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Superradiant instability of rotating black holes (BHs) leads to the formation of a cloud of ultralight
bosons, such as axions. When the BH with the cloud belongs to a binary system and is in an inspiraling
orbit, the resonant transition between the axion’s bound states can occur. We study the history of the
evolution of the binary system accompanying the cloud composed of the fastest growing mode and its
impact on the observational signatures, especially for small mass ratio cases. In this case, the hyperfine
resonance, which has a very small resonance frequency, is relevant. Therefore, due to the long timescale,
we should take into account the decaying process of axions in the transition destination mode, the
backreaction to the orbital motion and the central BH, and gravitational emission from the cloud. We
present a formulation to examine the evolution of the system around the resonance and useful expressions
for the analysis. As a result, we found the mass of the cloud that can remain after the resonance is, at most,
about 10−5 of the central BH. The maximum remaining cloud mass is achieved when the mass ratio of the
binary is q ∼ 10−3. In addition, we show that the resonant transition hardly changes the BH mass and spin
distribution, while the associated modification of the gravitational wave frequency evolution when the
binary passes through the resonance can be a signature of the presence of the cloud.
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I. INTRODUCTION

Ultralight bosons, such as axions or axionlike particles,
can cause various phenomena in the Universe. Such
particles are universally predicted by string theory [1,2]
and can be a candidate for dark matter [3–6]. They can be
weakly coupled to the StandardModel particles, but even in
such a case the gravitational interaction with black holes
(BHs) and related gravitational waves (GWs) can provide a
new avenue to explore them observationally.
The existence of massive bosonic fields induces the

superradiant instability around rotating BHs [7,8]. Bosons
with mass in the range 10−20–10−10 eV have the Compton
wavelength comparable to the size of astrophysical BHs and
extract energy and angular momentum efficiently to form a
condensate [9,10]. We refer to the condensate as an axion
cloud and the composing particles simply as axions. The
cloud formation makes astrophysical observable imprints,
such as a forbidden region in the distribution ofmass and spin
of BHs [11–14] and continuous GW emission [15–21].
In this paper, we focus on the cases where BHs with

clouds belong to binary systems. GWs from the binary

inspiral can be a signature to examine the environment
around BHs including the cloud [22–28]. Axion clouds
occupy a quasibound state of axions, which is usually the
fastest growing mode. During the inspiral phase, the tidal
interaction from the companion acts as an oscillating tidal
field. It induces the resonant transition to another mode
when the orbital frequency coincides with the phase
velocity difference between the original mode of the cloud
and the other [29,30]. The change of the orbital motion of
the binary and the associated GW frequency due to the
backreaction can also be a signature of the presence of the
cloud [30–33]. To clarify the impact on the observational
signatures, it is important to understand the history of the
evolution during the inspiral phase.
For binary systems formed with a sufficiently large

separation, the resonant transition should first occur with
the smallest possible resonance frequency during the
inspiral. The frequency spectrum of axion eigenmodes
possesses the structure of hyperfine splittings due to the
rotation of the central BH [34], and the resonance fre-
quency associated with the hyperfine splitting is the
smallest one. In Ref. [35], we showed that, when the
masses of the binary are comparable, this hyperfine
resonance can be neglected. This is because the resonance
condition is not maintained long enough due to the
decrease of the angular momentum of the cloud itself.
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We also showed that, when the separation becomes small
enough, the cloud is disrupted by the effects of higher
multipole moments of the tidal potential (before the
transition caused by the leading quadrupole moment
occurs), and finally the cloud is depleted as a result of
transitions to unbound states. Tidal disruption and the
transition to the unbound states are also studied, e.g., in
Refs. [36,37].
In contrast to nearly equal mass cases, for small mass

ratio binaries, the hyperfine resonance should be consid-
ered because of a large backreaction to the orbital motion,
which maintains the orbital frequency within the resonance
band for a long period (see Fig. 1 for relevant region of the
mass ratio and gravitational fine structure constant). It is of
great importance to examine the dynamics of small mass
ratio binaries, because they are one of the main targets for
future GW observations, such as the Laser Interferometer
Space Antenna (LISA) [38]. In this case, because of the very
long timescale of the binary evolution due to the radiation
reaction, some effects that can be neglected for the
transition for nearly equal mass binaries become relevant.
First, the decay of nonsuperradiant transition destination

modes and the backreaction to the central BH mass and
spin become relevant. Since the resonance band is broad-
ened corresponding to the imaginary part of the frequencies
of decaying destination modes, the transition timescale
staying within the resonance band becomes even longer.
Therefore, we should also take into account the GW
emission from the cloud during the transition. We develop

a formulation that includes all of these effects within the
adiabatic approximation. It is difficult to solve the originally
obtained set of equations throughout thewhole period across
the resonance band, since the solution oscillates rapidly. To
overcome this difficulty, we also present a method to give an
approximate solution with sufficient accuracy.
In this paper, we consider axion clouds in a nonrelativ-

istic regime and neglect the self-interaction of axions, for
simplicity. For a relativistic regime, the energy spectrum
deviates significantly from the one obtained by nonrela-
tivistic approximation, and the transition to be considered
can change [39,40]. In addition, the self-interaction can
play an important role during the formation of the cloud
[41–48]. Here, we leave considering these effects as future
work, to focus on the tidal effect in binary systems.
This paper is organized as follows. In Sec. II, we review

the elements involved in the evolution of axion clouds in
binary systems. In Sec. III, we present a formulation for
examining the hyperfine resonance in small mass ratio
binaries. In Sec. IV, we discuss the results obtained using
our formulation. Finally, we give a summary and con-
clusion in Sec. V. Throughout this paper, we use the unit
with c ¼ ℏ ¼ G ¼ 1.

II. ELEMENTS INVOLVED IN THE
EVOLUTION OF AXION CLOUDS

In this section, we summarize the elements involved in
describing the evolution of axion clouds, especially during
the binary inspirals. Consider a scalar field (axion) of mass
μ around a rotating BH belonging to a binary system. We
denote the central BH mass by M and angular momentum
by J ¼ aM ¼ χM2. Formally, we can write the equation of
motion for an axion on a spacetime with the metric g̃μν ¼
gμν þ hμν as

ðg̃μν∇̃μ∇̃ν − μ2Þϕ ¼ 0; ð1Þ

where gμν is the Kerr metric and ∇̃ is the covariant
derivative associated with g̃μν. We consider the tidal field
from the binary companion and the decay due to the
gravitational wave emission from the cloud as contributions
to the perturbation. As we will see later, since there is a
hierarchy of frequencies between them, we can treat them
separately. We first review the features of axion clouds in
the unperturbed background and later the effects of the tidal
interaction and the GW emission.

