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We study vector-tensor theories in which a 4-dimensional vector field Aμ is coupled to a vector quantity 
J μ, which is expressed in terms of Aμ and a metric tensor gμν . The divergence of J μ is equivalent 
to a Gauss-Bonnet (GB) term. We show that an interacting Lagrangian of the form f (X)AμJ μ, where f
is an arbitrary function of X = −(1/2)Aμ Aμ, belongs to a scheme of beyond generalized Proca theories. 
For f (X) = α = constant, this interacting Lagrangian reduces to a particular class of generalized Proca 
theories. We apply the latter coupling to a static and spherically symmetric vacuum configuration by 
incorporating the Einstein-Hilbert term, Maxwell scalar, and vector mass term ηX (η is a constant). Under 
an expansion of the small coupling constant α with η �= 0, we derive hairy black hole solutions endowed 
with nonvanishing temporal and radial vector field profiles. The asymptotic properties of solutions around 
the horizon and at spatial infinity are different from those of hairy black holes present in scalar-GB 
theories. We also show that black hole solutions without the vector mass term, i.e., η = 0, are prone to 
ghost instability of odd-parity perturbations.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

General Relativity (GR) has been well tested in solar-system experiments [1] and submillimeter laboratory tests of gravity [2,3]. If we 
go beyond the solar-system scales, however, there are several unsolved problems such as the origins of dark energy and dark matter 
[4,5]. At very high energy close to the Planck scale, we also believe that GR should be replaced by a more fundamental theory with an 
ultraviolet completion. In such extreme gravity regimes, it is expected that some higher-order curvature corrections to the Einstein-Hilbert 
action come into play. These curvature corrections can potentially modify the physics of highly compact objects like black holes (BHs) and 
neutron stars. After the dawn of gravitational wave astronomy [6], one can now probe signatures for the possible deviation from GR in 
strong gravity regimes [7–9].

For the construction of healthy gravitational theories, it is desirable to keep the field equations of motion up to second order in the 
metric tensor gμν . In this case, one can avoid so-called Ostrogradski instability [10,11] arising from higher-order derivative terms. Using 
a general class of Lagrangians containing polynomial functions of Riemann curvature tensors, Lanczos [12] and Lovelock [13] constructed 
gravitational theories with second-order field equations of motion. In the 4-dimensional spacetime, the field equations uniquely reduce 
to those in GR. In spacetime dimensions D higher than 4, Lanczos and Lovelock theories differ from GR and have richer structures. In 
particular, there is a quadratic-order curvature scalar known as a Gauss-Bonnet (GB) term modifying the spacetime dynamics in D > 4
dimensions [14].

When D = 4, the GB term is a topological surface term which does not contribute to the field equations of motion. If there is a scalar 
field φ coupled to the GB term G of the form μ(φ)G , where μ is a function of φ, the 4-dimensional spacetime dynamics is modified 
by the scalar-GB coupling. In string theory, for example, the low energy effective action contains a coupling between the dilaton field φ
and G of the form e−λφG [15–17]. If we apply the scalar-GB coupling μ(φ)G to a spherically symmetric configuration, it is known that 
there are hairy BH and neutron star solutions with nontrivial scalar field profiles [18–37]. The role of the same scalar-GB coupling in 
cosmology has been also extensively studied in the literature [38–64]. We note that the extension to more general scalar-GB couplings 

* Corresponding author.
E-mail address: tsujikawa@waseda.jp (S. Tsujikawa).
https://doi.org/10.1016/j.physletb.2023.138022
0370-2693/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
SCOAP3.

https://doi.org/10.1016/j.physletb.2023.138022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2023.138022&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:tsujikawa@waseda.jp
https://doi.org/10.1016/j.physletb.2023.138022
http://creativecommons.org/licenses/by/4.0/


K. Aoki and S. Tsujikawa Physics Letters B 843 (2023) 138022
f (φ, G) containing nonlinear functions of G leads to instabilities of scalar perturbations associated with the nonlinear GB term during 
decelerating cosmological epochs [65] (see also Refs. [66–72]).

The linear scalar-GB coupling φG has a peculiar property in four dimensions. The action 
∫

d4x
√−g φG is invariant under the global 

shift of the scalar field φ → φ +c with c being constant, as the integral c
∫

d4x
√−g G is a boundary term. When a theory enjoys the global 

symmetry, one may promote it to a local symmetry by introducing a gauge field Aμ and replacing derivatives with covariant derivatives. 
When the shift symmetry is localized, the scalar field φ corresponds to a gauge mode and can be eliminated by fixing the gauge. Then, 
the resulting theory is a vector-tensor theory having three dynamical degrees of freedom (DOFs) on top of the DOFs of spacetime metric 
gμν (cf., Refs. [73–75]). In this paper, we shall apply this idea to the linear scalar-GB coupling and find a vector-tensor theory analogous 
to the scalar-GB theory.

In practice, the above procedure requires to find a vector quantity J μ whose divergence is equivalent to G , i.e., ∇μJ μ = G , by which 
the linear scalar-GB coupling can be recast in the form − 

∫
d4x

√−g ∇μφJ μ via integration by parts. The integral J μ may not be unique 
since it is defined only through the differential equation ∇μJ μ = G . One form of J μ , which is expressed in terms of a scalar field and 
Riemann tensor, is found in Ref. [76]. On using this expression of J μ = J μ[φ, g] and the property G = ∇μJ μ , it is possible to prove 
that the scalar-GB coupling μ(φ)G belongs to a subclass of Horndeski theories [77] after the integration by parts [34]. We note that the 
equivalence between the scalar-GB coupling and Horndeski theories was originally shown in Ref. [78] by taking the approach of field 
equations of motion.

We will find an alternative expression of J μ by using a vector field Aμ , where J μ =J μ[A, g] satisfies the same relation ∇μJ μ = G . 
As a candidate for a Lorentz-invariant scalar characterizing the coupling between Aμ and the integrated GB term in vector-tensor theories, 
we propose the Lagrangian AμJ μ . We will show that the interacting Lagrangian AμJ μ is equivalent to a subclass of generalized Proca 
(GP) theories with second-order field equations of motion [79–83], and by construction, it reduces to a linear scalar-GB coupling in 
a certain limit. We will also extend the analysis to a more general Lagrangian f (X)AμJ μ , where f is an arbitrary function of X =
−(1/2)Aμ Aμ . In this case, the resulting vector-tensor theory is shown to be equivalent to a class of beyond GP theories originally proposed 
in Ref. [84] (see also Ref. [85]). Since beyond GP theories correspond to a healthy extension of GP theories with the same dynamical DOFs, 
we are now able to construct healthy theories of a vector field coupled to the integrated GB term.

We will also apply the interacting Lagrangian αAμJ μ (α is a coupling constant) to the search for hairy BH solutions on a static 
and spherically symmetric background. For this purpose, we also take into account the Einstein-Hilbert term, Maxwell term, and vector 
mass term ηX , where η is a constant. The coupling αAμJ μ is equivalent to a Lagrangian of the quintic-order coupling function G5(X) =
4α ln |X | in GP theories. In Refs. [86,87], it was shown that there are no hairy BH solutions with regular vector field profiles for the 
positive power-law quintic functions G5 ∝ Xn with n ≥ 1. However, we will show that this is not the case for G5(X) = 4α ln |X |. Under an 
expansion of the small coupling constant α, we derive solutions to the temporal and radial vector components around the BH horizon and 
at spatial infinity. Numerically it is challenging to perform accurate integrations due to the existence of a rapidly growing mode arising 
from the mass term ηX , but we are able to find out solutions that mimic the asymptotic behavior in some large-distance regions. In 
comparison to hairy BHs present for the linear scalar-GB coupling, the behavior of hairy BH solutions for η �= 0 is different both around 
the horizon and at large distances. We will also show that BH solutions for η = 0 suffer from ghost instability of odd-parity perturbations.

