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1 Introduction

The cosmological principle dictates that our universe is spatially homogeneous and isotropic
on sufficiently large scales and represents a major pillar of the standard cosmological model.1

This principle is of paramount importance for developing theoretical cosmological models
since it requires compliance with the required symmetries. In other words, the proposed
models should allow for background solutions realising the symmetries imposed by the cosmo-
logical principle, i.e., they need to allow for solutions invariant under a residual 3-dimensional
Euclidean group ISO(3). This requirement explains why cosmological models based on scalar
fields are by far the most extensively explored class of theories with applications in cosmol-
ogy, since it is trivial to realise the cosmological principle by simply taking a homogeneous
scalar field profile. Though this is arguably the simplest realisation, it is not the only one and
realisations of the cosmological principle where the residual ISO(3) symmetry is achieved by
means of a combination of external and internal symmetries also exist. Yang-Mills theories
possessing an internal SU(2) symmetry admit vacuum configurations that break isotropy and
the internal group simultaneously, but they leave a linear combination of the two unbroken,
thus preserving a diagonal rotational group. These configurations were explored in cosmo-
logical scenarios as early as [6] and have found numerous applications (see e.g. [7–10] among
others). Spin-1 fields that break the gauge symmetry but retain a global SO(3) invariance
also allow for the discussed realisation of the cosmological principle as in the dark energy
model introduced in [11]. All these scenarios realise homogeneity in a trivial way because
the background configurations only depend on time. It is however also possible to construct
models with a non-trivial realisation of homogeneity. Among these models, we can men-
tion solid cosmologies [12] (see also the earlier developments [13, 14]) that can be described
in terms of three scalar fields with an internal ISO(3) symmetry and the homogeneity is
achieved as a combination of spatial and internal translations. Another class of models with
non-trivially realised homogeneity is provided by the gaugid cosmologies [15] that rely on
massless spin-1 fields with a global SO(3) symmetry so homogeneity combines spatial trans-
lations and the three Abelian gauge symmetries. For an exhaustive classification of possible
combinations of Lorentz and internal generators relevant for non-trivial realisations of the
cosmological symmetries see [16]. So far, we have mentioned models with continuous internal
symmetries, but it is remarkable that even internal discrete symmetries can make the case
for homogeneous and isotropic cosmologies [17]. The study of models with these different
(and inequivalent) realisations of the cosmological principle do not represent unnecessary
complications for describing our universe, but each of them gives rise to crucially different
phenomenologies with clear signatures. Furthermore, they also permit us to advance in our
theoretical understanding of the underlying structure of the cosmological models.

Another interesting possibility that allows to advance in our understanding of the cos-
mological models is the existence of dualities between different realisations of the cosmological
principle. In fact, establishing duality relations between seemingly inequivalent realisations of
the cosmological symmetries explained above might help understanding the underlying struc-

1The validity of the cosmological principle has been challenged in e.g.[1] (see however [2, 3]) from the
observation of a dipole in the distribution of radio galaxies and quasars that differ from the CMB one with
a statistical significance of about 5σ. A result along these lines has also been obtained in [4] by using the
Pantheon+ supernovae catalogue. Similar conclusions had also been reached in [5] where the existence of
a large scale dark flow was claimed. Although these are all intriguing observational findings, more robust
(better control on the systematics) and statistically significant results are needed before abandoning one of
the pillars of the standard model. Thus, we commit to the cosmological principle in this work.
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ture of such configurations. For instance, the symmetries that appear non-trivially realised
in a given model, turn out to be trivially realised in the dual description. Furthermore, the
dual realisation of the symmetries might unveil additional hidden symmetries in the original
realisation. The aim of this work is exploring some existing dualities for the realisations of the
cosmological principle by resorting to the known dualities that exist among different order
p-form fields. It is well-known that a massless 2-form (Kalb-Ramond) field can be dualised to
a shift symmetric theory for a scalar field [18]. Thus, it is customary to go to the dual formu-
lation in terms of a scalar field to study cosmologies with massless 2-form fields. In this dual
formulation, it is obvious that the background solution is provided by a homogeneous scalar
field. This duality has been exploited to construct cosmological solutions in e.g. [19–21]. It is
interesting however to notice that the dual formulation with the Kalb-Ramond field requires
the use of its gauge symmetry to properly realise the residual ISO(3) symmetry. This is a
first example of a relation between different realisations of the cosmological principle that
could seem unrelated a priori. We will work out in detail how the cosmological solutions are
described in terms of the 2-form and, in particular, how the symmetries are realised. We will
explicitly show that the cosmologies of a self-interacting Kalb-Ramond field are completely
equivalent to those of a shift-symmetric K-essence theory for a scalar field and work out the
relations between the relevant cosmological quantities (equation of state parameter, sound
speed, etc.) in both descriptions.

We will then proceed to a more interesting scenario involving several self-interacting
Kalb-Ramond fields. Providing these fields with an internal SO(3) symmetry, in addition
to the three gauge symmetries of each massless 2-form, allows for a class of cosmologies
with a non-trivially realised cosmological principle that is to some extent similar to those
constructed with Yang-Mills fields. Interestingly, these configurations are nothing but the
dual formulation of the solid cosmologies. We will see how the configuration in terms of the
two form seems more natural from the point of view of the symmetries because homogeneity
is trivially realised, unlike in the formulation with scalar fields where the internal translations
are necessary to preserve homogeneity. In other words, while the solid cosmologies with three
scalar fields require inhomogeneous configurations for the ground state, the dual formulation
in terms of 2-forms is homogeneous.

After exploring at length the dualities existing between shift-symmetric scalar field
theories and massless Kalb-Ramond fields, we will make a brief incursion into the massive
2-form theories. For these massive theories, as usual, the phase space is enhanced due to the
breaking of the gauge symmetry and the dual description necessitates a massive spin 1 field
[22]. The absence of internal symmetries makes the dual formulations more rigid since we
can no longer play with internal symmetries. As a matter of fact, constructing cosmological
configurations is more difficult, precisely due to the absence of additional symmetries and, for
the simplest models, they all boil down to pure trivial solutions with, at most, a cosmological
constant. Introducing several massive 2-form fields brings back the possibility of playing with
internal symmetries and we will see how these internal symmetries permit again non-trivial
realisations of the cosmological principle that are dual to the configurations that can be
constructed with massive spin-1 fields. These scenarios bring about novel phenomenological
effects due to the presence of an additional helicity-2 tensor as we will show.

The paper is organised as follows. In Sec. 2, we sketch out the basic equations, the
symmetry, and the cosmological configuration of a self-interacting massless 2-form. We then
elaborate on the duality between a massless 2-form field and a massless scalar field in Sec. 3
and provide several examples in Sec. 4. We revisit the cosmology in the massless 2-form in
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Sec. 5 with emphasis in the duality relation to the cosmology in the scalar field. Sec. 6 is
devoted to a multi-field extension and the duality between the massive 2-form and the massive
vector field is discussed in Sec. 7. We conclude in Sec. 8 with summary and discussions.

2 Kalb-Ramond cosmologies

We will commence our disquisitions on 2-forms by reviewing some basic properties of Kalb-
Ramond fields. We will also use this section to discuss in detail how the Kalb-Ramond field
can provide a non-trivial realisation of the cosmological principle by making use of its gauge
symmetry. For simplicity, we focus on the flat spacetime in this section but it can capture
the essential properties and the inclusion of gravity is straightforward.

2.1 Generalities

Let us consider a theory for a self-interacting Kalb-Ramond field Bµν described by the action

S =

∫
d4xF (Y ) (2.1)

where we have defined Y ≡ − 1
12HµνρH

µνρ with Hµνρ = 3∂[µBνρ] the corresponding gauge-
invariant field strength. This is a good effective field theory because quantum corrections
will only enter with higher derivatives as ∂nY with n ≥ 1. This theory possess the usual
gauge symmetry of a massless Kalb-Ramond field, namely:

Bµν → Bµν + 2∂[µθν] (2.2)

for an arbitrary θν . Let us notice that the gauge transformation itself has a gauge symmetry
so that θµ and θµ + ∂µθ describe the same gauge transformation. Since the Kalb-Ramond
field is an antisymmetric field, it is convenient to parameterise it with two 3-vectors as

Bi ≡ B0i, Ci ≡ 1

2
εijkBjk , (2.3)

that can be called the electric and magnetic components of the Kalb-Ramond field respec-
tively due to their behaviour under parity transformations, in analogy to the electromagnetic
field. The corresponding field strength can be written as

H0ij = εijkĊ
k − 2∂[iBj] , Hijk = ∇ · ~C εijk. (2.4)

From this expression it is already apparent that the longitudinal part of the electric piece of
the Kalb-Ramond field ~B does not contribute to the field strength so it does not play any
physical role. As we will see in the following, this makes that, out of the six components of
the two form field, only five of them are actually relevant. In other words, the longitudinal
part of ~B is entirely associated to the longitudinal component of the gauge transformation so
this sector is trivial, unlike the transverse modes that realise the symmetry in a non-trivial
way. The vectors ~B and ~C transform under the gauge symmetry as follows:

~B → ~B + ~̇θ −∇θ0 , (2.5)

~C → ~C +∇× ~θ , (2.6)
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where we see that we can change ~θ → ~θ + ∇θ and θ0 → θ0 + θ̇ without affecting the
transformation of the fields. We can use this freedom to set e.g. θ0 = 0 and describe
the gauge freedom with the three parameters of ~θ. Furthermore, we can see that ~C only
transforms with the transverse part of θ and its longitudinal component is gauge invariant.
This is the single dynamical degree of freedom of the theory. To see this more explicitly, it
is convenient to decompose the fields into transverse and longitudinal components

~B = ~BT +∇B , ~C = ~CT +∇C , (2.7)

with ∇ · ~BT = ∇ · ~CT = 0. The transformation of these components under the gauge
symmetry is given by

~BT → ~BT + θ̇T , (2.8)

B → B + θ̇ − θ0 , (2.9)

~CT → ~CT +∇× ~θT , (2.10)

C → C , (2.11)

where we have also decomposed the gauge parameter as θµ =
(
θ0, ~θ

T + ∇θ
)
. Since, as we

have shown above, the longitudinal mode B does not appear in the field equations, it is a
superfluous component of the Kalb-Ramond field and only five out of its six components
actually contribute to the field equations. Furthermore, this superfluous mode also carries
the gauge freedom of the longitudinal mode of the gauge parameter so that we only have a

two-dimensional gauge symmetry spanned by ~θT .2 Thus, the counting of degrees of freedom
is as follows: 5 components of the Kalb-Ramond field that contribute to the equations, minus
the two constraints, minus the two gauge freedoms, accounting for a total of one dynamical
degree of freedom, as it should.

The field equations of the Kalb-Ramond field read

∂µ

(
FYH

µαβ
)

= Jαβ , (2.12)

where we have included a source Jµν = J [µν] that is subject to the conservation law

∂αJ
αβ = 0, (2.13)

consistent with the gauge symmetry of the Kalb-Ramond field. This antisymmetric current
can be analogously decomposed as

ji ≡ J0i, Ji ≡
1

2
εijkJjk , (2.14)

so the conservation law reads

∂~j

∂t
+∇× ~J = 0, ∇ ·~j = 0 . (2.15)

The latter of the above equations implies that there must be some ~ρ such that ~j = ∇ × ~ρ
on-shell so from the first equation we further find that ~̇ρ+ ~J = ∇ρ, for some scalar function

2This is consistent with the fact that the equations (2.16) below provide two constraint equations that are
associated to the gauge symmetry generated by θT .
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ρ. The field equations can also be written in terms of the electric and magnetic components
of the Kalb-Ramond field as follows:

∇×
[
F ′
(
~̇C −∇× ~B

)]
=~j , (2.16)

−∂0

[
F ′
(
~̇C −∇× ~B

)]
+∇

(
F ′∇ · ~C

)
= ~J . (2.17)

We can use the obtained constraints for the current to rewrite these equations as

∇×
[
F ′
(
~̇C −∇× ~B

)
− ~ρ

]
=0 , (2.18)

∂0

[
~ρ− F ′

(
~̇C −∇× ~B

)]
+∇

(
F ′∇ · ~C − ρ

)
=0 . (2.19)

These equations serve as the starting point for some formal analysis and phenomenological
studies,3 although we will not develop it any further here. Instead, we will now proceed
to show how the cosmological principle can be non-trivially realised by using the gauge
symmetry of the Kalb-Ramond field.

2.2 Cosmological configurations: Non-trivially realising the cosmological prin-
ciple

In order to have a homogeneous and isotropic cosmological solution, we will consider the
following field configuration

Bij =
1

3
Bεijkx

k , B0i = 0 , (2.20)

with B some constant and εijk the SO(3)-invariant completely antisymmetric tensor. By a
suitable global rescaling of the spatial coordinates we can set B = 1, but we will keep it
explicitly for convenience to keep track of the background effects. At first sight, this field
configuration seems to break both homogeneity and isotropy. However, it does preserve
those symmetries thanks to the gauge symmetry of the theory. If we simultaneously perform
a spatial translation plus a gauge transformation we obtain

Bij → Bij+
1

3
Bεijkx

k
0 + 2∂[iθj] (2.21)

or, in terms of ~C,

~C → ~C +
1

3
B~x0 +∇× ~θ . (2.22)

Since we can express ~x0 = 1
2∇ × (~x0 × ~x) we see that if we choose ~θ = 1

6B~x × ~x0, the
above variation vanishes and we can realise homogeneity by means of a combination of
spatial translations and gauge transformations. Notice that this corresponds to a large gauge
transformation, i.e., it does not vanish at infinity. This mechanism is similar to the magnetic
gaugid considered in [15]. One can proceed similarly to check that a combination of spatial
rotations and gauge transformations remains unbroken as to realise isotropy. For that, it is
simpler to use the Euclidean 3-dimensional Hodge dual of the two form Ci = 1

2ε
ijkBjk = B

3 x
i.

