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We study self-gravitating bound states of a complex vector field, known as Proca stars, with a new type
of quartic-order self-interaction, which does not exist in the case of either a complex scalar field or a real
vector field. Depending on the sign of the coupling constant, this quartic self-interaction can yield a distinct
feature of Proca stars from the previously investigated self-interaction of the vector field. We find that
self-gravitating solutions can be so compact that the photon sphere could form. However, we also show that
the self-interaction gives rise to a ghost instability for the stars whose compactness is close that for the
formation of a photon sphere, which might invalidate the formation of the photon sphere.
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I. INTRODUCTION

While current experimental and observational data are
consistent with the predictions of General Relativity (GR)
[1,2], future observations of gravitational waves and those
associated with the strong-field regime will provide us new
opportunities to test the validity of GR [3–5]. The possibility
of hypothetical horizonless compact objects [3–7] would
also provide us to test the existence of the newparticle sectors
in the strong-field regime. Boson stars are the representative
candidates of such compact objects [8–11] and are charac-
terized by the Arnowitt-Deser-Misner (ADM) mass and
Noether charge associated with the global Uð1Þ charge
[12–14]. With an increase of the scalar amplitude, the
ADM mass and Noether charge increase and the solutions
below reaching the maximal values of them are dynamically
stable [15–17]. Boson star solutions also exist in the presence
of self-interacting potentials [9,18].
Boson star solutions can be naturally extended to the

complex Proca field, which are known as Proca stars
[19–25] (see also Ref. [26] for a Yang-Mills field and
Refs. [27–29] for a spin-2 field). In the massive Proca
theories, the properties of Proca stars are very similar to
those of scalar boson stars [19], and have been extensively
applied to astrophysics and gravitational-wave physics
[30–35]. In the presence of the self-interaction potential
of the complex Proca field VðĀμAμÞ, however, the situation
is drastically modified. Proca star solutions cease to exist
for the central Proca amplitude at a critical point [22–24].
The problem arises when the first radial derivative of the
radial component of the Proca field diverges at a certain
radius, beyond which one cannot integrate the field
equations numerically. We have recently verified that the
appearance of a singular point at a finite amplitude can be

interpreted as the onset of a gradient instability at the
background level [36]. An independent but conceptually
related problem is a ghost instability of a self-interacting
Proca field [37–39] (see also Ref. [40]). Here, “ghost” and
“gradient” instabilities are associated with the wrong signs
of the kinetic and gradient terms in the Lagrangian,
respectively. They grow arbitrarily fast if they continue
existing in arbitrarily high-energy/-momentum scales, and
the presence of these instabilities invalidates the perturba-
tion theory within an infinitesimally short timescale. At the
onset of a ghost or gradient instability, the hyperbolicity of
equations of motion is lost. References [37–39] perform
numerical simulations of the time evolution of a self-
interacting real Proca field in different backgrounds and
show that the time derivative of the temporal component of
the Proca field diverges at a certain moment of time,
beyond which one cannot follow the time evolution. The
problem of a ghost instability is expected to be generic to
the self-interacting Proca sector and independent of back-
ground geometries.
A ghost or gradient instability is indeed a pathology of

the theory, if the self-interacting Proca field is a funda-
mental field. However, the self-interacting Proca theory
could appear as a low-energy effective description of a
more fundamental theory, and then ghost and gradient
instability problems may be cured, once UV physics such
as the dynamics of heavy fields is properly taken into
consideration [36] (see also Refs. [25,26,41,42]).
Reference [36] proposed a simple partial UV completion
model of the self-interacting Proca theory with a new heavy
scalar field. From the effective field theory (EFT) view-
point, the onset of a gradient or ghost instability indicates a
breakdown of the self-interacting Proca field as an EFT.
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It has been demonstrated that Proca star solutions, more
precisely Proca-scalar star solutions as there is a scalar field
in addition to the Proca field, continue to exist even beyond
the critical point at which the EFT suffers from a gradient
instability, and a small deviation is enough to regularize the
singularity in the EFT. Several physical properties of the
Proca-scalar star solutions (and nongravitating solutions)
were studied by the authors of Ref. [43].1 Then, it was
shown that the maximal mass and compactness of Proca-
scalar stars cannot exceed those of Proca stars in the pure
Einstein-massive complex Proca theory, which is recovered
in a certain limit from the UV theory, and the photon
spheres and the innermost stable circular orbits cannot be
formed in the stable branch.
Although Ref. [36] focused on the quartic-order self-

interaction ðĀμAμÞ2, analysis can be naturally extended to a
more general self-interaction including higher-order terms
of ĀμAμ. The issue on the existence of Proca stars provided
one of the simplest setups that demonstrate a partial UV
completion to cure the pathology of the self-interacting
Proca field, in the sense that the system is given by a set
of ordinary differential equations. While the problems of
perturbations of the self-interacting Proca field on a non-
trivial background [37–39] are formulated by a set of partial
differential equations depending on both the space and
time, they can be similarly resolved. Starting from an initial
condition with a small amplitude where the EFT is valid,
the system may evolve into a large amplitude of the vector
field. Once UV physics is taken into account, the heavy
mode should be excited before the breakdown of the EFT.
In the present paper, we will focus on another aspect of

the self-interacting complex Proca field on the Proca star
background while paying attention to UV physics. We will
study properties of Proca stars in the presence of the new
self-interaction of a complex Proca field Aμ, which includes
the scalar product ĀμĀνAμAν [see Eq. (2.6) below] and
vanishes in the limit of a real vector field. We will show that
this new self-interaction could realize distinctive features of
Proca stars, in comparison with those in the presence of
the higher-order powers of ĀμAμ explored in the literature
[22–24]. We expect that, as in the case of the other theories,
a possible ghost or gradient instability arises from the new
self-interaction and they could also be cured by UV
physics. Hence, we will concentrate on the properties of
Proca stars in the regime of the EFT in the present paper.
Yet, the underlying assumptions about UV physics lead to

nontrivial consequences on Proca stars, as we will dis-
cuss below.
This article is organized as follows. In Sec. II, we

introduce the Einstein-complex Proca theory with the
new self-interaction of a complex Proca field, which
vanishes in the limit of a real Proca field. In Sec. III, we
provide the basic equations to construct Proca star solu-
tions. In Sec. IV, we discuss the properties of the Proca star
solutions in our theory, especially focusing on the maximal
compactness and the existence of a ghost or gradient
instability. The last section, Sec. V, is devoted to giving
a brief summary and conclusion.