This paper is organized as follows. In Sec. 2, we first review the correspondence between the scalar-GB coupling μ(φ)G and the 
Horndeski Lagrangian. We then introduce a vector field J μ whose divergence ∇μJ μ is equivalent to the GB term and show that the 
Lagrangian f (X)AμJ μ belongs to a subclass of beyond GP theories. In Sec. 3, we study static and spherically symmetric BH solutions 
for the coupling αAμJ μ and derive perturbative solutions to Aμ with respect to the small coupling α. We also numerically confirm the 
existence of vector field profiles connecting two asymptotic regimes and analytically estimate corrections to the gravitational potentials 
arising from the vector-GB couplings. Sec. 4 is devoted to conclusions.

2. Coupled vector Gauss-Bonnet theories

The GB curvature invariant is a specific combination of Lanczos [12] and Lovelock [13] scalars. In 4-dimensional spacetime, the GB 
term is given by [88,89]

G = 1

4
δ
μνρσ
αβγ δ Rαβ

μν Rγ δ
ρσ , (2.1)

where δμ1···μk
ν1···νk

= k!δ[μ1
ν1 · · · δμk]

νk
is the generalized Kronecker delta and Rαβ

μν is the Riemann tensor. More explicitly, Eq. (2.1) can be 
expressed as

G = R2 − 4Rμν Rμν + Rμνρσ Rμνρσ , (2.2)

where R is the scalar curvature and Rμν is the Ricci tensor. In 4 dimensions, the GB term is a total derivative and does not contribute to 
the equations of motion while the 4-dimensional spacetime dynamics is modified in the presence of a scalar or vector field coupled to G
or its associated vector.

2.1. Scalar field coupled to the GB term

Let us first briefly revisit the case in which there is a scalar field φ coupled to the GB term of the form μ(φ)G . Because of the 
antisymmetric property of δμ1···μk

ν1···νk
, the field equations of motion following from the coupling μ(φ)G are of second order in the metric 

tensor gμν and the scalar field φ. On using the Riemann tensor and covariant derivatives of φ, the GB term can be expressed in the form 
[34,76]

G = δ
μνρσ
αβγ δ ∇δ

[∇γ ∇ρφ∇σ φ
(

Rαβ
μν − 2 ∇α∇μφ∇β∇νφ

)]
, (2.3)
Xs 3Xs
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where ∇δ is a covariant derivative operator and Xs = −(1/2)∇μφ∇μφ. Substituting this expression of G into the action

SsGB =
∫

d4x
√−g μ(φ)G , (2.4)

and integrating (2.4) by parts, it follows that

SsGB = −
∫

d4x
√−g μ,φ(φ)δ

μνρσ
αβγ δ

1

Xs
∇γ ∇ρφ∇σ φ∇δφ

(
Rαβ

μν − 2

3Xs
∇α∇μφ∇β∇νφ

)
, (2.5)

where g is the determinant of gμν , and we use the notations F ,φ ≡ ∂ F/∂φ and F ,Xs ≡ ∂ F/∂ Xs for any arbitrary function F . We will 
expand the generalized Kronecker delta, integrate the action (2.5) by parts, and exploit the relation [∇μ, ∇ν ]∇αφ = Rα

λμν∇λφ to eliminate 
contractions of the Riemann tensors. Up to boundary terms, the action (2.5) is equivalent to [34]

SsGB =
∫

d4x
√−g

[
G2s − G3s�φ + G4s R + G4s,Xs

{
(�φ)2 − (∇μ∇νφ)(∇μ∇νφ)

}

+G5sGμν∇μ∇νφ − 1

6
G5s,Xs

{
(�φ)3 − 3(�φ) (∇μ∇νφ)(∇μ∇νφ) + 2(∇μ∇αφ)(∇α∇βφ)(∇β∇μφ)

}]
, (2.6)

where Gμν = Rμν − (1/2)gμν R is the Einstein tensor, and

G2s = −8μ,φφφφ(φ)X2
s (3 − ln |Xs|) , G3s = 4μ,φφφ(φ)Xs(7 − 3 ln |Xs|) ,

G4s = 4μ,φφ(φ)Xs(2 − ln |Xs|) , G5s = −4μ,φ(φ) ln |Xs| . (2.7)

The action (2.6) belongs to a subclass of scalar Horndeski theories [77] with second-order Euler equations of motion. Originally, the 
equivalence of scalar-GB theories with Horndeski theories given by the coupling functions (2.7) was shown in Ref. [78] by using the field 
equations of motion. In Ref. [34], the same equivalence was proven at the level of the action (as explained above).

For the linear scalar-GB coupling μ(φ) = −αφ, where α is a constant, we have G5s = 4α ln |Xs| and G2s = G3s = G4s = 0. This falls 
into a subclass of shift-symmetric Horndeski theories where the field equations of motion are invariant under the shift φ → φ + c. In the 
original form of the GB coupling φG , the action is quasi-invariant under the shift φ → φ + c, i.e., invariant up to a total derivative, while 
the Lagrangian in the Horndeski form is manifestly invariant under the shift. For μ(φ) containing nonlinear functions of φ, we generally 
have the φ dependence in G2s, G3s, G4s, G5s . As we mentioned in Introduction, there are BH and neutron star solutions endowed with 
scalar hairs for such scalar-GB couplings.

2.2. Vector field coupled to the integrated GB term

If we want to construct theories in which a vector field Aμ is coupled to the GB term in some way, we need to construct a Lorentz-
invariant scalar appearing in the Lagrangian. For instance, one may consider the coupling Aμ∇μG . However, the equations of motion 
associated with this coupling contain derivatives higher than second order and hence such theories are generally prone to Ostrogradski 
instability. Another possible coupling would be μv(X)G where

X ≡ −1

2
Aμ Aμ . (2.8)

Again, this interaction may summon a ghostly DOF in the longitudinal sector of Aμ which can be understood by taking the decoupling 
of the longitudinal and transverse DOFs. The longitudinal mode becomes manifest by introducing the Stückelberg field according to the 
replacement Aμ → gv Aμ + ∇μφ. Then, the decoupling limit gv → 0 gives X → Xs . The interacting Lagrangian μv(X)G reduces to a 
coupling between the GB term and the derivative of φ, not the scalar field itself, which should yield equations of motion with derivatives 
higher than second order.

As we already explained, the linear coupling −φG has a global shift symmetry and the vector-tensor theory can be obtained by 
localizing this global symmetry. This requires finding a vector field J μ whose divergence agrees with the GB term, ∇μJ μ = G . After 
integration by parts, the coupling −φG becomes ∇μφJ μ[φ, g]. As shown in Eq. (2.5), the action contains the derivatives of φ but not the 
field itself, for the linear coupling μ,φ = −α. The global shift symmetry can be localized by the replacement ∇μφ → ∇μφ + gv Aμ with 
the help of the vector field Aμ . The symmetry transformation is now φ → φ + χ(x), Aμ → Aμ − ∇μχ(x)/gv. The scalar field φ can be 
eliminated by setting the unitary gauge φ = 0. All in all, what we need is the replacement ∇μφ → Aμ , where the gauge coupling gv is 
absorbed into the definition of Aμ . In this way, we can obtain a vector-tensor theory coupled to the integrated GB term.