3For instance, these equations for the theory without self-interactions of the Kalb-Ramond field (i.e. FY =
1) have been used in [23] to show a formal resemblance with the Euler equations, thus providing a description
of a perfect fluid with a Kalb-Ramond field.
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Under a spatial rotation described by Rij ' δij+ωij , the background configuration Ci = B
3 x

i

changes as
Ci(x)→ RijC

j(R · x) ' Ci + 2ωijC
j . (2.23)

The corresponding transformation for Bij is4

δBij = εijkδC
k =

2

3
Bεijkω

k
`x
` . (2.25)

We then have that the action of an infinitesimal spatial rotation and a gauge transfor-
mation is given by

~C → ~C − 2

3
B~ω × ~x+∇× ~θ , (2.26)

where ~ω is the vector associated to the rotation so that ωijx
j = εijkω

kxj = −(~ω × ~x)i. If we
now use that ~x = 1

2∇~x
2 and ∇× (~x 2~ω) = −~ω ×∇~x2, we finally obtain

~C → ~C +∇×
(

1

3
B~x2~ω + ~θ

)
(2.27)

so that rotations are realised upon choosing the gauge transformation parameter as ~θ =
−1

3B~x
2~ω. This gauge transformation is even larger than the one necessary to realise trans-

lations as it grows one power faster. Thus, the background configuration is invariant under
the diagonal ISOd(3) group realised by the following combination of coordinate and gauge
transformations:

δxi = ωijx
j + xi0 , (2.28)

θi =
B

6
εijk
(
xjxk0 − ~x2ωjk

)
, θ0 = 0 . (2.29)

It is important to notice that B0i does not change under the residual ISOd(3) since

B0i → B0i + ∂0θi − ∂iθ0 = B0i . (2.30)

Perhaps a more direct manner to corroborate the homogeneity and isotropy of the
cosmological solutions generated by (2.20) is to notice that the physical quantity is not the
2-form, but its field strength, which is given by

Hijk = Bεijk (2.31)

which obviously realises the residual ISOd(3) symmetry. The energy-momentum tensor is
given by

Tµν =
1

2
FYHµαβHν

αβ + Fgµν (2.32)

4The transformation of Bij can be obtained directly from

Bij → Ri
mRj

nBmn(R · x) , (2.24)

and using the relation RimR
j
nεijk = εmn`Rp

` obtained from detR = 1 that gives the corresponding identity
for the generators εinpωm

i + εmjpωn
j = εmn`ω

`
p. The final result is of course the same but it is substantially

simpler to work with Ci directly.
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which, in the field configuration (2.20), is homogeneous and isotropic with components Tµν =
diag(−ρ, p, p, p) where the energy density and pressure are given by

ρ =− F , (2.33)

p =F

(
1− 2

∂ logF

∂ log Y

)
. (2.34)

We then see that the condition to have inflationary solutions is

∂ logF

∂ log Y
� 1 . (2.35)

We will be more precise on the slow roll conditions below, but let us first explore the theory
on a Minkowski background. Due to the decoupling theorem of gravitational degrees of
freedom at small scales, this will be the relevant regime for modes well below the Hubble
horizon. In our background field configuration (2.20), we have that Y = Ȳ is constant and
the background field equation is trivially satisfied, i.e., the constant Ȳ is only determined by
boundary conditions. Around this background, we will consider perturbations of the 2-form
field

B
(1)
0i = δBi, B

(1)
ij = εijkδC

k. (2.36)

It is convenient to decompose the perturbations into the transverse modes and the longitu-
dinal modes

δ ~Bi = δ ~BT +∇δB , δ ~Ci = δ ~CT +∇δC , (2.37)

with ∇ · δ ~BT = ∇ · δ ~CT = 0. The gauge transformations are given by

δ ~BT → δ ~BT + δθ̇T , (2.38)

δB → δB + δθ̇ − δθ0 , (2.39)

δ ~CT → δ ~CT +∇× δ~θT , (2.40)

δC → δC , (2.41)

where the spatial part of the gauge parameter has also been decomposed as δ~θ = δ~θT+∇δθ, as
done before for the background. The transformation rules show that δC and the combination

δ ~̇CT −∇× δ ~BT are the gauge-invariant quantities.
The quadratic action in Minkowski spacetime for perturbations around this background

is given by

S =
1

2

∫
d4x

[
FY

(
∇δĊ + δ ~̇CT −∇× δ ~BT

)2
−
(
FY + 2Y FY Y

)
(∇ · ∇δC)2

]
, (2.42)

which is written in terms of the gauge-invariant quantities as it should be. We now fix the
gauge so that δ ~CT = 0 by choosing the gauge parameter δ~θT .5 We see the non-dynamical
character of δ ~BT and the constraint equation generated by δ ~B is written as

∇×∇× δ ~BT = 0 =⇒ δ ~BT = 0 . (2.43)

5Although one may choose another gauge δ ~BT = 0, there is a freedom associated with the initial condition
of δ~θT ; thus, this gauge choice does not completely fix the gauge. On the other hand, δ ~CT = 0 provides
a complete gauge-fixing under an appropriate boundary condition. Alternatively, one can use the gauge-

invariant variable δ ~GT defined by ∇× δ ~GT = −δ ~̇CT +∇× δ ~BT without gauge-fixing.
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If we plug this solution back in the action, expressed in Fourier space for simplicity, we obtain

S =
1

2

∫
dtd3kk2FY

[
δĊ2

k −
(

1 +
2Y FY Y
FY

)
k2δC2

k

]
. (2.44)

This expression clearly shows that the theory contains one scalar mode, in accordance to the
fact that a 2-form field is dual to a scalar field. We will discuss and exploit this duality in
more detail below. The obtained quadratic action allows to easily identify the conditions for
the absence of ghosts and Laplacian instabilities, which are

FY > 0 , c2
s = 1 +

2Y FY Y
FY

> 0 . (2.45)

While the first condition is easily satisfied for interesting cosmologies, we will see later that
the absence of Laplacian instabilities is at odds with the existence of slow-roll inflationary
solutions. Before that, let us explore the duality relations of the Kalb-Ramond field.

3 Dualities

In this section we will explicitly construct the duality relation between the self-interacting
Kalb-Ramond field introduced in the preceding section and the shift-symmetric K-essence
theories. We will discuss the weak/strong coupling relation for the dual descriptions and how
it can be understood from the perspective of fluids.

3.1 Dualisation

Let us consider a theory for a Kalb-Ramond field in the first order formalism

S = −1

2

∫
d4x
√
−g
[
Πµνρ∂[µBνρ] −

1

6
Π2

]
. (3.1)

Upon variation w.r.t. the conjugate momentum Πµνρ we obtain the equation

Πµνρ = 3∂[µBνρ] ≡ Hµνρ (3.2)

that, when plugged back into the action, recovers the second order formulation. On the other
hand, the equation for the 2-form gives

∇µΠµνρ = 0 (3.3)

that is solved by
Πµνρ = εµνρσ∂σφ (3.4)

with φ a scalar field, according to the Poincaré lemma (assuming no topological obstructions).
If we substitute this solution into the action we obtain

S = −1

2

∫
d4x
√
−g∂µφ∂µφ (3.5)

that shows the well-known duality between a Kalb-Ramond field and a massless free scalar
field that can be found in numerous places in the literature. Less common is to find this du-
ality for the case of a self-interacting Kalb-Ramond field,6 although the extension is straight-
forward. Thus, we will explicitly show in the following that the self-interacting Kalb-Ramond

6See however e.g. [24] where the duality for a self-interacting Kalb-Ramond fields is constructed in the
context of an EFT description of super-fluids.
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field described by the action

S =

∫
d4x
√
−gF (Y ) , (3.6)

is dual to a K-essence,

Sdual =

∫
d4x
√
−gP(X) , (3.7)

provided the following conditions of non-degeneracy of the dual transformation holds:

FY 6= 0 , FY + 2Y FY Y 6= 0 , PX 6= 0 , PX + 2XPXX 6= 0 , (3.8)

where F and P are respectively functions of X = −1
2(∂φ)2 and Y = − 1

12HµνρH
µνρ. The

on-shell relations between the two dual descriptions are given by

P = F − 2Y FY , FYHµνρ = εµνρσ∂
σφ , (3.9)

and

F = P − 2XPX , PX∂µφ =
1

6
εµνρσH

νρσ , (3.10)

Furthermore, we can use (3.9) and (3.10) to obtain the relations

dX

dY
= − 1

PX(PX + 2XPXX)
,

dY

dX
= − 1

FY (FY + 2Y FY Y )
, (3.11)

and

FY =
1

PX
, FY + 2Y FY Y =

1

PX + 2XPXX
, (3.12)

which directly show that the conditions (3.8) are the regularity conditions of the dualisation.
We also note that the energy-momentum tensors

Tµν =
1

2
FYH

µαβHν
αβ + Fgµν

= FY H̃
µH̃ν + (F − 2Y FY )gµν , (3.13)

Tµνdual = PX∂µφ∂νϕ+ Pgµν , (3.14)

agree with each other on-shell where H̃µ ≡ 1
6ε
µνρσHνρσ is the Hodge dual of the field strength.

Let us then proceed to show the explicit construction of the dualisation. We start from
the first order formulation of the self-interacting Kalb-Ramond field given by

S =

∫
d4x
√
−g
[
F (YP )− 1

6
FY (YP )Pµνρ(Hµνρ − Pµνρ)

]
, YP ≡ −

1

12
PµνρP

µνρ (3.15)

with Pµνρ an auxiliary field. We can reach this first order form from the general second
order formulation described by (3.6) as usual by performing the Legendre transformation.
It is convenient to use P̃µ ≡ 1

6ε
µνρσPνρσ to see the invertibility condition of the Legendre

transformation. The Lagrangian is

S =

∫
d4x
√
−g
[
F (YP ) + FY (YP )P̃µ(H̃µ − P̃µ)

]
, YP =

1

2
P̃µP̃

µ . (3.16)

The variation w.r.t. the auxiliary variable yields(
FY gµν + FY Y P̃µP̃ν

)
(H̃µ − P̃µ) = 0 , (3.17)

– 10 –



which is solved by P̃µ = H̃µ as long as the matrix FY gµν +FY Y P̃µP̃ν is invertible. Therefore,
the invertibility condition of the Legendre transformation is det(FY gµν + FY Y P̃µP̃ν) 6= 0.
This determinant can be easily computed to be

det(FY gµν + FY Y P̃µP̃ν) = F 3
Y (FY + 2Y FY Y ) (3.18)

so the invertibility is guaranteed under the following conditions:

FY 6= 0 , FY + 2Y FY Y 6= 0 . (3.19)

Upon the field redefinition
FY P

µνρ ≡ Πµνρ (3.20)

that is invertible provided (3.19) holds so we can express Pµνρ in terms of Πµνρ, we arrive at
the first order formulation

S =

∫
d4x
√
−g
[
−1

2
Πµνρ∂[µBνρ] +H(YΠ)

]
, YΠ ≡ −

1

12
ΠµνρΠ

µνρ , (3.21)

where
H(YΠ) =

[
F (YP )− 2YPFY (YP )

]
YP=YP (YΠ)

. (3.22)

The field equation for Π is now modified to

Hµνρ = −HYΠ
(YΠ) Πµνρ (3.23)

that affects the relation between the field strength Hµνρ = 3∂[µBνρ] and the conjugate mo-
mentum Πµνρ, where HYΠ

= dH/dYΠ. On the other hand, the equation for the 2-form
remains the same so we can still write

Πµνρ = εµνρσ∂
σφ . (3.24)

From the square of this expression we obtain YΠ = −X and then the dual action in terms of
φ is

Sdual =

∫
d4x
√
−gH(−X) ≡

∫
d4x
√
−gP(X) . (3.25)

The on-shell relation between the scalar field and the 2-form field is

Hµνρ = PX(X)εµνρσ∂
σφ . (3.26)

whose square leads to
Y = −P2

X(X)X . (3.27)

We notice that (3.20) and Pµνρ = Hµνρ provide another on-shell relation

FYHµνρ = εµνρσ∂
σφ =⇒ Y F 2

Y (Y ) = −X , (3.28)

that allows to express Y in terms of X for a given F (Y ). The relation between the particular
P(X) theory and F (Y ) can be obtained from the relation between H and F deduced in (3.22)
so we have

P(X) = F (Y (X))− 2Y (X)FY (Y (X)) . (3.29)

– 11 –



We then study the inverse transformation. As before, we can proceed by performing a
Legendre transformation that recasts the action into the first order formalism as follows

Sdual =

∫
d4x
√
−g
[
P(Xp)− PX(Xp)p

µ(∂µφ− pµ)
]
, Xp ≡ −

1

2
pµp

µ , (3.30)

where pµ is an auxiliary vector field. The variation w.r.t. pµ yields

(PXgµν − PXXpµpν)(pµ − ∂µφ) = 0 , (3.31)

so (3.30) is equivalent to the K-essence described by (3.7) as long as det(PXgµν−PXXpµpν) 6=
0, i.e.,

PX 6= 0 , PX + 2XPXX 6= 0 . (3.32)

Let us introduce the new variable πµ under the relation

πµ = PXpµ , (3.33)

which can be solve by pµ = pµ(πα) under (3.32) according to the implicit function theorem.
We thus obtain the first order form of the K-essence,

Sdual =

∫
d4x
√
−g [−πµ∂µϕ+ H (Xπ)] , Xπ = −1

2
πµπµ , (3.34)

where

H (Xπ) =
[
P(Xp)− 2XpPX(Xp)

]
Xp=Xp(Xπ)

. (3.35)

The equation for φ now says that ∂µπ
µ = 0 so we can write the momentum as πµ =

1
6ε
µνρσ∂[νBρσ] that we can use to integrate πµ out and write the dual action

S =

∫
d4x
√
−gH (−Y ) ≡

∫
d4x
√
−gF (Y ) , (3.36)

with the on-shell relations (3.10). Hence, we have established the duality between the self-
interacting Kalb-Ramond field and the K-essence under the conditions (3.8).

This duality is precisely what permits to establish a duality relation between the cos-
mology of a shift-symmetric scalar field with a time-dependent profile and the cosmological
solutions presented above for a Kalb-Ramond field. Let us see how this works more explic-
itly. For a time-dependent scalar field profile φ̄(t) in a FLRW universe described by the line
element

ds2 = −N̄2(t)dt2 + a2(t)d~x2 , (3.37)

the duality (3.26) gives
Hijk = PX(X̄)

√
−gεijk∂0φ̄. (3.38)

where we have used the relation εijk0 =
√
−gεijk for ε0123 =

√
−g and ε123 = +1. This means

that the field strength of the two form must take the form Hijk = Bεijk with B satisfying

B = a3PX
∂0φ̄

N̄
. (3.39)
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The equation of motion of the K-essence yields

∂0

(
a3PX

∂0φ̄

N̄

)
= 0 , (3.40)

meaning that B is nothing but a constant of motion. This is precisely the 2-form configuration
(2.31). Notice that this relation is invariant under time-reparameterisations, as it should
because the 2-form configuration does not break time diffeomorphisms. Thus, we have seen
that the non-trivial realisation of homogeneity and isotropy with the inhomogeneous 2-form
configuration is dual to the usual cosmological solutions for a shift-symmetric scalar field
theory.

Let us rewrite the on-shell relations (3.9) and (3.10) into

?(FY dB) = dφ , (3.41)

?(PXdφ) = dB , (3.42)

where ? is the Hodge star operator and B = 1
2Bµνdxµ ∧ dxν . Since we have the identity

d2 = 0, we obtain

δ(FY dB) = 0 , (3.43)

δ(PXdφ) = 0 , (3.44)

which agree with the equations of motion of the self-interacting Kalb-Ramond field and the
K-essence, respectively. A special case of this relation has been discussed above to show that
B is a constant of motion. This provides not only a consistency check of the dualisation but
also shows that the identity in one side is mapped into the field equation in the dual side,
which is the usual property under dualisation in the absence of matter sources.

Although the correspondence of the energy-momentum tensors has been already con-
firmed explicitly, it is useful to see how the corresponding energy-momentum tensors are
related in a more formal way. For that, let us notice that the duality can be regarded as just
a (non-local) field redefinition Bµν(x) = Bµν [φ, gαβ](x). The energy-momentum tensors are
then related by

1

2

√
−gTµνdual(x) =

(
δS[g,B]

δgµν(x)

)
B

+

∫
d4y

δS[g,B]

δBαβ(y)

δBαβ[φ, gαβ](y)

δgµν(x)
(3.45)

where the first term is the energy-momentum tensor for the 2-form (it is computed by keeping
Bαβ constant) and the second term is generated from the metric-dependence of the duality
relation. However, since this term is proportional to the field equation of motion, we have
that the two energy-momentum tensors coincide on-shell as long as δBαβ[φ, gαβ](y)/δgµν(x)
is well defined, i.e., the field redefinition is regular.