II. SELF-INTERACTING COMPLEX
PROCA FIELDS

Before initiating our analysis, it is instructive to mention
differences among a complex scalar, a real vector field,
and a complex vector field, to see how the vectorial and
complex natures lead to the new interactions absent in the
cases of the scalar field and the real vector field.
Throughout the present paper, we will ignore derivative
interactions, as they may be suppressed in low energies.
We first consider the following Lagrangian density of a

complex scalar field Φ,

LΦ ¼ −
1

2
∇μΦ̄∇μΦ − VΦðΦ̄ΦÞ; ð2:1Þ

where the overbar represents the complex conjugate, VΦ is
the potential, and ∇μ denotes the covariant derivative
associated with the spacetime metric gμν. Note that here
and in the rest the spacetime indices are raised by the
inverse metric tenor gμν, such as ∇μ ¼ gμν∇ν, and lowered
by the metric tenor gμν. Since the Lagrangian density (2.1)
must be real, the potential is a function of the modulus Φ̄Φ.
For instance, the potential up to the quartic order is given

by VΦðΦ̄ΦÞ ¼ μ2Φ
2
Φ̄Φþ λΦ

4
ðΦ̄ΦÞ2, where μ2Φ is the mass

squared around the vacuum hΦi ¼ 0, which we shall
assume positive. The coupling constant λΦ can be either
positive or negative; a positive λΦ represents a repulsive
self-interaction, while a negative λΦ leads to an attractive
self-interaction.
We then consider a real vector field Bμ with the

Lagrangian

LB ¼ −
1

4
BμνBμν − VBðBμBμÞ; ð2:2Þ

where Bμν ≔ ∂μBν − ∂νBμ. The potential VBðBμBμÞ is a
function of BμBμ since VB should be a Lorentz-invariant

scalar. Let us write it as VBðBμBμÞ ¼ μ2B
2
BμBμ þ λB

4
ðBμBμÞ2

up to the quartic order, which has a structure similar to the
scalar potential VΦ. Note that a self-interacting massive
vector field is not UV complete on its own. Hence, Eq. (2.2)

1Reference [43] uses an Abelian-Higgs-like model as a partial
UV completion of the quartic-order self-interaction. Note, how-
ever, that their model is different from the Abelian-Higgs model
(see, e.g., Refs. [41,42]) because the vector field is complex rather
than real. For instance, the field space of the scalar sector is no
longer flat, differently from the Abelian-Higgs model (see, e.g.,
Eq. (4.10) of Ref. [36]).
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should be regarded as a low-energy EFT, and a UV
completion is needed when the theory loses its validity.
The simplest example is the Higgs mechanism in which the
self-interaction ðBμBμÞ2 arises as a result of integrating out
the Higgs field. See, e.g., Refs. [25,26,36] in the context of
boson stars. One may then notice that the sign of λB is
necessarily negative [41,42] because it is determined by the
squares of the coupling constant and the mass. The negative
sign is not specific to the Higgs mechanism; it has to be
negative for any (nongravitational) UV completion under
the fundamental assumptions, namely unitarity, Poincaré
invariance, causality, and locality, and the resultant bounds
on low-energy EFTs are called positivity bounds [44]. It is,
however, worth mentioning that the positivity bounds in
gravitational systems are still subject to discussions and,
especially, the sign of the Planck suppressed operators
may depend on details of quantum gravity [45–51]. In the
context of boson stars, the self-interactions are often
supposed to be Planck suppressed [see Eq. (3.23) later],
so it would be also interesting to investigate the positive
value of λ1 even though its UV completion is not known.
Now, we turn to our main focus, a complex vector field

Aμ whose Lagrangian density is

L ¼ −
1

4
F̄μνFμν − V; ð2:3Þ

where Fμν ≔ ∂μAν − ∂νAμ, and the overbars again represent
the complex conjugate. In the literature on Proca stars
[19–26], the self-interacting potential V is often assumed to
be a function of

Y ≔ ĀμAμ ð2:4Þ

just like the cases of a complex scalar field and a real
vector field. However, there is the missing scalar invariant
given by

Z ≔ ĀμĀμAνAν; ð2:5Þ

which is independent from ðĀμAμÞ2, since Aμ has a
spacetime index and is complex. Therefore, the most
general potential up to the quartic order of Aμ and Āμ is
given by

V ¼ μ2

2
Y þ λ1

4
Y2 þ λ2

4
ðZ − Y2Þ; ð2:6Þ

where μ is the mass of the Proca field and λ1 and λ2 are
dimensionless self-coupling constants. The last term in
Eq. (2.6) vanishes when Aμ is real, i.e., Āμ ¼ Aμ. As shown
in the Appendix, the (nongravitational) positivity bounds
conclude

λ1 < 0; λ2 < 0: ð2:7Þ

The appearance of the second-type self-interaction from a
Yang-Mills theory is well known, e.g., the self-interaction
of the W boson, although the theory contains other vector
fields in addition to the complex Proca field in this case.
Nonrelativistic bosonic bound states in a Yang-Mills-Higgs
system were found in Ref. [26] in which the self-
interactions of the SUð2Þ Yang-Mills field, i.e., three real
vector fields, were studied. It should be, nevertheless,
stressed that the bounds (2.7) are universal under the
above-mentioned assumptions, regardless of whether Aμ

is a part of a Yang-Mills field.
Therefore, there are two differences between the com-

plex scalar field (scalar boson stars) and the complex vector
field (Proca stars): the presence of the new self-interaction
and the close connection between the sign of the coupling
constants and UV physics. If the complex Proca field has
the standard UV completion, the coupling constants must
satisfy the inequalities (2.7) regardless of the details of UV
completion. On the other hand, λ1 > 0 or λ2 > 0 requires
unknown UV completion. The sign of the quartic order
self-interaction of the Proca field has significant information
about UV physics, and from the point of view of a bottom-up
approach, the sign is determined through observations.
Having understood these distinctions, we study the

properties of relativistic Proca star solutions in the Einstein-
Proca theory

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
F̄μνFμν − V

�
; ð2:8Þ

where the Einstein-Hilbert term ðM2
Pl=2ÞR is added as the

gravitational kinetic term to the self-interacting complex
Proca field (2.3). Here, MPl is the reduced Planck mass, R
represents the Ricci scalar associated with the metric gμν,
and V is given by Eq. (2.6).
Varying the action (2.8) with respect to gμν, we obtain the

gravitational equations of motion

M2
PlGμν ¼ Tμν; ð2:9Þ

where we have defined the energy-momentum tensor of the
complex Proca field

Tμν ¼ FðμαF̄νÞα −
1

4
gμνF̄ρσF̄ρσ − Vgμν

þ ½μ2 þ ðλ1 − λ2ÞY�AðμĀνÞ

þ λ2
2
ðĀμĀνAρAρ þ AμAνĀρĀρÞ: ð2:10Þ

Varying the action (2.8) with respect to Āν, we obtain the
Proca equation of motion

∇μFμν − ½ðμ2 þ λ1AρĀρÞAνþ λ2Aρð−ĀρAν þ AρĀνÞ� ¼ 0:

ð2:11Þ
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Acting ∇ν on Eq. (2.11), we obtain the constraint condition

∇ν½ðμ2 þ λ1AρĀρÞAνþ λ2Aρð−ĀρAν þ AρĀνÞ� ¼ 0:

ð2:12Þ

There exists the global Uð1Þ symmetry under the trans-
formation Aμ → eiαAμ with a constant α, and the associated
Noether current is given by

jμ ¼ i
2
ðF̄μνAν − FμνĀνÞ; ð2:13Þ

which satisfies the local conservation law ∇μjμ ¼ 0.