However, there is an ambiguity in the above procedure. The second derivative ∇μ∇νφ is symmetric in its indices while the replaced 
quantity ∇μ Aν is not symmetric. We resolve this ambiguity by imposing the condition ∇μJ μ = G even after the replacement ∇μφ → Aμ . 
The expression of J μ consistent with such requirement is given by

J μ ≡ δ
μνρσ
αβγ δ

[
Aα∇ν Aβ

X

(
Rγ δ

ρσ − 2

3X
∇ρ Aγ ∇σ Aδ

)]
. (2.9)

In the following, we will show that this vector field satisfies the relation ∇μJ μ = G . In doing so, we use the relation ∇[μRαβ
νρ] = 0 and 

the antisymmetric property of the generalized Kronecker delta. We also exploit the following equality

δ
μ1μ2μ3μ4
ν1ν2ν3ν4 ∇μ1

(
Aν1

2

)
∇μ2 Aν2∇μ3 Aν3∇μ4 Aν4 = − 1

3
δ
μ1μ2μ3μ4μ5
ν1ν2ν3ν4ν5 Aμ1 Aν1∇μ2 Aν2∇μ3 Aν3∇μ4 Aν4∇μ5 Aν5 = 0 , (2.10)
X 2X

3
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together with the expansion of δμ1···μd
ν1···νd

in d dimensions:

δ
μ1···μd
ν1···νd

=
d∑

k=1

(−1)d+kδ
μd
νk

δ
μ1···μk···μd−1
ν1···ν̄k···νd

, (2.11)

where ν̄k means that this index is omitted. Notice that the 5-dimensional generalized Kronecker delta δ
μ1μ2μ3μ4μ5
ν1ν2ν3ν4ν5 vanishes in 4-

dimensional spacetime, whose property was used in the second equality of Eq. (2.10). Then, it follows that

∇μJ μ = F1 +F2 +F3 , (2.12)

where

F1 = δ
μνρσ
αβγ δ

Aα

X
∇μ∇ν Aβ Rγ δ

ρσ , (2.13)

F2 = δ
μνρσ
αβγ δ ∇μ

(
Aα

X

)
∇ν Aβ Rγ δ

ρσ , (2.14)

F3 = −2

3
δ
μνρσ
αβγ δ

Aα

X2
∇μ

(∇ν Aβ∇ρ Aγ ∇σ Aδ
)

. (2.15)

Since ∇μ∇ν Aβ − ∇ν∇μ Aβ = Rβ
λμν Aλ , Eq. (2.13) reduces to

F1 = 1

2
δ
μνρσ
αβγ δ

Aα Aλ

X
Rβ

λμν Rγ δ
ρσ = 1

4
δ
μνρσ
αβγ δ Rαβ

μν Rγ δ
ρσ = G , (2.16)

where, in the second equality, we used the relation

δ
μ1μ2μ3μ4
ν1ν2ν3ν4

(
2Aν1 Aλ

X
Rν2

λμ1μ2 Rν3ν4
μ3μ4 − Rν1ν2

μ1μ2 Rν3ν4
μ3μ4

)
= 1

2X
δ
μ1μ2μ3μ4μ5
ν1ν2ν3ν4ν5 Aμ1 Aν1 Rν2ν3

μ2μ3 Rν4ν5
μ4μ5 = 0 . (2.17)

For the computation of F2, we exploit the following property

δ
μ1μ2μ3μ4
ν1ν2ν3ν4

[
∇μ1

(
Aν1

X

)
∇μ2 Aν2 Rν3ν4

μ3μ4 − Aν1 Aα

X2
Rν2

αμ1μ2∇μ3 Aν3∇μ4 Aν4

]

= − 1

2X2
δ
μ1μ2μ3μ4μ5
ν1ν2ν3ν4ν5 Aμ1 Aν1 Rν2ν3

μ2μ3∇μ4 Aν4∇μ5 Aν5 = 0 . (2.18)

Then, we have

F2 = δ
μνρσ
αβγ δ

Aα Aλ

X2
Rβ

λμν∇ρ Aγ ∇σ Aδ . (2.19)

Expanding the covariant derivative ∇μ in F3 and using the commutation relation of ∇μ∇ν Aβ , we obtain

F3 = −δ
μνρσ
αβγ δ

Aα Aλ

X2
Rβ

λμν∇ρ Aγ ∇σ Aδ = −F2 . (2.20)

On using Eqs. (2.16) and (2.20), Eq. (2.12) yields

∇μJ μ = G . (2.21)

Thus, the divergence of J μ is equivalent to the GB term.
We consider a scalar quantity AμJ μ as a candidate for the ghost-free Lagrangian of the vector field Aμ coupled to the integrated GB 

term. As a generalization, we also multiply an arbitrary function f (X) of X with the scalar product AμJ μ . The interacting part of the 
action in such theories is given by

SvGB =
∫

d4x
√−g f (X)AμJ μ , (2.22)

which is composed of two parts:

SvGB1 =
∫

d4x
√−g δ

μνρσ
αβγ δ

f (X)

X
Aμ Aα∇ν Aβ Rγ δ

ρσ , (2.23)

SvGB2 = −
∫

d4x
√−g δ

μνρσ
αβγ δ

2 f (X)

3X2
Aμ Aα∇ν Aβ∇ρ Aγ ∇σ Aδ . (2.24)

On using the properties ∇μ X = −Aν∇μ Aν and ∇μ ln X = −Aν∇μ Aν/X , we find that Eqs. (2.23) and (2.24) reduce, respectively, to
4
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SvGB1 =
∫

d4x
√−g

[
G5(X)Gμν∇μ Aν

−4 f (X)

X

(
Aρ∇σ Aσ − Aσ ∇σ Aρ

)∇ν∇ρ Aν − 4 f (X)

X

(
Aσ ∇σ Aν − Aν∇σ Aσ

)∇ν∇ρ Aρ

]
, (2.25)

SvGB2 =
∫

d4x
√−g

[
−2 f (X)

3X
δ
μνρ
αβγ ∇μ Aα∇ν Aβ∇ρ Aγ − 3 f5(X)δ

μνρ
αβγ Aα Aλ∇μ Aλ∇ν Aβ∇ρ Aγ

+4 f (X)

X

(
Aρ∇σ Aσ − Aσ ∇σ Aρ

)∇ν∇ρ Aν + 4 f (X)

X

(
Aσ ∇σ Aν − Aν∇σ Aσ

)∇ν∇ρ Aρ

]
, (2.26)

where

G5(X) ≡ 4
∫

d X̃
f ( X̃)

X̃
+ 8 f (X) , f5(X) ≡ −2 f,X

3X
. (2.27)

Taking the sum of SvGB1 and SvGB2, terms on the second lines of Eqs. (2.25) and (2.26) cancel each other. On using the property

f5δ
μνρσ
αβγ δ Aμ Aα∇ν Aβ∇ρ Aγ ∇σ Aδ = 4

3
f,Xδ

μνρ
αβγ ∇μ Aα∇ν Aβ∇ρ Aγ − 3 f5δ

μνρ
αβγ Aα Aλ∇μ Aλ∇ν Aβ∇ρ Aγ , (2.28)

we obtain the reduced action

SvGB =
∫

d4x
√−g

[
G5(X)Gμν∇μ Aν − 1

6
G5,X (X)δ

μνρ
αβγ ∇μ Aα∇ν Aβ∇ρ Aγ + f5(X)δ

μνρσ
αβγ δ Aμ Aα∇ν Aβ∇ρ Aγ ∇σ Aδ

]
. (2.29)

This belongs to a subclass of beyond GP theories proposed in Ref. [84] and thus it is free from the Ostrogradski ghost.
In theories where the function f (X) is constant, i.e.,

f (X) = α = constant , (2.30)

we have

G5(X) = 4α ln |X | , f5(X) = 0 . (2.31)

Note that we dropped a constant term 8α in G5(X), as it does not contribute to the field equations of motion. Since the last term on 
the right hand side of Eq. (2.29) vanishes, the action SvGB belongs to a subclass of GP theories [79,80,82]. We recall that, from Eq. (2.7), 
the linear scalar-GB coupling μ(φ)G with μ(φ) = −αφ corresponds to G5s(Xs) = 4α ln |Xs| with G2s(Xs) = G3s(Xs) = G4s(Xs) = 0. The 
coupling (2.31) is the vector-tensor analogue to the linear scalar-GB coupling in Horndeski theories.