As an interesting remark, we could notice that the shift symmetry of the scalar field
in the dual description of the theory must be exact and cannot be softly broken (unless
we introduce non-local operators in the 2-form side which we will discuss later). This is so
because it derives from the dual 2-form theory with an exact gauge symmetry that ultimately
forces the shift symmetry. Were we to introduce an explicit gauge breaking term in the action
for the 2-form (e.g. a mass term), this would result in an enhanced phase space with two
additional propagating dof’s. The dual of this theory is obviously not a non-symmetric
scalar field (that would preserve the number of dof’s) but it is a Proca field, that correctly
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matches the number of dofs (see Sec. 7 below for the explicit dualisation). From this more
general case, we can nicely recover the shift symmetry. If we take an appropriate decoupling
limit where we send the mass of the Kalb-Ramond field to zero (and any other coupling
constant associated to higher order operators), the dual description is then a vector gauge
theory plus the decoupled longitudinal mode that has the usual shift symmetry for Goldstone
bosons. Since the original symmetry is an exactly realised gauge symmetry, we cannot get
any pseudo-Goldstone boson where the soft breaking of the shift symmetry (that is related to
the very existence of a quasi de Sitter solution with an approximate scale invariance) is the
responsible for the eventual exit from the inflationary phase. This is not a viable mechanism
in the present scenario because of the gauge origin of the shift symmetry so the end of
inflation and the reheating period must occur from a different mechanism.7 A possibility
would be to have a soft breaking of the gauge symmetry so that inflation would end when
the additional polarisations of the massive Kalb-Ramond field become relevant. Let us note
however that the pure massless Kalb-Ramond field with self-interactions cannot support slow
roll inflationary solutions because those solutions are destabilised by a Laplacian instability,
as we will discuss in Sec. 5.1.

An interesting property of the duality relation between the 2-form and the scalar field
is the different (dual) realisations of the cosmological principle. On the 2-form side, time
translations are not broken and therefore one natural question to posse is what determines
the end of inflation or, in other words, at what time we are to match the correlation functions
that will give the initial conditions for the post-inflationary era. This issue also arises in
models like solid inflation [12] where the symmetries of the background configuration also
preserve time reparameterisations invariance. If we now go to the shift symmetric scalar side,
the scalar field takes a time-dependent profile, thus explicitly breaking time diffs and giving
a natural cosmic clock variable. Let us notice however that, due to the shift symmetry, there
is a combination of time translations and shifts that serve as a diagonal time translational
invariance.

Before closing this subsection, we shall argue a possible way of the shift symmetry
breaking by the use of non-local operators in the 2-form side. We should recall that non-local
operators can secretly describe additional degrees of freedom. Let us suppose that the shift
symmetry breaking is small enough to use the relation (3.28) at the leading-order. Then, we
can formally obtain

φ =

∫
dφ =

∫
?(FY dB) . (3.46)

The soft breaking of the shift symmetry necessarily leads to a non-local operator in the
dualised 2-form theory. Appearance of non-locality in the action would imply that a degree
of freedom that couples to the 2-form has been integrated out. Note that in the comoving
gauge of the scalar field, also called the unitary gauge, the scalar field is identified with the
time coordinate t. Hence, the soft breaking of the shift symmetry in the comoving gauge
may be achieved by adding t to the dualised theory at least at the leading-order.

7Let us note in passing that the Swampland conjecture about the impossibility of having exact global sym-
metries in the low energy effective field theory of a string theory unless they originate from gauge symmetries
is nicely realised in the Kalb-Ramond cosmology: The exact shift symmetry of the scalar field is simply a
consequence of the gauge symmetry in the dual description.

– 14 –



3.2 Duality as a weak/strong duality

An important property of the duality is that an originally strongly coupled theory may appear
as a weakly coupled theory in the dual formulation. In this subsection, we will show how this
is indeed the case in our duality between the K-essence and the self-interacting Kalb-Ramond
field.

Let us first investigate the cubic interactions of the K-essence and the self-interacting
Kalb-Ramond field. For simplicity, we ignore gravity and consider perturbations around the
cosmological configurations, φ ∝ t for the K-essence and Bij ∝ εijkx

k for the Kalb-Ramond
field. The Lagrangian of the K-essence up to the cubic order in perturbations is

δLdual =
PX
2c2
s

[π̇ − c2
s(∂iπ)2] +

2λX

(2X)3/2
π̇3 − PX(1− c2

s)

2(2X)1/2c2
s

π̇(∂iπ)2 , (3.47)

where π is the perturbation of the scalar field and λX ≡ X2PXX + 2
3X

3PXXX . We rescale
the time t → t/cs to find a relativistic kinetic term and canonically normalise the field
π → (cs/PX)1/2π. The action is then

δSdual =

∫
d4xδLdual →

∫
d4x

{
1

2
[π̇ − (∂iπ)2] +

2c
7/2
s λX

(2XPX)3/2
π̇3 − 1− c2

s

2c
1/2
s (2XPX)1/2

π̇(∂iπ)2

}
.

(3.48)

As for the 2-form field, we shall focus on the scalar-type of perturbations for which the 2-form
field takes the form

B0i = 0 , Bij = εijk

(
1

3
Bxk + ∂k$

)
(3.49)

with the perturbation $. Here, we have used the gauge freedom to set B0i = 0. Furthermore,
we are neglecting the non-dynamical perturbation $i = εijkBjk that is not expected to play
a relevant role for the subsequent analysis regarding the strong coupling scale obtained from
the cubic interactions. The perturbed Lagrangian of the self-interacting Kalb-Ramond field
is given by

δL =
FY
2

[
(∂i$̇)2 − c2

s(∆$)2
]

+
2λY

(−2Y )3/2
(∆$)3 − FY (1− c2

s)

2(−2Y )1/2
(∆$)(∂i$)2 (3.50)

where ∆ ≡ ∂i∂i and λY ≡ Y 2FY Y + 2
3Y

3FY Y Y . As in the case of the K-essence, we normalise

the time and the field according to t→ t/cs and $ → $/(csFY )1/2, yielding

δS =

∫
d4xδL (3.51)

→
∫

d4x

{
1

2
[(∂i$̇)2 − (∆$)2] +

2λY

c
5/2
s (−2Y FY )3/2

(∆$)3 − 1− c2
s

2c
1/2
s (−2Y FY )1/2

(∆$)(∂i$̇)2

}
.

Note that the canonical normalisation further requires the replacement $ → $/k with k
being the momentum but we shall not perform it explicitly since the structure of the cubic
interactions does not change. By using the duality relations XPX = −Y FY and λY = c6

sλX
which are derived from (3.9)-(3.12), we finally obtain

δS =

∫
d4x

{
1

2

[
(∂i$̇)2 − (∆$)2

]
+

2c
7/2
s λX

(2XPX)3/2
(∆$)3 − 1− c2

s

2c
1/2
s (2XPX)1/2

(∆$)(∂i$̇)2

}
.

(3.52)
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Therefore, the cubic interactions of both the scalar and the 2-form descriptions have the
same scaling behaviour and we find that the theory is strongly coupled as cs → 0 in both
formulations. However, as is well known, higher-derivative corrections become important
in the limit cs → 0 and we have to take them into account to properly study the limit
cs → 0 [25, 26].

It is important to notice at this point that the duality for higher order derivative terms
cannot be established as straightforwardly as for the leading order terms involving only first
derivatives. The reason can be understood easily by noticing that a correction ∆L = 1

Λ2 (�φ)2

to the K-essence Lagrangian effectively introduces a scalar ghost of mass Λ2 and this ghost
field cannot be dualised to a 2-form. On the other hand, a correction ∆L = 1

Λ2 (∂µH
µνρ)2

gives rise to a 2-form ghost of mass Λ2, whose dual is a 1-form, not a scalar (see below Sec.
7). Thus, we conclude that the higher order corrections will typically introduce different
numbers of dof’s so the duality cannot be established. This is shown in more detail in
Appendix A. Obviously, from the EFT perspective there will be an infinite number of terms
with arbitrarily higher derivatives, but they all must be treated perturbatively so the new
would be degrees of freedom will never appear below the cut-off scale of the EFT. However, we
will see that this difference in dof’s from the higher order corrections can have an impact on
the cut-off scale for the two dual formulations. In particular, we will see that one formulation
can admit a consistent truncation while in the dual formulation the full hierarchy of higher
order derivatives might be necessary. This is an important feature that clearly shows how
working in one formulation can be more advantageous than its dual formulation from the
EFT perspective.

To understand the duality even in the presence of such higher-derivative corrections,
we shall consider a (partial) UV completion of the K-essence/self-interacting Kalb-Ramond
field by following [27–32]. Here, we adopt the simplest partial UV completion with the help
of a heavy field χ. The Lagrangian is given by

LUV = −1

2
γAB(χ)∂µΦA∂µΦB − V (χ) , ΦA = (χ, φ) , (3.53)

where the field-space metric γAB(χ) and the potential V (χ) are supposed to be independent
of φ to respect the shift symmetry of φ. As we will explain shortly (see [32] for more details),
the K-essence arises as the leading-order EFT of the non-linear sigma model described by
(3.53). Note that (3.53) may be also an EFT of a more fundamental theory. However, the
applicable range of (3.53) is wider than that of the K-essence and this is sufficient for the
present purpose.

In the two-field model, the freedom of the field redefinition allows us to set the field-
space metric to be γAB = diag[1, f(χ)] with a positive function f(χ). The Lagrangian is
then

LUV = −1

2
(∂χ)2 + f(χ)X − V (χ) , (3.54)

and the field equation for χ is given by

�χ+Xfχ − Vχ = 0 . (3.55)

We solve (3.55) by treating the derivatives as perturbations while keeping the non-linearity
of X; that is, we assume that ∂nχ and ∂n+1φ with n ≥ 1 are small quantities compared with
a mass scale M2 that we will introduce shortly whereas we do not assume the smallness of
∂φ. The solution of χ is found to be

χ = χ0(X) +O(∂2/M2) (3.56)
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where χ0(X) is a root of
Xfχ − Vχ = 0 , (3.57)

and
M2 ≡

[
Vχχ −Xfχχ

]
χ=χ0(X)

. (3.58)

The condition M2 6= 0 guarantees the existence of the root χ0(X) at least locally. After
integrating out χ, the effective Lagrangian of φ is given by

LEFT = P(X)− PXX
2M2

(∂X)2 +O(∂4/M4) , (3.59)

with
P(X) ≡ f(χ0(X))X − V (χ0(X)) , (3.60)

up to the sub-leading order of the derivative expansion. Here, to get the expression of the
second term of (3.59), we have used

dχ0

dX
=

fχ
M2

, (3.61)

and then

PX = f , PXX =
f2
χ

M2
, (3.62)

where the functions on r.h.s. are evaluated at χ = χ0(X).
Next, we consider the dual of the UV Lagrangian (3.54). The first order form of (3.54)

is

LUV = −1

2
(∂χ)2 +

1

2
f−1(χ)πµπ

µ − V (χ)− πµ∂µφ , (3.63)

with πµ an auxiliary variable. The field equation for φ is solved by πµ = 1
6ε
µνρσHνρσ, yielding

the dualised Lagrangian

LUV = −1

2
(∂χ)2 + f−1(χ)Y − V (χ) , (3.64)

in terms of the 2-form field. The on-shell relation between the scalar field and the 2-form
field is

Y = −f2(χ)X . (3.65)

We then solve the field equation for χ by taking the derivative expansion. The solution is

χ = χ′0(Y ) +O(∂2/M2) , (3.66)

with the root of

fχ(χ′0)
Y

f2(χ′0)
+ Vχ(χ′0) = 0 , (3.67)

where the mass scale associated with the derivative expansion is now given by

M2 ≡

[
Vχχ +

Y

f2
fχχ − 2

Y

f2

f2
χ

f

]
χ=χ′0(Y )

. (3.68)
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Again, the existence of the root χ′0(Y ) is guaranteed by M2 6= 0. The resultant effective
Lagrangian in terms of the 2-form field is

LEFT = F (Y )− FY Y
2M2

(∂Y )2 +O(∂4/M4) , (3.69)

with
F (Y ) ≡ f−1(χ′0(Y ))Y − V (χ′0(Y )) . (3.70)

Similarly to (3.59), we have used

dχ′0
dY

= − fχ
f2M2

, (3.71)

FY = f−1 , FY Y =
f2
χ

f4M2
. (3.72)

Note that the relation between P (X) and F (Y ) coincides with that we have established in
the previous subsection at the leading-order of the derivative expansion.

We emphasise that the expansion parameters of the derivative expansion are ∂/M in
(3.59) and ∂/M in (3.69), respectively. The scale M coincides with M around the trivial
background X = 0 = Y , while they denote different scales when the fields have non-trivial
background values. For simplicity, we consider the background with X,Y = constant and
evaluate M2 and M2 on this background. The on-shell relation (3.65) concludes χ0(X) =
χ′0(Y ) = constant and

M2 = Vχχ − fχχX + 2X
f2
χ

f
= M2 + 2X

f2
χ

f
, (3.73)

evaluated at X,Y = constant. Since the ghost-free condition of the UV theory requires f > 0,
we find 

M2 > M2 , for X > 0, Y < 0 ,

M2 = M2 , for X = 0, Y = 0 ,

M2 < M2 , for X < 0, Y > 0 .

(3.74)

Therefore, the convergence of the derivative expansion depends on the description of the
theory and the property of the background. To make the discussion concrete, we focus on
the cosmologically relevant case X > 0 for a while. By using (3.62) and (3.73), we obtain

c2
sM2 = M2 , (3.75)

where c2
s = PX/(PX +2XPXX) = (FY +2Y FY Y )/FY is the sound speed of the perturbations

around the background with X > 0, Y < 0. The hierarchyM2 �M2 is realised in a largely
Lorentz-violating background, c2

s � 1, and this is indeed what we are interested in. The
derivative expansion in the K-essence description may converge at ∂/M � 1 while the
convergence in the 2-form description only requires ∂/M = cs∂/M � 1. The difference
between M2 andM2 are examined in [32] by studying the dispersion relation of the two-field
model. Although the scale M2 appears as the scale associated with the derivative expansion
in (3.59), M2 does not agree with the actual mass scale of the heavy mode around the X > 0
background. The actual mass scale is given by M2, so one can extend the validity of the
single-field EFT even beyond M2 if one considers a resummation of the higher-derivative
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terms. Here, we have found that the dualisation of the K-essence indeed provides such a
resummation. In other words, at least in this UV completion, the resultant EFT in terms
of the 2-form admits a weakly coupled description with a finite number of higher-derivative
operators while the K-essence description requires an infinite number of higher-derivative
operators in the limit cs → 0.

The situation is opposite in X < 0, Y > 0. The scale M2 is larger than M2 and the
actual mass scale of the heavy mode is given by M2 [32]. Although the 2-form description
becomes strongly coupled at ∂/M = O(1), the K-essence provides a resummation of the
strongly coupled 2-form field and the single-field description is valid as long as ∂/M � 1.