III. PROCA STAR SOLUTIONS

A. Background equations

In this section, we present the basic equations to
determine the structure of Proca star solutions in the
theory (2.8) with Eq. (2.6). We assume the following
ansatz for the metric and Proca fields,

gμνdxμdxν ¼ −σðrÞ2
�
1 −

2mðrÞ
r

�
dt̂2

þ
�
1 −

2mðrÞ
r

�
−1
dr2 þ r2dΩ2; ð3:1Þ

Aμdxμ ¼ e−iω̂ t̂ða0ðrÞdtþ ia1ðrÞdrÞ; ð3:2Þ

where t̂ and r are the temporal and radial coordinates,
respectively; σðrÞ, mðrÞ, a0ðrÞ, and a1ðrÞ are the real

functions of r; and ω̂ is the frequency which is determined
under suitable boundary conditions. For a Proca star solution,
the frequency ω̂ is real and positive, so the Proca field is
stationary and neither grows nor decays in time. For a time-
dependent complex Proca field, each component of the
energy-momentum tensor (2.10) would in general become
time dependent. However, we stress that the ansatz for the
Proca field (3.2) is compatiblewith the staticity and spherical
symmetry of the spacetime (3.1) because in each component
of the energy-momentum tensor (2.10) the explicit time
dependence e−iω̂ t̂ in Aμ and its derivative is canceled out by
its complex conjugate eiω̂ t̂ in Āμ and its derivative for the
ansatz Eq. (3.2). Hence, the components of the energy-
momentum tensor (2.10) donot contain the timedependence.
Substituting the above ansatz into the Einstein and Proca

field equations, Eqs. (2.9) and (2.11), we find that σðrÞ,
mðrÞ, a0ðrÞ, and a1ðrÞ obey the first-order ordinary differ-
ential equations

dm
dr

¼ Fm½mðrÞ; σðrÞ; a0ðrÞ; a1ðrÞ; r�; ð3:3Þ

dσ
dr

¼ Fσ½mðrÞ; σðrÞ; a0ðrÞ; a1ðrÞ; r�; ð3:4Þ

da0
dr

¼ F0½mðrÞ; σðrÞ; a0ðrÞ; a1ðrÞ; r�; ð3:5Þ

da1
dr

¼ F1½mðrÞ; σðrÞ; a0ðrÞ; a1ðrÞ; r�; ð3:6Þ

where

Fm ≔
1

8M2
Pl

�
2rμ2a21ðr − 2mÞ þ 4a21ðrμ2 þ λ1a21ðr − 2mÞÞðr − 2mÞ þ λ1a41ðr − 2mÞ2 − 2r2ω̂2a21

σ2
−
2r2ðλ1 − 2λ2Þa20a21

σ2

−
r2

σ4

�
3r2λ1a40
ðr − 2mÞ2 −

2rμ2a20σ
2

r − 2m
−
2a21σ

2

ω̂2

�
ω̂2 þ ðλ1 − 2λ2Þa20 −

ðrμ2 þ λ1a21ðr − 2mÞÞðr − 2mÞσ2
r2

�
2
��

; ð3:7Þ

Fσ ≔ −
1

2M2
Pl

�
r4λ1a40

ðr − 2mÞ3σ3 −
r3μ2a20

ðr − 2mÞ2σ

− a21ðrμ2 þ λ1a21ðr − 2mÞÞσ
�
; ð3:8Þ

F0 ≔
a1
ω̂

�
ω̂2 þ ðλ1 − 2λ2Þa20

−
σ2ðrμ2 þ λ1a21ðr − 2mÞÞðr − 2mÞ

r2

�
; ð3:9Þ

and F1 is a complicated function of ðm; σ; a0; a1Þ, which
contains

HðrÞ ≔ −r2ðλ1 − 2λ2Þa20 þ ðrμ2 þ 3λ1a21ðr − 2mÞÞ
× ðr − 2mÞσ2 ð3:10Þ

in the denominator. In integrating Eqs. (3.3)–(3.6), in case
one hits the point where HðrÞ ¼ 0, one cannot integrate
them beyond this point, and hence there is no Proca star
solution. As we will see later, the appearance of the point
HðrÞ ¼ 0 can be interpreted as the onset of a gradient
instability at the background level [36].
Solving Eqs. (3.3)–(3.6) in the vicinity of the center

r ¼ 0, the regular solution can be obtained as

mðrÞ ¼ f20ð−3f20λ1 þ 2μ2σ20Þ
24M2

Plσ
4
0

r3 þOðr4Þ; ð3:11Þ
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σðrÞ ¼ σ0 þ
f20ð−f20λ1 þ μ2σ20Þ

4M2
Plσ

3
0

r2 þOðr4Þ; ð3:12Þ

a0ðrÞ ¼ f0

−
f0ðf20λ1 − μ2σ20Þðf20ðλ1 − 2λ2Þ − μ2σ20 þ ω̂2Þ

6f20ðλ1 − 2λ2Þσ20 − 6μ2σ40
r2

þOðr4Þ; ð3:13Þ

a1ðrÞ ¼ −
f0ω̂ðf20λ1 − μ2σ20Þ

3σ20f
2
0ðλ1 − 2λ2Þ − 3μ2σ40

rþOðr3Þ: ð3:14Þ

Under the regular boundary conditions (3.11)–(3.14) near
the origin r ¼ 0, we numerically integrate Eqs. (3.3)–(3.6)
toward infinity. For a given set of parameters, if we choose
ω̂ to be a proper value, m and σ exponentially approach
constant values, m∞ > 0 and σ∞ > σ0 > 0, respectively,

and a0 and a1 exponentially approach zero as e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r,

where the proper frequency for the observer sitting at the
infinity r → ∞ is defined by

ω ≔
ω̂

σ∞
: ð3:15Þ

The exponential falloff of the Proca field in the large

distance limit as e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r requires

ω < μ: ð3:16Þ

Thus, as r → ∞, the metric exponentially approaches the
Schwarzschild form

ds2 → −σ2∞
�
1 −

2m∞

r

�
dt̂2 þ

�
1 −

2m∞

r

�
−1
dr2 þ r2dΩ2

2;