In the following, we will focus on GP theories given by the functions (2.31). Varying the action (2.29) with respect to Aμ , it follows 
that

δSvGB

δAμ
= α

(
J μ +J μ

F

)
, (2.32)

where J μ is defined by Eq. (2.9), and

J μ
F ≡ δ

μνρσ
αβγ δ Aν F αβ

(
1

X2 ∇γ Aρ∇δ Aσ − 1

2X
Rγ δ

ρσ

)
, (2.33)

with F αβ ≡ ∇α Aβ − ∇β Aα . The sum of J μ and J μ
F can be expressed in a compact form

J μ +J μ
F = δ

μνρσ
αβγ δ

[
Aα∇β Aν

X

(
Rγ δ

ρσ − 2

3X
∇γ Aρ∇δ Aσ

)]
. (2.34)

Let us consider the case in which the Maxwell term F ≡ −(1/4)F αβ Fαβ and the mass term X are present in addition to the action 
(2.29) with f (X) = α. The action in such a subclass of GP theories is given by

S =
∫

d4x
√−g

[
1

g2
v

F + ηX + G5(X)Gμν∇μ Aν − 1

6
G5,X (X)δ

μνρ
αβγ ∇μ Aα∇ν Aβ∇ρ Aγ

]
, (2.35)

where gv and η are constants and G5(X) = 4α ln |X |. Varying this action with respect to Aμ , it follows that

1

g2
v
∇ν F μν + ηAμ = α(J μ +J μ

F ) . (2.36)

While the GB term does not explicitly show up in Eq. (2.36), it appears by taking the divergence of Eq. (2.36) as

η∇μ Aμ = αG + α∇μJ μ
F , (2.37)

where we used the relation ∇μ∇ν F μν = 0 and Eq. (2.21).
Taking the decoupling limit gv → 0 with the replacement Aμ → gv Aμ + ∇μφ, we have J μ

F → 0 and hence Eqs. (2.36) and (2.37)
reduce to the Maxwell equation, ∇ν F μν = 0, and the equation of motion for the scalar field, η∇μ∇μφ = αG , respectively. This latter 
scalar field equation also follows by varying the Lagrangian L = ηXs − αφG with respect to φ, so the linearly coupled scalar-GB theory is 
5
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recovered by taking the above decoupling limit. In shift-symmetric Horndeski theories, using the expression of G in Eq. (2.3) shows that 
the scalar field equation can be expressed in the form ∇μ jμ = 0, where jμ is a conserved current. When this equation is solved for jμ , 
there is an integration constant corresponding to boundary/initial conditions of the system.

In vector-tensor theories the equation of motion for the vector field Aμ is given by Eq. (2.36), which does not contain an integration 
constant. Although Eq. (2.37) corresponds to the differential version of Eq. (2.36), one cannot choose an arbitrary integration constant 
when integrating Eq. (2.37). This property is different from that in shift-symmetric Horndeski theories discussed above. If we apply GP 
theories to the isotropic and homogeneous cosmological background, the temporal vector component A0 is always related to the Hubble 
expansion rate H [90–92]. This is known as a tracker solution, in which case we do not have a freedom of changing initial conditions of 
the vector field. In scalar-tensor theories, on the other hand, it is possible to choose initial conditions away from the tracker because of 
the existence of the integration constant said above [93,94]. As a result, one can distinguish between shift-symmetric Horndeski theories 
and GP theories from the background cosmological dynamics.

If we apply linear scalar-GB theory to the static and spherically symmetric background in vacuum, there are hairy BH solutions satis-
fying the boundary condition Xs = 0 on the horizon [24,25]. This boundary condition fixes the integration constant mentioned above [36]. 
In vector-GB theory, the similar boundary condition, like X = 0, cannot be necessarily imposed because of the absence of an arbitrary 
constant in Eq. (2.36). This implies that the BH solution in vector-GB theory should be different from that in linear scalar-GB theory. In 
Sec. 3, we will investigate the property of hairy BH solutions in vector-GB theory.

3. Black hole solutions in vector-GB theory

We study BH solutions by incorporating the Einstein-Hilbert term in the action (2.35). The corresponding action belongs to a subclass 
of GP theories given by

S =
∫

d4x
√−g

[
M2

Pl

2
R + F + ηX + αAμJ μ

]

=
∫

d4x
√−g

[
M2

Pl

2
R + F + ηX + (4α ln |X |)Gμν∇μ Aν − 2α

3X
δ
μνρ
αβγ ∇μ Aα∇ν Aβ∇ρ Aγ

]
, (3.1)

where MPl is the reduced Planck mass and we set gv = 1. Let us consider the static and spherically symmetric background given by the 
line element

ds2 = − f (r)dt2 + h−1(r)dr2 + r2
(

dθ2 + sin2 θ dϕ2
)

, (3.2)

where t , r and (θ, ϕ) represent the time, radial, and angular coordinates, respectively, and f and h are functions of r. We will focus on 
the case of positive mass squared η > 0 as in standard massive Proca theory. For the vector field, we consider the following configuration

Aμ = [A0(r), A1(r),0,0] , (3.3)

where A0 and A1 are functions of r. On the background (3.2), we have

X = A2
0

2 f
− h A2

1

2
, F = h A′2

0

2 f
, (3.4)

where a prime represents the derivative with respect to r. Note that F = −Fμν F μν/4 �= 0 implies a nonvanishing temporal vector compo-
nent; that is, Aμ cannot be expressed by a scalar gradient. Hence, the presence of a nontrivial temporal component A0(r) is essential to 
differentiate solutions in vector-GB theory from those in scalar-GB theory.