A. Energy spectrum and superradiance

In the nonrelativistic regime, it is appropriate to intro-
duce a new complex scalar field variable ψ by

ϕ ¼ 1ffiffiffiffiffi
2μ

p ðe−iμtψ þ eiμtψ�Þ: ð2Þ
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FIG. 1. Parameter region of mass ratio q ¼ M�=M and gravi-
tational fine structure constant α ¼ Mμ. The shaded area is the
region of interest in this paper. In this region, the hyperfine
resonance sustains long enough because the effect of the back-
reaction to the orbital motion is stronger than the effect of the
reduction of the hyperfine splitting. The initial angular momen-
tum of the cloud is set to Jc;0 → 0. See Ref. [35] for details.

TAKAHASHI, OMIYA, and TANAKA PHYS. REV. D 107, 103020 (2023)

103020-2



We assume that ψ changes slowly in time compared to the
timescale determined by μ−1. Then, we can ignore the ∂2tψ
term and rewrite the background equation of motion (1) as

i
∂

∂t
ψ ¼ H0ψ ; H0 ¼ −

1

2μ
∇2 −

α

r
þOðα2Þ; ð3Þ

where we have introduced the gravitational fine structure
constant α≡Mμ, and this approximation is well justified
for α ≪ 1. Solving this equation with the ingoing boundary
condition at the BH horizon and the exponentially decaying
boundary condition at infinity, we have the quasibound
eigenstate φnlmðrÞ that satisfies H0φnlm ¼ ðωnlm − μÞφnlm.
They are labeled by the principal, azimuthal, and magnetic
quantum numbers like a hydrogen atom. The eigenfre-
quency is approximately given by

ωnlm ¼ ðωRÞnlm þ iðωIÞnlm; ð4Þ

with [9,34]

ðωRÞnlm ¼ μ

�
1 −

α2

2n2
−

α4

8n4
þ ð2l − 3nþ 1Þα4

n4ðlþ 1=2Þ

þ 2mχα5

n3lðlþ 1=2Þðlþ 1Þ
�
; ð5Þ

ðωIÞnlm ¼ 2ðrþ=MÞCnlmða; αÞðmΩH − ωnlmÞα4lþ5; ð6Þ

where rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the horizon radius, ΩH ¼

a=2Mrþ is the angular velocity of the BH horizon, and the
explicit form of Cnlmða; αÞ can be found in Ref. [29].1

As one can see fromEq. (6), the eigenfrequency of amode
satisfying ωR < mΩH has a positive imaginary part, and the
cloud grows exponentially by the superradiance. The mode
jnlmi ¼ j211i is the fastest growingmode for α≲ 0.45. The
BH spin decreases as the cloud grows until the superradiance
condition is saturated. The critical spin at which the super-
radiance terminates is approximately given by

χcrit ¼
4mα

m2 þ 4α2
: ð7Þ

The real part of the eigenfrequency can be regarded as
eigenenergy, and its degeneracy among the modes with
only m being different is solved due to the rotation of the
BH at the order of Oðα5Þ, which is called “hyperfine”
splitting.

B. Tidal interaction

When a BH accompanied by an axion cloud belongs to a
binary system, the tidal field from the companion

introduces a perturbation hμνtidal. The general state of the
cloud can be expressed by

ψ ¼
X
i

ciðtÞφi; ð8Þ

as a superposition of orthonormal eigenfunctions φi, where
i ¼ ðn; l; mÞ. Under the same approximation taken in the
preceding subsection, the equation of motion with the tidal
potential V� ¼ 1

2
μhtttidal is given by

i
dci
dt

¼
X
j

�
ðωj − μÞδij þ

Z
d3xφ�

i V�φj

�
cj: ð9Þ

For simplicity, we assume that the binary orbit is quasi-
circular and on the plane perpendicular to the central BH
spin. Here, the tidal potential from the companion of mass
M� at rðtÞ ¼ ðR�ðtÞ;Θ�ð¼ π=2Þ;Φ�ðtÞÞ can be written by
multipole expansion as [29]

V� ¼ −qα
X
l�m�

4π

2l� þ 1

rl�<
rl�þ1
>

Y�
l�m�ðΘ�;Φ�ÞYl�m� ðθ;ϕÞ; ð10Þ

where q≡M�=M is the mass ratio, r>ðr<Þ is the larger
(smaller) of r and R�, and Ylm are the spherical harmonics.
The angular velocity of the binary is defined by
_Φ�ðtÞ ¼ �ΩðtÞ, and the upper (lower) sign represents
the case of corotating (counterrotating) orbits. Since this
interaction oscillates quasiperiodically, it works efficiently
only when the orbital angular velocity is close to the
difference between the phase velocity of the two modes.
Therefore, it is sufficient to consider a two-mode subspace
when we focus on this resonant effect [30]. The time
evolution of particle number in the two modes is, from
Eq. (9), given by

i
d
dt

�
c1
c2

�
¼ H

�
c1
c2

�
; ð11Þ

with

H ¼
�
−ΔE=2þ iωð1Þ

I ηeiΔmΦ�

ηe−iΔmΦ� ΔE=2þ iωð2Þ
I

�
; ð12Þ

where ΔE ¼ ωð2Þ
R − ωð1Þ

R , Δm ¼ m2 −m1, and ηðtÞ ¼
j R d3xφ�

2V�φ1j. To remove the rapidly oscillating term,
we perform the unitary transformation as ðc1; c2ÞT →
U−1ðc1; c2ÞT and H → U†HU − iU† _U with the matrix
UðtÞ ¼ diagðeiΔmΦ�=2; e−iΔmΦ�=2Þ. As a result, the
Hamiltonian describing the level transition due to the tidal
field transforms as

1It was first derived in Ref. [9] and corrected by a factor of 1=2
[49,50].

EVOLUTION OF BINARY SYSTEMS ACCOMPANYING AXION … PHYS. REV. D 107, 103020 (2023)

103020-3



H→

 
�Δm

2
ðΩ−ΩresÞþ iωð1Þ

I η

η ∓ Δm
2
ðΩ−ΩresÞþ iωð2Þ

I

!
;

ð13Þ

where we defined the “resonance” frequency by
Ωres ¼ �ΔE=Δm. Now, we are interested in the time
evolution of the occupation number of each state,
jciðtÞj2, and the transformed quantities obey the equations
of the same form as Eq. (11).

