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Abstract. This paper provides mathematical and numerical analysis of a one-

dimensional model of turbulent flow generating the anomalous cascade of the inviscid

conserved quantity. The model is based on the generalized Constantin-Lax-Majda-

DeGregorio (gCLMG) equation with viscous dissipation under a large-scale forcing.

Suppose that the forcing function and the initial data are random variables defined

on a certain probability space. Then, the equation is regarded as a random partial

differential equation. We prove the global existence of a unique solution to the gCLMG

equation, from which a stochastic process is defined. In addition, by approximating the

solutions numerically by Galerkin approximation of random variables with generalized

Polynomial Chaos, we confirm the existence of a steady distribution. We find that

the steady distribution reproduces qualitatively the same cascades of the energy and

the enstrophy spectra as those of a turbulent flow generated by randomly moving

pulse [14]. We also investigate the structure functions, showing intermittency.

Submitted to: Nonlinearity
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1. Introduction

The cascade of energy is one of the characteristic properties observed in three-

dimensional turbulence. The energy input from large-scale transfers at a constant rate

in the middle scales and it then dissipates at smaller scales where viscous dissipation

becomes dominant. Let u(t,x) denote the velocity field of the flow at time t and the

position x in the domain T3 ≃ (R/2πZ)3 with the periodic boundary condition. The

energy spectra of the scale k ∈ [0,∞) is then defined by

E(t, k) :=
1

2

∑
|k′|=k

|û(t,k′)|2 ,

where û(t,k′) represents the Fourier coefficient of the velocity field. The total energy of

the flow is given by E(t) =
∫∞
0

E(t, k)dk and the time derivative of the total energy, say

ε, is called the energy dissipation rate. Kolmogorov [10, 11] claimed that the ensemble

average of the energy spectra ⟨E(k)⟩ follows the scaling law,

⟨E(k)⟩ ≃ ε
2
3k− 5

3 ,

in the zero viscous limit under the assumption that turbulent flows are statistically

stationary, spatially homogeneous, and isotropic. This is known as the 5/3 law of

turbulence. In real viscous fluid flows with high Reynolds numbers, there appears a

range of middle-scale wavenumbers, called the inertial range, along which the energy

cascades following the scaling law [6]. On the other hand, we must notice that the

energy is a conserved quantity for flows with exactly zero viscosity. Hence, the energy

cascade suggests a singular discrepancy between non-viscous flows and those in the zero-

viscous limit. A similar cascade phenomenon is observed in 2D turbulent flows [12, 13]:

Whereas the enstrophy, which is the L2 norm of the vorticity, is a conserved quantity

for inviscid and incompressible 2D flows, the enstrophy cascade yields the emergence of

the inertial range satisfying ⟨E(k)⟩ ≃ η
2
3k−3 for the enstrophy dissipation rate η.

Kolmogorov’s turbulence theory is based on the dimensional analysis of physical

quantities without specifying their governing equations explicitly. Hence, it is

theoretically important to describe the cascade phenomena in terms of the solutions

of the hydrodynamic equations. In many theoretical and numerical investigations of

turbulence, incompressible and viscous flows with high Reynolds numbers subject to

random large-scale forcing are considered to be models of turbulence. Hence, we attempt

to explain the scaling law of the energy cascade from the incompressible Navier-Stokes

(NS) equation. However, since the existence of a solution to the NS equation in three-

dimensional space has not yet been established, it is far from a complete understanding

of the cascade phenomenon. Accordingly, to get insights about this phenomenon, we deal

with hydrodynamic equations that model the NS equations such as Burgers equation,

the surface quasi-geostrophic equation [4, 5] and Constantin-Lax-Majda equation [3].

In the study of the Burgers equation subject to a stochastic forcing, the existence of
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a uniform invariant measure has been established [17]. In addition, it has also been

shown in [2] that there appears an inertial range on which the energy cascade follows

the scaling law k−2. The stochastic Burgers equation is a good model to realize the

turbulent state generating the energy cascade, but it is a little bit different situation

from that in the energy cascade of turbulence.

Another hydrodynamics model is based on the generalized Constantin-Lax-Majda

(CLM) equation for the functions u(t, x) and ω(t, x),

ωt + auωx − uxω = 0, ux = H(ω),

where a ∈ R is a parameter and H represents the Hilbert transform. For a smooth

function ω ∈ C∞ on S1 ≃ (R/2πZ) with a periodic boundary condition, H(ω) is defined

by H(ω) = −F−1isgn(n)Fω, where Fu = û denotes the Fourier transform of u and

sgn: R → R is the sign function, i.e., sgn(x) = x
|x| for x ̸= 0 and sgn(x) = 0 for

x = 0. The nonlinear term uxω in the first equation models the vortex stretching term

in the 3D vorticity equation and the second equation corresponds to the Biot-Savart

law, which was originally proposed by Constantin, Lax, and Majda [3]. The model

advection term uωx was added by De Gregorio [7, 8]. Okamoto et al. [16] introduced

the parameter a ∈ R to investigate the role of the balance between the advection term

and the vortex stretching term in the existence of the solution, and they have shown

that a unique solution exists locally in time. While the existence of a global solution

has not been established, a sufficient condition of the Beale-Kato-Majda type for global

existence has been obtained. Furthermore, it is found that the Lp norm of the solution,

i.e., ∥ω(t, ·)∥Lp with p = −a, is a conserved quantity for a ≦ −1. This indicates that the

gCLMG equation shares similar mathematical properties with the 3D Euler equations.

Inspired by the mathematical studies, we propose the following one-dimensional

partial differential equations as a model of turbulent flows.

ωt + auωx − uxω = νωxx + f, ux = H(ω), ω(0, x) = ω0(x), (1)

where ν > 0 is the viscous coefficient, ω0 is the initial data and f denotes a forcing

term. The choice of the forcing function f is important. In [14, 15], the forcing function

is given by a stochastic process, whose Fourier coefficient f̂(k, t) with the large-scale

wavenumbers k = ±1 are set to Gaussian, δ-correlated-in-time, and independent random

variables with zero mean. Mathematically, the equation (1) in this case becomes an

infinite-dimensional stochastic partial differential equation. Numerical investigations of

the long-time evolution of the solution to the equation (1) with a = −2 have revealed

that the cascade of the conserved quantity ∥ω(t, ·)∥L2 exists over the inertial range. The

scaling law almost agrees with that proposed by the dimensional analysis, though a small

correction is required. In addition, it is found that the scaling law coincides with the

energy spectra of a stationary solution to the equation (1) with a deterministic forcing.

Some higher-order moments of the solutions are computed, but their scaling laws are

not well-identified due to random behaviors of the evolutions of sample solutions.



Statististical laws of a 1D model of turbulent flows 4

In the meantime, we can consider another type of forcing function to investigate the

statistical properties of solutions. That is to say, when the initial data ω0 and the forcing

functions f are regarded as random variables defined on a certain probability space Ω,

we introduce a continuous mapping Mt from the pair of the random variables (ω0, f)

to the solution ω(t) to the equation (1). In this formulation, it is regarded as a random

partial differential equation, and the solution ω(t) becomes a stochastic process. Then

the following questions are to be considered: (i) the global existence of the mapping Mt

and its uniqueness, (ii) the evolution of solutions under the action of Mt, and (iii) the

scaling law of the statistical quantities associated with the solutions. The purpose of

the present study is to answer these questions mathematically as well as numerically.