It is worth mentioning that a violation of the regularity condition (3.8) may be inter-
preted as an infinitely strong coupling in one side of the duality while the other side might
be oblivious to that. The simplest example is found from a massive U(1) scalar field with a
quartic self-interaction:

L = −1

2
|∂Φ|2 −

M2
Φ

2
|Φ2| − λ

4
|Φ|4 . (3.76)

In terms of χ and φ defined by Φ = χeiφ, the Lagrangian is given by

L = −1

2
(∂χ)2 + χ2X −

M2
Φ

2
χ2 − λ

4
χ4 , (3.77)

which corresponds to f = χ2 and V =
M2

Φ
2 χ2 + λ

4χ
4. One then obtains

M2 = 2λχ2
0 , χ0 =

√
2X −M2

Φ

λ
, (3.78)

and

P(X) =
1

λ
(X −M2

Φ/2)2 . (3.79)

We then consider the limit λ → 0 while keeping χ0 finite which is nothing but the weak
coupling limit from the point of view of the U(1) scalar. However, the K-essence description
is infinitely strongly coupled (that is, we cannot truncate the derivative expansion at a finite
order) because of M2 → 0. On the other hand, when we consider the dual description,

L = −1

2
(∂χ)2 + χ−2Y −

M2
Φ

2
χ2 − λ

4
χ4 , (3.80)

we find

χ′0
2 =

1

MΦ

√
−2Y +

λ

M4
Φ

Y +O(λ2) , (3.81)

F (Y ) = −MΦ

√
−2Y +

λ

2M2
Φ

Y +O(λ2) , (3.82)

and
M2 = (2MΦ)2 +O(λ) . (3.83)

Hence, the derivative expansion in the dual description can be truncated at a finite order
even in λ→ 0 thanks to a finite M2. The functional form (3.82) leads to

FY + 2Y FY Y = O(λ) , (3.84)
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so the limit λ→ 0 indeed corresponds to the singular point of the duality.
Needless to say, the discussion so far is based on a simple (partial) UV completion of the

K-essence/self-interacting Kalb-Ramond field, but the two-field model is not the unique UV
completion. From the low-energy perspective, what we know is that the duality is singular
when at least one of (3.8) is violated. As we have argued in this subsection, such a singular
point is a singularity of one description while the theory in the dual side may be weakly
coupled thanks to appropriate higher-derivative corrections. We will discuss these singular
examples in the next section. Here, we emphasise that our strong/weak duality is not a
statement about the K-essence and the self-interacting Kalb-Ramond field themselves since
both descriptions without derivative corrections are strongly coupled in the limit cs → 0. A
higher derivative operator is required to cure the strong coupling issue when cs → 0. However,
the duality transformation also affects the structure of higher-derivative corrections and then
a theory with a finite number of higher-derivative operators may appear as a theory with an
infinite number of higher-derivative operators on the dual side. There are two possibilities
to have cs → 0 around the cosmological background: the first is the limit

FY + 2Y FY Y =
1

PX +XPXX
→ 0 (3.85)

and the second possibility is

PX =
1

FY
→ 0 . (3.86)

In the former case, as we have seen, the 2-form description is well-behaved and an appropriate
higher-derivative operator to give a non-relativistic dispersion relation is (∂Y )2. On the other
hand, in the case of (3.86), the appropriate description would be the scalar field and the strong
coupling is cured by the operator (�φ)2, known as the ghost condensate [25, 26].

3.3 Duality as fluids

The shift symmetric P(X) theories can be interpreted as the effective field description of
a super-fluid with the shift symmetry related to the internal conserved charge of the fluid.
The duality relation between the shift symmetric theories and the 2-form theories is close to
the relation between the super-fluid and ordinary fluids (see e.g. [33]). Carter already used
a Kalb-Ramond field for the description of perfect fluids in [34] (see also [35]). The dual
description of super-fluids in terms of a 2-form field has also been exploited recently to study
the interactions of vortex lines and vortex rings from an EFT perspective [24, 36]. Although
our aim is much more modest than the treatment in those works, it will be instructive to say
a few words here on our duality from the fluid perspective to make contact with the results
for the multi-Kalb-Ramond case of Sec. 6.

A general perfect fluid can be described in terms of three scalar fields ϕa (a = 1, 2, 3) that
represent the comoving coordinates of the fluid. In order to comply with the fluid symmetries,
we need to impose an internal shift symmetry and volume-preserving diffeomorphisms:

ϕa → ϕa + ca, and ϕa → ϕ′a(ϕb) with det
∂ϕ′a

∂ϕb
= 1 . (3.87)

The first symmetry reflects the freedom in choosing the spatial origin, as appropriate to
describe homogeneous fluids of relevance for cosmologies complying with the cosmological
principle. The second symmetry corresponds to our freedom in permuting any two elements

– 20 –



of the fluid as long as the volume (or the number density) is kept fixed or, from a more
physical point of view, it does not cost energy to move around a fluid element as long as we
do not vary its volume. The shift symmetry requires the Lagrangian to contain derivatives
of the fields so, at lowest order in derivatives, the fundamental object is Bab ≡ ∂µϕ

a∂µϕb.
Furthermore, the volume-preserving diffeomorphisms are realised if only the determinant of
this matrix B ≡ detBab is utilised to describe the fluid dynamics. Thus, the Lagrangian will
be L = F (B) at the leading-order in the derivative expansion. The four-velocity and the
number density of the fluid are respectively given by

uµf = − 1

6
√
B
εijkε

µνρσ∂νϕ
i∂ρϕ

j∂σϕ
k , (3.88)

nf =
√
B , (3.89)

which satisfy the off-shell identity
∇µ(nfu

µ
f ) = 0 , (3.90)

that permit to interpret Jµf = nfu
µ
f as the current of fluid particles.

We consider the infinitesimal volume-preserving diffeomorphisms around the ground
state of the fluid, 〈ϕi〉 ∝ xi. Denoting the perturbations of ϕi by δϕi, the infinitesimal
transformation is given by

δϕi(t, ~x)→ δϕi(t, ~x) + ξi(~x) (3.91)

where the functions describing the volume-preserving diffeomorphisms satisfy the transverse
condition

∂iξ
i(~x) = 0 . (3.92)

Let us then revisit the 2-form theory around the cosmological background. The background
configuration of the 2-form is 〈B0i〉 = 0, 〈Ci〉 ∝ xi. We can choose the gauge δB0i = 0 by
the use of the symmetry of the 2-form in which the dynamical variables of the 2-form are
δCi. Note that this gauge is not a complete gauge fixing as the residual gauge symmetry is
described by

δCi(t, ~x)→ δCi(t, ~x) + θT i(~x) s.t. ∂iθ
T i(~x) = 0 , (3.93)

which is the same form as the infinitesimal volume-preserving diffeomorphisms (3.91). Indeed,
the gauge transformation of the 2-form can be regarded as a transformation that preserves
the number density of the fluids. We introduce the four-velocity

uµ = − H̃µ

√
−2Y

, (3.94)

which is properly normalised, uµu
µ = −1, provided Y < 0. From the geometrical identity

∇µH̃µ = 0, we can interpret the quantity

n =
√
−2Y (3.95)

as the number density. Hence, the gauge transformation of the 2-form does not change the
number density n and then the volume of the fluid space.

Note that (3.93) is just a part of the gauge transformation. The 2-form symmetry
is a local symmetry, meaning that the transformation parameter is a function of not only
space but also time, in general. The 2-form symmetry is larger than the volume-preserving
diffeomorphisms which discriminates the 2-form from the ordinary fluid. In fact, the 2-form
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Table 1. Duality relations from the fluid perspective. Here, we omit the subscript “dual” in the last
row for simplicity of notation.

Field Symmetries On-shell equations Off-shell equations

2-form Bµν → Bµν + 2∂[µθν]
ωµν = 0

(ρ+ p)aµ +Dµp = 0
D
Dτ ρ+ (ρ+ p)K = 0

Scalar φ→ φ+ c D
Dτ ρ+ (ρ+ p)K = 0

ωµν = 0
(ρ+ p)aµ +Dµp = 0

is dual to the super-fluid (the shift symmetric scalar field) that is an irrotational fluid. On the
other hand, the ordinary fluid generically has a vortex. Hence, it may be interpreted as that
the “localised volume-preserving diffeomorphisms” (the 2-form gauge symmetry) prohibits
the vortex while the global volume-preserving diffeomorphisms accommodate vorticity.

Let us give a hydrodynamical interpretation of the 2-form field. The equation of motion
of the self-interacting Kalb-Ramond field is given by the form

εµνρσ∇ρ
(√
−2Y FY uσ

)
= 0 . (3.96)

By projecting along uµ, we find

√
−2Y FY ε

νρσ∇ρuσ =
√
−2Y FY ε

νρσωρσ = 0 , (3.97)

where ενρσ ≡ uµεµνρσ is the three-dimensional Levi-Civita tensor in the sense that uνε
νρσ = 0

and ωµν ≡ h[µ|
α∇αu|ν] with hµν ≡ gµν +uµuν is the vorticity of the congruence described by

uµ. Therefore, a part of the equation of motion concludes

ωµν = 0 , (3.98)

as long as Y < 0 and FY 6= 0. The remaining part of the equation of motion is obtained by
taking the Hodge dual of (3.96) with multiplying uµ, yielding

1√
−2Y

[−2Y FY aµ +Dµ(F − 2Y FY )] = 0 , (3.99)

where aµ ≡ nν∇νuµ is the acceleration and Dµ ≡ hνµ∇ν is the derivative with respect to
the direction orthogonal to the four-velocity uµ. The energy density ρ and the pressure p are
read from the energy-momentum tensor (3.13) as follows:

ρ = −F , p = F − 2Y FY , (3.100)

which yield

Tµν = (ρ+ p)uµuν + pgµν . (3.101)

Hence, (3.99) is nothing but the general-relativistic Euler equation

(ρ+ p)aµ +Dµp = 0 , (3.102)
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provided Y < 0. On the other hand, within the leading-order theory F = F (Y ), the off-shell
identity ∇µJµ = 0 is equivalent to the continuity equation:

√
−2Y FY∇µJµ =

D

Dτ
ρ+ (ρ+ p)K = 0 (3.103)

where D
Dτ ≡ u

µ∇µ and K ≡ ∇µuµ are the material derivative and the expansion, respectively.
In summary, the irrotational property and the Euler equation are obtained from the equation
of motion while the continuity equation holds off-shell in the 2-form description, which we
summarise in Table 1.

As we have mentioned in (3.42), the off-shell equation is dualised to the on-shell equation
and vice versa under the duality transformation. The number density, the four-velocity, the
energy density, and the pressure in the scalar description are given by

ndual = PX
√

2X , uµdual = − ∂µφ√
2X

, (3.104)

ρdual = −P + 2XPX , pdual = P , (3.105)

respectively. One can easily show that the vorticity is zero and the Euler equation trivially
holds while the equation of motion of the scalar field takes the following form:

∇µJµdual = 0 , Jµdual ≡ ndualu
µ
dual , (3.106)

Recall that theK-essence is shift symmetric, concluding the existence of the conserved current
Jµdual, i.e. the current of fluid particles. The conservation ∇µJµdual = 0 gives the continuity
equation provided that X > 0 and PX 6= 0.

4 Examples

In this section, we shall examine several concrete theories to see how the duality works. As
we have developed in §. 3.1, the dual to the K-essence is straightforwardly obtained by the
following two steps:

1. For a given function P(X), we first need to solve −P2
X(X)X = Y for X in terms of Y ;

2. We insert the solution X(Y ) into F (Y ) = P(X(Y ))− 2X(Y )PX(X(Y )).

The inverse transformation is obtained by the replacements, X ↔ Y and P ↔ F . Here, the
implicit function theorem guarantees the existence of the solution X = X(Y ) at least locally
as long as (3.8) are satisfied and, then, under such conditions the dualisation is always possible
in the sense of the field space. A cautionary remark that is worth keeping in mind is that,
in general, the dualisation can permit several dual branches of solutions, although in many
cases, physical requirements allow to select a physical branch. For instance, one can impose
analyticity of the dualisation and require that it reduces to the identity transformation at
leading order for small fields, so the dualisation can be defined perturbatively around this
point.
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4.1 Power law

We can obtain the dual of some particular theories by following the above procedure. We
begin with the simplest example, the power law theory described by P(X) = gnX

n, that
corresponds to a constant equation of state w ≡ p/ρ = P/(2XPX − P ) = 1/(2n − 1). The
solution of −P2

X(X)X = Y is given by

X =

(
− 1

g2
nn

2
Y

) 1
2n−1

(4.1)

and, thus, the dual theory is

F (Y ) = gn(1− 2n)

(
− 1

g2
nn

2
Y

) n
2n−1

. (4.2)

We clearly notice that for n = 1 it gives the dual relation for the free theories; that is,
P (X) = g1X is dual to F (Y ) = g−1

1 Y , as already done in § 3.1. The function (4.2) gives
the dual formulation of the symmetric superfluids obtained in [37] except for the Dirac-Born-
Infeld (DBI) theory that we will dualise below. On the other hand, the theory n = 1/2, which
corresponds to PX + 2XPXX = 0, leads to a singular dualisation. This value corresponds
to the cuscuton model [38] that in turn represents a singular theory with special properties,
like the absence of the scalar degree of freedom in the unitary gauge φ = φ(t) [39]. It has
also been shown to belong to a special class of shift-symmetric scalar field theories from the
symmetry perspective [37]. The theory has an (infinite) extended symmetry of the form

δφ = εµ∂µg(φ) (4.3)

for an arbitrary function g(φ) and with εµ the transformation parameter. Under this trans-
formation, the Lagrangian of the cuscuton changes by a total derivative δL ∝ ∂µ(

√
Xg′εµ).

The DBI theory and the cuscuton theory provide interesting insights on the scalar/2-form
duality as we will discuss shortly.

4.2 DBI

Another example is the string inspired DBI field theory, which was initially introduced
as a non-linear electrodynamic model to avoid problems with divergence of the electron
self-energy [40]. The scalar field realisation of the DBI theory is described by P(X) =

Λ4
(

1−
√

1− 2X/Λ4
)

where Λ is a mass scale of the theory. For this theory, the rela-

tion between the scalar field variable X = −1
2∂µφ∂

µφ and the Kalb-Ramond field variable
Y = − 1

12HµνρH
µνρ is

Y = − X

1− 2X/Λ4
⇔ X = − Y

1− 2Y/Λ4
. (4.4)

The dual theory F (Y ) to this DBI model follows from

F (Y ) = Λ4
(

1−
√

1− 2Y/Λ4
)
, (4.5)

where we have used (4.4). Hence, the DBI theory is “self-dual”; the DBI theory of the scalar
field is dual to the DBI theory of the 2-form.
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Let us consider extreme limits of the DBI theories to see the singular points of the
dualisation. It is easy to obtain the following relations between both dual formulations:

PX =
1

(1− 2X/Λ4)1/2
, PX + 2XPXX =

1

(1− 2X/Λ4)3/2
, (4.6)

FY =
1

(1− 2Y/Λ4)1/2
, FY + 2Y FY Y =

1

(1− 2Y/Λ4)3/2
. (4.7)

The relation (4.4) leads to the following correspondence:

2X/Λ4 → −∞ ⇔ 2Y/Λ4 → 1 , (4.8)

2Y/Λ4 → −∞ ⇔ 2X/Λ4 → 1 , (4.9)

where the limit is taken so that the inside of the square root is positive.8 Therefore, even
though the functional forms are the same, we are taking the different limits in the scalar
description and the 2-form description. In particular, taking the extreme limits 2X/Λ4 →
−∞ and 2Y/Λ4 → −∞ lead to the cuscuton-type Lagrangians,

P(X) → −Λ4
√
−2X/Λ4 , (4.10)

F (Y ) → −Λ4
√
−2Y/Λ4 , (4.11)

which are located at the opposite extreme limits of the DBI theory, respectively.

4.3 Cuscuton

We now consider the cuscuton-type Lagrangians:

P(X) = ±Λ4
√
±2X , (4.12)

F (Y ) = ±Λ4
√
±2Y , (4.13)

where X and Y are set to be dimensionless and the overall sign is chosen so that the null
energy condition is respected, i.e. PX > 0 and FY > 0. The functional forms (4.12) and
(4.13) arise as solutions of PX + 2XPXX = 0 and FY + 2Y FY Y = 0, respectively, so these
theories are at the singularity of the dualisation.

Since the cuscuton theory (4.12) has been studied in the literature [38, 39], we shall
concentrate on the 2-from theory (4.13), especially the cosmologically relevant case, the
theory (4.13) with the negative sign. We have already encountered this theory: it appears
as an EFT of the weak coupling limit of the U(1) scalar in §. 3.2 and it also arises as the
extreme limit of the DBI theory in §. 4.2. As we shall argue below, the theory (4.13) with the
negative sign is regarded as an EFT for the dust fluid, such as the dark matter component
of the universe, that cannot be achieved by the shift-symmetric scalar field.