Varying the action (3.1) with respect to f and h, respectively, we obtain

M2
Pl f

(
rh′ + h − 1

) + r2h A′2
0

2
+ ηr2

2

(
A2

0 + f h A2
1

)
+ 4α f

(A2
0 − f h A2

1)
2
[2A3

0 A′
0 A1h(h − 1) + 2A0 A′

0 A3
1 f h2(h + 1)

+A4
0{2A′

1h(h − 1) + A1h′(3h − 1)} + A4
1 f 2h2{2A′

1h(h − 1) + A1h′(3h − 1)}
+2A2

0 A2
1 f h{A1h′(1 − 3h) − 2A′

1h(h − 1)}] = 0 , (3.5)

M2
Pl

[
rhf ′ + f (h − 1)

] + r2h A′2
0

2
− ηr2

2

(
A2

0 + f h A2
1

)
+ 4αh A1

(A2
0 − f h A2

1)
2
[2A′

0 A3
0 f (1 − 3h) + 2A2

0 A2
1 f ′ f h(1 − 3h)

+2A′
0 A0 A2

1 f 2h(h − 1) + A4
0 f ′(3h − 1) + A4

1 f ′ f 2h2(3h − 1)] = 0 . (3.6)

Variations of the action (3.1) with respect to A0 and A1 lead, respectively, to

A′′
0 +

(
2

r
− f ′

2 f
+ h′

2h

)
A′

0 − η

h
A0 − 4αA0

r2h(A2
0 − f h A2

1)
2
[A2

0{A1 f ′h(h − 1) + 2A′
1 f h(h − 1) + A1 f h′(3h − 1)}

+A2
1 f h{A1 f ′h(h + 1) + 2A′

1 f h(h + 1) + A1 f h′(1 − h)}] = 0 , (3.7)

ηA1 − 4α

r2 f (A2 − f h A2)2

[
(h − 1)( f ′ f 2h2 A4

1 − 2 f ′ f h A2
0 A2

1 + f ′ A4
0 − 2 f A′

0 A3
0) − 2 f 2h(h + 1)A2

1 A′
0 A0

]
= 0 . (3.8)
0 1

6
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In the absence of the vector-GB coupling (α = 0) with η �= 0, we have A1(r) = 0 from Eq. (3.8). For the asymptotically flat boundary 
conditions where f and h approach 1 at spatial infinity, the large-distance solution to Eq. (3.7) is given by A0 = C1e−√

ηr/r + C2e
√

ηr/r. 
To avoid the divergence of A0 at spatial infinity, we have to choose C2 = 0 and hence A0 = C1e−√

ηr/r at large distances. From Eqs. (3.5)
and (3.6), we obtain the relation ( f /h)′ = ηA2

0r/(M2
Plh

2). Since f /h should be a finite constant on the BH horizon, we need to require that 
A0 = 0. Indeed, the solution consistent with all the background equations and boundary conditions is A0(r) = 0 at any radius. In this case, 
we end up with the Schwarzschild solution with the metric components f = h = 1 − rh/r, where rh is the horizon radius.

For α �= 0, Eq. (3.8) shows that it is possible to realize the solution with A1 �= 0. Moreover, the nonvanishing radial component A1

affects the temporal component A0 through the α-dependent terms in Eq. (3.7). For simplicity, we shall seek solutions with Aμ �= 0 for 
a small coupling constant α and leave general analysis for future work. When α = 0 we only have the trivial solution Aμ = 0, so the 
solutions for a small α may be scaled as Aμ =O(α). Let us express the leading-order solutions to A0 and A1 in the forms

A0(r) = α Ã0(r) , A1(r) = α Ã1(r) , (3.9)

where Ã0 and Ã1 are functions of r. Then, from Eqs. (3.7) and (3.8), we obtain

Ã′′
0 +

(
2

r
− f ′

2 f
+ h′

2h

)
Ã′

0 − η

h
Ã0 − 4 Ã0

r2h( Ã2
0 − f h Ã2

1)
2
[ Ã2

0{ Ã1 f ′h(h − 1) + 2 Ã′
1 f h(h − 1) + Ã1 f h′(3h − 1)}

+ Ã2
1 f h{ Ã1 f ′h(h + 1) + 2 Ã′

1 f h(h + 1) + Ã1 f h′(1 − h)}] = 0 , (3.10)

η Ã1 − 4

r2 f ( Ã2
0 − f h Ã2

1)
2

[
(h − 1)( f ′ f 2h2 Ã4

1 − 2 f ′ f h Ã2
0 Ã2

1 + f ′ Ã4
0 − 2 f Ã′

0 Ã3
0) − 2 f 2h(h + 1) Ã2

1 Ã′
0 Ã0

]
= 0 . (3.11)

As we observe in Eqs. (3.5) and (3.6), the vector field contributions to metric components f and h arise at second order in α. Then, up to 
first order in α, we can exploit the Schwarzschild metric components:

f = h = 1 − rh

r
. (3.12)

We substitute Eq. (3.12) and its derivatives into Eqs. (3.10) and (3.11).
Note that we only need to impose two boundary conditions to solve Eqs. (3.10) and (3.11). Although Eq. (3.10) contains a second-order 

derivative of Ã0, one can express Ã′′
0 with respect to first-order derivatives of Ã0 and Ã1 by differentiating Eq. (3.11). Then, one obtains a 

set of first-order differential equations of Ã0 and Ã1.

3.1. Boundary conditions

Around the horizon, we expand the temporal vector component in the form

Ã0 =
∑
i=0

ai

(
r − rh

rh

)i

= a0 + a1
r − rh

rh
+ a2

(r − rh)
2

r2
h

· · · , (3.13)

where ai ’s are constants. If Ã0 decreases around r = rh , a1 is negative. We are interested in regular vector field solutions where both X
and F are finite on the horizon. The leading-order contribution to F at r = rh is a2

1/(2r2
h). To keep X finite on the horizon, we require that 

the leading-order radial vector component diverges as Ã1 = Ã0/
√

f h = a0r/(r − rh) at r = rh . In this case, we can expand Ã1 in the form

Ã1 = a0
r

r − rh
+

∑
i=0

bi

(
r − rh

rh

)i

= a0
r

r − rh
+ b0 + b1

r − rh

rh
· · · , (3.14)

where bi ’s are constants. Then, we have X = a0(a1 − b0)α
2 + O(r − rh) in the vicinity of r = rh . Substituting Eqs. (3.13)-(3.14) into 

Eqs. (3.10)-(3.11), we find that b0 and b1 are related to a0, a1, and a2 according to

b0 =
2r2

ma1 + r3
ha0a1 ± 2

√
r2

ma1[(a1 − 4a0)r2
m − r3

ha2
0]

4r2
m + r3

ha0
, (3.15)

b1 = [2(a1 − b0)
3a1r2

m + 2a2
0(6a2

1 − 2a1b0 + 4a2b0)r
2
m + 4a0(a1 − b0){a2

1 + a1(a2 − 7b0) − 2(a2 − 2b0)b0}r2
m

−a0(a1 − b0)
3(a0 + b0)r

3
h ]/[4a0a1(2a0 − a1 + b0)r

2
m] , (3.16)

where we set

η ≡ 1

r2
m

. (3.17)

We would like to derive asymptotic solutions of Ã0 and Ã1 approaching 0 at spatial infinity. Note that the GB corrections to (3.10) and 
(3.11) are “zeroth” order in Aμ, that is, the power of Aμ in the denominator and that in the numerator are the same. Therefore, the limit 
Aμ → 0 needs to be carefully analyzed. Since the equation of motion for Ã0 contains a mass term Ã0/r2

m , we search for solutions where 
Ã0 decreases as e−r/rm /r or faster while Ã1 decreases slower than Ã0. Ignoring the Ã0-dependent contributions to Eq. (3.11), it follows 
that
7
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Ã1

r2
m

− 4(h − 1) f ′

r2 f
= 0 . (3.18)

Then, the radial vector component should have the asymptotic behavior

Ã1 = −4r2
hr2

m

r5 , (3.19)

whose amplitude decreases in proportion to r−5. For the last terms of Eq. (3.10) containing the squared bracket, we neglect the Ã0-
dependent contributions and substitute the solution (3.19) into Eq. (3.10). Then, at large distances, we have

Ã′′
0 + 2

r
Ã′

0 − Ã0

r2
m

+ 8r

r2
mrh

Ã0 − 20r2

r2
hr2

m
Ã0 = 0 . (3.20)

Ignoring the third and fourth terms relative to the fifth one in the regime r � rh , we obtain the following asymptotic solution

Ã0 = C1√
r

I1/4

(√
5r2

rhrm

)
+ C2√

r
K1/4

(√
5r2

rhrm

)
, (3.21)

where I1/4 and K1/4 are the Bessel functions of first and second kinds, respectively, and C1, C2 are integration constants. The boundary 
condition avoiding the divergence of Ã0 corresponds to C1 = 0 and hence

Ã0 = C2√
r

K1/4

(√
5r2

rhrm

)
, (3.22)

which decreases as Ã0 ∝ r−3/2e−√
5r2/(rhrm) . Note that this solution decreases even faster than e−r/rm /r, but the discussion for deriving 

Eqs. (3.19) and (3.22) does not lose its validity. Therefore, we have obtained a consistent asymptotic solution (3.19) and (3.22) which 
contains one parameter undetermined by the asymptotic boundary condition Aμ → 0.