ð3:17Þ

where the proper time measured by the observer at r ¼ ∞ is
given by t ¼ σ∞t̂. In the limit f0 → 0,ω → μ, the Proca field
profiles a0ðrÞ and a1ðrÞ trivially vanish, and the Minkowski
solution is obtained. Note that there can bemultiple solutions
satisfying the same boundary conditions near the origin and
in the large distance region for discrete eigenvalues ofω, for a
given set of the parameters. In this paper, we will focus only
on ground state solutions obtained for the lowest eigenvalue
of ω, where a0ðrÞ and a1ðrÞ have one and zero nodes,
respectively (see Fig. 1).
There are several conserved charges that characterize the

properties of Proca stars. The first is the ADM mass

M ≔ 8πM2
Plm∞; ð3:18Þ

which is determined by the asymptotic value of the mass
functionmðrÞ. The second is the Noether charge associated

with the global Uð1Þ symmetry, which is given by
integrating jt̂ in Eq. (2.13) over a constant-t̂ hypersurface,

Q ≔
Z
Σ
d3x

ffiffiffiffiffiffi
−g

p
jt̂ ¼

Z
∞

0

dr
4πr2a1ðω̂a1 − a00Þ

σ
; ð3:19Þ

where Σ denotes a constant time hypersurface.Q physically
describes the particle number of the Proca field, and the
Proca star is gravitationally bound, when

μQ −M > 0: ð3:20Þ
In the case of Proca stars as well as boson stars, there is

no unique definition of the radius, and so we need to

FIG. 1. The profiles of the metric functionsm (top), σ (middle),
and the Proca field (bottom) for Proca star solutions in the ground
state are shown as the functions of μr for f0 ¼ 0.05 with the
specified coupling constants. In the bottom panel, the solid and
dashed curves correspond to the profiles a0ðrÞ and a1ðrÞ,
respectively. Note that the dimensionless coupling constant λ̃2
is defined in Eq. (3.23).
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introduce an effective radius which characterizes the size
of the distribution of the Proca field. First, we define the
radius R95 by

mðR95Þ ¼ 0.95 ×m∞; ð3:21Þ

at which the mass function mðrÞ reaches 95% of the ADM
mass [see Eq. (3.18) for the relation ofM andm∞]. We also
introduce the radius normalized by Q [9]

R ≔
1

Q

Z
Σ
d3x

ffiffiffiffiffiffi
−g

p ðrjt̂Þ ¼ 4π

Q

Z
∞

0

dr
r3a1ðω̂a1 − a00Þ

σ
:

ð3:22Þ

WhileR95 can be interpreted as an astronomical surface of
a Proca star within which the most energy of the Proca field
is confined,R can be interpreted as the expectation value of
the radius that characterizes the distribution of the Proca
field. We will numerically find R95 > R in a typical Proca
star solution.
By introducing the rescaled dimensionless quantities by

ω̃ ≔
ω̂

μ
; r̃ ≔ rμ; m̃ ≔ μm;

ã0 ≔
a0
MPl

; ã1 ≔
a1
MPl

; λ̃1;2 ≔
M2

Plλ1;2
μ2

; ð3:23Þ

the evolution equations (3.3)–(3.6) can be rewritten into the
form without the dimensionful quantities μ and MPl. Thus,
without loss of generality, for the numerical analysis, we set
μ ¼ MPl ¼ 1, and if necessary, it is straightforward to give
back the dependence on μ and MPl. In addition, as σ0
corresponds to the freedom of the rescaling of the time
coordinate, without loss of generality, we may also set
σ0 ¼ 1. Therefore, only the remaining physical parameters
are f0, λ1, and λ2.
Proca star solutions have been constructed for the

self-interacting potential with λ1 ≠ 0 and λ2 ¼ 0 in
Refs. [22–24]. Instead, in this work, we will focus on
the interaction Z − Y2, which vanishes in the case of the
real Proca field, and hence consider the case of

λ1 ¼ 0; λ2 ≠ 0: ð3:24Þ

Clearly, the most general case is that of ðλ1 ≠ 0; λ2 ≠ 0Þ.
However, as far as we investigated several choices of
ðλ1 ≠ 0; λ2 ≠ 0Þ, the physical properties of Proca stars such
as the mass-radius relation for the general case can be
simply understood by a combination of the two opposite
cases, i.e., ðλ2 ≠ 0; λ1 ¼ 0Þ and ðλ1 ≠ 0; λ2 ¼ 0Þ. Thus, in
this paper, we focus on the case (3.24) and its difference
from the opposite case ðλ1 ≠ 0; λ2 ¼ 0Þ discussed in
Refs. [22–24].

In Fig. 1, the profiles of the metric function m (top), the
metric function σ (middle), and the Proca field (bottom) for
Proca star solutions in the ground state are shown as the
functions of μr for f0 ¼ 0.05. The top and middle panels
represent the profiles of mðrÞ and σðrÞ, while the solid and
dashed curves in the lower panel correspond to the profiles
of a0ðrÞ and a1ðrÞ, respectively. The top and middle panels
show that both the metric functionsmðrÞ and σðrÞ approach
larger/smaller constant positive values in the large distance
regime rμ ≫ 1 for positive/negative values of λ2, than those
for λ2 ¼ 0. The bottom panel shows that the profiles of the
Proca field are more broadened in the vicinity of the center
of the star for positive values of λ2 and more compressed for
negative values of λ2. We note that the profiles of α̃0ðrÞ and
α̃1ðrÞ, which will be defined in Eq. (3.37), are almost
identical to a0ðrÞ and a1ðrÞ in Fig. 1. As for Proca star
solutions in other theories [19–25], the temporal compo-
nent of the complex Proca field a0ðrÞ in the ground state
crosses zero once and hence has a single node, which is in
contrast with the case of scalar boson stars in the ground
state where the radial profile of the complex scalar field has
zero nodes.