We consider the homogeneous and isotropic background in which the field strength of
the 2-form is given by Hijk = Bεijk. Hence, we obtain

Y = − B2

2a6(t)
(4.14)

8Recall that, in our convention, the timelike gradient of the scalar corresponds to X > 0 (⇔ Y < 0) and
the spacelike gradient is X < 0 (⇔ Y > 0), respectively. Hence, the extreme limits (4.8) and (4.9) are taken
under the spacelike configuration and the timelike configuration, respectively. If one wants to consider other
extreme limits 2X/Λ4 → +∞ and 2Y/Λ4 → +∞, one should start from the DBI theory with a “wrong” sign,

P(X) = Λ4
(
−1 +

√
1 + 2X/Λ4

)
.
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where a(t) is the scale factor of the universe. The energy density, pressure and the sound
speed of the theory F = −Λ4

√
−2Y are

ρ = −F =
Λ4B

a3
, (4.15)

p = F − 2Y FY = 0 , (4.16)

c2
s =

FY + 2Y FY Y
FY

= 0 , (4.17)

respectively. The pressure and the sound speed vanish while the energy density decays as
a−3, which are exactly the properties of the dust fluid. In the case of the K-essence, the dust
limit corresponds to a singular limit P → 0. On the other hand, the dual description admits
a regular expression F = −Λ4

√
−2Y which can be used for the action of the irrotational dust

fluid. In realistic situations, the fluid must have small but non-zero pressure and sound speed
which can be introduced by adding corrections to (4.13). In fact, we have already seen that
the action is corrected in the U(1) example (3.76). As shown in (3.82), the finite correction
of the quartic self-interaction leads to the term linear in Y at the leading order which gives
rise to

p ∝ a−6 , c2
s ∝ a−3 . (4.18)

Furthermore, we have a higher derivative correction

− FY Y
2M2

(∂Y )2 = − Λ4

2M2

(∂Y )2

(−2Y )3/2
, (4.19)

providing a non-relativistic dispersion relation of the fluid. From the EFT perspective, we
do not need to specify the origin of the corrections (and we do not need to stick to these
particular forms of the corrections). The corrections to the 2-from cuscuton universally
describe deviations from the dust fluid.

4.4 Ghost condensate

As the final example, we consider the ghost condensate [25, 26] which is also a singular
point of the dualisation. The ghost condensate is defined by the point PX = 0 in which
the background energy-momentum tensor of the K-essence field behaves as a cosmological
constant. The scalar field φ has a non-trivial background expectation value X 6= 0 as a
root of PX = 0 which spontaneously breaks the Lorentz invariance. Around the background
φ = φ̄(t), the quadratic action of the perturbations δφ (under the gravity decoupling limit)
is generically given by

S =
1

2

∫
dtdk3

[
(PX + 2XPXX)δφ̇2

k − PXk2δφ2
k

]
, (4.20)

in Fourier space. The ghost condensate PX = 0 thus corresponds to the vanishing sound
speed which would signal the strong coupling. Nonetheless, a small sound speed implies that
a higher derivative correction, say (�φ)2, can not be ignored. Although the operator (�φ)2

yields an additional ghostly state due the higher time derivative, the anisotropic scaling of
the spacetime implies that the higher time derivative is still negligible while only the higher
spatial derivative is relevant. As a result, the quadratic action of the ghost condensate is
given by

SGC =
1

2

∫
dtdk3

[
2XPXXδφ̇2

k −
1

Λ2
k4δφ2

k + · · ·
]
, (4.21)
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with the cutoff Λ where · · · denotes more higher derivative operators. The ghost condensate
provides a non-linear dispersion relation ω2 ∝ k4 without the strong coupling.

Let us then consider the similar limit FY → 0 in the 2-form theory. The background
similarly behaves like a cosmological constant, while the perturbations exhibit a different
property. As easily seen in (2.42) and (2.44), the point FY = 0 corresponds to a singular
point that the kinetic term δC vanishes and the action no longer depends on δ ~BT . Hence, the
2-form theory is infinitely strongly coupled at FY = 0. The vanishing kinetic term implies that
the anisotropic scaling of the spacetime is opposite to the usual ghost condensate, meaning
that the higher derivative correction can not resolve the strong coupling issue. We may not
obtain a consistent theory at FY = 0 in the 2-form description (see also [33]).

5 Cosmological duality

Having understood the general duality relation between the shift-symmetric K-essence and
the self-interacting Kalb-Ramond field, we now specialise to the cosmological setup and ex-
plicitly show that the two descriptions provide identical cosmological solutions. We then
discuss how the scalar/2-form duality connects seemingly inequivalent EFTs based on differ-
ent symmetry-breaking patterns.

5.1 Cosmology of a self-interacting Kalb-Ramond field

In a cosmological scenario described by the FLRW metric

ds2 = −dt2 + a2d~x2 (5.1)

the gravitational equations reduce to

3H2 = ρ (5.2)

2Ḣ + 3H2 = −p (5.3)

where ρ and p are the energy density and pressure respectively (normalised with 8πG). For
the shift-symmetric scalar field cosmology, these quantities are

ρdual = −P + 2XPX , (5.4)

pdual = P. (5.5)

The gravitational equations can then be combined to solve for P and PX as

P = −H2(3− 2ε) (5.6)

XPX = εH2 (5.7)

where ε = −Ḣ/H2 is the slow roll parameter, that we leave general for the moment. For the
2-form theory we have

ρ = −F, (5.8)

p = F − 2Y FY . (5.9)

We can again use the gravitational equations to solve for F and FY as

F = −3H2, (5.10)

Y FY = −εH2. (5.11)
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We can easily see how the duality is realised because the relation (3.29) is identically satisfied

P = F − 2Y FY = −H2(3− 2ε). (5.12)

Moreover, we can see that the following simple relation between the two descriptions holds

XPX = −Y FY , (5.13)

that allows to write
F = P − 2XPX . (5.14)

Finally, the relation between the second derivatives can be obtained to be

FY + 2Y FY Y =
1

PX + 2XPXX
. (5.15)

All the results are consistent with our general argument in Sec. 3. The first slow roll parameter
is given by

ε = − Ḣ

H2
= 3

d logF

d log Y
(5.16)

that defines the inflationary regime. Furthermore, the second slow roll parameter that will
determine if inflation can last long enough is given by

ε2 =
d log ε

Hdt
= −6

(
1 +

Y FY Y
FY

)
+ 2ε1 (5.17)

that allows to write
Y FY Y
FY

= −1 +
1

3
ε1 −

1

6
ε2. (5.18)

Up to slow roll corrections, this expression relates the first and second derivatives of F . There
is an obstruction however. If we compute the propagation speed given in (2.45) we obtain:

c2
s = 1 +

2Y FY Y
FY

= −1 +
2

3
ε1 −

1

3
ε2 (5.19)

which cannot be positive in the slow-roll regime so that slow-roll inflation leads to a fatal gra-
dient instability, in accordance with the analogous result for P(X) cosmologies. By inserting
the relations (5.13) and (5.15) we obtain

c2
s =

PX
PX + 2XPXX

(5.20)

that is the propagation speed for a P(X) theory. We can easily show that the Kalb-Ramond
field gives rise to adiabatic perturbations by corroborating that the propagation speed indeed
corresponds to δp/δρ. If we parameterise the perturbed the metric as

g00 =− a2(1 + 2Φ), (5.21)

g0i = a2∂iS, (5.22)

gij = a2

[
(1− 2Ψ)δij + 2

(
∂i∂j −

1

3
δij∇2

)
E

]
. (5.23)
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the perturbed energy-momentum tensor for the 2-form field can be written as

δT 0
0 =− FY δY (5.24)

1

3
δT ii =− (FY + 2Y FY Y )δY (5.25)

δT 0
i =

2

3
Y FY ∂i

(
3S −B′

)
(5.26)

δT i0 =− 2

3
Y FY ∂

iB′ (5.27)

where

δY = −2

3
Y (9ψ +∇2B) (5.28)

These expressions allow to straightforwardly compute the sound speed as

c2
s =

δp

δρ
= 1 + 2Y

FY Y
FY

(5.29)

that recuperates the result obtained in (2.45). We can also check that c2
s = ṗ/ρ̇ = ∂Y p/∂Y ρ

as it corresponds for a perfect fluid with adiabatic perturbations.

5.2 Duality and cosmological EFTs

Let us discuss the cosmological spacetime with perturbations from the EFT perspective.
Although it is straightforward to compute the perturbed action in both the scalar and the
2-form descriptions, we shall use the techniques developed in [41–43]: we choose the unitary
gauge where the degree(s) of freedom of the field (either the scalar or the 2-form) are eaten
by the spacetime metric and express the action in terms of the metric only. The unitary
gauge action can clarify how different realisations of cosmological scenarios are related.

As for the scalar field, the perturbation δφ(t, ~x) ≡ φ(t, ~x)− φ̄(t) transforms non-linearly
under the time diffeomorphism, t→ t+ ζ0(t, ~x), where φ̄(t) is the background configuration
of the scalar field. The time reparametrisation symmetry t → t′(t) allows us to set φ̄ = t.
On top of that, we can choose the gauge δφ = 0 by the use of the freedom of ζ0 in which

X = −1

2
gµν∂µφ∂νφ = −1

2
g00 . (5.30)

Hence, the action of the K-essence coupled to GR in the unitary gauge is given by

Sdual[g] =

∫
d4x
√
−g
[

1

16πG
R[g] + P(g00)

]
. (5.31)

The (residual) symmetries of (5.31) are the spatial diffeomorphisms

xi → xi + ζi(t, ~x) , (5.32)

and the global time translation
t→ t+ c , (5.33)

where the latter one is originated from the diagonal part of the time translation and the shift
symmetry of the scalar field φ→ φ+c because we have identified φ with the time coordinate.
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We then study the 2-form theory. The infinitesimal spacetime diffeomorphisms of the
2-form field with the parameters ζ0(t, ~x) and ζi(t, ~x) around the background B̄ij = 1

3Bεijkx
k

are

δζB0i = ∂0ζ
jB̄ij , (5.34)

δζBij = −ζk∂kB̄ij + 2∂[iζ
kB̄j]k , (5.35)

implying that the perturbations of Bµν are invariant under the infinitesimal time diffeomor-
phism. On the other hand, the gauge transformation with θi and θ0 are

δθB0i = ∂0θi − ∂iθ0 , (5.36)

δθBij = 2∂[iθj] . (5.37)

We can choose the unitary gauge of the 2-form where the field configuration is fixed to be

Bij =
1

3
Bεijkx

k , B0i = 0 , (5.38)

even in the presence of the perturbations. The unitary gauge yields

Y = − 1

12
gµαgνβgργHµνρHαβγ = −B

2

2
detgij . (5.39)

The gauge choice (5.38) can be achieved by the freedom of θi, θ0 and ζi. Let us denote the
perturbations of the 2-form before the gauge transformations by δB0i and δBij , respectively.
We thus want to find a solution to

δB0i + ∂0θi − ∂iθ0 + ∂0ζ
jB̄ij = 0 , (5.40)

δBij + 2∂[iθj] − ζk∂kB̄ij + 2∂[iζ
kB̄j]k = 0 , (5.41)

for arbitrary δB0i and δBij . A solution is explicitly constructed to be

θ0 = 0 , θi = −ζjB̄ij −
∫

dt δB0i , (5.42)

with

ζi =
1

2
εijk

(
δBjk − 2

∫
dt ∂jδB0k

)
. (5.43)

Note that the unitary gauge condition does not uniquely determine the gauge parameters
θi, θ0 and ζi, meaning that there are residual gauge freedoms. The one is associated with
the redundancy of the gauge symmetry of the 2-form θ0 → θ0 + θ̇, θi → θi + ∂iθ which is
not important for the later discussion because this trivially acts. The important residual
symmetry transformation is the following combined transformation

ζi = εijk∂jζ
V
k (~x) , θi = −2

3
B

(
ζVi (~x)− 1

2
xj∂jζ

V
i (~x)

)
, (5.44)

that preserves the unitary gauge condition (5.38). Here, we emphasise that ζVk (~x) is a function
of the spatial coordinates only and ζi = εijk∂jζ

V
k (~x) represents the infinitesimal volume-

preserving diffeomorphisms. As a result, the unitary gauge action of the self-interacting
Kalb-Ramond field is given by

S[g] =

∫
d4x
√
−g
[

1

16πG
R[g] + F (detgij)

]
. (5.45)
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where the residual symmetries are the time diffeomorphism

t→ t+ ζ0(t, ~x) , (5.46)

and the volume-preserving diffeomorphisms

xi → x′i(~x) s.t. det
∂x′i

∂xj
= 1 . (5.47)

We have established the duality between the K-essence and the self-interacting Kalb-
Ramond field in Sec. 3. In (5.31) and (5.45), both actions are given by the same variable,
namely the spacetime metric, and the only difference is the residual symmetries, leading to
the duality of cosmology: cosmology with the residual symmetries (5.32) and (5.33) is dual
to one with (5.46) and (5.47).

Note, however, that the unitary gauge action (5.45) is not complete because our gauge
condition is an incomplete gauge fixing. As is well-known, when one incompletely fixes the
gauge at the level of action, the action cannot reproduce all of original equations (see Ap-
pendix B and [44] for more discussions). Indeed, the action (5.45) takes exactly the same
form as the unitary gauge action of the ordinary perfect fluid: the action of the ordinary
perfect fluid is given by a function of the determinant of Bab = gµν∂µφ

a∂νφ
b and the unitary

gauge φi = xi gives Bij = detgij . Therefore, just considering the action (5.45), the vorticity
does not necessarily vanish. In the case of the perfect fluid, an irrotational fluid remains ir-
rotational (Helmholtz’s theorem) which is essentially a consequence of the volume-preserving
diffeomorphism invariance [33, 43]. Hence, imposing ωµν = 0 on (5.45) is consistent and, in
fact, ωµν = 0 is a missing part of the equation of motion of the 2-form field.9 Our precise
statement is that cosmology with the residual symmetries (5.32) and (5.33) is dual to one with
(5.46) and (5.47) under the condition ωµν = 0.10 The vorticity is allowed if we downgrade
the gauge symmetry to the global symmetry. This also re-establishes the superfluid/fluid
relation discussed in [33] from the point of view of the symmetry. We will revisit the precise
relation between the superfluid and the fluid in Sec. 6.3.

6 Multi-Kalb-Ramond

So far we have only considered one single Kalb-Ramond field. It is straightforward to ex-
tend the framework to a system with multiple Kalb-Ramond fields. In this section we will
particularly focus on a set of Kalb-Ramond fields Ba

µν (a = 1, 2, 3) featuring an internal
global SO(3) in addition to the gauge symmetry acting on each field. Thus, the physical
objects will be Ha

µνρ = 3∂[µB
a
νρ]. In this framework it is possible to obtain homogeneous

and isotropic solutions with the field configuration11

Ba
ij = A(t)εaij . (6.1)

While the homogeneity is trivially realised, the isotropy is realised by a combination of the
internal SO(3) and the spatial rotations. In order to build the theory, we will consider the

9One can recover the Euler equation (3.102) that is the spatial component of the energy-momentum
conservation ∇µTµν = 0 thanks to the Bianchi identity.