3.2. Numerical solutions

In this section, we will numerically study the existence of hairy BH solutions in theories given by the action (3.1). For this purpose, we 
introduce a new variable B̃1 defined by

B̃1 ≡ Ã1 − Ã0

f
, (3.23)

with f = 1 − rh/r. Around the horizon, using the expanded solutions (3.13) and (3.14) leads to

B̃1 = b0 − a1 + (b1 − a1 − a2)
r − rh

rh
+O

(
(r − rh)

2

r2
h

)
. (3.24)

Unlike Ã1, the new variable has a finite value B̃1(rh) = b0 − a1 on the horizon. We also have

X = −α2

2
B̃1(2 Ã0 + f B̃1) , (3.25)

which manifests the regularity of X for finite values of Ã0 and B̃1.
Taking the r derivative of Eq. (3.11) and using Eq. (3.10) to eliminate Ã′′

0, we obtain the first-order differential equation containing Ã′
1. 

We also note that Eq. (3.11) can be regarded as the first-order coupled differential equation for Ã0. Then, the background equations can 
be expressed in the forms

Ã′
0 = F0[ Ã0, B̃1] , (3.26)

B̃ ′
1 = F1[ Ã0, B̃1] , (3.27)

where the functions F0 and F1 depend on Ã0 and B̃1. The right hand sides of Eqs. (3.26) and (3.27) are regular on the horizon.
At large distances (r � rh), Ã0 decreases much faster than Ã1 and hence X � −α2 B̃2

1/2 < 0, where B̃1 � Ã1 = −4r2
hr2

m/r5. Since the 
background Eqs. (3.10) and (3.11) contain terms proportional to X in their denominators, the regularity of these equations means that X
should not change its sign throughout the horizon exterior, i.e., X < 0 for r > rh . In the vicinity of r = rh , we have

X = α2
2a0[a1r2

m ∓
√

a2
1r4

m − a0a1r2
m(4r2

m + a0r3
h)]

4r2
m + a0r3

h

+O
(

r − rh

rh

)
, (3.28)

where the minus and plus signs correspond to the plus and minus signs of b0 in Eq. (3.15), respectively. If we choose the minus branch 
of Eq. (3.28), we have X < 0 for a0 > 0 and a1 < 0. For the plus branch of Eq. (3.28), it is possible to realize X < 0 for a0 < 0 and a1 > 0, 
so long as the condition 4r2

m + a0r3 > 0 is satisfied.
h

8
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Fig. 1. Numerically derived solutions to − Ã0 (red solid) and −B̃1 (blue solid) versus r/rh for rm/rh = 10 with the boundary conditions (i) Ã0(rh) = −0.1/rh , B̃1(rh) =
−0.17026504/rh (left), and (ii) Ã0(rh) = −0.2/rh , B̃1(rh) = −0.34443001/rh (right). Both − Ã0 and −B̃1 are normalized by 1/rh . The dashed red and blue curves represent 
the large-distance analytic solutions to − Ã0 and −B̃1 determined by Eqs. (3.22) and (3.19), respectively.

Around the horizon, we have Ã1 > 0 and Ã′
1 < 0 for a0 > 0 from Eq. (3.14), whereas, for a0 < 0, Ã1 < 0 and Ã′

1 > 0. At spatial infinity, 
Eq. (3.19) gives Ã1 < 0 and Ã′

1 > 0. Then, the branch smoothly matching the solutions in two asymptotic regimes (r � rh and r � rh) 
without the sign changes of Ã1 and Ã′

1 corresponds to the minus sign of b0. We will search for numerical solutions in this latter regime, 
i.e., a0 < 0, a1 > 0, and 4r2

m + a0r3
h > 0. In this case, we have b0 < 0 from Eq. (3.15). Around r = rh , the variable B̃1 behaves as Eq. (3.24), 

whose leading-order term b0 − a1 is negative. The first-order coupled differential Eqs. (3.26) and (3.27) can be integrated outward for two 
given boundary conditions of Ã0(rh) = a0 and B̃1(rh) = b0 − a1.

Since b0 is expressed by using a0 and a1 as Eq. (3.15), choosing two boundary conditions on the horizon amounts to fixing the two 
constants a0 and a1 in the expansion of Ã0 given by Eq. (3.13), with Ã1 = a0r/(r − rh) + b0. While we need two boundary conditions on 
the horizon, there is only one undetermined integration constant C2 at spatial infinity. Two boundary conditions at r = rh may not be 
uniquely fixed even if we impose the regularity on the horizon and Aμ → 0 at spatial infinity. This suggests the existence of a family of 
solutions, which we will address in the following.

Numerically, it is difficult (if possible) to find solutions satisfying Aμ → 0 at spatial infinity because the asymptotic solution generically 
has a nonvanishing growing mode. Instead, we find solutions that smoothly connect to their large-distance analytic solutions at a finite 
distance by using the shooting method. For this purpose, we fix rm = 10rh in our numerical simulations. In this case, unless the boundary 
conditions on the horizon are carefully chosen, the growing-mode solution of Ã0, which corresponds to the first term on the right hand 
side of Eq. (3.21), should manifest itself for the distance r � (10/

√
5)1/2 = 1.4rh . Under appropriate boundary conditions, on the other 

hand, the solutions can match the large-distance analytic solutions at least at certain distances, which we shall regard as our numerical 
solutions.

In the left panel of Fig. 1, we plot the numerically derived values of − Ã0 and −B̃1 versus r/rh as solid lines for rm/rh = 10 with the 
boundary conditions Ã0(rh) = −0.1/rh and B̃1(rh) = −0.17026504/rh . The analytic solutions of − Ã0 and −B̃1 at large distances are also 
shown as dashed lines, which are obtained from Eqs. (3.22) and (3.19) with the choice C2 = −1.6. We observe that both − Ã0 and −B̃1
approach these large-distance solutions around the distance r � 4.5rh . We also find that Ã0 starts to deviate from the decaying mode 
(3.22) for r � 6.5rh , which is followed by the departure of B̃1 from the large-distance solution −4r2

hr2
m/r5. This behavior is attributed to 

the presence of a growing mode (C1/
√

r)I1/4(
√

5r2/(rhrm)) in Ã0. Since such a rapidly growing mode is very sensitive to the accumulation 
of tiny numerical errors, it is challenging to find the exact boundary conditions at r = rh realizing C1 = 0 at spatial infinity.