B. Effective metric for the Proca field perturbations

On top of Proca star solutions, we consider small
perturbations of the complex Proca field. As is well known,
the propagations of the longitudinal modes of Aμ are
modified by the self-interactions, and a ghost or gradient
instability may appear around a nontrivial background
configuration of Aμ. In this subsection, we study a high-
frequency limit of the perturbations around a nontrivial
background and find the effective metric on which the
perturbations propagate. A ghost (or gradient) instability
appears when the signature of the temporal (or radial)
component of the effective metric changes.
We perturb these equations around a nontrivial back-

ground of Aμ and pick up the highest derivative terms
which characterize the propagation of the Proca field in the
high-frequency limit. The background is denoted by the
same symbol Aμ, while the perturbations are given by
δAμ þ ∂μπ, where π is the Stüeckelberg field representing
the longitudinal modes. One can easily find that Eq. (2.11)
is reduced to the standard Maxwell equation in the high-
frequency limit,

∂
2δAμ − ∂

ν
∂μδAν þ � � � ¼ 0; ð3:25Þ

where � � � are the terms that are at most linear in derivatives
of the perturbations. On the other hand, the perturbed
equation of (2.12) takes the form

Kμν
∂μ∂ν

�
π1

π2

�
þ � � � ¼ 0; ð3:26Þ
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where π1 and π2 are the real and imaginary parts of π, and
the components of the 2 × 2 matrix Kμν are given by

ðKμνÞ11 ¼
�
μ2

2
þ λ1

2
Y − λ2A2αA2

α

�
gμν

þ λ1A1μA1μ þ λ2A2μA2ν; ð3:27Þ

ðKμνÞ12 ¼ ðKμνÞ21 ¼ λ1 − λ2A1ðμA2νÞ þ λ2ðA1αA2
αÞgμν;

ð3:28Þ

ðKμνÞ22¼
�
μ2

2
þλ1

2
Y−λ2A1αA1

α

�
gμνþλ1A2μA2μþλ2A1μA1ν

ð3:29Þ

with Aμ ¼ A1
μ þ iA2

μ. Here, the covariant derivatives are
replaced with the partial ones because we are focusing on
the short wavelength in comparison with the background
spacetime curvature scale. The dispersion relation of the
longitudinal modes is given by a root of

detðKμνkμkνÞ ¼ 0 ð3:30Þ

with kμ being a four-wave-vector.
Either when λ1 ¼ 0 or λ2 ¼ 0, the dispersion relation

(3.30) is factorized,

detðKμνkμkνÞ ∝ k2 × gμνeffkμkν ¼ 0 ðwhen λ1λ2 ¼ 0Þ;
ð3:31Þ

that is, one of the longitudinal modes propagates on the
light cone of the spacetime metric, while the other
propagates on the effective metric gμνeff . In the following,
let us concentrate on the case λ1 ¼ 0, which is our main
interest in the present paper. The effective metric with
λ1 ¼ 0 is given by

gμνeff ¼ gμν½ð1 − λ2Y=μ2Þ2 − λ22Z=μ
4�

þ 2AðμĀνÞðλ2=μ2 − λ22Y=μ
4Þ

þ λ22
μ4

ðAαAαĀμĀν þ ĀαĀαAμAνÞ ð3:32Þ

of which the determinant is given by

detðgμνeffÞ ¼ detðgμνÞ½ð1 − λ2Y=μ2Þ2 − λ22Z=μ
4�3: ð3:33Þ

In particular, the nonvanishing components of Hμ
ν ≔

gμαeffgαν under the spherically symmetric ansatz are

Ht
t ¼ 1 − 2λ̃2α̃

2
1; ð3:34Þ

Hr
r ¼ 1þ 2λ̃2α̃

2
0; ð3:35Þ

Hθ
θ ¼ Hφ

φ ¼ ð1 − 2λ̃2α̃
2
1Þð1þ 2λ̃2α̃

2
0Þ; ð3:36Þ

where

α̃0 ≔
ã0

σð1 − 2m=rÞ1=2 ; α̃1 ≔ ã1ð1 − 2m=rÞ1=2:

ð3:37Þ

A ghost or gradient instability occurs at a point where
Ht

t ¼ 0 or Hr
r ¼ 0, respectively. In the case of λ1 ¼ 0,

HðrÞ ¼ rμ2ðr − 2mÞσ2Hr
r; ð3:38Þ

where HðrÞ is defined in Eq. (3.10). Thus, a gradient
instability occurs at the pointH ¼ 0, where the background
static solution to the equations (3.3)–(3.6) ceases to exist.
Note that the condition to have a singular effective metric,
ð1 − λ2Y=μ2Þ2 − λ22Z=μ

4 ¼ Ht
tHr

r ¼ 0, is expressed by
coordinate-invariant scalar quantities, meaning that the
singularity is not a coordinate singularity.
In the case λ2 < 0,Ht

t > 0 always, butHr
r may change

the sign, and hence a gradient instability could occur. As we
have shown in Fig. 1, the function a0 takes the maximum
value at r ¼ 0 and approaches zero as r → ∞. The
normalized function α̃0 also shows a qualitatively similar
behavior. Hence, Hr

r should take the minimum value at
r ¼ 0 for λ2 < 0 and whether Hr

r crosses zero or not can
be checked by the sign of the central value of Hr

r. Using
Eqs. (3.11)–(3.14), in the vicinity of the center r ¼ 0, Hr

r
can be expanded as

Hr
rðr → 0Þ → 1þ 2λ2f20

μ2σ20
: ð3:39Þ

Therefore, Hr
r does not cross zero for

f0 <
μσ0ffiffiffiffiffiffiffiffiffiffi
2jλ2j

p ; ð3:40Þ

while Hr
r changes the sign if the central amplitude f0

exceeds the critical value. In otherwords, Proca star solutions
can be constructed numerically only for f0 satisfying
Eq. (3.40). If one wants to find solutions beyond the critical
point, one needs to include the effects of UV physics [36].
In the case λ2 > 0,Hr

r > 0 always, but Ht
t may change

the sign, and hence a ghost instability could occur. As we
will see later, for λ2 > 0, a ghost instability appears for a
sufficiently large central amplitude. However, the point at
which a ghost instability appears is neither the vicinity of
the center nor the large distance regime because ã21 (or α̃

2
1)

takes the maximum value at a finite distance as shown in
Fig. 1. The critical amplitude cannot be estimated analyti-
cally, and the critical amplitude will be obtained numeri-
cally in the next section.
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IV. PROPERTIES OF PROCA STARS

In this section, we construct Proca star solutions numeri-
cally. As mentioned in Sec. III, for the numerical analysis,
we set MPl ¼ μ ¼ 1 and σ0 ¼ 1. After constructing the
solutions, we shall give back the dependence on MPl and μ
properly.
Since typically μ is assumed to be much smaller than the

Planck mass MPl, the values of jλ̃ij (i ¼ 1; 2) given by
Eq. (3.23) can be much larger than unity. Hence, jλ̃ij ¼
Oð1Þ corresponds to the case with the Planck suppressed
self-interactions, and jλ̃ij ≫ Oð1Þmay be interpreted as the
case when the cutoff of the EFT is below MPl (but still
above μ). Note that in MPl ¼ 1 and μ ¼ 1, λ̃i ¼ λi.