The construction of the paper is as follows. In Section 2, we prove the existence of

a unique solution when the initial data and the forcing function are fixed. Using this

global solution, we show that the mapping Mt is well-defined when the initial data and

the forcing function are random variables chosen from a probability space and that the

solution ω(t) becomes a stochastic process. In Section 3, we investigate the statistical

properties of solutions numerically. The solution is approximated by the pseudo-spectral

method in the function space and the Galerkin method using the generalized Polynomial

Chaos（gPC）in the probability space [18, 20]. The use of gPC has an advantage

over the numerical investigation of stochastic partial differential equations since the

statistical quantities are explicitly represented by the numerical solutions without taking

the ensemble average of the long-time randomly moving solutions as shown in [19, 20].

Section 4 gives a conclusion and we mention some future directions.

2. Well-posedness of the gCLMG eq with a random forcing

We consider the gCLMG equation with a forcing term (1) in S1 := R/2πZ with the

periodic boundary condition. For m ∈ N ∪ {0}, we introduce the function space,

Ḣm :=

{
u ∈ Hm(S1)

∣∣∣∣ ∫ 2π

0

u(x)dx = 0

}
,

endowed with the inner product ⟨f, g⟩Ḣm := ⟨∂m
x f, ∂m

x g⟩L2(S1) and the norm ∥u∥Ḣm =

∥∂m
x u∥L2(S1) = ∥|n|mFu∥ℓ2 =

∑
n̸=0 |n|2m|û(n)|2. Note that this norm is equivalent to

that of the standard Sobolev spaceHm(S1), and that Ḣm is a closed subspace ofHm(S1).

For ω ∈ Ḣm, the Hilbert transform ux = H(ω) is represented by u = −(−△)−
1
2ω, where

(−△)−
γ
2 is defied by F−1 |n|−γ F for γ ≧ 0.

For 0 < T < ∞, the set of continuous functions from [0, T ] to Ḣm is denoted by

Xm
T . With the norm

∥u∥Xm
T
:= sup

0≦t≦T

∥u(t)∥Ḣm ,

Xm
T becomes a Banach space. We also define Xm

∞ := C([0,∞); Ḣm) with the distance

induced by the seminorms pn(f) := ∥f∥Xm
n

of C([0,∞); Ḣm). Throughout this paper,

by C(a, b, c, . . .), we mean the constant C depends on parameters a, b, c, . . .. Also, to
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avoid notational complications, we use the same symbol C for constants in the following

estimates, although they are different.

Let us first introduce the notions of the solution to the equation (1) as follows.

Definition 2.1. Let m ∈ N and 0 < T < ∞.

• For the initial data ω0 ∈ Ḣm and the forcing function f ∈ Xm
T , ω ∈ Xm

T is called

the mild solution to the equation (1), if

ω(t) = eνt△ω0 +

∫ t

0

eν(t−s)△ {−a(uω)x(s) + (1 + a)(uxω)(s) + f(s)} ds (2)

holds in Ḣm for t ∈ [0, T ], where eνt△ = F−1e−tνn2F for t ≧ 0 represents the heat

semi-group.

• For the initial data ω0 ∈ Ḣm+2 and the forcing function f ∈ Xm+2
T , we call

ω ∈ C([0, T ]; Ḣm+2) ∩ C1((0, T ]; Ḣm) is the strong solution to the equation (1),

if the following equation holds in Ḣm.

ωt + auωx − uxω = νωxx + f, ux = H(ω), ω(0) = ω0.

• For the initial data ω0 ∈ Ḣm+4 and the forcing function f ∈ Xm+4
T , we call

ω ∈ C([0, T ];Cm+2) ∩C1((0, T ];Cm) is the classical solution to the equation (1), if

the following equation holds at each t and x.

ωt + auωx − uxω = νωxx + f, ux = H(ω), ω(0) = ω0

• For the initial data ω0 ∈ Ḣm and the forcing function f ∈ Xm
∞, ω ∈ Xm

∞ is said to

be the global mild solution to (1), if ω|[0,T ] ∈ Xm
T for any 0 < T < ∞ is the mild

solution to the equation (1) for the initial data ω0 ∈ Ḣm and the forcing function

f |[0,T ] ∈ Xm
T .

Remark that if the mild solution ω ∈ Xm
T to the equation (1) satisfies ω ∈

C1((0, T ]; Ḣm) ∩ C([0, T ]; Ḣm+2), the Fourier transformation of (2) gives rise to the

strong solution. In addition if the mild solution belongs to ω ∈ Xm+4
T , it becomes a

classical solution in C([0, T ];Cm+2) ∩ C1((0, T ];Cm).

We first show the existence of a unique mild solution in Xm
T locally in time.

Theorem 2.1. Let a ∈ R, ν > 0 and m ∈ N. Suppose that f ∈ Xm
∞ and ω0 ∈ Ḣm.

Then, there exists T > 0 such that the equation (1) has a unique mild solution ω ∈ Xm
T .

Proof. For fixed T > 0 and ω ∈ Xm
T , let us define the operator Φ(ω) by

Φ(ω)(t) := eνt△ω0 +

∫ t

0

eν(t−s)△ {−a(uω)x(s) + (1 + a)(uxω)(s) + f(s)} ds.

When ω(0) = ω0 ̸= 0, we set XT := {ω ∈ Xm
T | ∥ω∥Xm

T
≦ 2 ∥ω0∥Ḣm}. We then show that

Φ becomes a contraction mapping from XT to XT for sufficiently small T > 0.
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First, for ω ∈ XT , we confirm that∥∥eνt△ω(t)∥∥
Ḣm =

∥∥∥F−1e−νtn2 |n|mFω(t)
∥∥∥
L2

=
∥∥∥|n|me−νtn2Fω(t)

∥∥∥
ℓ2
≦ ∥|n|mFω(t)∥ℓ2 = ∥ω(t)∥Ḣm ,∥∥eνt△∂xω(t)∥∥Ḣm ≲

∥∥∥|n|m|n|e−νtn2Fω(t)
∥∥∥
ℓ2
≲ sup

n∈Z
|n|e−νtn2 × ∥|n|mFω(t)∥ℓ2 ≲ ν− 1

2 t−
1
2 ∥ω(t)∥Ḣm .

Let us also notice that u ∈ Xm
T holds for ω ∈ Xm

T , since ux = Hω and

∥u(t)∥Ḣm = ∥ux(t)∥Ḣm−1 = ∥Hω(t)∥Ḣm−1 = ∥ω(t)∥Ḣm−1 ≲ ∥ω(t)∥Ḣm ≲ ∥ω∥Xm
T
.

From these estimates and (11), for ω ∈ XT , we have∥∥eνt△ω0

∥∥
Ḣm ≦ ∥ω0∥Ḣm ,∥∥eν(t−s)△(uω)x(s)

∥∥
Ḣm ≲ ν− 1

2 (t− s)−
1
2 ∥(uω)(s)∥Ḣm ≲ ν− 1

2 (t− s)−
1
2 ∥u(s)∥Ḣm ∥ω(s)∥Ḣm

≲ ν− 1
2 (t− s)−

1
2 ∥ω(s)∥Ḣm−1 ∥ω(s)∥Ḣm ≦ C(m)ν− 1

2 (t− s)−
1
2 ∥ω0∥2Ḣm ,∥∥eν(t−s)△(uxω)(s)

∥∥
Ḣm ≦ ∥(uxω)(s)∥Ḣm ≲ ∥ux(s)∥Ḣm ∥ω(s)∥Ḣm ≦ C(m) ∥ω0∥2Ḣm ,∥∥eν(t−s)△f(s)

∥∥
Ḣm ≦ ∥f(s)∥Ḣm ≦ ∥f∥Xm

T
.