C. Gravitational wave emission

After an axion cloud forms, it dissipates through the
emission of GWs. Here, we assume that the cloud is
composed of a single mode as ψ ¼ c1φ1. In this case, we
can neglect the GW emission due to the spontaneous level
transition, and GWs are sourced by the pair annihilation of
axions. The frequency ofGWs is given byωGW ¼ 2ωR ∼ 2μ.
The energy flux of GWs from the l ¼ m ¼ 1 cloud is given
by [17]

dEGW

dt
¼ C

�
Mc

M

�
2

α14; ð14Þ

whereC is a numerical factor. In our analysis, we adoptC ¼
ð484þ 9π2Þ=23040 calculated in Ref. [12]. Here,Mc is the
mass of the cloud defined byMc ¼ −

R
d3xTt

t, where Tt
t is

the t − t component of the energy-momentum tensor of the
axion field. According to this, the wave function ψ is
normalized as jc1j2ð¼

R
d3xjψ j2Þ ¼ Mc=μ at the leading

order in α.
When we consider only the effect of GW emission,

energy conservation implies that _Mc ¼ − _EGW. We set the
initial mass of the cloud to Mc;0 at t ¼ t0. Here, we define
the normalized particle number by n1ðtÞ ¼ μjc1ðtÞj2=Mc;0,
and write McðtÞ ¼ Mc;0n1ðtÞ. Energy conservation reads

dn1
dt

¼ −
C
M

�
Mc;0

M

�
n21α

14: ð15Þ

III. FORMULATION

In this section, we first explain the setup of the problem
that we consider and then give a formulation to inves-
tigate it.

A. Setup

We focus on the fastest growing mode jnlmi ¼ j211i.
We consider the situation in which the cloud is initially
composed of the single mode j211i, and the hyperfine level
transition between j211i and j21 − 1i subsequently occurs.
Note that this transition occurs only for the corotating orbit.
In Ref. [35], we found that, when the binary mass ratio q is

not too small, this transition does not significantly con-
tribute to the dissipation of the cloud because of the
reduction of the hyperfine splitting associated with the
transfer of the angular momentum of the cloud to the orbital
motion. However, when the mass ratio is somewhat small,
the resonant tidal interaction at this hyperfine splitting
frequency would largely affect the dynamics of the system.
We show the parameter region where we should consider
the hyperfine resonance as a process that contributes to the
cloud dissipation in Fig. 1. We investigate the latter case.
For the transition between j211i and j21 − 1i, from

Eq. (5), the resonance frequency is given by2

Ωres ¼
μ

12
χα5: ð16Þ

This is smaller by a factor of α3 than that of the “Bohr”
transition between modes with different values of n. When
we study the Bohr transition, ωI in Eq. (13) and GW flux
are so small in the timescale for passing through the
resonance band that we can usually neglect them.3

However, for hyperfine transition, binary evolution around
the resonance frequency is very slow and the timescale for
passing through the resonance band can be large, especially
for q ≪ 1. In addition, since the angular momentum of the
cloud is transferred to the orbital motion, the timescale
becomes even larger. As a result, we should take into
account not only the backreaction to the orbital motion, but
also the backreaction to the mass and spin of the central BH
and the effect of the GW emission from the cloud. We
summarize the timescales involved in the current problem
in Appendix A.
In the following, we label the quantities associated with

the mode j211i by 1, and those with j21 − 1i by 2. For
these modes, the imaginary parts of the eigenfrequencies
are given by

ωðiÞ
I ¼ 1

24

rþ
M

fð1 − χ2Þ þ 4r2þðmiΩH − ωRÞ2g
× ðmiΩH − ωRÞα9; ð17Þ

where i is 1 or 2, and m1 ¼ 1 and m2 ¼ −1 represent the
magnetic quantum number. The mixing term in the
Hamiltonian (13) is given by

η ¼ 9.0
q

1þ q
MΩ2

α3
: ð18Þ

2Wedonot include the contribution from the angularmomentum
of the cloud itself, focusing on the case where it is negligible.

3When we consider a higher-lmode, the transition to the mode
with smaller l is allowed by the selection rule. In that case, the
decay rate of the second mode can be large, and it would be
important [51].
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B. Evolution of the system

The dynamical timescale of the cloud can be estimated
by ω−1

R ≃ μ−1. It is always short compared to the growth/

decay rate of the cloud, i.e., ðωðiÞ
I Þ−1 ≫ μ−1. Thus, we

describe the evolution of the cloud and the central BH
within the adiabatic approximation. The local energy and
angular momentum conservation at the BH horizon reads

dM
dt

þ 2ωð1Þ
I Mð1Þ

c þ 2ωð2Þ
I Mð2Þ

c ¼ 0; ð19Þ

dJ
dt

þ 2ωð1Þ
I

μ
Mð1Þ

c −
2ωð2Þ

I

μ
Mð2Þ

c ¼ 0; ð20Þ

withMðiÞ
c ¼ Mc;0niðtÞ.4 Here, we used the relation between

the energy flux and the angular momentum flux for each

mode _JðiÞc ¼ ðmi=ω
ðiÞ
R Þ _EðiÞ

c and the approximation ωR ¼ μ.
We denote the initial mass and angular momentum of the
BH just before entering the resonance band by M0 and J0,
and accordingly, α0 ¼ M0μ.
Next, we consider the evolution of the binary system at

the leading post-Newtonian order. In clean binary systems,
angular momentum conservation implies _Jorb ¼ −T GW,
where Jorb ¼ qð1þ qÞ−1=3M5=3

0 Ω−1=3 is the orbital angular
momentum and T GW is the torque caused by the radiation
reaction due to the GW emission. It can be rewritten
as [52,53]

dΩ
dt

¼ γ

�
Ω
Ω0

�
11=3

; ð21Þ

γ

Ω2
0

¼ 96

5

q

ð1þ qÞ1=3 ðM0Ω0Þ5=3; ð22Þ

where the reference frequency is chosen as Ω0 ¼
ðμ=12ÞðJ0=M2

0Þα50 (which is the “initial” resonance fre-
quency). Here, we add the cloud and the BH contributions
to the total angular momentum conservation as
_Jorb þ _J þ _Jð1Þc þ _Jð2Þc þ _JGW ¼ −T GW, where _JGW ¼
ð1=μÞ _EGW is the angular momentum flux of the GW from
the cloud in Eq. (14). Note that we consider GW emission
only from the first mode j211i. (As we will see later, the
particle number occupying the second mode, which is
nonsuperradiant, is always tiny and does not contribute to
the GW emission.) Then, we obtain5

dΩ
dt

¼ γ

�
Ω
Ω0

�
11=3

þ R

�
Ω
Ω0

�
4=3 Ω0

M2
0

×

�
d
dt

ðJ þ Jð1Þc þ Jð2Þc Þ þ 1

μ

dEGW

dt

�
; ð23Þ

with R ¼ 3ð1þ qÞ1=3q−1ðM0Ω0Þ1=3. We take Ωðt0Þ ¼
Ω0ð1þ ð8=3Þðγ=Ω0Þjt0jÞ−3=8 as the initial value so that
Ω ¼ Ω0 at t ¼ 0 when there are no clouds.
Finally, we describe the level transition between two

