolled 15 sporadic female breast 
cancer patients who underwent total mastectomy at the Kyoto University Hospital,  and eight healthy breastfeeding women 
with adequate breast milk supply who had delivered at the Kyoto University Hospital or Adachi Hospital. These participants 
were recruited at random. 
 
For the analysis of cancer-related clonal evolution, All 156 female breast cancer patients who underwent surgery without any 
preoperative treatment at the Kyoto University Hospital from 2015 to 2017 and agreed to offer surgical specimens were 
recruited. Next, they were screened based on the pathology reports to select the cases with multiple large non-cancerous 
proliferative lesions near cancers. In total, five sporadic cases with available archival FFPE surgical specimens were found, and 
all the cases were analysed via sequencing. The details of case selection are shown in Online methods. We dared to select 
breast cancers accompanied by multiple proliferative lesions to explore life history of breast cancer, which resulted in the 
enrichment of der(1;16)(+) cancers. 
To further evaluate the pathological feature of der(1;16)(+) breast cancers, we obtained 33 breast cancer tissue cores (28 
Luminal A-like invasive cancers and 5 ER(+)HER2(-) non-invasive cancers) in the tissue microarray provided by the Kyoto 
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Breast Cancer Research Network (KBCRN) BORN (Breast Oncology Research Network)-BioBank, which was established using 
surgical specimens of randomly recruited cases. Two premenopausal and six postmenopausal der(1;16)(+) cancer cases were 
found by FISH analysis, and they all were evaluated in this study. The details of case selection are also shown in Online 
Methods.  
 
For the analysis of non-cancer clones unrelated to cancer, we enrolled 3 premenopausal breast cancer patients who 
underwent total mastectomy without any preoperative treatment at the Kyoto University Hospital, to obtain enough amount 
of normal epithelium before atrophy due to menopause. The patients were recruited at random.

Ethics oversight This study was reviewed and approved by the ethics committees of the Kyoto University and Adachi Hospital.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to determine sample size since this is an exploratory study. We enrolled as many patients as possible who 
provided consent for our study during the enrollment period between 1/Jan/2015 and 1/Dec/2020.

Data exclusions For the analysis of TCGA BRCA cohort, we excluded whole-genome amplified samples to avoid artefactual mutation callings. We also excluded 
samples with pathogenic germline variants and samples with low quality copy number data, to evaluate the association of specific copy 
number events, clinicopathological information, and somatic mutation profiles in the sporadic BRCA cohort. 

Replication We did not attempt replication in this study, except for WGS of WGA organoid samples, in which two independent experiments were 
performed to eliminate WGA-related sequencing errors. The details of sequencing methods for WGA samples are described in Online 
Methods. 
 
As for sequencing experiments, we validated the results by confirmatory targeted capture sequencing for variants (n = 702) from 22 samples 
randomly selected from 126,653 variants from 228 samples. We also validated variants detected in the most common recent ancestors in 
FFPE multi-sampled cases as many as possible (n = 10,190 out of 10,629 variants) in 27 samples from five cases (out of 84 samples from 10 
cases) to ensure the accuracy of phylogenetic tree reconstruction and the subsequent estimation of timing for initial events. The details of 
validation sequencing are described in Online methods and Supplementary Tables 14 and 15. 

Randomization Not applicable since this is a case-series study which was therefore not planned to detect any difference in effects between the cohorts with 
and without intervention.

Blinding Pathologists were blinded to the genetic alterations in each sample during histopathological evaluation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used ER (supplier name, Roche Diagnostics; catalogue number, 790-4325; clone name, SP1) 
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Antibodies used PR (supplier name, Roche Diagnostics; catalogue number, 790-2223; clone name, 1E2) 
HER2 (supplier name, Roche Diagnostics; catalogue number, 790-2991; clone name, 4B5) 
Ki-67 (supplier name, Agilent Technologies; catalogue number, M7240; clone name, MIB-1) 
CD326 (EpCAM) MicroBeads human (supplier name, Miltenyi Biotec; catalogue number, 130-061-101) 
CD45 Microbeads human (supplier name, Miltenyi Biotec; catalogue number, 130-045-801) 
pan-cytokeratin antibody cocktails (AE1/AE3) (supplier name, NICHIREI; catalogue number, 412811) 
CK5 (supplier name, Leica Biosystems; catalogue number, CK5-L-CE-H; clone name, XM26) 
E-cadherin (supplier name, Agilent Technologies; catalogue number, M3612; clone name, NCH-38)

Validation ER (human; IHC; validation:  Manufacturer -  https://pim-eservices.roche.com/eLD/web/pi/en/documents/download/2b989f55-4533-
ea11-fc90-005056a71a5d) 
PR (human; IHC; validation:  Manufacturer -  https://pim-eservices.roche.com/eLD/web/pi/en/documents/download/76ea4fea-e112-
ea11-fa90-005056a772fd) 
HER2 (human; IHC; validation:  Manufacturer -  https://pim-eservices.roche.com/eLD/web/pi/en/documents/download/
fc569ff5-2236-ea11-fc90-005056a71a5d) 
Ki-67 (human; IHC; validation:  Manufacturer -  http://webzis.cytopathos.sk/Protilatky/store/MIB1.pdf) 
CD326 (EpCAM) MicroBeads human (human; MicroBeads conjugated to monoclonal antibody: validation,  Manufacturer -  http://
www.ulab360.com/files/prod/manuals/201603/28/596760001.pdf) 
CD45 Microbeads human (human; MicroBeads conjugated to monoclonal antibody; validation:  Manufacturer -  https://
www.miltenyibiotec.com/upload/assets/IM0001290.PDF) 
pan-cytokeratin antibody cocktails (AE1/AE3) (human; IHC; validation:  Tohyama R, Kayamori K, Sato K, et al. Establishment of a 
xenograft model to explore the mechanism of bone destruction by human oral cancers and its application to analysis of role of 
RANKL. J Oral Pathol Med. 2016; 45(5):356-64.) 
CK5 (human; IHC; validation:  Manufacturer -  https://shop.leicabiosystems.com/ja-jp/actions/ViewProductAttachment-OpenFile?
LocaleId=en_US&DirectoryPath=SDSs&FileName=ck5-l-ce.pdf&UnitName=LBS) 
E-cadherin (human; IHC; validation:  Manufacturer -  http://webzis.cytopathos.sk/Protilatky/store/Cadherin%20E.pdf)
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