Note that the constants in the above upper bounds depend on the regularity of the

function space m and the viscous coefficient ν. Hence, we have

∥Φ(ω)(t)∥Ḣm ≦
∥∥eνt△ω0

∥∥
Ḣm + |a|

∫ t

0

∥∥eν(t−s)△(uω)x(s)
∥∥
Ḣm ds

+ |1 + a|
∫ t

0

∥∥eν(t−s)△(uxω)(s)
∥∥
Ḣm ds+

∫ t

0

∥f(s)∥Ḣm ds

≦ ∥ω0∥Ḣm + C(m, a, ν) ∥ω0∥2Ḣm T
1
2 + C(m, a)T ∥ω0∥2Ḣm + T ∥f∥Xm

T
.

Since the right-hand side is independent of t, by taking sup0≦t≦T , we have

∥Φ(ω)∥Xm
T
≦ ∥ω0∥Ḣm + C(m, a, ν)T

1
2 ∥ω0∥2Ḣm + C(a)T ∥ω0∥2Ḣm + T ∥f∥Xm

T
.

Hence, we can choose a sufficiently small T = T (m, a, ν, ∥ω0∥Ḣm , ∥f∥Xm
T
) > 0 so that

∥Φ(ω)∥Xm
T
≦ 2 ∥ω0∥Ḣm , which means that Φ defines a mapping from XT to XT .

Next, we show that Φ is a contraction mapping. For ω1, ω2 ∈ XT , we have

∥(u1ω1 − u2ω2)(t)∥Ḣm ≦ ∥u1ω1 − u2ω2∥Xm
T

≦ ∥u1ω1 − u1ω2∥Xm
T
+ ∥u1ω2 − u2ω2∥Xm

T

≦ ∥u1∥Xm
T
∥ω1 − ω2∥Xm

T
+ ∥ω2∥Xm

T
∥u1 − u2∥Xm

T

≲ (∥ω1∥Xm
T
+ ∥ω2∥Xm

T
) ∥ω1 − ω2∥Xm

T
≲ ∥ω0∥Ḣm ∥ω1 − ω2∥Xm

T

and similarly

∥(u1xω1 − u2xω2)(t)∥Ḣm ≦ ∥u1xω1 − u2xω2∥Xm
T
≲ ∥ω0∥Ḣm ∥ω1 − ω2∥Xm

T
.



Statististical laws of a 1D model of turbulent flows 7

Hence, it follows from

∥Φ(ω1)(s)− Φ(ω2)(s)∥Ḣm ≦ C(a)

∫ t

0

∥∥eν(t−s)△(u1ω1 − u2ω2)x(s)
∥∥
Ḣm ds

+ C(a)

∫ t

0

∥∥eν(t−s)△(u1xω1 − u2xω2)(s)
∥∥
Ḣm ds

≦ C(a, ν)

∫ t

0

(t− s)−
1
2ds ∥u1ω1 − u2ω2∥Xm

T
+ C(ν)T ∥u1xω1 − u2xω2∥Xm

T

≦ C(m, a, ν)(T
1
2 + T ) ∥ω0∥Ḣm ∥ω1 − ω2∥Xm

T

that we obtain

∥Φ(ω1)− Φ(ω2)∥Xm
T
≦ C(m, a, ν)(T

1
2 + T ) ∥ω0∥Ḣm ∥ω1 − ω2∥Xm

T
.

This indicates that Φ: XT → XT becomes a contraction mapping for a sufficiently small

T = T (m, a, ν, ∥ω0∥Hm) > 0 with ω0 ̸= 0. On the other hand, when ω0 = 0, by simply

setting XT := Xm
T , we can similarly show that Φ: XT → XT is a contraction mapping.

Consequently, by Banach fixed-point theorem, there exists a unique ω ∈ XT satisfying

ω = Φ(ω).

We have obtained the unique mild solution in XT which is a subspace of Xm
T . This

is the unique mild solution in the whole space Xm
T . Suppose that ω1, ω2 ∈ Xm

T are the

solutions to the equation (1). Then we similarly obtain

∥ω1(t)− ω2(t)∥Ḣm = ∥Φ(ω1)(t)− Φ(ω2)(t)∥Ḣm

≦ C(m, a, ν, ∥ω0∥Ḣm)

∫ t

0

(1 + (t− s)−
1
2 ) ∥ω1(s)− ω2(s)∥Ḣm ds.

By Gronwall’s inequality, we have ω1 = ω2 in Xm
T .

We show that the unique local mild solution to the equation (1) in Theorem 2.1

depends continuously on the initial data ω0 ∈ Ḣm and the forcing function f ∈ Xm
T .

Theorem 2.2. Let 0 < T < ∞, a ∈ R, ν > 0 and m ∈ N. Suppose that ωi ∈ Xm
T ,

i = 1, 2 represents the mild solution of (1) for the forcing function fi ∈ Xm
T and the

initial data ω0i ∈ Ḣm. Then, there exists a constant C(a, ν, T, ∥ω1∥Xm
T
, ∥ω2∥Xm

T
) > 0

such that the following inequality holds.

∥ω1 − ω2∥Xm
T
≦ C(∥f1 − f2∥Xm

T
+ ∥ω01 − ω02∥Ḣm). (3)

Proof. In a similar way as in the proof of Theorem 2.1, since

∥ω1(t)− ω2(t)∥Ḣm = ∥Φ(ω1)− Φ(ω2)∥Ḣm

≦ ∥f1 − f2∥Xm
T
+ ∥ω01 − ω02∥Ḣm

+ C(ν, a, ∥ω1∥Xm
T
, ∥ω2∥Xm

T
)

∫ t

0

(1 + (t− s)−
1
2 ) ∥ω1(s)− ω2(s)∥Ḣm ds,
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Grownwall’s inequality yields

∥ω1(t)− ω2(t)∥Ḣm ≦ C(∥f1 − f2∥Xm
T
+ ∥ω01 − ω02∥Ḣm).

By taking sup0≦t≦T , we finish the proof.

The following theorem assures the persistence of regularity for the unique mild

solution.

Theorem 2.3. Let m∗,m ∈ N with m∗ > m, f ∈ Xm∗
∞ and ω0 ∈ Ḣm∗. Suppose that

ω ∈ Xm
T is a unique mild solution to the equation (1) when we regard f and ω0 are

elements in Xm
T ⊂ Xm∗

∞ and Ḣm ⊂ Ḣm∗ respectively. Then, the solution ω belongs to

Xm∗
T .

Proof. According to Theorem 2.1, there exists a constant T ∗ > 0 such that we have the

mild solution ω̃ in Xm∗
T∗

. When T∗ ≧ T , we have ω = ω̃ by the uniqueness in this time

range. For T∗ < T , we then obtain

∥ω̃(t)∥Ḣm∗ = ∥Φ(ω̃)(t)∥Ḣm∗

≦ ∥ω0∥Ḣm∗ + ∥f∥Xm
T
T + C(a, ν, ∥ω0∥Ḣm)

∫ t

0

(1 + (t− s)−
1
2 ) ∥ω̃(s)∥Ḣm∗ ds.

Gronwall’s inequality yields

∥ω̃∥Xm∗
T∗

≦ C(a, ν, T, ∥ω0∥Ḣm)(∥ω0∥Ḣm∗ + ∥f∥Xm
T
).

Owing to this upper bound, we can extend the existence time of the unique mild solution

in Ḣm∗ as long as T∗ < T . By repeating this step finitely until T∗ ≧ T , we have ω = ω̃

in Xm∗
T .

In what follows, we fix a = −2 when the L2 norm of ω is conserved. We then prove

the existence of the mild solution globally in time. The first step is to obtain an a priori

estimate.