modes. It is described by the Schrödinger equation with the
Hamiltonian (13). Note that the particle number occupying
the first mode decreases due to the GW emission by pair
annihilation. Since the frequency of the emitted GW
(ωGW ∼ 2μ) is much larger than that of the tidal field
(Ωres ∼ μα6), we can treat them separately. Thus, we add the
effect of the GWemission into the Schrödinger equation as

i
dc1
dt

¼ ð−ðΩ −ΩresÞ þ iωð1Þ
I − iΓGWðc1ÞÞc1 þ ηc2; ð24Þ

i
dc2
dt

¼ ηc1 þ ððΩ −ΩresÞ þ iωð2Þ
I Þc2; ð25Þ

where jciðtÞj2 ¼ Mc;0niðtÞ=μ. Here, ΓGWðc1Þ represents the
decay rate through the GW emission, whose explicit
expression does not become necessary below.
From the above, the variables in this problem are

fM; J;Ω; c1; c2g, and we should solve Eqs. (19), (20),
and (23)–(25). However, because of the highly oscillatory
behavior of the solutions for Eqs. (24) and (25), it is
difficult to solve these equations for a long time with
sufficient accuracy. To overcome this difficulty, we derive a
set of approximate equations that can be solved easily.

C. Adiabatic elimination

Here, we take advantage of the fact that the decay rate of
the second mode jωð2Þ

I j is large compared to the transition
rate due to the mixing term η around the resonance
frequency. Indeed, their ratio is estimated as6

jωð2Þ
I j
η

∼ 8 × 102
�
10−3

q

��
0.1
α

�
: ð26Þ

In this case, we can carry out an adiabatic elimination of the
second mode and discuss with only the particle number of
the first mode.
First, we redefine the variables as

c̃iðtÞ ¼ e−i
R

t dt0fðΩ−ΩresÞ−iωð1Þ
I þiΓGwgciðtÞ; ð27Þ

for i ¼ 1, 2. Then, we can rewrite Eqs. (24) and (25) as

4Here, we neglect the contribution from the cross term of φ1

and φ2, because they are rapidly oscillating and vanish when we
take the time average.

5Strictly speaking, we should take the mass of the one paired
with the companion asM þMc. However, since the cloud mass is
small compared to the central BH mass, we approximated it
as M0.

6Here, we approximate jωð2Þ
I j ≃ 1

48
μχα8 and χ ¼ χcrit ≃ 4α.
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i
dc̃i
dt

¼
X
j¼1;2

H̃ijc̃j; H̃¼
�

0 ηðtÞ
ηðtÞ ΔðtÞþ iΓðtÞ

�
; ð28Þ

with

ΔðtÞ ¼ 2ðΩðtÞ −ΩresðtÞÞ; ð29Þ

ΓðtÞ ¼ ωð2Þ
I ðtÞ − ωð1Þ

I ðtÞ þ ΓGWðc1Þ: ð30Þ

Redefined particle numbers jc̃ij2 are related to jcij2 as

jc̃iðtÞj2 ¼ e−2
R

t dt0ðωð1Þ
I −ΓGWÞjciðtÞj2: ð31Þ

Now, we write

c̃2ðtÞ ¼ yðtÞe−i
R

t

−∞
dt0ðΔþiΓÞ: ð32Þ

Substituting this into Eq. (28), we have

dy
dt

¼ −iη c̃1e
i
R

t

−∞
dt0ðΔþiΓÞ: ð33Þ

By integrating this, we formally obtain

yðtÞ ¼ −i
Z

t

−∞
dt0 ηc̃1e

i
R

t0
−∞

dt00ðΔþiΓÞ: ð34Þ

If jΔþ iΓj ≫ η, we can assume that the change rate of
c̃1ðtÞ is much slower than jΔþ iΓj. Then, we can carry out
repeated integration by parts of the integral in Eq. (34), to
obtain an expansion in the inverse power of jΔþ iΓj. At the
leading order of this expansion, we have

yðtÞ ¼ −
η

Δþ iΓ
c̃1e

i
R

t

−∞
dt0ðΔþiΓÞ: ð35Þ

Then, substituting this expression for yðtÞ into c̃2 in the
equation for dc̃1=dt (28) and integrating it, we obtain

c̃1ðtÞ ¼ exp

�
i
Z

t

−∞
dt0

η2

Δþ iΓ

�
: ð36Þ

From the above expressions, we find that the change rate of
the amplitude c̃1 is much smaller than jΓj. Thus, from
Eq. (26), the assumed conditions are all satisfied. Finally,
we can write the redefined particle number for each mode as

jc̃1ðtÞj2 ¼ exp

�
2

Z
t

−∞
dt0

Γη2

Δ2 þ Γ2

�
; ð37Þ

jc̃2ðtÞj2 ¼
η2

Δ2 þ Γ2
jc̃1ðtÞj2: ð38Þ

Under this approximation, the equations that we need to
solve are Eqs. (19), (20), (23), and

dn1
dt

¼ 2ωð1Þ
I n1 þ

2Γη2

Δ2 þ Γ2
n1 −

1

Mc;0

dEGW

dt
; ð39Þ

with

n2 ¼
η2

Δ2 þ Γ2
n1: ð40Þ

The last term of Eq. (39) comes from the iΓGW in the
exponential of Eq. (31) and can be identified with the right-
hand side of Eq. (15). In practical calculations, ΓGW should

be so small compared to jωð2Þ
I j that we can neglect it in Γ

[Eq. (30)]. We also neglect the time derivative of η and the
higher-order term of jΔþ iΓj−1. Now, the set of variables
to be solved are fM; J;Ω; n1g, and we can easily solve the
equations numerically for a wide range of parameters.

IV. RESULTS

In this section, we show the evolution of the system
obtained by solving the equations we formulated in the
preceding section. In addition, we discuss their implica-
tions for observable signatures.

A. Initial conditions

We first discuss the initial conditions. To form a somewhat
large cloud, the BHmust have a large spin when it is formed.
However, the growth timescale of the cloud is much faster
than the timescale of the binary evolution, and hence the BH
spin will be quickly reduced to the threshold value for the
superradiance of the dominant cloud. Thus, we set the initial
BH spin to the threshold value, J0 ¼ acritM0.

7

Also, how to choose the initial time is not trivial because
of the decay of the cloud through the GW emission. In
Appendix B, we analyze the simplified toy model that
ignores all backreaction and GWemission and linearize the
orbital frequency evolution. To summarize the results, we
obtain the approximate solution

n1ðtÞ ∼ exp

�
η2

γ

�
arctan

2γt

jωð2Þ
I j

þ π

2

��
: ð41Þ

7We would note that, even if the growth rate decreases and is
balanced by the GW emission, the energy and the angular
momentum extraction still occurs. The angular momentum of
the BH decreases to the threshold value exponentially near that
value.
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From this expression, we can estimate the “start time” at
which the tidal field begins to be relevant as

t ∼ −
�
1þ η2

γ

� jωð2Þ
I j
2γ

≡ −ts: ð42Þ

We adopt t0 ¼ −30ts evaluated with α ¼ α0, Ω ¼ Ω0, and
a ¼ acrit as the initial time. Now, the initial condition of this
system is parameterized by fq; α0;Mc;0g.