10In the unitary gauge, the four-velocity is given by uµ = δµ0 /
√
−g00 and the vorticity is computed from

the components of the metric. See [43] for details.
11There is of course another isotropic configuration given by Baij = φaεijkx

k that realises the isotropy and
homogeneity by only using the gauge symmetries of the 2-forms, i.e., it is nothing but several copies of the
single 2-form case. Thus, we will focus on the most interesting configuration (6.1) for our purposes here.
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most general Lorentz- and SO(3)-invariant action at lowest order in derivatives. Lorentz
invariance only leaves the object

Mab = −1

6
Ha

µνρH
bµνρ = H̃a

µH̃
bµ (6.2)

while the internal SO(3) symmetry imposes to use scalars of Mab. Since this is a 3×3 matrix,
we have 3 independent scalars that we parameterise as

Y1 = [M ], Y2 =
[M2]

[M ]2
and Y3 =

[M3]

[M ]3
, (6.3)

and our theory will be described by the action

S =

∫
d4x
√
−gK(Y1, Y2, Y3) . (6.4)

The advantage of using this parameterisation is that, in a FLRW metric and with the con-
figuration (6.1) we have that the only non-vanishing components of the 2-form field strength
(and its dual) are

Ha
0ij = Ȧεaij ⇒ H̃a

i =
Ȧ

aN
δai (6.5)

so that the fundamental matrix reads

Mab =
Ȧ2

a4N2
δab (6.6)

and the introduced SO(3)−scalars are

Y1 = 3
Ȧ2

a4N2
, Y2 =

1

3
, Y3 =

1

9
. (6.7)

This means that only Y1 is sensitive to the universe expansion, thus being the only relevant
for the homogeneous background evolution. In other words, the background evolution will
only depend on KY1 . This is apparent by looking at the energy-momentum tensor, which is
given by

Tµν = KabHa
µαβH

b αβ
ν +Kgµν (6.8)

with

Kab ≡
∂K
∂Mab

= KY1δab +
3∑

n=2

nKYn
[M ]n+1

[
[M ](Mn−1)ab − [Mn]δab

]
(6.9)

= KY1δab +
2KY2

Y 2
1

(
Mab − Y1Y2δab

)
+

3KY3

Y 3
1

(
Ma

cMcb − Y 2
1 Y3δab

)
. (6.10)

From this expression we can obtain the useful relation

KabMab = Y1KY1 (6.11)

that, together with the relation

Ha
µαβH

b αβ
ν = 2

(
H̃a

µH̃
b
ν − H̃aαH̃b

αgµν

)
(6.12)
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allows to write the energy-momentum tensor as

Tµν = 2KabH̃a
µH̃

b
ν +

(
K − 2Y1KY1

)
gµν . (6.13)

It is then apparent that the second and third terms in (6.10) identically vanish for (6.6),
thus explicitly showing that i) the energy-momentum tensor is isotropic and ii) only KY1

contributes to the background evolution. The energy-density and pressure are given in this
case by

ρ = −K + 2Y1KY1

p = K − 4

3
Y1KY1 (6.14)

so we will have accelerated solutions provided∣∣∣∣ ∂ logK
∂ log Y1

∣∣∣∣� 1 . (6.15)

From the form of the energy-momentum tensor, we can also obtain straightforwardly
that scale invariance corresponds to

Tµµ = 0⇒ K ∝ Y 3/2
1 . (6.16)

Because of our parameterisation (6.3), deviations from scale invariance are fully encoded in
the dependence on Y1, since Y2 and Y3 are clearly invariant under rescalings. Thus, the
theory will be scale invariant if the Lagrangian takes the form

Lsi = F1(Y2, Y3)Y
3/2

1 + F2(Y2, Y3) . (6.17)

6.1 A solid duality

The above construction with three 2-form fields featuring an internal SO(3) global symmetry
is of course the dual description of the effective field theory for solids and the depicted scenario
is the dual description of solid inflation [12]. The dualisation is straightforward to perform by
following analogous steps as those for the single 2-form case, but we will sketch the procedure
here for completeness. Let us recall, following the exposition in [12], that a solid can be
described by a triplet of scalar fields ϕa, a = 1, 2, 3 that are associated to the Lagrangian
coordinates. The background state is then defined by 〈ϕa〉 = xa and the homogeneity and
isotropy are realised by further requiring an internal Euclidean group for the fields. Internal
translations are achieved by imposing shift symmetry, while rotations only permit to use
SO(3)-scalars in the Lagrangian.

Starting from our multi Kalb-Ramond action, it should be clear that the dualisation
proceeds similarly to the single 2-form case, but with three copies. We first rewrite (6.4) in
the first order formalism:

S =

∫
d4x
√
−g
[
−1

2
Πaµνρ∂[µB

a
νρ] +H(Y1, Y2, Y3)

]
, (6.18)

where Yi are the same expressions (6.3) but for the matrix Mab
Π ≡ ?Πa

µ ?Πbµ. The equation
for the 2-form Ba is simply δΠa = 0 which means we can write ?Πa = dϕa. We can then
insert this relation back into the action to finally obtain the dual theory

Sdual =

∫
d4x
√
−gH(X1, X2, X3) (6.19)

where Xi are nothing but the scalars Yi constructed for the matrix Mab
ϕ ≡ ∂µϕa∂µϕb.
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6.2 The perfect fluid limit

The effective field theory for a perfect fluid can be obtained from the solid by imposing
the absence of anisotropic stresses so fluid elements can freely move without costing any
energy. This means that the perfect fluid corresponds to a situation where the symmetries
are enhanced with internal volume preserving diffeomorphisms with respect to the solid. In
our set-up, this means that the action can only depend on the determinant M ≡ detMab so
K = K(M). For this case, we have

Kab = KMMM−1
ab (6.20)

so the energy-momentum simplifies to

Tµν = KMMM−1
ab H

a
µαβH

b αβ
ν +Kgµν

= 2KMMM−1
ab H̃

a
µH̃

b
ν +

(
K − 6KMM

)
gµν . (6.21)

We can introduce the 4-velocity

uµ = − 1

6
√
M
εabcε

µαβγH̃a
αH̃

b
βH̃

c
γ (6.22)

that is normalised uµuµ = −1 and clearly satisfies the orthogonality relation H̃d
µu

µ = 0. In

the configuration (6.1) we have Ha
i = Ȧ

aN δ
a
i so detMab =

(
Ȧ
aN

)6
det gab and we can see that

the sign in the above 4-velocity guarantees that it is future-oriented. Using that Tµνu
µuν = ρ

and Tµνg
µν = 3p− ρ, we can extract the energy density and pressure by contracting with uµ

and gµν as
ρ = −K + 6MKM , p = K − 4MKM . (6.23)

We can interpret ?Ha as the frame of the fluid elements ea so that Mab = eaµe
b
νg
µν is

naturally associated to the metric of the internal fluid manifold. In fact, we can express the
energy-momentum tensor in a more apparent form by using the following expression for the
inverse of Mab:

2MM−1
ab = εaijεbmnM

imM jn , (6.24)

so we have

2MM−1
ab H̃

a
µH̃

b
ν = εaijεbmnH̃

i
αH̃

mαH̃j
βH̃

nβH̃a
µH̃

b
ν

= 2M(gµν + uµuν)

= 2Mhµν (6.25)

where, in the last step we have identified the orthogonal projector. This equality shows that
the orthogonal projector is indeed given by h = M−1

ab eaeb as one would expect. Furthermore,
we can insert it in the energy-momentum tensor to write it as

Tµν = (−K + 6MKM )uµuν + (K − 4MKM )hµν (6.26)

which is the standard form for the energy-momentum tensor of a perfect fluid and we recognise
the energy density and pressure obtained above. In terms of symmetries, we obtain that
imposing the system to only depend on the determinant of Mab implies that the original
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SO(3) symmetry is enhanced to an invariance under the larger SL(4) group. The equation
of state of the fluid is given by

w =
p

ρ
= −1− 4MKM/K

1− 6MKM/K
(6.27)

while the sound speed of the perturbations is

c2
s =

dp

dρ
=
p′

ρ′
= −

3 + 4MKMM
KM

5 + 6MKMM
KM

(6.28)

The duality with the three scalar fields is immediate. Let us consider the EFT of a perfect
fluid described by

L = F (det Ψab), Ψab ≡ ∂µϕa∂µϕb . (6.29)

We perform the Legendre transformation

L = F (detP ab) +
∂F

∂paµ

(
∂µϕ

a − paµ
)
, P ab ≡ paµpbµ , (6.30)

so, after the field redefinition

πaµ ≡ ∂F

∂paµ
= 2F ′ detP P−1

mnδ
a(mpn)µ (6.31)

so that
∂F

∂paµ
paµ = 6F ′ detP ab (6.32)

we obtain
L = πaµ∂µϕ

a +K(det Πab), Πab ≡ πaµπbµ , (6.33)

with K = F − 6F ′ detP ab. Once again, the equation for ϕa imposes πa = ?dBa for some
2-form Ba, thus showing the duality of the two descriptions for the fluid.

6.3 Back to the superfluid

In the limit of vanishing vorticity, the perfect fluid reduces to the superfluid. Thus, it
should be possible to obtain the EFT of a superfluid from the general EFT of perfect fluids
by imposing the vanishing vorticity constraint. In this subsection we will discuss how to
perform this reduction in the two dual formulations of the perfect fluid. Let us start with
the usual description of the perfect fluid described with the three 2-form fields Ba and let us
rewrite the Lagrangian as follows

L = H(V 2/2)− V µνρΩµνρ (6.34)

with V µνρ a non-dynamical 3-form field and Ω = 1
6εabcH̃

a ∧ H̃b ∧ H̃c the volume form. The
equation for V µνρ reads

H′Vµνρ = Ωµνρ . (6.35)

Noticing that Ω2 = (detMab)2, we can use the above equation to obtain V 2 = V 2(detMab)
so we can integrate V µνρ out and obtain

L =
[
H(V 2/2)−H′V 2

]
V 2=V 2(detMab)

≡ K(M) (6.36)
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so we recover the description of the perfect fluid in terms of the 2-forms. The Lagrangian
(6.34) is useful however because it allows to make more direct contact with the superfluid.
We can add the vanishing vorticity constraint by means of a Lagrangian multiplier as follows:

L = H(V 2/2)− V µνρΩµνρ + ∂[µλνρ]Ω
µνρ . (6.37)

The constraint imposes that Ω has vanishing co-differential, so it can be written as Ωµνρ =
εµνρα∂

αλ and the Lagrangian reads

L = H(V 2/2)− V µνρεµνρα∂
αλ. (6.38)

The equation for λ tells us that we can write Vµνρ = ∂[µBνρ] so the original Lagrangian
supplemented by the constraint δΩ = 0 reduces to

L = H(H2(B)) , (6.39)

i.e., the superfluid described in terms of the 2-form field. We can proceed analogously for
the dual formulation in terms of scalar fields starting with the Lagrangian

L = H(V 2/2)− V µΩ̃µ (6.40)

where V µ is a non-dynamical vector field and Ω̃µ = εµ
νρλΩνρλ is the dual of the volume form.

Upon variation w.r.t. the auxiliary variable V µ we obtain

H′Vµ = Ω̃µ , (6.41)

that allows to obtain V 2 = V 2(det Ψab) so the Lagrangian can be expressed as

L =
(
H−H′V 2

)
V 2=V 2(det Ψab)

≡ K(det Ψab) (6.42)

and we recover the usual description of the perfect fluid. We can modified the Lagrangian
with an appropriate constraint:

L = H(V 2/2)− V µΩ̃µ + ∂µλΩ̃µ. (6.43)

The constraint imposed by the Lagrange multiplier can be written as dΩ = 0 so we have
Ω = dw with w a 2-form. We can insert this relation into the Lagrangian to obtain

L = H(V 2/2) + ∂[αV µ]w[µα] . (6.44)

The equation for w now imposes V to be a closed form so it can be expressed as the exact
form V = dϕ. We can insert this expression in the Lagrangian and we finally obtain a theory
for the single scalar field ϕ that describes a superfluid. We summarise all the discussed
formulations of the fluid and the superfluid in Fig. 1.

7 Massive Kalb-Ramond

Although the main focus of this work is to explore the cosmologies and dualities of massless
2-form fields, we will briefly incur into the massive case in order to illustrate some crucial
differences and important properties of breaking the gauge symmetry and how this translates
into the dual theories. We will defer a more detailed study of the massive case for future
work.
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ℒ = Πaμ∂μφa + ℋ(det Πab
φ )

ℒ = G(det ∂μφa∂uφb)

ℒ = Ĝ(V2) − Vμ(⋆Ω)μ

ℒ = Ĝ((∂φ)2)

Vμ → ∂μφ

Ĝ′ Vμ = (⋆Ω)μ

∂μΠaμ = 0

Πaμ = (⋆dBa)μ

ℒ = ℋ(det Mab)

ℒ = ℋ̂(W2) − Wμ(⋆Ω)μ

ℒ = ℋ̂(H̃2)

Wμ = (⋆dB)μ

ℋ̂′ Wμ = (⋆Ω)μ

Integrate out Πaμ

First order formulation fluid

Solve the constraints from φa

∂μφa = − ∂ℋ
∂Πaμ

Dual descriptions of a fluid

Dual descriptions of a super-fluid

super-fluid constraint
super-fluid constraint

Figure 1. This figure summarises the duality relations between the different formulations of a fluid
and a superfluid.

7.1 Duality to Proca fields

We will commence our tour on the massive Kalb-Ramond field by considering a breaking of
the gauge symmetry only on potential terms, i.e., all derivatives of the 2-form will still enter
through its field strength. In this case, we can start from a first order formulation given by

S =

∫
d4x
√
−g
[
−1

2
Πµνρ∂[µBνρ] +H(YΠ, B)

]
, B ≡ −1

4
BµνB

µν (7.1)

where the explicit dependence on the 2-form in H breaks the corresponding gauge symmetry.
This prevents to solve for the momentum Π in terms of a scalar field, since the 2-form
equation of motion is now

∇µΠµνρ =
∂H
∂Bνρ

. (7.2)

We can still proceed with a dualisation by directly dualising the 2-form and the conjugate
momentum as12

Πµνρ ≡ εµνρσAσ, Bµν ≡
1

2
εµνρσΠρσ. (7.3)

By inserting these field redefinitions into the action we obtain

S =

∫
d4x
√
−g
[
−Πµν∂[µAν] +H(A,ZΠ)

]
, A ≡ −1

2
AµA

µ , ZΠ ≡ −
1

4
ΠµνΠµν (7.4)

which is nothing but the first order formulation of a self-interacting vector field. Here, we
note that

YΠ = −A , B = −ZΠ , (7.5)

12This dualisation can be interpreted as a canonical transformation where the coordinates and the momenta
are exchanged.
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under the dualisation. The inverse dualisation is obtained by following the inverse path and
we will not give the explicit construction here. The duality to a Proca field makes it manifest
that the massive 2-form field propagates 3 degrees of freedom, i.e., two more than its massless
counterpart. Given this difference in the number of degrees of freedom between the massive
and massless theories, it is instructive to analyse the massless limit to see where the different
degrees of freedom go.