Lemma 2.4 (L2 estimate). Let a = −2, ν > 0, m ∈ N, f ∈ Xm+4
∞ and ω0 ∈ Ḣm+4. If

there exists the classical solution ω ∈ C1((0, T ];Cm) ∩ C([0, T ];Cm+2) to the equation

(1) for any T , we have

∥ω(t)∥L2 ≦ ∥f∥C([0,T ];L2) t+ ∥ω0∥L2 .

Proof. Integrating the both sides of the equation (1) multiplied by ω and using the

Hölder inequality, we obtain

∥ω(t)∥L2

d

dt
∥ω(t)∥L2 ≦

1

2

d

dt
∥ω(t)∥2L2 + ν ∥ω(t)∥2Ḣ1 = ⟨f, ω⟩L2 ≦ ∥f∥C([0,T ];L2) ∥ω(t)∥L2 .

Hence, we have
d

dt
∥ω(t)∥L2 ≦ ∥f∥C([0,T ];L2) .
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Integrating it with respect to t, we have the estimate as desired.

∥ω(t)∥L2 ≦ ∥f∥C([0,T ];L2) t+ ∥ω0∥L2 .

Lemma 2.5 (Ḣm estimate). Let a = −2, ν > 0, m ∈ N, f ∈ Xm
∞ and ω0 ∈ Ḣm.

Suppose that there exists a classical solution ω ∈ C1([0, T ];Cm)∩C([0, T ];Cm+2) to the

equation (1) for any T > 0. Then the solution ω satisfies the following estimate.

∥ω∥2Xm
T
≦ C(m, ν, T )(Pm(∥ω0∥2Ḣm) +Qm(∥f∥2Xm

T
)), (4)

where Pm(x) and Qm(x) denote polynomials of degree 3m having non-negative

coefficients that are independent of ν, T , ω0 and f .

Proof. Let us rewrite the nonlinear terms of (1) as −2uxω − uxω = −2∂x(uω) + uxω.

Then acting ∂m
x on the both sides of the equation (1), multiplying it by ∂m

x ω and

integrating it with respect to x, we have

1

2

d

dt
∥ω(t)∥2Ḣm+ν ∥ω(t)∥2Ḣm+1 = −2

⟨
∂m
x (uω), ∂m+1

x ω
⟩
L2−⟨∂m

x (uxω), ∂
m
x ω⟩L2+⟨∂m

x f, ∂m
x ω⟩L2 .

(5)

We separately estimate the three terms on the right-hand side of (5). To avoid the

notational complications, we omit the time dependence in the norm of Ḣm as long as

no confusion occurs. The first term is estimated using the equality (11), the isometric

property of the Hilbert transform, Sobolev interpolation inequality (10) with θ = 1,

m1 = m− 1 and m2 = m+ 1.∣∣−2
⟨
∂m
x (uω), ∂m+1

x ω
⟩
L2

∣∣ ≦ C(m) ∥uω∥Ḣm ∥ω∥Ḣm+1 ≦ C(m) ∥u∥Ḣm ∥ω∥Ḣm ∥ω∥Ḣm+1

≦ C(m) ∥ux∥Ḣm−1 ∥ω∥Ḣm ∥ω∥Ḣm+1 ≦ C(m) ∥ω∥
3
2

Ḣm−1 ∥ω∥
3
2

Ḣm+1

≦ ν

6
∥ω∥2Ḣm+1 + C(m, ν) ∥ω∥6Ḣm−1 .

In the last estiamte, Young’s inequality (9) is used for a =
(
2ν
9

) 3
4 ∥ω∥

3
2

Ḣm+1 and

b = C(m)
(

9
2ν

) 3
4 ∥ω∥

3
2

Ḣm−1 with p = 4
3
and q = 4. Similarly, the second and the third

terms are evaluated as follows.

|− ⟨∂m
x (uxω), ∂

m
x ω⟩L2| ≦ C ∥uxω∥Ḣm ∥ω∥Ḣm ≦ C(m) ∥ux∥Ḣm ∥ω∥2Ḣm ≦ C(m) ∥ω∥3Ḣm

≦ C(m) ∥ω∥
3
2

Ḣm−1 ∥ω∥
3
2

Ḣm+1 ≦
ν

6
∥ω∥2Ḣm+1 + C(m, ν) ∥ω∥6Ḣm−1 ,

|⟨∂m
x f, ∂m

x ω⟩L2| ≦ C ∥f∥Ḣm ∥ω∥Ḣm ≦ C ∥f∥Xm
T
∥ω∥

1
2

Ḣm−1 ∥ω∥
1
2

Ḣm+1

≦ ν

6
∥ω∥2Ḣm+1 + C(ν) ∥f∥

4
3
Xm

T
∥ω∥

2
3

Ḣm−1

≦ ν

6
∥ω∥2Ḣm+1 + C(ν) ∥ω∥2Ḣm−1 + C(ν) ∥f∥2Xm

T
.
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Substituting these estimates in the equation (5), we have

d

dt
∥ω(t)∥2Ḣm + ν ∥ω(t)∥2Ḣm+1 ≦ C(m, ν)(∥ω(t)∥6Ḣm−1 + ∥ω(t)∥2Ḣm−1 + ∥f∥2Xm

T
). (6)

We show the estimate (4) by induction with respect to m. For m = 1, Lemma 2.4

yields

∥ω(t)∥L2 ≦ C(T )(∥f∥X1
T
+ ∥ω0∥Ḣ1).

Substituting this estimate into (6) and using the inequality (a+ b)p ≦ 2p−1(ap + bp) for

a, b ≧ 0 and p ≧ 1, we have

d

dt
∥ω(t)∥2Ḣ1 ≦

d

dt
∥ω(t)∥2Ḣ1+ν ∥ω(t)∥2Ḣ2 ≦ C(m, ν, T )(∥f∥6X1

T
+∥ω0∥6Ḣ1+∥f∥2X1

T
+∥ω0∥2Ḣ1).

Integrating it with respect to t yields

∥ω(t)∥2Ḣ1 ≦ C(m, ν, T )(∥f∥6X1
T
+ ∥ω0∥6Ḣ1 + ∥f∥2X1

T
+ ∥ω0∥2Ḣ1).

This indicates that (4) holds true for m = 1 with P1(x) = Q1(x) = x3 + x.

Suppose now that the estimate (4) is valid for m − 1 with the polynomials Pm−1

and Qm−1 of degree 3(m− 1) having non-negative coefficients:

∥ω(t)∥2Ḣm−1 ≦ C(m, ν, T )(Pm−1(∥ω0∥2Ḣm−1) +Qm−1(∥f∥2Xm−1
T

)).

Substituting this estimate into (6), we have

d

dt
∥ω(t)∥2Ḣm ≦ d

dt
∥ω(t)∥2Ḣm + ν ∥ω(t)∥2Ḣm+1

≦ C(m, ν)(Pm−1(∥ω0∥2Ḣm−1)
3 +Qm−1(∥f∥2Xm−1

T
)3

+ Pm−1(∥ω0∥2Ḣm−1) +Qm−1(∥f∥2Xm−1
T

) + ∥f∥2Xm
T
)

≦ C(m, ν)(Pm−1(∥ω0∥2Ḣm)
3 +Qm−1(∥f∥2Xm

T
)3

+ Pm−1(∥ω0∥2Ḣm) +Qm−1(∥f∥2Xm
T
) + ∥f∥2Xm

T
).

Integrating this inequality with respect to t and taking sup0≦t≦T , we finally have

∥ω∥2Xm
T
≦ C(m, ν, T )(Pm(∥ω0∥2Ḣm) +Qm(∥f∥2Xm

T
)),

where Pm(x) = Pm−1(x)
3 + Pm−1(x) + x and Qm(x) = Qm−1(x)

3 +Qm−1(x) + x are the

polynomials of degree 3m and their coefficients are all non-negative.