However, as we have mentioned, the fact that there are regions of the distance in which Ã0 and B̃1 can be well approximated by their 
large-distance analytic expressions means that solutions with the proper asymptotic behavior should exist for the boundary conditions 
close to Ã0(rh) = −0.1/rh and B̃1(rh) = −0.17026504/rh . If we fix Ã0(rh) = −0.1/rh and vary B̃1(rh), we have not found other ranges 
of B̃1(rh) in which − Ã0 and −B̃1 temporally approach their large-distance solutions like the left panel of Fig. 1. If we consider other 
boundary conditions of Ã0(rh) around −0.1/rh , there are solutions which can be well approximated by the large-distance solutions for 
some ranges of r. The right panel of Fig. 1 corresponds to such an example, in which case Ã0(rh) = −0.2/rh and B̃1(rh) = −0.34443001/rh . 
We also found similar cases for Ã0(rh) larger than −0.1/rh , say Ã0(rh) = −0.09/rh , by choosing the values of B̃1(rh) properly. These facts 
show that there are appropriate solutions of Ã0 and B̃1 connecting two asymptotic regimes (r � rh and r � rh) for some ranges of Ã0(rh)

around −0.1/rh . If Ã0(rh) is far away from the order −0.1/rh , it is typically difficult to find the parameter spaces of Ã0(rh) and B̃1(rh) in 
which both Ã0 and B̃1 approach their asymptotic solutions.

We thus showed that, for rm = 10rh , there are some ranges of Ã0(rh) and B̃1(rh) in which the solutions in two asymptotic regimes 
can be smoothly connected. This means that the solutions are not uniquely fixed even for a fixed vector mass term. From Eq. (3.14), 
the radial vector component Ã1 diverges at r = rh . In massless scalar-tensor theories with the linear scalar-GB coupling −αφG , the field 
derivative φ′ for linearly stable hairy BH solutions is finite on the horizon and hence Xs = −(1/2)hφ′ 2 vanishes there [36]. In the latter 
case, the BH solution with Xs(rh) = 0 is uniquely fixed by performing the expansions of scalar field and metrics with respect to the small 
coupling α [24,25,36]. It is also possible to consider the boundary condition where Xs(rh) is a nonvanishing constant, but in such cases 
the hairy BHs in scalar-tensor theories are subject to instabilities of even-parity perturbations in the vicinity of the horizon [35,36] (see 
also Refs. [95–98] for the general formulation of BH perturbations in Horndeski theories).

In vector-GB theories discussed above, Eq. (3.28) shows that X is a nonvanishing constant at r = rh . Unlike scalar-tensor theories, 
however, we have to caution that X contains the temporal vector component A0 besides the radial component A1. Hence the instability 
argument performed in Refs. [35,36] for scalar-tensor theories cannot be applied to vector-tensor theories. To address this issue, we need 
to derive linear stability conditions of even-parity perturbations in the subclass of GP theories. In the most general class of GP theories 
the stability of BHs against odd-parity perturbations was addressed in Ref. [99], but the analysis in the even-parity sector was not done 
yet. We also note that we only considered the case rm = 10rh in our numerical simulations, but there should be appropriate solutions to 
9
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Aμ for other values of rm , too. It is beyond the scope of this paper to scrutinize all the parameter spaces of boundary conditions as well 
as to study linear stabilities of BHs.

3.3. Corrections to gravitational potentials

Let us estimate vector field corrections to the metric components f and h both around r = rh and at spatial infinity. In the vicinity 
of r = rh , we substitute the expanded solutions (3.13) and (3.14) into the gravitational Eqs. (3.5) and (3.6). We exploit the leading-order 
solutions (3.12) for computing corrections to f and h of order α2. On using the relations (3.15) and (3.16), the differential equations for h
and f , up to the order of α2, are given by

− M2
Pl

r2

(
rh′ + h − 1

) − μhα
2 = 0 , (3.29)

M2
Pl

r2

(
h − 1 + rhf ′

f

)
+ μhα

2 = 0 , (3.30)

where μh is a constant defined by

μh ≡ a2
1

2r2
h

− a0a1

r2
m

− 4b0[3a0a1 − (2a0 + a1)b0 + b2
0]

(a1 − b0)2r3
h

. (3.31)

We have ignored the corrections of order O(r − rh) for the derivation of μh .
Now, we search for solutions of the forms

f =
(

1 − rh

r

)[
1 + α2 F (r)

]
, (3.32)

h =
(

1 − rh

r

)[
1 + α2 H(r)

]
, (3.33)

where F and H are functions of r. Substituting Eq. (3.33) into Eq. (3.29), we obtain the integrated solution

H(r) = 1

r − rh

(
−μhr3

3M2
Pl

+ C1

)
. (3.34)

The integration constant C1 should be chosen to avoid the divergence of H(r) at r = rh , such that C1 = μhr3
h/(3M2

Pl). Then, the solution to 
h up to the order of α2 is given by

h =
(

1 − rh

r

)[
1 − α2 μh(r2 + rhr + r2

h)

3M2
Pl

]
for r − rh � rh . (3.35)

In the limit that r → rh , the α2-correction in the square bracket of Eq. (3.35) approaches a constant value −α2μhr2
h/M2

Pl. Integrating 
Eq. (3.30) after the substitution of Eq. (3.35), we obtain

F (r) = −μhr(r + rh)

3M2
Pl

+ C2 . (3.36)

Setting C2 = 0 by a suitable time reparametrization, it follows that

f =
(

1 − rh

r

)[
1 − α2 μhr(r + rh)

3M2
Pl

]
for r − rh � rh , (3.37)

whose α2-order correction is finite around r = rh . The fact that the finite corrections to f and h arise at the order of α2 is analogous to 
the case of linearly coupled scalar-GB theory. We recall however that Ã1 is divergent on the horizon in vector-GB theory, while this is not 
the case for the field derivative φ′ in scalar-GB theory.

At large distances, Ã0 decreases much faster than Ã1. Then, we can ignore contributions of the Ã0-dependent terms to the equations 
of motion of f and h. On using the leading-order solution (3.12) for the computation of α2-order corrections arising from the vector field, 
we obtain the following differential equations

− M2
Pl

r2

(
rh′ + h − 1

) + 192r3
hr2

m

r9
α2 = 0 , (3.38)

M2
Pl

r2

(
h − 1 + rhf ′

f

)
− 32r3

hr2
m

r9
α2 = 0 . (3.39)

We substitute Eqs. (3.32)-(3.33) and their r derivatives into Eqs. (3.38) and (3.39) to obtain the differential equations for H(r) and F (r). 
The integrated solution to Eq. (3.38), which is derived by setting the integration constant 0 (whose contribution can be absorbed into rh ), 
is given by

h =
(

1 − rh

r

)(
1 − α2 32r3

hr2
m

M2 r7

)
for r � rh . (3.40)
Pl

10
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Thus, the α2-correction term rapidly decreases at large distances. On using Eq. (3.40) for Eq. (3.39) with Eq. (3.32), we obtain the integrated 
solution to F (r). Setting the integration constant 0, the resulting solution to f is

f =
(

1 − rh

r

)(
1 − α2 64r3

hr2
m

7M2
Plr

7

)
for r � rh . (3.41)

The α2-order corrections to f and h decrease much faster in comparison to linearly coupled scalar-GB theory where F (r) and H(r) are 
proportional to 1/r at large distances [24,25,36].