B. Time evolution for the fiducial set of parameters

First, let us discuss the results for the fiducial set of
parameters: fq ¼ 10−4; α0 ¼ 0.1;Mc;0 ¼ 10−3M0g. The
time evolution of the normalized particle number of the
primary cloud n1ðtÞ and that of the binary’s orbital
frequency ΩðtÞ are shown in Fig. 2. Before reaching the
resonance frequency, the particle number decreases mainly
through the GW emission. However, since the resonance
band is widened due to the presence of rapid decay of the

secondary mode, characterized by ωð2Þ
I , the orbital fre-

quency is slightly modified by the effect of transition, even
in this stage.
Then, when the orbital frequency gets close to the

resonance frequency, the tidal interaction works more
efficiently. The particles in the first mode are transferred
to the second mode, and the number n1 decreases dra-
matically. With the transition, the angular momentum of the
cloud is transferred to the binary orbital motion, and the
orbital frequency stagnates around the resonance fre-
quency. Here, we should note that, because of this
stagnation, the duration to pass through the resonance
band becomes much longer and the net transition rate is
much larger than the case when the backreaction is
neglected.

After the resonance, the particle number is exponentially
reduced owing to the backreaction to the central BH shown
in Fig. 3. Let us explain the reason why it can give such a
large influence on the cloud decay after the resonance.
Initially, the superradiance condition of the primary cloud is
saturated, i.e., ωð1Þ

I ¼ 0.8 However, once even a small
number of particles are transferred to the second mode,
which has an angular momentum in the opposite direction
to the central BH spin, and is absorbed by the BH, the BH
spin decreases slightly. Then, the first mode becomes a
nonsuperradiant mode, and the particles belonging to the
primary cloud also begin to be absorbed by the BH. Thus,
the BH mass and angular momentum gradually increase,
maintaining the spin parameter slightly below the threshold
value until the resonant transition becomes more efficient.
At around the peak of the resonance, the particle number

of the second mode increases, and the flux to the BH of the
second mode with negative angular momentum dominates
that of the first mode with a positive spin. After passing the
resonance frequency, the flux of the first mode dominates
again, but at that time there are not enough particles left to
spin up the BH beyond the superradiance threshold. As a
result, the BH spin settles to a value slightly below the
threshold for the first mode to be superradiant. Although
the deviation from the critical spin is tiny, jωð1Þ

I j is
sufficiently large to eliminate the cloud within the timescale
of the binary inspiral.

FIG. 2. Evolution of the normalized particle number of the first mode n1ðtÞ (left) and the orbital frequency ΩðtÞ (right) around the
resonance frequency for q ¼ 10−4, α0 ¼ 0.1, andMc;0 ¼ 10−3M0. Blue solid lines show the results of solving all equations, and orange
dashed lines show the results without taking into account the backreaction to the orbital motion and the mass and spin of the central BH.
The green dashed line (left) shows the evolution of n1ðtÞ considering only the effect of the GW emission.

8One might be concerned that a subtlety of the initial BH spin
would change the conclusion that the cloud decays after the
resonance, because the deviation from the critical spin is tiny.
However, this spin-down is caused by the absorption of the
secondary cloud, which is balanced by the absorption of the
primary cloud. Therefore, initial BH spin is irrelevant to
the conclusion, which can also be confirmed by numerical
calculation with initial condition of large spin equivalent to those
used in this subsection.
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In summary, the cloud first dissipates through the GW
emission. Then, the particle number of the first mode
decreases dramatically with the resonant transition, and the
transferred particles to the second mode are absorbed by the
BH immediately. After that, the primary cloud decreases
exponentially due to the BH spin-down below the super-
radiance threshold.
We also show the parameter dependence of this system.

In Figs. 4 and 5, we show the evolution of the particle
number for the same parameter, but varying α0 and q,
respectively. If we neglect the backreaction and GW
emission, and approximate the binary orbital frequency
evolution by a linear function of t, the survival probability
of the primary cloud is analytically evaluated as
expð−πη2=γÞ [30].9 This means that the efficiency of the
tidal effect is determined by the product of the amplitude of
the tidal perturbation η and the timescale passing through
the resonance band η=γ. This measure of the tidal effect
η2=γ is proportional to qα−11=30 for q ≪ 1. Thus, the cloud

mass after the resonance becomes tiny, when α0 is small
and q is somewhat large.

C. Initial and final cloud mass

In terms of observation, it is interesting to clarify how
much of the cloud can remain after the satellite passes
through the resonance frequency. The evolution of this
system and the fate of the cloud also depend on the initial
cloud mass. If there are no processes that prevent the
cloud’s growth and the BH has nearly extremal spin when it
forms, the cloud mass can be estimated as ∼αM [18]. In
reality, however, there can be other dissipation processes
besides GWemission, such as dissipation due to the axion’s
self-interaction [43,46]. Therefore, it is worth discussing
the dependence on the initial cloud mass.
We find that the initial value of the cloud mass that

maximizes the final cloud mass is mainly determined by the
value of the BH spin after the resonance. It can be classified
into two cases, which we describe below. We show the
example of the cloud mass and BH spin evolution for
the initial cloud mass from 10−10M0 to 10−1M0 in Figs. 6

FIG. 3. Evolution of the central BH mass MðtÞ (left), the angular momentum JðtÞ (middle), and the deviation from the critical spin
χðtÞ − χcrit (right) for q ¼ 10−4, α0 ¼ 0.1, and Mc;0 ¼ 10−3M0. Because of the absorption of particles belonging to the primary cloud,
the mass and the angular momentum of the BH increase slightly, but it maintains the BH spin parameter slightly below the threshold
value of the superradiance condition.

FIG. 4. Dependence of the evolution of the cloud on the
gravitational fine structure constant α0. Each line shows the
evolution of the cloud mass for q ¼ 10−4, Mc;0 ¼ 10−3M0, and
various α0. The cloud mass at a late epoch monotonically
increases, as α0 increases.

FIG. 5. Dependence of the cloud on the mass ratio q. Each line
shows the evolution of the cloud mass for α0 ¼ 0.1,
Mc;0 ¼ 10−3M0, and various q. As q becomes smaller, the
timescale of the binary evolution becomes longer, and thus the
decay due to the GW emission becomes dominant.

9Surprisingly, this result is not changed by the presence of ωð2Þ
I .