With this estimate, we finally show the existence of the global mild solution.

Note that the asymptotically stable solution obtained by Matsumoto-Sakajo[14] and

the steady solution by Jeong-Kim[9] are examples of global mild solutions.

Theorem 2.6. Let a = −2, ν > 0 and m ∈ N. Suppose the forcing functon f ∈ Xm
∞

and the initial data ω0 ∈ Ḣm. Then there exists a unique mild solution ω ∈ Xm
∞ to

the equation (1) globally in time. Moreover, for any T > 0, the solution satisfies the

following estimate.

∥ω∥Xm
T
≦ C(m, ν)(Pm(∥ω0∥2Ḣm) +Qm(∥f∥2Xm

T
)),

where Pm and Qm are polynomials of degree 3m with non-negative coefficients.
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Proof. Let us note that f ∈ Xm
∞ implies f |[0,T ] ∈ Xm

T for any T > 0. For fixed N ∈ N,
let us define the projection operator PN : Ḣm → Ḣm by PNϕ :=

∑
0<|n|≦N ϕ̂(n)einx.

For any m∗ > m, if ϕ ∈ Ḣm, then PNϕ ∈ Hm∗ , and limN→∞ PNϕ = ϕ in Ḣm. Since

the sequence of continuous functions {∥PNf(t)− f(t)∥2Ḣm}N∈N on [0, T ] for f ∈ Xm
T is

monotonically decreasing and it vanishes pointwise as N → ∞, we have the convergence

limN→∞ PNf = f uniformly in Xm
T by Dini’s theorem.

To extend the existence time beyond T ∗, we need to show that the a priori estimate

(4) for the classical solution is satisfied for the mild solution up to T ∗. So we construct a

classical solution that approximates the mild solution for t < T ∗ as follows. For m∗ ∈ N,
Theorem 2.1 assures that there exists a time TN(< T ) such that the gCLMG equation

(1) has a unique mild solution, say ωN ∈ Xm∗
TN

, for the initial data PNω0 ∈ Ḣm∗ and the

forcing function PNf ∈ Xm∗
T . When we choose m∗ = m+ 4, the mild solution becomes

the classical solution. By Lemma 2.5, the solution satisfies the following estimate.∥∥ωN
∥∥2

Xm
TN

≦ C(m, ν, T )(Pm(∥ω0∥2Ḣm) +Qm(∥f∥2Xm
T
)),

where Pm(x) and Qm(x) are polynomials of degree 3m with non-negative coefficients

that are independent on N . Note that we here use ∥PNω0∥Ḣm ≦ ∥ω0∥Ḣm and

∥PNf∥Xm
T
≦ ∥f∥Xm

T
. With this estimate, we can extend the existence time of the local

mild solution ωN in Ḣm for a certain fixed time and, by Theorem 2.3, ωN(t) ∈ Ḣm∗ .

Repeating this step, we can finally extend the strong solution in Ḣm∗ up to T , i.e.,

ωN ∈ Xm∗
T . Hence, for any N ∈ N, we have∥∥ωN

∥∥2

Xm
T
≦ C(m, ν, T )(Pm(∥ω0∥2Ḣm) +Qm(∥f∥2Xm

T
)). (7)

In the meantime, let ω ∈ Xm
T∗ with T∗(< T ) be the local mild solution for the initial

data ω0 ∈ Ḣm and the forcing function f ∈ Xm
T . It follows from the inequality (7) and

the estimate (3) in Theorem 2.2 that we have∥∥ω − ωN
∥∥
Xm

T∗
≦ C(m, ν, T∗, ∥ω∥Xm

T∗
,
∥∥ωN

∥∥
Xm

T∗
)(∥ω0 − PNω0∥Ḣm + ∥f − PNf∥Xm

T
)

≦ C(m, ν, T∗, ∥ω∥Xm
T∗
, ∥ω0∥Ḣm , ∥f∥Xm

T
)(∥ω0 − PNω0∥Ḣm + ∥f − PNf∥Xm

T
).

Hence, as N → ∞, we obtain limN→∞
∥∥ω − ωN

∥∥
Xm

T∗
= 0 and the estimate (7) converges

as follows.

∥ω∥2Xm
T∗

≦ C(m, ν, T )(Pm(∥ω0∥2Ḣm) +Qm(∥f∥2Xm
T
)).

This estimate allows us to extend the existence time from T∗ to T . Thus, for any

0 < T < ∞, there exist the unique mild solution ω̃ ∈ Xm
T to the equation (1) for the

initial data ω0 ∈ Ḣm and the forcing function f |[0,T ] ∈ Xm
T . Hence, for any time t ≧ 0,

by choosing T ≧ t, we can define the global mild solution ω ∈ Xm
∞ at this time by this

mild solution ω̃ ∈ Xm
T . This finishes the proof.

Now we switch the deterministic forcing function f and the initial data ω0 to random

variables and investigate the property of the solution to the equation (1) as a random
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partial differential equation. Specifically, we show that a unique global mild solution to

the equation (1) is determined every time random variables in the probability space are

provided.

Theorem 2.7. Let a = −2, ν > 0 and m ∈ N. For a given probability space

(Ω,F , P ), we introduce random variables f : Ω → Xm
∞ and ω0 : Ω → Ḣm satisfying

f ∈ ∩∞
p=1L

p(Ω;Xm
T ) and ω0 ∈ ∩∞

p=1L
p(Ω; Ḣm) for any T > 0. Then there exists a

stochastic process ω : Ω → Xm
∞ uniequely such that ω|[0,T ] ∈ L2(Ω;Xm

T ) for 0 < T < ∞,

and for any η ∈ Ω, ωη = ω(η) ∈ Xm
∞ is a mild solution to the equation (1).

Proof. For t ≧ 0, we define the mapping M∞
t : Ḣm × Xm

∞ → Ḣm by (ω0, f) 7→ ω(t),

where ω(t) is the unique mild solution at time t for the initial data ω0 and the forcing

function f . This mapping is well-defined owing to Theorem 2.6.

On the other hand, for any T > 0, the mapping MT
t from the pair of the initial

condition and the forcing function (ω0, f |[0,T ]) ∈ (Ḣm×Xm
T ) to the unique mild solution

ω(t) ∈ Ḣm is continuous by Theorem 2.2, and so is M∞
t . Hence, when we define

ωη(t) := M∞
t (ω0(η), f(η)) for η ∈ Ω, ω : Ω → Xm

∞ becomes a stochastic process.

Let us recall that the mild solution satisfies the estimate

∥ωη∥2Xm
T
≦ C(m, ν, T )(Pm(∥ω0(η)∥2Ḣm) +Qm(∥f(η)∥2Xm

T
))

for 0 < T < ∞, and Pm and Qm are the polynomials of degree 3m. We thus have the

expectation

E[∥ωη∥2Xm
T
] ≦ C(m, ν, T )E[(Pm(∥ω0(η)∥2Ḣm)] + E[Qm(∥f(η)∥2Xm

T
)]) < ∞,

since E[∥f(η)∥6mXm
T
] < ∞ and E[∥ω0(η)∥6mḢm

] < ∞ for f ∈ ∩∞
p=1L

p(Ω;Xm
T ) and ω0 ∈

∩∞
p=1L

p(Ω; Ḣm). Consequently, we have ω ∈ L2(Ω;Xm
T ). This finishes the proof.

As we see in the proof, it is sufficient to assume f ∈ ∩6m
p=1L

p(Ω;Xm
T ) and

ω0 ∈ ∩6m
p=1L

p(Ω; Ḣm) to show the theorem.