A. M −ω and Q−ω relations

1. λ2 < 0 (λ̃2 < 0)

In Fig. 2, M (solid curves) and μQ (dashed curves) are
shown as the functions of ω=μ for λ̃2 ¼ 0 (black), −10
(green), −20 (blue), and −50 (red) from the top to the
bottom.M and μQ are shown in the units of 8πM2

Pl=μ. The
curves for λ2 < 0 are terminated at the amplitude saturating
the bound (3.40), above which we cannot numerically
construct Proca star solutions. As argued in Ref. [36], the
onset of a gradient instability may not be an intrinsic
pathology of the self-interacting Proca theories but may be
interpreted as the breakdown of the description of the
Einstein-Proca theory (2.8) as a low-energy EFT. For
λ2 < 0, both M and μQ are suppressed, and Proca star
solutions exist only for the frequency ω relatively close to
μ. Proca stars are gravitationally bound μQ > M. Similarly
to the conventional case λ̃2 ¼ 0, the values ofM and μQ do
not differ so significantly. The M − ω and Q − ω relations
with λ2 < 0 are qualitatively similar to the Proca stars with
the self-interaction λ1 < 0 [22].

2. λ2 > 0 (λ̃2 > 0)

Let us then consider the positive value of λ2. In Fig. 3,M
(solid curves) and μQ (dashed curves) are shown as the
functions of ω=μ for λ̃2 ¼ 0 (black), 1 (green), 10 (blue), 50
(orange), and 200 (red) from the bottom to the top. M and
μQ are shown in the units of 8πM2

Pl=μ. For λ2 > 0, we find
that the self-interaction significantly enhances both M and
μQ. However, unlike the conventional case, the value of μQ
is more enhanced thanM, and then theM − ω relation is no
longer close to the Q − ω relation for a large value of λ̃2. In
particular, we find that Eq. (3.20) is satisfied even in the
second branch of Proca stars, i.e., after reaching the
minimum value of the frequency ω, implying that Proca
stars are gravitationally bound.
For λ̃2 > Oð20Þ, we find solutions that the temporal

component of the effective metric changes the sign at an
intermediate radius. We show several profiles of Ht

t with
different central amplitudes of the vector field for λ̃2 ¼ 50
in Fig. 4. As the central amplitude increases, the minimum
value of Ht

t decreases, and nodes of Ht
t ¼ 0 appear

beyond a critical point. Proca star solutions then suffer
from a ghost instability, which should invalidate the EFT
description. On the other hand, the minimum value of Ht

t
starts to increase if the central amplitude further increases,
and then the nodes disappear. These critical points are
shown in the circles and the squares in Fig. 3, respectively.
A negative region of Ht

t exists in solutions between the
circle and the square. For λ̃2 ¼ 200, the profiles of Ht

t are
qualitatively similar, and a negative region of Ht

t appears
beyond a critical point as indicated by the circles in Fig. 3.
However, we numerically find that Ht

t still has a negative
region, even if the central amplitude further increases,
differently from the case of λ̃2 ¼ 50.

FIG. 2. M (solid curves) and μQ (dashed curves) are shown as
the functions of ω=μ for λ̃2 ¼ 0 (black), −10 (green), −20 (blue),
and −50 (red) from the top to the bottom.M and μQ are shown in
the units of 8πM2

Pl=μ.

FIG. 3. M (solid curves) and μQ (dashed curves) are shown as
the functions of ω=μ for λ̃2 ¼ 0 (black), 1 (green), 10 (blue), 50
(orange), and 200 (red) from the bottom to the top.M and μQ are
shown in the units of 8πM2

Pl=μ. For λ̃2 ¼ 50 and 200, the points
indicate the critical points beyond which a negative region ofHt

t
appears (circles) and disappears (square).
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B. Mass-radius relations

1. λ2 < 0 (λ̃2 < 0)

In the top and bottom panels of Fig. 5,M is shown as the
functions of μR95 (top) and μR (bottom) for λ̃2 ¼ 0
(black), −10 (green), −20 (blue), and −50 (red) [see

Eqs. (3.21) and (3.22)]. The dotted lines from the top
have the tilts 1=2 and 1=3. Crossing these lines may
indicate the formation of an event horizon and a photon
sphere, respectively. As mentioned in Sec. III A, although
there is no unique definition of the surface of a Proca star,
R95 should be more suitable to characterize it, becauseR95

encloses the most of the volume where the energy of the
Proca field is contained, especially for a Proca star with a
more localized profile of the Proca field. Thus, crossing the
dashed lineM ¼ R95=3 strongly indicates the formation of
a photon sphere. M is shown in the units of 8πM2

Pl=μ. We
find R95 > R as mentioned previously. The relative differ-
ence between R95 and R is about 60% for the least
compact stars and exceeds 80% for the most compact
stars. In comparison with the case of λ̃2 ¼ 0, M is always
suppressed, and hence Proca stars become less compact
than the conventional case of λ̃2 ¼ 0. Note that the other
self-interaction ðĀμAμÞ2 with λ1 < 0 also leads to a similar
effect, making Proca stars less compact. In other words,
observationally, it would be difficult to distinguish Proca
star solutions for λ2 < 0 from those in other theories.

2. λ2 > 0 (λ̃2 > 0)

Opposite to the case with λ2 < 0, the self-interaction
with λ2 > 0 gives compact Proca stars. In Fig. 6, M is
shown as the function of R95 (top) and R (bottom) for
λ̃2 ¼ 0 (black), 1 (green), 10 (blue), 50 (orange), and 200
(red) in the units of 8πM2

Pl=μ. The dotted lines from the top
represent those with the tilts 1=2 and 1=3. For a sufficiently
large λ̃2, the mass-radius relation can exceed the line
M ¼ R95=3, suggesting a formation of the photon sphere.
However, for λ̃2 ¼ 50 and 200, the solutions with large
amplitudes of the Proca field are suffered from a ghost
instability, and the critical points appear in the vicinity of
the line M ¼ R95=3. In particular, in the case of λ̃2 ¼ 50,
both critical points (the circle and the square) are situated in
the vicinity of the lineM ¼ R95=3, and the solutions have a
negative region of Ht

t only in M ≳R95=3. On the other
hand, the curves for λ̃2 ¼ 0, 1, 10 are free from a ghost
instability but are always below the line M ¼ R95=3.
Therefore, a ghost instability somehow forbids the for-
mation of a photon sphere at least within the regime of
validity of the EFT. We need a UV completion to properly
discuss the properties of the Proca stars with M ≳R95=3.
The bottom one of Fig. 6 shows the mass-radius relation

by using the effective radius defined by (3.22) or the
reference. We always find thatR < R95, and the curves for
λ2 > 0 can cross the line of 1=3 even below the critical
points. The relative difference betweenR95 andR exceeds
60% for the least compact stars and is about 40% for the
most compact stars. However, as mentioned previously,
the fact of M > R=3 may not indicate the formation of the
photon sphere, because R covers only a part of the region

FIG. 4. Profiles of the temporal component of the effective
metric Ht

t for λ̃2 ¼ 50. A deeper color corresponds to a larger
central amplitude of the Proca field.