TAKAHASHI, OMIYA, and TANAKA PHYS. REV. D 107, 103020 (2023)

103020-8



(case 1) and 7 (case 2). Here, we take the final time as τbin=4,
where τbin ¼ Ω0=γ is the timescale of the binary evolution
(see also Appendix A).
In case 1 (Fig. 6), for large initial cloud mass, the cloud

mass decreases exponentially due to the BH spin-down. In
this case, since the transition rate is large, there are not
enough particles left to spin up the BH after the resonance.
On the other hand, for somewhat small initial cloud mass,
the particle number is too small to spin down the BH
efficiently from the beginning. In this case, the absorption
to the BH can be neglected, and the final mass is
determined only by the transition due to the tidal inter-
action. Thus, the case with such a small initial cloud mass
gives the maximum final cloud mass, for example, Mc;0 ¼
10−9M0 in Fig. 6.
In case 2 (Fig. 7), for the largest initial cloud mass

(Mc;0 ¼ 10−1M0), the cloud mass does not decrease at the
late epoch in this timescale. This is because the transition
rate is small and there are enough particles left to spin up
the BH by almost the threshold value of the superradiance
after the resonance. Thus, in this case, the largest initial
cloud mass simply gives the maximum final cloud mass.
We summarize the possible maximum final mass Mc;fin

of the cloud after the resonance in the parameter space
ðα0; qÞ in Fig. 8. We take 10−1M0 as the largest initial cloud

mass, and contours below 10−15M0 are not shown. The area
above the red boundary belongs to case 1, and the area
below it belongs to case 2. In the case 1 region, the final
cloud mass is mainly determined by the transition rate, i.e.,
the strength of the tidal interaction characterized by η2=γ.

FIG. 7. Case 2. The same plot as Fig. 6, but for q ¼ 10−4. In this
case, since the transition rate is not large, there is enough particle
number left to spin up the BH after the transition for a large initial
cloud mass. Thus, the cloud mass does not decrease at the late
epoch, and the largest initial cloud mass gives the largest final
cloud mass.

FIG. 6. Case 1. Evolution of the cloud mass (top) and the BH
spin (bottom) for α0 ¼ 0.2, q ¼ 10−3 and various initial cloud
mass Mc;0. Black dotted line in the bottom panel shows the
minimum value of the spin estimated in Sec. IV D. In this case,
the particle number after the transition is too small to spin up the
BH after the transition for a large initial cloud mass. The small
initial cloud mass such that the BH spin-down is negligible gives
the largest final cloud mass.

FIG. 8. Possible maximum final mass of the cloud after the
hyperfine resonance. The area above the red boundary belongs to
case 1 (e.g., Fig. 6), and the area below it belongs to case 2
(e.g., Fig. 7).
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Thus, for small α0 and somewhat large q, the cloud hardly
remains. In the case 2 region, the final cloud mass is mainly
determined by the GW emission. For small α0 and q, the
timescale of the binary evolution becomes large, and thus
the cloud has small mass by the time orbital frequency
reaches around the resonance. As a result, we find that the
largest final mass of the cloud is ∼10−5M0, which is
achieved at α0 ≳ 0.2 and q ∼ 10−3.

D. BH spin-down

In this subsection, we discuss the impact on the statistical
distribution of BH spin. If axions exist, most of the BHs
that experienced sufficiently large spin-up in the past are
expected to remain at the critical spin corresponding to the
threshold for the superradiance [Eq. (7)]. Such an accu-
mulation of the spin distribution can be an observational
signature of the existence of axions [11,12]. However, as
we saw in the preceding subsections, axions transferred to
the modewithm ¼ −1 by the tidal interaction make the BH
spin smaller than the critical spin. Then, the question is,
how small can the BH spin be?
To answer it, we analyze the evolution of the BH spin

parameter. From Eqs. (19) and (20), we have

dχ
dt

¼ −2
χ

M
dM
dt

þ 1

M2

dJ
dt

¼ 4χ
Mc;0

M
ðωð1Þ

I n1 þ ωð2Þ
I n2Þ

þ 2

α

Mc;0

M
ð−ωð1Þ

I n1 þ ωð2Þ
I n2Þ: ð43Þ

For χ < χcrit (i.e., ω
ð1;2Þ
I < 0), the first term on the right-

hand side is always negative. Near the resonance, the flux
of the second mode can be dominant, at which point the
second term is also negative. On the other hand, when n2
decreases and the flux of the first mode becomes dominant,
the second term becomes positive. Thus, we can estimate
the minimum value of the BH spin parameter achieved by
the reabsorption of transferred axions as χmin satisfying
dχ=dt ¼ 0 around the resonance.
Here, we use the approximation obtained in Eq. (40) for

n2. In particular, near the resonance, we can write

n2 ≃
η2

Γ2
n1: ð44Þ

Substituting it in Eq. (43) and approximating M ≃M0 and
α ≃ α0, we can find the root of dχ=dt ¼ 0 numerically. In
Fig. 9, we show the deviation of χmin obtained in this way
from the critical spin χcrit for the parameter space ðα0; qÞ.
However, it is important to stress that the deviation obtained
here is only an approximate upper bound. In fact, if the
cloud mass is too small, χcritðdχ=dtÞ−1 can be larger than
the timescale of binary evolution as the cloud mass

decreases. In that case, the BH spin-down stops before
reaching the χmin. In Figs. 6 and 7, we show the evolution of
the BH spin, with the dotted line corresponding to χmin.
When the cloud mass is somewhat large, the BH spin can
only go down to about χmin at most. On the other hand, if
the cloud mass is too small, BH spin-down terminates
before reaching χmin, and the absorption to the BH is
negligible. In particular, although it seems that the
deviation of χmin from the critical spin for large α0 and
small q can be Oð0.1Þ from Fig. 9, in that region, the
timescale of the binary evolution becomes small and there
is not enough time to spin down the BH. Therefore,
although the spin-down due to the absorption can be
sufficiently large to deplete the cloud, it would not affect
the constraints on axions from the BH spin measurements.

E. Modification of the orbital frequency

Next, we discuss the modification of the GW frequency
evolution at around the resonance. The GW frequency at
which resonance occurs is given by [29]

fres ¼
Ω0

π
¼ 2.2 mHz

1

1þ 4α20

�
α0
0.1

�
7
�
10M⊙

M

�
: ð45Þ

For typical binary systems with a supermassive BH having
an extreme mass ratio companion, the resonance frequency
is too low to detect. However, GWs at around the resonance
frequency from an intermediate mass BH accompanied by a
stellar mass or an even smaller mass exotic compact object
could be observed by space-based GW detectors, such
as LISA.

FIG. 9. Approximate minimum value of the spin parameter of
the central BH obtained by dχ=dt ¼ 0 in Eq. (43). It gives an
estimation of the upper limit of the deviation from the critical
spin, which can be reached by the BH spin-down. The blue solid
line shows the boundary below which the hyperfine transition is
relevant, as in Fig. 1.