3. Statistical properties of solutions

We consider the time evolution of the distribution of global mild solutions to the gCLMG

equation (1) when the initial data ω0 is deterministic and the forcing function f is a

time-independent random variable defined on a probability space. By approximating

the distribution numerically using the Galerkin approximation of the function space and

the probability space, we compute the statistical quantities of the distribution such as

the average, the spectral laws of the energy and the enstrophy spectra, and the structure

functions.
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3.1. Numerical method

Let PN,M : L2(Ω; Ḣm) → L2(Ω; Ḣm) denote the projection onto its 2N × (M + 1)-

dimensional subspace. We write PN,Mf := fN,M for f ∈ L2(Ω; Ḣm). Then the Galerkin

approximation of the equation (1),

d

dt
ωN,M − PN,M(uN,M

x ωN,M − auN,MωN,M
x ) = νωN,M

xx + fN,M , uN,M
x = H(ωN,M), (8)

for the inital data ωN,M(0) = ωN,M
0 gives rise to 2N × (M + 1)-dimensional ordinary

differential equations for the expansion coefficients of ωN,M .

The projection PN,M is specified as follows. For the discretization of the function

space Hm(S1), we use the standard dealiased pseudo-spectral method. On the other

hand, the random variables in the probability space L2(Ω; Ḣm) are discretized with

the generalized Polynomial Chaos (gPC). For Rd-valued random variable Z : Ω → Rd

and measurable functions f̃ : Rd → Ḣm, we introduce f(η) = f̃(Z(η)) for η ∈ Ω. Let

(Rd,B(Rd), PZ) be the space of the pushforward measure of Z. See [1] for the definition

of the pushforward measure. By EPZ , we express the expectation with respect to PZ .

Then it follows E[∥f∥2Ḣm ] = EPZ [
∥∥∥f̃∥∥∥2

Ḣm
] that we have the existence of the mild solution

ω(t) belonging to L2
PZ (Rd; Ḣm) for any t ≧ 0 by using f̃ on (Rd,B(Rd), PZ) instead of

f on (Ω,F , P ) in Theorem 2.7.

Owing to L2
PZ (Rd; Ḣm) ∼= L2

PZ (Rd)⊗Ḣm, its orthogonal basis of the Bochner space

L2
PZ (Rd; Ḣm) is the product of the orthonormal basis of Ḣm, i.e., en(x) = einx/2π,

n ∈ N \ {0}, and that of L2
PZ (Rd). The gPC uses a system of orthogonal polynomials,

say {Φα(Z)}∞α=0, associated with the distribution of the random variable Z. That

is to say, any function f ∈ L2(Ω; Ḣm) is represented by f(x, η) = f̃(x, Z(η)) =∑∞
α=0 f̂(x, α)Φα(Z(η)) with f̂(x, α) = EPZ [f̃(x, ·)Φα(·)]/EPZ [Φ2

α] and it is approximated

numerically by truncation. For instance, the orthogonal basis of L2
PZ (Rd) for the

uniform distribution consists of Legendre polynomials. The mathematical theory and

background behind the numerical method is provided in [20]. With this basis, the

projection PN,M : L2(Ω; Ḣm) → L2(Ω; Ḣm) of the function ω(t, x, η) ∈ L2
PZ (Ω; Ḣ

m) is

expressed by

ωN,M(t, x, η) =
M∑
α=0

∑
|n|≦N

ω̂(t, n, α)einxΦα(Z(η)),

where

ω̂(t, n, α) :=
EPZ [⟨ω̃(t, ·, ·), en(·)⟩L2 Φα(·)]

EPZ [Φ2
α]

.

Note that the expectation EPZ is numerically approximated by the Gauss-Legendre

quadrature rule. Then the equation (8) is rewritten to the following equations for the
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coefficients ωN,M(t, x, η) for |n| ≦ N and 0 ≦ γ ≦ M .

d

dt
ω̂(t, n, γ) =− νn2ω̂(t, n, γ) + f̂(n, γ)

− a

M∑
α=0

M∑
β=0

EPZ [ΦαΦβΦγ]

EPZ [Φ2
α]EPZ [Φ2

β]EPZ [Φ2
γ]
⟨EPZ [uΦα]EPZ [ωxΦβ], em⟩L2

+
M∑
α=0

M∑
β=0

EPZ [ΦαΦβΦγ]

EPZ [Φ2
α]EPZ [Φ2

β]EPZ [Φ2
γ]
⟨EPZ [uxΦα]EPZ [ωΦβ], em⟩L2 .

We solve these ODEs numerically using the fourth-order Runge-Kutta method with the

temporal step size ∆t.

The gPC approximation yields the evolution of the distribution of the global

mild solutions to the equation (1) for a given distribution of forcing functions on the

probability space with a single numerical computation. Hence, it is unnecessary to

compute the time evolutions of many sample solutions. For instance, when the vorticity

ω ∈ L2(Ω, Ḣm) is approximated by

ω(t, x, η) ≈
M∑
α=0

N∑
n=−N

ω̂(t, n, α)einxΦα(Z(η)),

its average is simply obtained by the coefficient of Φ0(Z(η)).

E[ω](t, x) := EPZ [ω(t, x, ·)] ≈
N∑

n=−N

ω̂(t, n, 0)einxEPZ [Φ0].

Let us remark that it is the ensemble average of the distribution consisting of the mild

solutions in Ḣm at time t. It is different from the ensemble average of the snapshots (or

the long-time average) of solutions to the gCLMG equation (1) subject to a stochastic

forcing in [14].

The average of the enstrophy spectra E[∥ω∥2L2 ](t, k) at time t is computed by

E[∥ω∥2L2 ](t, k) :=
1

2

∑
|ℓ|=k,k+1

E[|ω̂(t, ℓ, ·)|2] ≈ 1

2

M∑
α=0

∑
|ℓ|=k,k+1

|ω̂(t, ℓ, α)|2 EPZ [Φ2
α]

owing to the orthogonaliry of the basis functions {Φα}∞α=0. In addition, with

V (t, ℓ) := E[|ω̂(t, ℓ, ·)|4]− E[|ω̂(t, ℓ, ·)|2]2

≈
M∑

α1,α2,
α3,α4=0

ω̂(t, ℓ, α1)ω̂(t, ℓ, α2)ω̂(t, ℓ, α3)ω̂(t, ℓ, α4)EPZ [Φα1Φα2Φα3Φα4 ]− E[|ω̂(t, ℓ, ·)|2]2,

the standard deviation of the spectra, σ[∥ω∥2L2 ](t, k), is given by

σ[∥ω∥2L2 ](t, k) =
1

2

∑
|ℓ|=k,k+1

√
V (t, ℓ).
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The average of the energy spectra E[∥u∥2L2 ](t, k) and the standard deviation

σ[∥u∥2L2 ](t, k) are computed in the same way.

Another important statistical quantity characterizing turbulent flows is the p-th

order structure function,

Sp[u](r) := ⟨(u(t, x+ r)− u(t, x))p⟩.

Although the structure function depends on t, x, and r by definition, it is regarded as

a function of the distance r only in the study of turbulence under the assumption that

the turbulent flows are isotropic, homogeneous, and statistically steady. According

to Kolmogorov’s turbulence theory, the structure function follows the scaling law

Sp[u](r) ≃ ε
p
3 |r|

p
3 . We also note that S2[u](r) is known to be relevant to the 5/3

power-law of the energy spectra. For the stochastic process ω(t, x, η) ∈ L2(Ω; Ḣm), we

introduce the local structure function Sp[ω](t, x, r) by

Sp[ω](t, x, r) := E[|ω(t, x+ r, ·)− ω(t, x, ·)|p] ≈ EPZ

[∣∣∣∣∣
M∑
α=0

(ω̃(t, x+ r, α)− ω̃(t, x, α))Φα

∣∣∣∣∣
p]

,

in which

ω̃(t, x, α) :=
EPZ [ω(t, x, ·)Φα(·)]

EPZ [Φ2
α]

=
N∑

n=−N

ω̂(t, n, α)einx.