FIG. 5. M is shown as the function of μR95 (top) and μR
(bottom) for λ̃2 ¼ 0 (black), −10 (green), −20 (blue), and −50
(red), respectively. The dotted lines from the top have the tilts 1=2
and 1=3, respectively. M is shown in the units of 8πM2

Pl=μ.
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where the Proca field is localized, and should not be
interpreted as an astrophysical surface of the star.
The difficulty for the formation of a photon sphere has also

been observed in the case of scalar boson stars [52–54]. For
instance, in the presence of the quartic-order self-interaction,

the complex scalar field VΦ ¼ μ2Φ
2
Φ̄Φþ λΦ

4
ðΦ̄ΦÞ2 [see

Eq. (2.1)], and the maximal value of M=Reff for scalar
boson starswith λΦ > 0 is about 0.16,whileM=Reff for stars
without the self-interaction λΦ ¼ 0 is about 0.08, both of
which are much below 1=3 [52,53]. In Refs. [52,53], R99

analogous to R95 [see Eq. (3.21)] was employed as an
effective radius Reff . Note that in our case R99=R95 for the
Proca star solutions on the verge of the onset of a ghost
instability is at most 1.10 for λ̃2 ≈ 20 and decreases as λ2
increases, so R95 differs only a little from R99 for highly
compact stars of interest. For the scalar potential VΦ ¼
μ2jΦj2ð1 − 2jΦj2=σ20Þ2 with the sextic-order power of jΦj,
whereσ0 is a constant, the scalar field has a very sharpprofile,
and this self-interaction allows us to realize the maximal
value ofM=Reff close to 1=3 [54]. Thus, in the case of scalar
boson stars, although there is no ghost instability, the quartic-
order self-interaction is not strong enough to support highly
compact boson stars.

On the other hand, in the case of Proca stars, the quartic-
order self-interaction (2.6) with Eq. (3.24) is strong enough
to compress a Proca star. However, the onset of a ghost
instability indicates that when one performs a numerical
simulation of a collapse of a complex Proca field or a
collision of two less compact Proca stars, numerical
evolution would break down before the formation of a
highly compact single Proca star in the context of EFT, as in
other problems with a self-interacting Proca field [37–39].
Thus, unlike the case of scalar boson stars, the formation of
a photon sphere is prevented because of the breakdown of
the time evolution of the Proca field. It would be interesting
to investigate whether the problem of a ghost instability
could be cured by an inclusion of appropriate UV physics
as discussed [36] (see also Ref. [55]).
Beyond the staticity and spherical symmetry, it is known

that stationary and axisymmetric Proca stars without self-
interactions can be compact enough to have a light ring in
the stable branch (see, e.g., Refs. [56–58]). It would be also
interesting to explore rotating Proca star solutions in our
theory (2.8) with Eq. (2.6) and investigate whether the
ghost instability would prevent the formation of the photon
surface. For now, we leave these subjects for future studies.

V. CONCLUSIONS

In this paper, we have investigated the properties of Proca
star solutions in the Einstein-complex Proca theory with the
quartic order self-interaction λ2½ĀμĀμAνAν − ðAμĀμÞ2�, in
addition to the mass term μ2AμĀμ, where λ2 represents the
dimensionless coupling constant. Section II was devoted to
introducing our theory from the comparison with the scalar-
tensor theories. This type of the quartic-order self-interaction
is different from λ1ðAμĀμÞ2 previously considered, where λ1
also represents the dimensionless coupling constant, and
absent in the case of the real Proca field Āμ ¼ Aμ. The
coupling constants λ1 and λ2 have to be negative if the
complex Proca theory has a standard UV completion, e.g.,
the Higgsmechanism. However, a positive λ1 or λ2 cannot be
excluded in the gravitational setup (or if getting rid of one of
the fundamental assumptions), although its UV completion
is not known. In the present paper, we take a bottom-up
approach and discuss the phenomenological consequences
of the new self-interaction λ2 with both positive and negative
values.
In Sec. III, we derived a closed set of the equations to

determine the profile of Proca star solutions numerically.
These equations are of the first-order differential equations
with respect to the radial coordinate r. By solving them in
the vicinity of the center r ¼ 0, the boundary conditions
were obtained. For an appropriate choice of the frequency
of the complex Proca field, we constructed Proca star
solutions numerically where the components of the Proca
field are exponentially suppressed while the metric varia-
bles exponentially approach constant in the large distance

FIG. 6. M is shown as the function of μR95 (top) and μR
(bottom) for λ̃2 ¼ 0 (black), 1 (green), 10 (blue), 50 (orange), and
200 (red). The dotted lines from the top represent those with the
tilts 1=2 and 1=3, respectively. M is shown in the units of
8πM2

Pl=μ.
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regions. We focused on the ground state solutions where the
temporal and radial profiles of a complex Proca field have
one and zero nodes, respectively. As in the case of Proca
star solutions with other potentials, there are two conserved
quantities which characterize Proca star solutions. One is
the ADM mass M which can be read from the asymptotic
value of the mass function, and the other is the Noether
charge Q associated with the global Uð1Þ symmetry. We
also derived the effective metric for the propagation of the
perturbation of the self-interacting Proca field on top of a
nontrivial Proca star background. If the temporal and radial
components of the effective metric vanish, a Proca star
solution suffers from ghost and gradient instabilities,
respectively. The analysis of the effective metric indicated
that in the case λ2 < 0 a Proca star solution could suffer
from a gradient instability, while in the case λ2 > 0, it could
suffer from a ghost instability.
Section IV was devoted to discussing the properties of

the Proca star solutions. For simplicity, we set λ1 ¼ 0 and
focused on the case λ2 ≠ 0. The second type of the
interaction is absent in the limit of the real Proca field
and has not been explored in the context of the Proca star.
See Refs. [22–24] for the studies about the first type of the
self-interactions. In the case of λ2 < 0, we found that the
ADM mass and Noether charge are always suppressed
compared to those in the case of the massive Proca theory.
The role of λ2 < 0 is qualitatively similar to the coupling
λ1 < 0. In both cases, a gradient instability occurs for a
sufficiently large amplitude of the Proca field. On the other
hand, the properties of Proca stars for λ2 > 0 are quite
different from those for λ2 < 0 (and those for λ1 > 0,
λ2 ¼ 0). For λ2 > 0, the ADMmass and Noether charge are
much more enhanced than those in the case of the purely
massive Proca theory, and the relative difference between
them is significantly larger. However, Proca star solutions
with large compactness M=R95 ≳ 1=3 suffer from a ghost
instability at a finite radius. Although for λ2 > 0 Proca stars
could also be significantly more compact than those in the
conventional case of the massive Proca theory, we have
found that the onset of a ghost instability practically forbids
the formation of the photon sphere or requires a knowledge
of the UV completion. Although we did not explicitly
discuss the most general case of ðλ1 ≠ 0; λ2 ≠ 0Þ in the
main text, we numerically investigated several examples
and found that turning on both couplings does not give
novel features of the Proca stars. However, as we have not
extensively studied all the parameter space, there might be
an exceptional case which we leave for a future study.
In summary, if the Proca field is UV completed in a

