

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  JUNE 01 2023

Exact analytic expressions of real tensor eigenvalue
distributions of Gaussian tensor model for small N 
Naoki Sasakura  

J. Math. Phys. 64, 063501 (2023)
https://doi.org/10.1063/5.0133874

 30 August 2023 23:51:45

https://pubs.aip.org/aip/jmp/article/64/6/063501/2893745/Exact-analytic-expressions-of-real-tensor
https://pubs.aip.org/aip/jmp/article/64/6/063501/2893745/Exact-analytic-expressions-of-real-tensor?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jmp/article/64/6/063501/2893745/Exact-analytic-expressions-of-real-tensor?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0003-3668-1074
javascript:;
https://doi.org/10.1063/5.0133874
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063253&setID=592934&channelID=0&CID=754915&banID=520996574&PID=0&textadID=0&tc=1&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjmp%22%5D&mt=1693439505592634&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjmp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0133874%2F17915861%2F063501_1_5.0133874.pdf&hc=d287e8404aec2d5f4bbc882d08d95f7f84fcda9f&location=


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Exact analytic expressions of real tensor
eigenvalue distributions of Gaussian tensor
model for small N

Cite as: J. Math. Phys. 64, 063501 (2023); doi: 10.1063/5.0133874
Submitted: 6 November 2022 • Accepted: 16 May 2023 •
Published Online: 1 June 2023

Naoki Sasakuraa)

AFFILIATIONS
CGPQI, Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan

a)Author to whom correspondence should be addressed: sasakura@yukawa.kyoto-u.ac.jp

ABSTRACT
We obtain exact analytic expressions of real tensor eigenvalue/vector distributions of real symmetric order-three tensors with Gaussian dis-
tributions for N ≤ 8. This is achieved by explicitly computing the partition function of a zero-dimensional boson–fermion system with four
interactions. The distributions are expressed by combinations of polynomial, exponential, and error functions as results of feasible compli-
cated bosonic integrals that appear after fermionic integrations. By extrapolating the expressions and also using a previous result, we guess a
large-N expression. The expressions are compared with Monte Carlo simulations, and precise agreement and good agreement are obtained
with the exact and the large-N expressions, respectively. Understanding the feasibility of the integration is left for future study, which would
provide a general-N analytic formula.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133874

I. INTRODUCTION
Eigenvalue distributions are important dynamical quantities in studies of matrix models. They model the energy eigenvalue distributions

of complex dynamical systems.1 They provide a major technique in solving matrix models.2 Their topological properties differentiate phases
of matrix models (for more details, see, for instance, Ref. 3), providing insights into the dynamics of gauge theories.4,5

Recently, tensor models6–9 attract much attention in various contexts.10 While it is important to develop efficient techniques of comput-
ing eigenvalues/vectors for certain tensors in various practical applications of tensors,11 it is also interesting to study their distributions for
ensembles of tensors because tensors are dynamical in tensor models.

While there are already some interesting results,12–17 eigenvalue distributions in tensor models still remain largely unexplored. In our
previous studies,16,17 the problem was rewritten as computations of partition functions of zero-dimensional fermion systems. In Ref. 16, an
exact formula of signed distributions of real eigenvalue/vector distributions for real symmetric order-three tensors with Gaussian distributions
was obtained, where each eigenvalue/vector contributed to the distribution by ±1, depending on the sign of a Hessian matrix associated with
each eigenvalue/vector. In Ref. 17, real eigenvalue/vector distributions for the same ensemble of tensors were studied. In this study, however,
only an approximate large-N expression (N denotes the dimension of the index vector space of the tensor) was obtained by truncating a
Schwinger–Dyson equation, though some closely related exact results were also obtained. While the functional form of the large-N expression,
which was a Gaussian, agreed well with Monte Carlo simulations, the overall factor did not, and an improvement was expected.

In this paper, we rewrite the real eigenvalue/vector problem as a computation of a partition function of a boson–fermion system with four
interactions, instead of the fermion systems in the previous studies.16,17 We exactly compute the real eigenvalue/vector distributions for real
symmetric order-three tensors with Gaussian distributions for N ≤ 8 and extrapolate the expressions to guess a large-N expression, including
the overall factor, which was not correctly obtained by the approximation of the previous paper.17 We compare the exact expressions for small
N with Monte Carlo simulations and obtain precise agreement. We also compare the large-N expression and obtain good agreement.
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Computing the real eigenvalue/vector distributions is essentially the same as the computation of complexity in the p-spin spherical
model of spin glasses18,19 (see Appendix D). By using a rotational symmetry, the problem can be mapped to a random matrix model, which
can subsequently be solved by the standard matrix model methods.12,13,20 In fact, the results of Sec. VI can be obtained from those in Ref. 20,
as explained in Appendix D. However, we expect that the field theoretical method employed in this paper may provide new insights and new
applications in future analysis of the tensor eigenvalue/vector problems, which are still largely unexplored.

This paper is organized as follows: In Sec. II, we define what we compute, the real eigenvalue/vector distributions for real symmetric
order-three tensors with Gaussian distributions. In Sec. III, we rewrite the problem as a computation of a partition function of a zero-
dimensional boson–fermion system with four interactions. In Sec. IV, we determine the general form, which is obtained by integrating out
the fermions in the partition function. In Sec. V, we perform the remaining bosonic integrals but one. In Sec. VI, we explicitly perform the last
bosonic integral for each case of N ≤ 8 and obtain the explicit exact expressions of the distributions. Interestingly, the apparently complicated
bosonic integrals are feasible, and the final results have simple expressions. In Sec. VII, we perform some Monte Carlo simulations, and precise
agreement with the exact expressions is obtained. In Sec. VIII, we perform an extrapolation of the exact results for small N to guess a large-N
expression. We compare it with Monte Carlo simulations, and good agreement is obtained. Section IX is devoted to a summary and future
prospects.