More precisely, when one chooses a specific integration constant to integrate the scalar field equation in scalar-GB theory, the integrated 
equations of motion are the same as Eqs. (3.5)-(3.8) with A0 = 0 and replacing A1 with φ′ . In scalar-GB theory, the integration constant Q
arising from the scalar field equation is uniquely fixed to a nonzero value [24,25] to realize a finite value of φ′(r) on the horizon [35,36]. 
In vector-tensor theory, the existence of A0 besides A1 allows us to satisfy the field equations around the horizon even with a divergent 
value of A1. In this case, two boundary conditions of A0 and A1 at r = rh are not uniquely fixed in general. Since A0 and the field strength 
F = −F μν Fμν/4 = h A′

0
2/(2 f ) exponentially decrease in the regime r � rh , the large-distance solution is dominated by the longitudinal 

mode A1 proportional to r−5. In scalar-tensor theory, the field derivative has the large-distance behavior φ′(r) ∝ r−2 and hence its radial 
dependence is different from that of A1. In the vicinity of the horizon, the BH solution in vector-GB theory is particularly different from 
that in scalar-tensor theory due to the interplay of both temporal and longitudinal vector components.

3.4. BH solutions with η = 0

Finally, we consider the massless vector field case, i.e.,

η = 0 . (3.42)

In this case, we can solve Eq. (3.8) for the radial vector component A1 as

A2
1 =

A0[(A0 f ′ + A′
0 f )h + f A′

0 − A0 f ′ ±
√

A′
0 f {A′

0 f (h + 1)2 + 4A0 f ′h(h − 1)}]
f ′ f h(h − 1)

. (3.43)

Around the BH horizon characterized by the radius rh , we expand f , h, and A0 in the forms

f =
∑
i=1

f i

(
r − rh

rh

)i

, h =
∑
i=1

hi

(
r − rh

rh

)i

, A0 =
∑
i=0

ai

(
r − rh

rh

)i

. (3.44)

Substituting Eq. (3.44) with Eq. (3.43) into the background Eqs. (3.5)-(3.7), the coefficients f i , hi , and ai can be obtained at each order. On 
using the relation (3.43), we have

X = a0[a1 ± √
a1(a1 − 4a0h1)]
2 f1

+O
(

r − rh

rh

)
, (3.45)

which is finite on the horizon. At spatial infinity, one can show that there are also solutions respecting the asymptotic flatness.
Even if there were BH solutions connecting the solutions around r = rh and r � rh , the absence of a mass term ηX may induce some 

instabilities of perturbations on the static and spherically symmetric background. To address this issue, we study the BH stability against 
odd-parity perturbations by using linear stability conditions derived in Ref. [99]. For the action (3.1) with η = 0, we compute the quantity 
q2 defined in Eq. (3.24) of Ref. [99]. Exploiting Eq. (3.43) together with the expansions (3.44), it follows that

q2 = − 16h1a2
0α

2

rh(M2
Plrh f1 + 8a0

√
f1h1α)[√a1(a1 − 4a0h1) ± a1]2(r − rh)

2
+O

(
rh

r − rh

)
. (3.46)

For small α, the leading-order term of q2 is given by

q2 = − 16a2
0α

2

r2
h M2

Pl[
√

a1(a1 − 4a0h1) ± a1]2(r − rh)
2

, (3.47)

where we used the fact that f1 is equivalent to h1 in the limit that α → 0. The absence of ghosts for vector field perturbations requires 
that q2 > 0, but we have q2 < 0 from Eq. (3.47). Unless α is strictly 0, there is ghost instability for small values of α. This problem arises 
only for the theories with η = 0.1

1 The existence of a problem in the theory with η = 0 can be also seen in the absence of a kinetic term of the longitudinal mode in the decoupling limit gv → 0. The 
longitudinal mode, which is a part of even-parity perturbations in the context of BH perturbations, would be pathological at least in the asymptotic region.
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4. Conclusions

We constructed a class of vector-tensor theories in which a vector field Aμ is coupled to the vector J μ[A, g] whose divergence 
corresponds to the GB term G . We showed that the interacting Lagrangian αAμJ μ is equivalent to a subclass of GP theories with the 
quintic coupling function G5 = 4α ln |X |, where X = −(1/2)Aμ Aμ . This is analogous to the fact that a linear scalar-GB coupling of the 
form −αφG falls into a subclass of Horndeski theories with the coupling function G5s = 4α ln |Xs|, where Xs = −(1/2)∇μφ∇μφ. We also 
extended the analysis to a more general Lagrangian f (X)AμJ μ and found that this belongs to a subclass of beyond GP theories given by 
the action (2.29). Since beyond GP theories are the healthy extension of GP theories without modifying the dynamical DOFs, our vector-GB 
theories are free from Ostrogradski-type instabilities.

Even though the Lagrangian αAμJ μ has correspondence with the scalar-GB coupling −αφG , the fact that the vector field Aμ has a 
longitudinal component besides transverse components generally gives rise to spacetime dynamics different from those in scalar-tensor 
theories. We applied the vector-GB coupling αAμJ μ to the search for static and spherically symmetric BHs with vector hairs by incorpo-
rating the Einstein-Hilbert term, Maxwell scalar, and vector mass term ηX with η > 0. Under an expansion of the small coupling α, we 
derived solutions to the temporal and radial vector components both around the horizon (r = rh) and at spatial infinity (r � rh). Unless the 
boundary conditions on the horizon are chosen very accurately, it is difficult to numerically integrate the vector field differential equations 
up to sufficiently large distances due to the existence of a rapidly growing mode. Nevertheless, we confirmed the existence of regular BH 
solutions approaching the large-distance solution for some ranges of r.

We also computed corrections to the Schwarzschild metric arising from the vector field coupled to the GB term. At large distances, 
these corrections rapidly decrease in comparison to linear scalar-GB theory. On the horizon the radial vector component diverges for the 
coordinate (3.2), but this is just a coordinate singularity. In fact, scalar quantities such as Aμ Aμ and Fμν F μν and the backreaction to the 
spacetime metric remain finite around r = rh . In linear scalar-GB theory, the field kinetic term Xs needs to vanish on the horizon to avoid 
linear instability of even-parity perturbations. In this case, the perturbatively derived BH solution is uniquely determined for a given small 
coupling α. In our vector-GB theory, we generally have a nonvanishing value of X on the horizon. For small couplings α, we numerically 
found that there are some ranges of boundary conditions of the vector field in which analytic solutions in two asymptotic regimes are 
joined each other. This suggests that, unlike linear scalar-GB theory, hairy BH solutions in vector-GB theory for given α are not unique.

The fact that Aμ cannot be expressed in terms of a scalar gradient due to the nonvanishing field strength F = h A′
0

2/(2 f ) differentiates 
our BH solution from that in scalar-GB theories. At large distances, A0 decays rapidly relative to the longitudinal mode A1. The latter 
asymptotic solution is given by A1 ∝ r−5, whose radial dependence is different from a large-distance solution of the field derivative 
(φ′ ∝ r−2) in scalar-GB theory. In the vicinity of the horizon, the contribution of A0 to the vector-field equation of motion is as important 
as that of A1. Thus, the boundary conditions on the horizon are different from those in scalar-tensor theories. This means that taking the 
scalar limit Aμ → ∇μφ for our BH solution does not recover the hairy BH in scalar-GB theory.

It will be of interest to search for the parameter space of boundary conditions in more detail for broader ranges of the vector field 
mass. We would also like to formulate BH perturbations in GP theories especially for the even-parity sector to study the linear stability of 
hairy BHs. As a byproduct, it will be possible to compute the quasi-normal modes of BHs which can be probed by the gravitational wave 
observations. These issues are left for future works.
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