7.2 Massless limit

The 2-form is dual to the scalar field, not the vector field, in the absence of the potential,
implying that there must be a condition on the potential to have the 2-form/vector dual-
ity. Although (7.1) and (7.4) are equivalent, we need to check regularity conditions of the
Legendre transformations. The variation of (7.1) with respect to Πµνρ gives

Hµνρ +HYΠ
(YΠ, B)Πµνρ = 0 (7.6)

where the subscript represents the derivative, e.g., HYΠ
= ∂H/∂YΠ. Squaring it yields the

equation Y = H2
YΠ
YΠ which can be solved by YΠ = YΠ(Y,B) under

HYΠ
(HYΠ

+ 2YΠHYΠYΠ
) 6= 0 . (7.7)

Then, we find the solution Πµνρ = −H−1
YΠ

(YΠ(Y,B), B)Hµνρ and arrive at the second order
formulation of the massive Kalb-Ramond field

S =

∫
d4x
√
−gF (Y,B) , F ≡ H− 2YΠHYΠ

∣∣
YΠ=YΠ(Y,B)

, (7.8)

with the relations

FY = − 1

HYΠ

, FY + 2Y FY Y = − 1

HYΠ
+ 2YΠHYΠYΠ

. (7.9)

The regularity condition of the inverse transformation is given by the finiteness of the left-
hand-side of (7.7) or

FY (FY + 2Y FY Y ) 6= 0 . (7.10)

The conditions (7.7) and (7.10) are present in the massless case as well while there are
additional conditions from the regularity of the vector side in the massive case. The variation
of (7.4) with respect to Πµν yields

Fµν +HZΠ
(A,ZΠ)Πµν = 0 , Fµν ≡ 2∂[µAν] , (7.11)

which can be solved by Πµν = −H−1
ZΠ

(A,ZΠ(A,Z))Fµν with Z ≡ −1
4FµνF

µν provided

HZΠ
(HZΠ

+ 2ZΠHZΠZΠ
) 6= 0 . (7.12)

The second order form of the action is then

S =

∫
d4x
√
−gG(Z,A) , G(Z,A) ≡ H− 2ZΠHZΠ

∣∣
ZΠ=ZΠ(A,Z)

, (7.13)

where we should impose GZ(GZ + 2ZGZZ) = −H−1
ZΠ

(HZΠ
+ 2ZΠHZΠZΠ

)−1 6= 0 for the
regularity of the inverse transformation. Since there are the relations (7.5), the regularity

– 38 –



condition (7.12) (or (7.7)) can be written in terms of the derivatives of H with respect to B
(or A):

HB(HB + 2BHBB) 6= 0 , (7.14)

HA(HA + 2AHAA) 6= 0 . (7.15)

Therefore, the regularity of the Legendre transformation in the one side yields the condition
on the potential in the dual side, as expected.

Let us see the massless limit of the Kalb-Ramond field and its dual description. For
simplicity, we consider the free theory:

S =

∫
d4x
√
−g
[
− 1

12
HµνρH

µνρ − m2

4
BµνB

µν

]
, (7.16)

whose dual description is

Sdual =

∫
d4x
√
−g
[
− 1

4m2
FµνF

µν − 1

2
AµA

µ

]
(7.17)

with the on-shell relations

Hµνρ = εµνρσAσ , Bµν =
1

2m2
εµνρσF

ρσ . (7.18)

The massless limit of this theory must be treated with some care because we would encounter
a discontinuity in the number of propagating degrees of freedom if taken directly from (7.16)
at face value. To avoid this difficulty, we will resort to the Stückelberg trick to first restore
the gauge symmetry by making the replacement

Bµν → Bµν +
2

m
∂[µAν] (7.19)

where Aµ is the Stüeckelberg field, and then take the limit m → 0. Notice that we have
actually introduced two gauge symmetries, namely: the desired one generated by a 1-form
θ as B → B + dθ together with A → A −mθ and a secondary one generated by a 0-from
ϑ that only affects the Stückelberg field A → A + dϑ. While the former corresponds to
the Stückelberg trick, the latter stems from the gauge invariance possessed by the gauge
transformation of the 2-form.

The resulting action in the decoupling limit with m→ 0 consists of the massless Kalb-
Ramond field plus a U(1) gauge field described by

Sm→0 =

∫
d4x
√
−g
[
− 1

12
HµνρH

µνρ − 1

4
FµνFµν

]
, Fµν ≡ 2∂[µAν] , (7.20)

where it is apparent that the two sectors completely decouple and we maintain the correct
number of propagating dof’s. Here, we notice that the redundancy of the gauge transfor-
mation of the 2-form is recast as the gauge symmetry of the Stüeckelberg field Aµ, while
the restored gauge symmetry generated by θ only affects the 2-form so the Stückelberg field
becomes gauge invariant in the decoupling limit, as it is apparent from its transformation
A → A−mθ.
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We can proceed similarly with the dual formulation of the theory given by (7.17) where
the Stückelberg trick now amounts to replacing

Aµ → mAµ + ∂µφ , (7.21)

with φ the Stückelberg field, so the massless limit of the dual description gives

Sdual,m→0 =

∫
d4x
√
−g
[
−1

4
FµνFµν −

1

2
∂µφ∂

µφ

]
. (7.22)

The dual actions in the massless limit (7.20) and (7.22) clearly describe the same dynamics
with a gauge vector field and a scalar dof that is described by φ and the massless 2-form Bµµ
respectively, thus preserving the duality relation in the massless limit. We have obtained
this massless limit for the free theories, but the same can be shown for interacting theories,
although in that case the coupling constants must also be appropriately included in a suitable
decoupling limit. To see how this is achieved it is convenient to start from the first order
formulation of the theory, so let us start from the interacting theory

S =

∫
d4x
√
−g
[
−1

2
Πµνρ∂[µBνρ] +

1

12
ΠµνρΠ

µνρ − 1

4
m2BµνB

µν + g4(BµνB
µν)2

]
, (7.23)

with g4 some coupling constant. We can Stückelbergsize this action as before and take the
decoupling limit

m→ 0, g4 → 0 with Λ ≡ m

g
1/4
4

fixed (7.24)

so the action reads

Sdec =

∫
d4x
√
−g
[
−1

2
Πµνρ∂[µBνρ] +

1

12
ΠµνρΠ

µνρ − 1

4
FµνFµν +

1

Λ4
(FµνFµν)2

]
, (7.25)

that describes a free massless 2-from field in the first order formulation plus an interacting
U(1) gauge field in its second order formulation so (7.25) is a Routhian of the system. We
can proceed similarly for the dual of (7.23) that is given by

Sdual =

∫
d4x
√
−g
[
−Πµν∂[µAν] −

1

2
AµA

µ +
m2

4
ΠµνΠµν + g4(ΠµνΠµν)2

]
. (7.26)

We can now Stückelbergise this action and take the same decoupling limit m, g4 → 0 with Λ
fixed. Before that, we will express the action in the second order formalism first. For that,
we use the equation for Πµν

2∂[µAν] = m2Πµν

(
1 +

4m2

Λ4
Π2

)
(7.27)

that, at leading order in the decoupling limit, yields:

Fµν = 2∂[µAν] ' m2Πµν . (7.28)

We can insert this solution into the action to obtain the decoupling limit

Sdual,dec =

∫
d4x
√
−g
[
−1

4
FµνFµν +

1

Λ4
(FµνFµν)2 − 1

2
(∂φ)2

]
, (7.29)

that gives the same theory (7.25) with a self-interacting gauge vector field and the scalar field
accounts for the decoupled massless 2-form in (7.25). Thus, we see how the duality persists
when appropriately taking the massless limit and, in particular, no conundrum arises due to
the different number of propagating dof’s for a massive and an exactly massless 2-form field.
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7.3 Cosmological configurations

Since the 2-form is massive, we do not have internal symmetries at our disposal to construct
homogeneous and isotropic solutions mixing external and internal generators. Thus, we can
only use the usual realisations of a cosmological residual ISO(3) in terms of the Lorentz
generators. Given the nature of the massive 2-form field, it is not possible to construct
homogeneous and isotropic configurations or, more precisely, the only possibility is having
a trivial 2-form field Bµν = 0. Any other configuration with a non-trivial B0i or Bij will
necessarily introduce a preferred direction. This property might seem in contradiction with
the dual formulation of the theory in terms of a Proca field. In this case, we can construct
a homogeneous and isotropic configuration given by Aµ = (A0(t), 0) with A0 6= 0. This
apparent contradiction can be solved by looking at the regularity condition of the dualisation.
The background equation of motion of the vector field is given by

A0HA = 0 , (7.30)

where HA is evaluated at the background, Aµ = (A0, 0),Πµν = 0. The branch A0 = 0
corresponds to the trivial configuration of the 2-form Bµν = 0 while the vector description
possesses a different branch A0 6= 0 given by a root of HA = 0. Hence, the non-trivial
cosmological solution of the vector field is the singular point of the dualisation and thus
there is no corresponding solution in the 2-form description.

There is an interesting class of cosmologies based on rapidly oscillating massive vector
fields. It was shown in [45] (see also the generalisations [46, 47]) that a spacelike vector
field that oscillates rapidly gives rise to an energy-momentum tensor that is isotropic when
averaged over several oscillations. This opens the possibility of having isotropic (averaged)
cosmologies driven by massive spin 1 fields in spacelike configurations. Since a massive vector
field is dual to a massive Kalb-Ramond field as long as the regularity conditions hold, it is
then also possible to have cosmologies with oscillating massive Kalb-Ramond fields. It would
be interesting to work out the description of these cosmologies in terms of the dual 2-form.

7.4 Massive multi-Kalb-Ramond

At this point, it should be obvious to see that the massive version of the multi-Kalb Ramond
will be dual to a multi-Proca field theory. We do not intend to develop the entire dualisation
procedure here, but we will simply point out some interesting phenomenological consequences
that the massive multi-Kalb-Ramond theories bring about and that are not present in the
massless case. Let us consider a theory for three massive multi-Kalb-Ramond fields Ba

µν

with an internal SO(3) global symmetry. Then, we can consider a background configuration
of the form

Ba
ij = B(t)εaij (7.31)

that preserves a diagonal SO(3) mixing internal and spatial rotations. On this background,
we can perform perturbations of the 2-form fields δBa

µν and we decompose them into irreps
of the unbroken rotational symmetry of the background. The important feature to notice

is that we can construct the perturbation tij ≡ δB
(a
kl ε

b)klδaiδbj , whose transverse traceless
part precisely transforms as a helicity-2 mode. Thus, these theories will give rise to a second
helicity-2 mode that will naturally mix with the usual gravitational waves at linear order.
In these scenarios, we might expect to obtain signatures in the signals of gravitational waves
emitted by binary sources since they will mix with this second cosmological tensor mode in
their propagation from the source to the detectors, thus giving rise to oscillations. These
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oscillations will imprint effects like those studied in e.g. [48, 49]. The presence of this second
tensor mode for the considered background configuration is reminiscent of the dual version
of these scenarios in terms of massive vector fields (see e.g. [50–52]). These theories support
cosmological solutions with the configuration Aaµ = A(t)δaµ. The perturbations around this
background can be arranged to construct fij ≡ δa(iδA

a
j), whose transverse traceless part

gives rise to a second tensor mode that represents the dual of tij .

7.5 On non-minimal couplings

We will finalise our brief discussion of the massive 2-form theories by succinctly comment-
ing on the possibility of constructing non-trivial and ghost-free non-minimal couplings. We
should stress that we do not intend to provide an exhaustive exploration of all the possi-
ble ghost-free interactions, but we will content ourselves with outlining several approaches to
obtained such interactions. Firstly, we will work with the Stückelberg fields and in the decou-
pling limit where the 2-form field essentially reduces to the field strength of the Süeckelbergs
Bµν → ∂[µAν]. In this decoupling limit, it is clear that the problem reduces to obtaining non-
minimal couplings for an Abelian spin-1 gauge field. Horndeski already tackled this problem
in [53] where he obtained that the only allowed non-minimal term in the Lagrangian (under
some assumptions) is a coupling to the double dual Riemann tensor. In our context, this
implies that the 2-form field admits the ghost-free non-minimal coupling

Lnon-minimal ⊃ LµναβBµνBαβ (7.32)

with Lµναβ ≡ 1
4ε
µνρσεαβγδRρσγδ the double dual Riemann tensor. It is immediate to obtain

that this term reduces to the Horndeski vector-tensor interaction for the Stückelberg fields
in the decoupling limit. It is interesting to obtain the dual of this interaction because it
generates a highly non-trivial non-minimal coupling for the vector field. We can write down
the first order formulation of a theory for a massive 2-form field including this non-minimal
coupling as

S =

∫
d4x
√
−g
[
−1

2
Πµνρ∂[µBνρ] +H(YΠ, B) + aLµναβBµνBαβ

]
(7.33)

with a some parameter. Since the non-minimal coupling does not depend on the conjugate
momentum, we can integrate it out as in the absence of the non-minimal coupling. Instead,
by performing the dualisation as defined in (7.2), we obtain the dual action

S =

∫
d4x
√
−g
[
−Πµν∂[µAν] +H(A,ZΠ) + aRµναβΠµνΠαβ

]
, (7.34)

where now the non-minimal coupling does depend on the conjugate momentum. To obtain
the second order form of the theory, we need to integrate Πµν out, whose equation is now
given by

Fµν =
(
−HZΠ

gµαgνβ + 4aRµναβ

)
Παβ. (7.35)

This algebraic equation can be solved for Πµν and plugged back into (7.34) to obtain the
second order formulation of the theory. However, the resulting Lagrangian will now include
the non-minimal coupling in a highly non-trivial way. Since, as we have argued, the orig-
inal formulation in terms of the 2-form relates to the ghost-free Horndeski interaction in
the decoupling limit, the same property will persist in the dual formulation, although in a
substantially less trivial manner.
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Another approach to construct non-minimal couplings for the 2-form is to proceed in the
reverse order, i.e., we can start from the healthy non-minimal couplings of a 1-form and then
proceed to perform the dualisation to the 2-form. However, this procedure is not easy (and
sometimes not even possible to do) for general non-minimal couplings. The main difficulty
arises from derivative interactions that are not constructed in terms of the field strength.
There is nevertheless a sub-class of interactions that can be straightforwardly dualised. To
exemplify this, let us consider the non-minimal coupling GµνAµAν .13 This interaction can be
treated in an analogous way to the vector-Horndeski interaction. We can write down the first
order formulation of the 1-form field and simply add this non-minimal coupling, which will
not affect the procedure of integrating out the conjugate momentum. We can then dualise the
theory to the 2-form description and, in that formulation, integrate out the corresponding
conjugate momentum. Since now the dualisation of the non-minimal coupling GµνAµAν
generates a term GµνεµαβγενλρσΠαβγΠλρσ, integrating out Πµνρ to obtain the second order
formulation of the theory will generate a highly non-trivial non-minimal coupling.

Let us finally mention that one could also use the findings of [56] for non-minimally
coupled perfect fluids to construct other classes of non-minimal couplings for a massless
Kalb-Ramond field since by exploiting the fact that perfect fluids can be described in terms
of these fields.

8 Discussion

In this work we have considered cosmologies driven by Kalb-Ramond fields where the ho-
mogeneity and isotropy of the universe are achieved by a combination of the usual spatial
transformations and internal symmetries of the Kalb-Ramond fields. We have commenced
with a single massless Kalb-Ramond field and extensively exploited its duality relation with
shift symmetric scalar fields, emphasising the dual realisations of the cosmological princi-
ple in the two dual descriptions of the theories. In particular, we have discussed the usual
weak/strong regimes of theories related by a duality transformation. We have also shown
that slow roll inflationary solutions supported by a massless 2-form field comes hand in hand
with Laplacian instabilities, thus recovering the known result for the dual scenario with
shift-symmetric scalar fields. An interesting outcome of our study is the dual description of
super-fluids in terms of a massless 2-form and the description of the EFT of cosmological
perturbations in terms of the 2-form. We have worked out some explicit examples of duali-
ties and pointed out the singular character of some theories like the cuscuton for which the
dualisation procedure is ill-defined. This model belongs to the class of symmetric superflu-
ids analysed in [37]. It would be interesting to obtain the duals of the generic symmetric
superfluids unveiled in that work and understand the dual realisation of the symmetries.

We have then studied a scenario with multipole Kalb-Ramond fields with an internal
SO(3) symmetry. In this context, we have seen how the internal SO(3) symmetry permits
to construct another class of cosmological solutions with a non-trivially realised cosmological
principle. We have explicitly constructed the dualised theory in terms of three scalar fields
that make it apparent how the considered multi-Kalb-Ramond theory represents the dual
realisation of the EFT of a solid. Within this scenario, we have analysed the perfect fluid
limit with an enhanced symmetry in the two dual formulations with scalar and 2-form fields.