To be specific, the local structure functions of the vorticity for p = 2, 4 are explicitly

given by

S2[ω](t, x, r) ≈
M∑

α1,α2=0

∆ω̃(t, x, r, α1)∆ω̃(t, x, r, α2)EPZ [Φα1Φα2 ],

S4[ω](t, x, r) ≈
M∑

α1,α2,
α3,α4=0

∆ω̃(t, x, r, α1)∆ω̃(t, x, r, α2)∆ω̃(t, x, r, α3)∆ω̃(t, x, r, α4)EPZ [Φα1Φα2Φα3Φα4 ],

where ∆ω̃(t, x, r,m) = ω̃(t, x+ r,m)− ω̃(t, x,m).

3.2. Numerical results

We fix the parameter a = −2 and the initial data ω0 = 0. The time-independent forcing

function is specified by

f η(t, x) = 0.01× (2Z(η)− 1) sin x,

where Z(η) follows the uniform distribution on [0, 1]. Then the orthogonal bases of the

gPC expansion are Legendre polynomials. Table 1 is the list of the numerical parameters

used here.

Figure 1(a) is the evolution of the average of the vorticity distribution E[ω](t, x)
for ν = 1.0× 10−3, showing that it tends to be a stationary state. It is mathematically
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(a) (b)

-0.3
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steady state

Figure 1. (a) The evolution of the average E[ω](t, x) for ν = 1.0 × 10−3. (b) A

close-up plot of the solution in the neighborhood of the sharp peak around x = π. The

steady state means the numerical solution at t = 237.5(≡ T ν
s ).

ν N M ∆t

1.0× 10−2 210 10 2.5× 10−2

1.0× 10−3 211 10 2.5× 10−3

1.0× 10−4 212 10 2.5× 10−3

5.0× 10−5 212 10 2.5× 10−3

Table 1. Numerical parapmeters

stated that there exists a function ω∞ ∈ Ḣm such that limt→∞ E[M∞
t (0, f η)] = ω∞,

indicating the existence of a steady distribution of mild solutions. While the average

of the steady vorticity distribution has sharp peaks around x = 0 and π, it remains

smooth as shown in Figure 1(b). A similar pattern with sharp peaks appears in the

randomly moving pulse, generating turbulent flow with the enstrophy cascade [14]. It is

also similar to the asymptotically stable stationary solution to the equation (1) with the

deterministic forcing function, f(x) = 0.01 sin x. In what follows, to compute statistical

quantities for a given ν, we use the numerical solution at t = T ν
s when the vorticity

distribution almost reaches the steady state up to numerical tolerance. For instance,

when ν = 1.0× 10−3, T ν
s = 237.5 as we see in Figure 1(a,b).

The averages E[ω], E[ωx], E[u] and E[ux] of the steady distribution for ν =

1.0 × 10−2, 1.0 × 10−3, 1.0 × 10−4 are shown in Figure 2. The peaks of the average

vorticity E[ω](T ν
s , x) in Figure 2(a) get singular as the viscosity coefficient ν decreases.

Figure 2(b) shows that the average of the derivative of the vorticity E[ωx](T
ν
s , x) grows

rapidly as ν decreases. The velocity average E[u](T ν
s , x) in Figure 2(c) looks smooth,

but it tends to form sharp fronts in the neighborhood of x = 0, π as ν decreases. The

formation of the sharp fronts in the velocity profile is also confirmed evidently by the

average of the derivative of the velocity E[ux](T
ν
s , x) in Figure 2(d), which has sharp

spines at the front locations.

Figure 3 shows the averages of the energy spectra E[∥u∥2L2 ](T ν
s , k) and the enstrophy
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Figure 2. The averages of the steady distribution of solutions for ν = 1.0 × 10−2,

1.0× 10−3 and 1.0× 10−4. The numerical parameters are shown in Table 1. (a) The

average of the vorticity E[ω](T ν
s , x). (b) The average of the derivative of the vorticity

E[ωx](T
ν
s , x). (c) The average of the velocity E[u](T ν

s , x). (d) The average of the

derivative of the velocity E[ux](T
ν
s , x).

spectra E[∥ω∥2L2 ](T ν
s , k) of the steady distribution for various viscous coefficients ν. For

the spectra of ν = 5.0×10−5, we show error bars ±σ[∥ω∥2L2 ](T ν
s , k) and ±σ[∥u∥2L2 ](T ν

s , k)

as thin gray regions. Both of them indicate that the inertial ranges are formed and

expand as ν decreases. The dimensional analysis suggests that the decay rate of the

energy spectra in the inertial range follows ⟨|û(k)|2⟩ ≃ k−3. However, Figure 3(a) shows

that it lies between k−4 to k−3. On the other hand, the enstrophy spectra in the inertial

range are expected to be ⟨|ω̂(k)|2⟩ ≃ k−1 owing to û(k′) = ω̂(k′) |k′|−1 by definition.

Figure 3(b) again indicates a deviation from the dimensional analysis. The deviation of

the decay rates has been reported for the numerical studies of the gCLMG equation (1)

as a stochastic partial differential equation [14, 15]. Hence, the averages of the steady

distribution of mild solutions reproduce qualitatively the same energy and enstrophy

cascades in the numerical study of turbulent flows in [14].

We confirm the scaling law of the structure functions Sp[ω] and Sp[u] for the

solutions ω(t, x, η) and u(t, x, η) to the gCLMG equation (1). The dimensional analysis

of the equation in [15] has shown that Sp[ω](r) ≃ rp, Sp[u](r) ≃ rp for short ranges
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Figure 3. (a) The average of the energy spectra E[∥u∥2L2 ](T ν
s , k) for the steady

distribution. The inertial range extends as ν decreases. The decay rate of the spectra

in the inertial range lies between k−3 and k−4. (b) The average of the enstrophy

spectra E[∥ω∥2L2 ](T ν
s , k), whose decay rate lies in the range of k−1 and k−2. In both

spectra, the decay rates slightly deviate from the expected rates ⟨ω̂(k)⟩ ≃ k−1 and

⟨û(k)⟩ ≃ k−3 by the dimensional analysis. We show the spectra with error bars for

ν = 5.0× 10−5.

r ≪ 1, and Sp[ω](r) ≃ r(3−p)/3, Sp[u](r) ≃ r(3+2p)/3 for long ranges r ≈ 1. Since the

distribution of the solutions tends to be stationary, we may assume the steadiness after

a long-time evolution. However, we can’t suppose spatial homogeneity, since the average

of the steady distribution has sharp peaks. On the other hand, numerical computation

of the gCLMG equation with a stochastic forcing [14] has shown that the turbulent flow

is generated by the pulse of a similar profile to ω∞ with peaks, and it wanders randomly

according to the uniform distribution. Hence, to compute the structure function, we use

the numerical solution at t = T ν
s and take the ensemble average of the local structure

function Sp(T
ν
s , x, r) concerning x by sampling N points from the uniform distribution

on [0, 2π]. That is to say, the p-th order structure function of the vorticity is given by

Sp[ω](r) := Ex[Sp[ω](T
ν
s , ·, r)] =

∫ 2π

0

Sp[ω](T
ν
s , x, r)dx ≈ 2π

N

N−1∑
n=0

Sp[ω](T
ν
s , xn, r),

where xn = 2π
N
n for n = 0, . . . , N − 1. The p-th order structure function of the velocity

is similarly approxiamted by Sp[u](r) ≈ 2π
N

∑N−1
n=0 Sp[u](T

ν
s , xn, r).