TAKAHASHI, OMIYA, and TANAKA PHYS. REV. D 107, 103020 (2023)

103020-10



Around the resonance frequency, the orbital frequency
stagnates due to the angular momentum transfer associated
with the transition. This backreaction effect also causes the
delay of the rapid decrease of the cloud and enhances the
transition rate. In Fig. 10, we show the evolution of the cloud
mass and the orbital frequency for α0 ¼ 0.1; q ¼ 10−5, and
various initial cloud mass. When the cloud mass is large
enough, this backreaction greatly affects the evolution. We
can estimate the threshold value of the cloud mass before the
transition for the backreaction works effectively from
Eq. (23). For simplicity, neglecting the GW emission from
the cloud and considering only the primary cloud, the orbital
evolution around the resonance is approximated as

dΩ
dt

≃ γ þ R
Ω0

M2
0

dJð1Þc

dt
: ð46Þ

Here, from Eq. (39), the time derivative of Jð1Þc is given by

dJð1Þc

dt
≃
Mc

μ

2η2

ωð2Þ
I

: ð47Þ

For the orbital frequency to stagnate, on the right-hand side of
Eq. (46), the first term γ (GW radiation reaction) and the
second term must be comparable. Thus, we can estimate the
threshold value of the cloud mass required for the back-
reaction to work by equating these terms. We denote it as
Mc;float, and it is given as

Mc;float ¼
γjωð2Þ

I jα
2RΩ0η

2
M

≃ 9.5 × 10−8M0ð1þ qÞ4=3
�
α0
0.1

�
16=3

: ð48Þ

Therefore, evenwith a smallmass of the cloud,we can expect
that this modification can be a clear signature of the presence
of an axion condensate.

FIG. 10. Evolution of the cloud mass (left) and the orbital frequency (right) for α0 ¼ 0.1; q ¼ 10−5 and various initial cloud massMc;0.
The black dotted line in the left panel shows the threshold value of the cloud mass required for the backreaction to work effectively,
obtained in Eq. (48). The black dashed line in the right panel shows the evolution of the orbital frequency in the clean binary.

FIG. 11. Indicator in GW frequency of the presence of the cloud ff̈= _f2 around the resonance t ¼ 0 for various q, α0 ¼ 0.1 (left) and
α0 ¼ 0.2 (right). The initial cloud mass is set where the timescale of the GW emission and the binary evolution are equal, i.e.,
Mc;0 ¼ Mc;GW in Eq. (49). If the binary system is clean, ff̈= _f2 ¼ 11=3model independently. Around the resonance, this quantity can be
largely changed with the level transition of the cloud.
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Unfortunately, the timescale of the binary evolution τbin
is typically much longer than the observation time
(≲10 yr). At first glance, it seems difficult to resolve the
degeneracy with the uncertainties in the chirp mass and the
mass ratio by observing the time derivatives of the GW
frequency _f and f̈. However, we point out that ff̈= _f2 can
be a good indicator of deviation from clean binaries. If the
binary system is clean and the mass ratio is sufficiently
small, q ≪ 1, this nondimensional quantity becomes a
model-independent constant, i.e., ff̈= _f2 ¼ 11=3 in the
early stage of the inspiral.
It would be natural to assume that the cloud mass is

bounded from above by the mass where the GW emission
timescale τGW equals the timescale of the binary evolution
τbin (seeAppendixA). Then, around the resonance, the cloud
mass, reduced only by the GW emission, is bounded by

Mc;GW ¼ M2

τbin

α−14

C

≃ 8.9 × 10−4M0

q

ð1þ qÞ1=3
�
α0
0.1

�
14=3

: ð49Þ

In Fig. 11, we show the value of the indicator ff̈= _f in the
presence of a cloud with Mc;0 ¼ Mc;GW, for α0 ¼ 0.1 and
α0 ¼ 0.2. They show that the deviation from clean binaries
can be larger than Oð1Þ, even if the axion cloud has only a
tiny fraction of the mass of the central BH. While q
dependence on the indicator for the same cloud mass is
weak,10 Mc;GW is approximately linearly proportional to q.
Thus, when the mass ratio q is too small, the effect of the
angular momentum transfer due to the tidal interaction also
becomes small.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the evolution of
inspiralling binary systems accompanying an axion cloud
before and after the orbital frequency crosses the hyperfine
resonance frequency, focusing on small mass ratio (q ≪ 1)
cases. Our main interest is how the hyperfine level
transition proceeds and affects the observational signatures.
From the comparison of timescales, we found it necessary
to take into account the following components; the
decaying process of the axion in the destination mode of
the hyperfine transition (imaginary part of the eigenfre-
quency), the GW emission from the cloud, and the back-
reaction to the orbital motion and that to the mass and spin
of the central BH. We presented a formulation to examine
the evolution of the cloud, the central BH, and the orbital

motion including all these effects. In particular, carrying
out the adiabatic elimination of the degree of freedom of the
amplitude of the second mode allows us to examine a wide
parameter region numerically and gives useful expressions
for analyzing the behavior of the system.
Our results show that the cloud mass is typically

significantly reduced by the GW emission before the
resonant transition occurs. If q is sufficiently large or α
is sufficiently small, axions in the m ¼ 1 fastest growing
mode are almost transferred to the m ¼ −1 mode, which
has angular momentum in the opposite direction to the BH
spin and is easily absorbed by the BH. Then, the primary
cloud becomes nonsuperradiant and can fall into the BH,
which results in the increase of the BH angular momentum,
counterintuitively. However, the increase of the BH mass
dominates to maintain the first mode to be nonsuperradiant.
As a result, the cloud almost completely disappears by
absorption to the BH. On the other hand, if q is extremely
small or α is sufficiently large, the transition rate due to tidal
interaction is small. In such cases, since there are enough
particles left to spin up the BH again after the transition, the
absorption to the BH at the late epoch can be neglected, and
the cloud does not disappear completely. However, it dis-
sipates mainly owing to the GW emission before the
transition, and the maximum mass of the cloud that can
remain after the resonance is∼10−5M0 atmost.Howmuchof
the axion clouds can remain after the resonance might have
an implication to the survey of the cloud as an environment
around the BH, such as in [23,24,26].
We also discussed the implication to the observational

signatures. First, we confirmed that the time variation of the
BH spin around the transition is tiny, although this tiny
variation can be important to determine the evolution of the
cloud. This result makes robust the constraint on the
existence of an axion field obtained through the BH
parameter distribution measured by GWs from binary
systems. Second, we studied the influence of the transition
on the inspiral GW waveform. We found that, even for
extremely small cloud mass, the backreaction to the orbital
motion works effectively, and the frequency stagnates
around the resonance frequency. In particular, the combi-
nation ff̈= _f2 is affected by the transition to a detectable
level. Therefore, for example, the GWs from an intermedi-
ate mass BH associated with a small mass satellite can be a
good target for the axion search.
We leave more extensive analysis of the evolution of this

system to future work. For example, the generalization of
the inspiral orbit and taking into account the eccentricity
and inclination would be important for a realistic case. In
addition, excitation of the higher-l mode may also be
possible for a long timescale. Furthermore, the discrimi-
nation from other environmental effects and the change of
quadrupole GW radiation due to the presence of the cloud
(like [54]) would be important for precise analysis of
observability.