13A similar procedure has been used in [54] (see also [55]) to obtain non-minimal couplings for a massless
2-form field starting from a derivative coupling of a scalar field to the Einstein tensor, which would correspond
to the decoupling limit of the interaction we have considered here.
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Finally, the more symmetric super-fluid limit has also been explicitly constructed, recovering
once again the duality between shift-symmetric scalars and Kalb-Ramond fields. Although
in this work we have unveiled some of the properties of the dual formulation of the solid in
terms of Kalb-Ramond fields, a more thorough analysis would be interesting to carry out,
especially in terms of how the symmetries are realised in both formulations (for the solid and
its more symmetric partners the fluids) and their potential relation to cosmological adiabatic
modes.

After exploring the massless case at some length, we have extended our analysis to
massive 2-form fields. The absence of an internal gauge symmetry prevents the construc-
tion of a non-trivially realised cosmological principle. The massive Kalb-Ramond field is
now dual to a Proca field and we have briefly discussed the potential construction of cos-
mological solutions dual to known cosmologies supported by massive vector fields. We have
however shown how the configurations supported by a homogeneous pure temporal vector
field correspond to a singular dualisation in the simplest cases. From the massive 2-form
field we have discussed how to appropriately take the massless limit in a way that preserves
the number of propagating degrees of freedom. By this procedure, we have recovered the
known result that the massless limit of a massive 2-form reduces to two decoupled sectors
conformed by a massless vector field plus a shift symmetric scalar field. We have argued how
the massive multi-Kalb-Ramond theories do permit non-trivial realisations of the cosmolog-
ical principle and discussed how these configurations naturally lead to cosmologies with a
second helicity-2 mode that permits having oscillations of gravitational waves. Finally, we
have mentioned how to construct ghost-free non-minimal couplings. It is known that gravity
theories formulated in geometrical frameworks beyond the Riemannian realm are plagued by
ghost-like instabilities and the source of these pathologies can, in many cases, be traced back
to a pathological character of a 2-form field, usually associated to the a certain sector of the
torsion. In this sense, unveiling healthy non-minimal couplings for the 2-form can pave the
way to constructing healthy gravity theories without the mentioned pathologies.

A natural question to ask is why should we care about these cosmological scenarios
with 2-form fields when they can be dualised to seemingly simpler theories with scalar or
vector fields. We can mention several reasons. Firstly, the dual formulations can unveil new
properties that can be obscure with scalars or vector fields. One example is the case of the
solid cosmology where the homogeneity requires a combination of spatial translations and
internal translations in the target space, while the formulation with 2-forms makes the homo-
geneity trivial. The price to pay is having to work with the redundancies introduced by the
gauge symmetries. Another reason to consider the dual formulation is the usual weak/strong
coupling regimes of dual theories so the regime of strong coupling in the scalar or vector field
formulations could be tackled by dualising the theories and working with weakly coupled
2-form fields. From a pure phenomenological standpoint alone, one can argue that theories
that appear very natural in one formulation could be very contrived in the dual formulation
so it is worth and desirable to explore the model-building potential in both descriptions.
This is particularly important when considering matter couplings since the duality proce-
dure typically generates non-local operators in the dual description from local interactions in
the original formulation. Also regarding matter couplings, it is well-known that the kinetic
self-interactions of the shift-symmetric scalar fields permit the presence of screening mech-
anisms of the K−mouflage type. This screening mechanism can of course be dualised and
described in terms of 2-forms, but the resulting matter couplings will be non-local and an
appropriate analysis of the screening becomes more contrived. On the other hand, 2-form
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fields naturally couple to strings so charged strings act as sources of the Kalb-Ramond field.
In this situation, we will also have a K−mouflaged screening for the interaction between
strings mediated by the Kalb-Ramond field, with potential phenomenological consequences
for cosmic strings. The analogous screening in the dual description in terms of a scalar field
would in this case be more contrived. We hope to return to these issues in a future work.
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Appendix

A Duality in the presence of higher order derivatives

In Sec. 3.2 we discussed how the dualisation in the presence of higher order terms cannot be
established by following the same procedure as for the leading order terms with first order
derivatives. In this appendix we will show more explicitly how the duality for higher order
derivative theories of scalars and 2-forms fails and how one can find dual theories in those
cases (which will thus describe different theories). Let us commence by considering the higher
order Lagrangian for a scalar field described by the Lagrangian:

L = F (X,�φ). (A.1)

We can reduce the order of the Lagrangian by introducing appropriate non-dynamical fields
as follows:

L = F (X,Σ) + λ
(
�φ− Σ

)
. (A.2)

If we integrate out the auxiliary field Σ by solving its equation of motion so we have Σ =
Σ(X,λ), we obtain the equivalent Lagrangian:

L = −∂µλ∂µφ+ F(X,λ) (A.3)

with F = [F (X,Σ)−λΣ]|Σ(X,λ). This form of the Lagrangian makes apparent two important
facts. Firstly, the absence of a proper kinetic term for λ, i.e., the Lagrangian does not contain
(∂λ)2, prevents having a positive definite kinetic sector so, if both fields are dynamical, one
of them must be a ghost. Secondly, the field λ does not have a shift symmetry and this fact
obstructs the dualisation procedure considered in this work. Notice that this was not obvious
in the original form of the Lagrangian (A.1) where there is a shift symmetry.

We can apply the general procedure to the following specific Lagrangian

L = −1

2
(∂φ)2 +

1

2Λ2
(�φ)2. (A.4)
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to obtain the equivalent Lagrangian

L = −1

2
(∂ϕ)2 +

1

2
(∂λ)2 − 1

2
Λ2λ2 (A.5)

where we have diagonalised the kinetic term. We see explicitly how the theory propagates a
ghost whose mass is precisely the scale associated with the higher order derivative term.

We can perform a similar analysis for the higher order Lagrangian for a 2-form

L = G(H2, ∂µH
µαβ). (A.6)

By introducing non-dynamical fields, we can rewrite the Lagrangian as

L = G(H2,Σµν) + λαβ

(
∂µH

µαβ − Σαβ
)
. (A.7)

Notice that both λµν and Σµν are antisymmetric fields. By integrating out Σµν we obtain
the equivalent Lagrangian

L = −∂[µλνρ]H
µνρ + G(H2, λµν) (A.8)

with
G =

[
G(H2,Σ)− λµνΣµν

]
Σ(H2,λ)

. (A.9)

Again, we see that the 2-form λµν does not have a proper kinetic term so that the theory nec-
essarily propagates a ghost because the kinetic matrix is not positive definite. Furthermore,
λµν does not have a gauge symmetry so the theory propagates four dof’s as it corresponds
to a massive plus a massless 2-forms.

We can again apply the general procedure to the specific Lagrangian14

L = − 1

12
H2 − 1

2Λ2
(∂µH

µαβ)2 (A.10)

that admits the equivalent representation

L = − 1

12
H2(B) +

1

3
H2(λ)− 1

2
Λ2λαβλ

αβ, (A.11)

where we have diagonalised to exhibit the ghostly nature of one of the 2-form fields in an
explicit manner and its mass Λ2 that coincides with the scale of the higher order term. Being
one of the 2-forms massive, we thus arrive at the same conclusion that the duality procedure
to a higher derivative scalar field cannot be performed. At best, we could dualise the massless
2-form to a scalar and the massive 2-form to a massive vector field.

This simple example makes it apparent how the higher order derivative terms for the
scalar field and the 2-forms introduce different numbers of dof’s, thus obstructing the duality
procedure. Of course, this result can be extended straightforwardly to general self-interacting
fields.

It is important to notice that we can still obtain some sort of dual theories for both the
scalar field and the 2-form theories with higher order derivatives. They just do not happen to
be related in a simple manner in general. Let us corroborate this by dualising both theories.

14The term ∂µHνρσ∂
µHνρσ is equivalent to (∂µH

µαβ)2 via integration by parts so, at this order, this is the
most general Lagrangian.
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We will now consider the more general theory featuring second derivatives of a scalar
field described by the following Lagrangian

L = F (∂µφ, ∂α∂βφ). (A.12)

We first rewrite this Lagrangian in the first order form

L = πµ
(
∂µφ−Aµ

)
+ Σµν∂(µAν) +H(A,Σ). (A.13)

It is immediate to check that we can solve the non-dynamical equations for Σµν and π to
obtain Aµ = ∂µφ and Σµν = Σµν(∂µφ, ∂α∂βφ) that we can plug back to recover the original
Lagrangian with F = Σµν∂(µAν) +H(A,Σ). Alternatively, we can solve the equation for φ

∂µπ
µ = 0 ⇒ πµ = εµνρσ∂[νBρσ] (A.14)

for some 2-form field Bµν . The Lagrangian can then be recast as

L = −εµνρσAµ∂[νBρσ] + Σµν∂(µAν) +H(A,Σ), (A.15)

where B represents the dual of φ regarding the first order operators. From here we can follow
different paths to obtain equivalent dual theories depending on which of the fields we decide
to integrate out, i.e., how we want to describe the higher order operators. Alternatively, we
can use the Hodge dual Aνρσ = εµνρσA

µ to rewrite the Lagrangian as

L = −Aνρσ∂[νBρσ] −
1

6
∂µΣ̃µνρσAνρσ +H(A, Σ̃), (A.16)

where we have defined Σ̃µ
ρσλ ≡ Σµνενρσλ. Again, we can integrate out different fields to

reach different dualisations of the original higher order Lagrangian.
We will not delve into the different options that can be explored, since it is not our

purpose to perform a detailed analysis of the dualisations of higher order operators in this
Appendix. Instead, we will now show how the analogous construction can be carried out for
a 2-form. Thus, let us consider the Lagrangian

L = G(Hµνρ, ∂αHµνρ). (A.17)

Its first order form can be written as

L = Πµνρ
(
Hµνρ −Aµνρ

)
+ Σµνρσ∂µAνρσ +H(A,Σ), (A.18)

from which we can recover the original higher order form by integrating out Πµνρ and Σµνρσ.
On the other hand, we can solve the equation for the 2-form ∂µΠµνρ = 0 that implies
Πµνρ = εµνρλ∂λϕ to obtain the equivalent Lagrangian

L = −εµνρλAµνρ∂λϕ+ Σµνρσ∂µAνρσ +H(A,Σ), (A.19)

that can also be written in terms of Aλ = 1
6ε
µνρλAµνρ as

L = −6Aλ∂λϕ+ Σ̃µλ∂µAλ +H(A, Σ̃), (A.20)

with Σ̃µ
λ ≡ Σµνρσενρσλ. Again, the scalar field ϕ represents the dual of the original 2-

form, while the dualisation corresponding to the higher order operators can be performed

– 47 –



in different ways depending on which non-dynamical field we decide to integrate out. For
our purpose here, it is sufficient to notice that (A.15) and (A.20) describe different theories
and do not represent dual descriptions of the same theory as it was made manifest from our
analysis above that showed the mismatch in the number of propagating dof’s. We can insist
once more that this is not really relevant from an EFT perspective. As a matter of fact, if
we integrate out all the fields but the scalar and the 2-form (i.e., A and Σ), it is easy to see
that both theories share the same leading-order EFT below the corresponding ghost scale
and the different dof’s only manifest themselves in the higher order corrections. It would be
interesting in any case to perform a more detailed analysis of the dual theories, expressed in
e.g. (A.15) and (A.20), that we have obtained.

B On incomplete gauge fixing

In this appendix we will discuss how a part of the equations of motion is lost when we
incompletely fix a gauge at the level of the action and how this missing equation of motion
can be recovered. For simplicity, we consider the self-interacting Kalb-Ramond field in flat
spacetime:

S[Bµν ] =

∫
d4xF (Y ) . (B.1)

The general variation keeping the boundary term is given by

δS =

∫
d4x

[
1

2
EµνδBµν −

1

2
∂µ(FYH

µνρδBνρ)

]
(B.2)

where
Eµν ≡ ∂ρ(FYHµνρ) . (B.3)

Hence, the Euler-Lagrange equation is Eµν = 0 which can be decomposed as

E0i = 0 , E ij = 0 . (B.4)

On the other hand, the variation must identically vanish for δBµν = 2∂[µθν] for any θµ(t, ~x)
by virtue of the gauge invariancee of the Lagrangian. We consider θµ(t, ~x) with a compact
support in spacetime to ignore the boundary term. Then, we find

0 ≡ δθS =

∫
d4xEµν∂µθν = −

∫
d4x∂µEµνθν , (B.5)

yielding the identities

∂µEµ0 = ∂iE i0 ≡ 0 , (B.6)

∂µEµi = ∂0E0i + ∂iE ij ≡ 0 . (B.7)

The first identity (B.6) shows that the longitudinal part of E i0 is a redundant equation and
(B.7) concludes that the transverse part of E i0 is related to E ij .

Next, we consider the gauge-fixed action

Sgf [Bij ] =

∫
d4xF (Y )|B0i=0 (B.8)
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whose variation leads to

δSgf =

∫
d4x

[
1

2
E ijδBij −

1

2
∂µ(FYH

µijδBij)

]
B0i=0

. (B.9)

Therefore, we only find the Euler-Lagrange equation

E ij |B0i=0 = 0 (B.10)

from the gauge-fixed action while the original gauge-fixed equations are

E0i|B0i=0 = 0 , E ij |B0i=0 = 0 . (B.11)

The equation E0i|B0i=0 = 0 is lost in the gauge-fixed action (B.8). One may notice that the
identities (B.6) and (B.7) may be used to recover the missing equations of motion. Indeed,
we know that the longitudinal part of E0i|B0i=0 = 0 is a redundant equation, so we only need
to recover the transverse part of E0i|B0i=0 = 0 which we denote by ~ET |B0i=0 = 0. By using
(B.7), we find

E ij |B0i=0 = 0 =⇒ ∂0
~ET |B0i=0 = 0 . (B.12)

However, this is a differential equation of E0i|B0i=0 and the generic solution is

~ET |B0i=0 = ~J T (~x) , s.t. ∇ · ~J T (~x) = 0 , (B.13)

where ~J T (~x) is an integration constant. Hence, the gauge-fixed action is consistent with the
original action if and only if we set ~J T (~x) = 0.

The apparent freedom in the choice of ~J T is related to the undetermined part of the
gauge parameter. The gauge-fixed action (B.8) enjoys the (infinite number of) global sym-
metries

Bij(t, ~x)→ Bij(t, ~x) + 2∂[iθ
T
j](~x) , s.t. ∂iθTi (~x) = 0 , (B.14)

which is originally a part of the gauge symmetry of the 2-form; thus, the gauge condition
B0i = 0 is not a complete gauge-fixing. By substituting δBij = 2∂[iθ

T
j](~x) with a compact

support θTi (~x) in space, we obtain the identity

0 ≡ δθTSgf =

∫
d4x

[
E ij∂iθTj − ∂0(FYH

0ij)∂iθ
T
j

]
B0i=0

=

∫
d4xθTj (~x)

[
−∂iE ij − ∂0J T i

]
B0i=0

(B.15)

where
J T i ≡ ∂j(FYH0ij)|B0i=0 , (B.16)

is interpreted as a conserved charge associated with the global symmetry (B.14). If we only
know the gauge-fixed action (B.14), the symmetry of the theory is the global one and we
may not exclude the existence of the charge. However, the transformation (B.14) should be
regarded as a part of the original gauge transformation, leading to a consistency condition: we
have to restrict solutions to ones having no charge J T i = 0 at an initial spacelike hypersurface.
Indeed, the condition J T i = 0 coincides with the missing equation of motion ~ET |B0i=0 = 0
and the identity (B.15) guarantees that J T i = 0 holds at any time when it is satisfied at
the initial hypersurface. This concludes that the gauge-fixed action (B.8) can reproduce the
consistent equations of motion by choosing the appropriate initial condition.
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