In Figure 4, we plot the p-th structure functions Sp[ω](r) and Sp[u](r) for p = 2, 4.

It indicates that Sp[ω](r) ≃ rp and Sp[u](r) ≃ rp for short distances, r ≪ 1 agree

with the dimensional analysis. For long distances r ≈ 1, we estimate S2[ω](r) ∼ r0.54,

S2[u](r) ∼ r1.83, S4[ω] ∼ r0.05 and S4[u] ∼ r3.10 by the least square fit. The scaling laws

deviate from those suggested by the dimensional analysis, showing strong intermittency.

The power-law behaviors of the structure functions with intermittency yield the

information on the profile of the steady vorticity distribution in the zero viscous limits

according to an exact result on the intermittency obtained by Frisch [6], which is stated
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Figure 4. The p-th order structure functions Sp[ω](r) and Sp[u](r) for p = 2, 4. We

plot the scaling laws suggested by the dimensional analysis as well as those obtained by

the least square fit. For short distances r ≪ 1, Sp[ω](r) ≃ rp and Sp[u](r) ≃ rp, which

agree with the dimensional analysis. On the other hand, for large distances r ≈ 1, the

scaling laws S2[ω](r) ∼ r0.54, S4[ω](r) ∼ r0.05, S2[u](r) ∼ r1,83 and S4[u](r) ∼ r3.10

deviate from the scaling laws Sp[ω](r) ∼ r(3−p)/3 and Sp[u](r) ∼ r(3+2p)/3 owing to

the dimensional analysis.

as follows. Suppose that the structure function of even order for the flow velocity v is

subject to the power-law of exponent ζ2p over the inertial range, namely S2p[v](r) ∼ rζ2p ,

and that the inertial range extends with ν → 0 as a power-law. We further assume that

the two consecutive exponents satisfies ζ2p > ζ2p+2 for a certain p ∈ N. Then the

maximum velocity diverges as the viscous coefficient ν tends to zero. Let us note that,

in the proof of this result, no assumption has been made on governing equations of the

turbulent flows and the same argument applies to structure functions of the vorticity ω

in the present study. As we have observed in Figure 4, the structure functions of the

vorticity ω have the power-law behaviors over the inertial ranges, i.e., S2[ω](r) ∼ rζ2 and

S4[ω](r) ∼ rζ4 with ζ2 = 0.54 > ζ4 = 0.05 and the inertial range extends as the viscous

coeffcient ν vanishes, which satisfies the assumptions. Accordingly, we conclude that

the maximum of the steady vorticity distribution ω diverges as ν → 0. In other words,

the steady vorticity distribution tends to be a singular pulse with diverging peaks in the

zero viscous limits.
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4. Summary and future directions

We have established the global existence of a unique mild solution ω(t) to the gCLMG

equation (1) subject to external forcing. When we regard the initial data ωη
0(x) and

the forcing function f η(t, x) as random variables sampled from a probability space, a

stochastic process is defined by a continuous mapping from the pair of the random

variables (ωη
0(x), f

η(t, x)) to the mild solution. The distribution of the mild solution

is numerically approximated by the Galerkin approximation with the pseudo-spectral

method and the gPC. We find that the distribution tends to be a steady state as t → ∞.

We compute some statistical quantities associated with the steady distribution and make

comparisons with those of turbulent flow generated by a randomly moving pulse in [14].

The average of the steady vorticity distribution has sharp peaks at x = 0, π, which is

a similar pulse pattern in this turbulent flow. The scaling laws of the energy and the

enstrophy spectra also coincide with those of the pulse turbulence. Hence, the steady

distribution reproduces the statistical properties of the pulse turbulence. Furthermore,

we obtain the scaling laws of the p-th order structure functions of the steady distribution

with p = 2 and p = 4. Both of them deviate from the scaling law expected by the

dimensional analysis, which shows strong intermittency. The advantage of the gPC

approximation is that such higher-order smooth structure functions can be calculated,

whereas it is difficult to compute these functions due to the noisy random behavior of

solutions to the gCLMG equation with a stochastic forcing as reported in [15].

We finally mention some future directions. It is mathematically important to show

the existence of the steady distribution as an ω-limit solution to the gGCLM equation

(1) with random external forcing. In this paper, we numerically found the special

steady distribution reproducing the statistical laws of the pulse turbulence for the zero

initial data and the random forcing function with uniformly distributed amplitude. We

investigate how the steady distribution changes when we make the initial data a random

variable. We could also consider another probability space for random forcing such as

the Gaussian distribution. From the viewpoint of non-equilibrium statistical physics, it

is also interesting to observe the higher-order structure function Sp[ω] for p > 4, since

the dimensional analysis suggests a negative rate for larger p.

Appendix

The following inequalities are used in this paper.

Lemma 4.1 (Young’s inequality). Let a, b ≧ 0. For any 1 < p, q < ∞ with 1
p
+ 1

q
= 1,

the following inequality holds.

ab ≦ ap

p
+

bq

q
. (9)

Lemma 4.2 (Sobolev interpolation inequality). Let 0 ≦ m1 ≦ m2. For θ ∈ [0, 1], we

set m = (1 − θ)m1 + θm2. Then if f ∈ Ḣm1 ∩ Ḣm2, then f ∈ Ḣm. In addition, the
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following inequality holds.

∥f∥Ḣm ≦ ∥f∥1−θ

Ḣm1
∥f∥θḢm2 . (10)

Lemma 4.3. For f, g ∈ Ḣm with m > 1
2
, there exists a constant C(m) such that

∥fg∥Ḣm ≦ C(m) ∥f∥Ḣm ∥g∥Ḣm . (11)

Proof. Suppose f and g belong to the Schwartz space S with f̂(0) = ĝ(0) = 0. Then

we have

∥fg∥Ḣm = ∥|n|mF(fg)∥ℓ2 =
∥∥∥|n|mf̂ ∗ ĝ

∥∥∥
ℓ2
.

Owing to |x+ y|m ≦ 2m−1(|x|m + |y|m) and Young’s convolution inequality, we have∥∥∥|n|mf̂ ∗ ĝ
∥∥∥
ℓ2

≲
∥∥∥∥∥∑
k∈Z

|n− k|mf̂(n− k)ĝ(k)

∥∥∥∥∥
ℓ2

+

∥∥∥∥∥∑
k∈Z

f̂(n− k)|k|mĝ(k)

∥∥∥∥∥
ℓ2

≦
∥∥∥|n|mf̂∥∥∥

ℓ2
∥ĝ∥ℓ1 +

∥∥∥f̂∥∥∥
ℓ1
∥|n|mĝ∥ℓ2 = ∥f∥Ḣm ∥ĝ∥ℓ1 +

∥∥∥f̂∥∥∥
ℓ1
∥g∥Ḣm .

Moreover, owing to f̂(0) = 0 and m > 1
2
, we have∥∥∥f̂∥∥∥

ℓ1
=

∥∥∥|n|−m|n|mf̂
∥∥∥
ℓ1
≦ ∥f∥Ḣm

∥∥|n|−m
∥∥
ℓ2
≦ C(m) ∥f∥Ḣm .

Hence, we have ∥fg∥Ḣm ≦ C(m) ∥f∥Ḣm ∥g∥Ḣm for f, g ∈ S with f̂(0) = ĝ(0) = 0. Since

S is dense in Ḣm, the same inequality holds for Ḣm by continuity.
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