standard way ðλ1 < 0; λ2 < 0Þ, both self-interactions
make Proca stars less compact than those without self-
interactions. On the other hand, the positive coupling
constant λ2 > 0 leads to compact Proca stars, which would
be phenomenologically more interesting. The properties of
the Proca stars with λ2 > 0 are qualitatively different from

those of the conventional boson stars. It would be also
remarkable that a ghost appears when the compactness
exceeds M=R95 ≃ 1=3, preventing the formation of a
photon sphere in the regime of EFT.
It would be intriguing to see whether the pathology result

of the formation of the photon sphere is generic in Proca
stars. One may investigate Proca star solutions in Einstein-
complex Proca theories including higher-order powers of
Zð¼ AμAνĀμĀνÞ as well as Yð¼ ĀμAμÞ [see Eqs. (2.4) and
(2.5)]. At any order power of Aμ and Āμ, the self-interacting
potential can be constructed by a linear combination of
powers of Y and Z. For instance, the most general sextic-
order self-interacting potential is a linear combination of Y3

and YZ, and the most general octic-order one is that of Y4,
Y2Z, and Z2. The higher-order interactions become impor-
tant for a sufficiently large Proca amplitude and may
influence the properties of highly compact Proca stars. It
would be interesting to explore the possibility of having a
highly compact star before the onset of pathological
instability thanks to the higher-order interactions. It is also
important to see whether the pathology can be cured by
appropriate UV physics as the ghost or gradient instability
is expected to appear generically in the self-interacting
Proca field.
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APPENDIX: POSITIVITY BOUNDS
ON SPIN-1 FIELDS

The positivity bounds are S-matrix constraints on the
EFT to admit unitary, Poincaré invariant, causal, and local
UV completion [44]. Let us consider an s ↔ u symmetric
scattering amplitude Mðs; tÞ of a nongravitational process
XY → XY with fixed t where fs; t; ug are the Mandelstam
variables. The s ↔ u crossing symmetry is manifest for a
scattering of spin-0 particles, while special care is needed
for spin-1 particles (and generic spinning particles) [59,60].
However, in the forward limit t → 0, which we shall focus
on in the following, one can derive the positivity bounds for
spin-1 particles similarly to spin-0 particles by working
with linear polarizations [59]. The mentioned properties
lead to the so-called twice-subtracted dispersion relation
which relates the amplitude with the integral of the
imaginary part of the amplitude (and polynomial terms).
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In particular, the s2 coefficient of the amplitude at s ¼
μ2X þ μ2Y satisfies

1

2

d2Mðs; 0Þ
ds2

				
s¼μ2Xþμ2Y

¼ 1

π

Z
cut

ds0
ImMðs0; 0Þ

ðs0 − μ2X − μ2YÞ3
ðA1Þ

in the forward limit t → 0, where the integral runs along the
branch cut (and poles on the real axis if any) and μX and μY
are the masses of X and Y, respectively. The left-hand side
of (A1) is evaluated at low energy and can be therefore
computed by the EFT. The right-hand side involves the
integral in the high-energy region and cannot be explicitly
computed unless UV completion is given. However,
unitarity ensures the imaginary part of the forward limit
amplitude is positive, leading to the bound

1

2

d2Mðs; 0Þ
ds2

				
s¼μ2Xþμ2Y

> 0: ðA2Þ

Therefore, the s2 coefficient of the EFT amplitude has to be
positive, which is known as the positivity bound.
When we decompose the complex Proca field into the

real and imaginary parts, Aμ ¼ A1
μ þ iA2

μ, the Proca field
Lagrangian (2.3) is given by

L ¼
X2
a¼1

�
−
1

4
FaμνFa

μν −
μ2

2
AaμAa

μ

�

−
λ1
4
ðA1μA1

μ þ A2μA2
μÞ2

− λ2½ðA1μA2
μÞ2 − A1μA1

μA2μA2
μ�: ðA3Þ

The linear polarization basis of the spin-1 particle for the
four-momentum pμ ¼ ðp0; 0; 0; p3Þ is given by

ϵT1
μ ¼ ð0; 1; 0; 0Þ; ϵT2

μ ¼ ð0; 0; 1; 0Þ;

ϵLμ ¼ 1

μ
ðp3; 0; 0; p0Þ; ðA4Þ

where ϵT1
μ ; ϵT2

μ are the basis for transverse modes, while ϵLμ
is the basis for longitudinal mode. Since the interactions
that we are considering do not involve derivatives, the
scatterings of the transverse modes do not lead to the
s2 ¼ Oðp4Þ term at the tree level. The s2 coefficient arises
from the interaction ðAaμAb

μÞ2 in the scattering ab → ab of
the longitudinal modes where a; b ¼ 1; 2. The coupling
constants λ1 and λ2 are only relevant to a ¼ b and a ≠ b,
respectively. We thus find the inequalities (2.7) by
applying the bound (A2) to the processes aa → aa and
ab → abða ≠ bÞ in the Proca field Lagrangian (2.3).
The extension of the positivity bounds to gravitational

theories is not straightforward. The main difficulty arises
from the presence of the s2=t term due to the graviton
t-channel exchange which gives a singular contribution in
the forward limit. The singular contribution is canceled
under the assumption that the amplitudes exhibit an
appropriate high-energy behavior as predicted by string
theory, and then the gravitational positivity bounds can be
derived [47]. However, the bounds contain an uncertainty
of the order ofM−2

Pl due to the lack of precise knowledge of
quantum gravity. A small violation of the nongravitational
positivity bound (A2) could be possible in the gravitational
system (see also Refs. [45,46,48–51] for related discus-
sions). Allowing the small violation, the gravitational
positivity bounds read

λ1; λ2 < Oð1Þ × μ4

M2
PlM

2
ðA5Þ

in the Einstein-Proca theory (2.8), where M is a scale
depending on the details of the high-energy behavior of
the amplitude. If the scale M is given by the IR physics
M ¼ OðμÞ, the coupling constants λ1, λ2 can take suffi-
ciently large positive values to affect properties of Proca
stars. On the other hand, the positive values are practically
forbidden if M is related to a UV physics scale, e.g., the
cutoff scale of the EFT or the quantum gravity scale.
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