10In Eq. (23), the main contribution to the square brackets in
the second term of the right-hand side is _Jð1Þc . From Eq. (39), _Jð1Þc
is roughly proportional to q2 around the resonance. Thus,
_Ω ≃OðqÞ. One can find that Ω̈ ≃Oðq2Þ by differentiating
Eq. (23).
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APPENDIX A: TIMESCALES

In this appendix, we summarize the timescales involved
in our problem.
Binary evolution.—The timescale of the binary evolution

due to the GW radiation at the resonance frequency Ω0 is
given by

τbin ¼
Ω0

γ
¼ 5

96
M

ð1þ qÞ1=3
q

ðMΩ0Þ−8=3; ðA1Þ

where γ is defined by Eq. (22).
Transition.—The resonance bandwidth can be estimated

as ΔΩ ∼ 2η. Hence, if one can neglect the instability of the
mode of the transition destination and linearize the orbital

evolution, the timescale for passing through the resonance
band is given by

τtrans ¼
2η

γ
: ðA2Þ

Decay of the secondary cloud.—The secondary cloud
decreases as ∼e−2jω

ð2Þ
I jt, and the timescale is given by

τinst ¼ jωð2Þ
I j−1: ðA3Þ

GW emission of the primary cloud.—From the energy
conservation _Mc ¼ − _EGW [see Eq. (14)], one can obtain

McðtÞ ¼
Mc;0

1þ ðt − t0Þ=τGW
: ðA4Þ

Here, the timescale is given by

τGW ¼ 1

C
M2

Mc;0
α−14: ðA5Þ

Parameter dependencies of the timescales mentioned
above are summarized in Fig. 12 and Table I.
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FIG. 12. Timescales involved in the resonant transition of axion clouds in binary systems for α ¼ 0.1 and M ¼ M⊙. Blue and yellow
solid lines show the timescale of the binary evolution and the transition at the hyperfine resonance, respectively. Blue and yellow dashed
lines show the same quantities, but for the typical Bohr transition (j211i → j31 − 1i). Green and red lines show the timescales of decay
of the secondary cloud (j21 − 1i) and of the GW emission of the primary cloud (j211i) for Mc;0 ¼ 0.1M, respectively.

TABLE I. Timescales involved in the hyperfine resonance of axion clouds.

Process Time

Binary evolution τbin ¼ 2.2 × 1013 s ð1þqÞ1=3
q ð M

M⊙
Þð χ

0.4Þ−8=3ð α
0.1Þ−16

Transition τtrans ¼ 1.3 × 1010 s 1
ð1þqÞ2=3 ð M

M⊙
Þð χ

0.4Þ−5=3ð α
0.1Þ−13

Decay of the secondary mode τinst ≃ 5.9 × 105 sð M
M⊙

Þð χ
0.4Þ−1ð α

0.1Þ−9
GW emission τGW ¼ 2.0 × 1011 sð M

M⊙
ÞðMc;0=M

0.1 Þ−1ð α
0.1Þ−14
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APPENDIX B: TOY MODEL FOR ADIABATIC
ELIMINATION

In this appendix, we discuss the approximation used in
Sec. III C with a simplified toy model. Consider the two-
level transition described by the Schrödinger equation,

i
d
dt

�
c1
c2

�
¼
�
0 η

η ΔðtÞ − iωI

��
c1
c2

�
: ðB1Þ

Let η and ωI be constants and ΔðtÞ ¼ 2γt (γ is constant).
This model is a simplification of ignoring all backreactions
and GW emissions and linearizing the binary evolution in
the problem we investigate. If ωI ¼ 0, this model is known
as the Landau-Zener problem [30,55,56]. Now, we want to
study the level transition to the decaying mode (ωI > 0).
For this problem, we have an exact analytic solution
with the initial conditions c1ð−∞Þ ¼ 1 and c2ð−∞Þ ¼ 0
as [57,58]

jc1ðtÞj2 ¼ e−ωI t−π
2
η2

2γ

����Diη2=2γ

�
ei

3π
4 ð

ffiffiffiffiffi
2γ

p
t − iωI=

ffiffiffiffiffi
2γ

p
Þ
�����2;
ðB2Þ

jc2ðtÞj2¼e−ωI t−π
2
η2

2γ
η2

2γ

����Diη2=2γ−1

�
ei

3π
4 ð

ffiffiffiffiffi
2γ

p
t−iωI=

ffiffiffiffiffi
2γ

p
Þ
�����2;
ðB3Þ

where DνðzÞ is the parabolic cylinder function.
Carrying out the adiabatic elimination as in Sec. III C, we

obtain the approximate solution for the particle number as

jc1ðtÞj2 ≃ exp

�
2

Z
t

−∞
dt0

ωIη

4γ2t02 þ ω2
I

�

¼ exp

�
−
η2

γ

�
arctan

2γt
ωI

þ π

2

��
; ðB4Þ

and

jc2ðtÞj2 ≃
η2

4γ2t2 þ ω2
I
jc1ðtÞj2: ðB5Þ

In Fig. 13, we compare the approximate solution obtained
by the adiabatic elimination with the exact one. As one can
confirm from the figure, the two solutions agree quite well
when ωI=η is sufficiently large.

We can estimate the time when the perturbation starts to
work from Eq. (B4). For jtj ≫ ωI=2γðt < 0Þ, one can
expand jc1ðtÞj2 with respect to 1=jtj as

jc1ðtÞj2 ∼ exp

�
−

η2ωI

2γ2jtj
�
: ðB6Þ

If η2=γ ≫ 1, the exponent can be Oð1Þ, even for
jtj ≫ ωI=2γ. In this case, the proper choice of the time
for the onset of the perturbation would be t ∼ −η2ωI=2γ2.
On the other hand, if η2=γ ≲ 1, the exponent in Eq. (B4)
vanishes for jtj ≫ ωI=2γ. In this case, it is enough to
choose the starting time at t ∼ −ωI=2γ. Combining them,
we have the estimation of the time when the perturbation
starts to work as t ∼ −ð1þ η2=γÞðωI=2γÞ.

Exact

Approx
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FIG. 13. Time evolution of the particle number of each mode
for η=

ffiffiffiffiffi
2γ

p ¼ 0.5 and ωI=
ffiffiffiffiffi
2γ

p ¼ 5, i.e., ωI=η ¼ 10. The blue
solid line shows the exact solution and the red dashed line shows
the approximate solution obtained by the adiabatic elimination.
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