II. REAL EIGENVECTOR/VALUE DISTRIBUTIONS OF TENSORS
In this paper, we restrict ourselves to the real symmetric order-three tensors, i.e., Cabc ∈ R (a, b, c = 1, 2, . . . , N), satisfying Cabc = Cbac

= Cbca, as the simplest case. As for eigenvalues/vectors of tensors, there are a few similar but slightly different definitions in the literature.21–23

In this paper, we employ the definition that the real eigenvectors v of a given C are the non-zero solutions to

Cabcvbvc = va, (v ≠ 0, v ∈ RN
), (1)

where the repeated indices are assumed to be summed over, as will be assumed in the rest of this paper. Then, the distribution of the
eigenvectors for a given C is given by

ρ(v, C) =
nC

∑
i=1

δN
(v − vi

)

= ∣det M∣
N

∏
a=1

δ(va − Cabcvbvc) (2)

for v ≠ 0 under the volume measure dNv =∏
N
a=1 dva, where vi

(i = 1, 2, . . . , nC) are all the solutions to (1), ∣ ⋅ ∣ denotes the absolute value, and

Mab =
∂

∂va
(vb − Cbcdvcvd) = δab − 2Cabcvc. (3)

Here, the absolute value of the determinant, ∣det M∣, is the Jacobian associated with the change of the arguments of the δ-functions performed
in (2).

When the tensor C has a Gaussian distribution, the real eigenvector distribution is given by

ρ(v) = A−1
∫

R#C
dC e−αC2

ρ(v, C), (4)

where dC =∏N
a≤b≤c=1 dCabc, A = ∫R#C dC e−αC2

, C2
= CabcCabc, α > 0, and #C = N(N + 1)(N + 2)/6, which is the total number of the indepen-

dent components of C.
It is worth commenting on the eigenvalue distribution corresponding to the real eigenvector distribution above. An eigenvalue ζ

accompanied with a real eigenvector v (a Z-eigenvalue in the terminology of Ref. 21) is defined by

Cabcwbwc = ζ wa (∣w∣ = 1, w ∈ RN
), (5)

where ∣w∣ =
√
wawa. Comparing with (1), we obtain the relation

ζ =
1
∣v∣

. (6)

Therefore, by using (6) and the fact that ρ(v) is actually a function of ∣v∣ because of the rotational symmetry of the distribution, we obtain the
real eigenvalue distribution,
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ρeig(ζ) = ρ(1/ζ)SN−1ζ−N−1, (7)

where 1/ζ in the argument abusively represents an arbitrary vector of size 1/ζ and SN−1 = 2πN/2
/Γ[N/2], the surface volume of a unit sphere

in an N-dimensional space.
Here, we would like to stress that we are specifically considering real eigenvalues/vectors only. Unlike real symmetric matrices, real

symmetric tensors can also have complex eigenvalues/vectors by allowing complex solutions to the equation in (1). To include such complex
solutions in our analysis, the expressions in this section need to appropriately be modified. Note also that the connection to the p-spin spherical
model explained in Appendix D is lost in this case. Therefore, the end results for the complex case may have non-trivial differences from the
real case.

III. A ZERO-DIMENSIONAL BOSON-FERMION SYSTEM
In this section, we will rewrite (4) with (2) as a partition function of a zero-dimensional boson–fermion system with four interactions.

An immediate obstacle in doing this is the presence of an absolute value in (2), which is not an analytic function. To rewrite it in an analytic
form, we take

∣det M∣ = lim
ϵ→+0

det (M2
+ ϵI)

√

det (M2
+ ϵI)

, (8)

where Iab = δab is an identity matrix, and the parameter ϵ is a positive small regularization parameter, which assures the convergence of the
integrals below.

Determinant factors, such as (8), can be managed inside partition functions of zero-dimensional field theoretical systems. This technique
is common in supersymmetric approaches to disorder averaging in statistical physics (see, for instance, Ref. 24 and references therein). The
numerator det(M2

+ ϵI) can be rewritten as det (M2
+ ϵI) = ∫ dψ̄dψ eψ̄a(M2)abψb+ϵψ̄aψa by introducing a fermion pair, ψ̄ and ψ.25 However, the

exponent of this expression contains C in a quadratic manner [see (3)] and is difficult to handle when we perform an integration over C as
will be done below. Therefore, as was done previously in Ref. 17, we introduce another fermion pair, φ̄,φ, to rewrite the exponent in a form
linear in C,

det (M2
+ ϵI) = (−1)N

∫ dψ̄dψdφ̄dφ e−φ̄ φ−ψ̄Mφ−φ̄Mψ+ϵψ̄ ψ , (9)

where the contracted indices are suppressed for brevity, φ̄φ = φ̄aφa, ψ̄Mφ = ψ̄aMabφb, and so on. The equality can be shown by noting that
φ̄φ + ψ̄Mφ + φ̄Mψ = (φ̄ + ψ̄M)(φ +Mψ) − ψ̄M2ψ. In a similar manner, we obtain

1
√

det (M2
+ ϵI)

= π−N
∫

R2N
dϕdσ e−σ

2−2iσMϕ−ϵϕ2

, (10)

where σ is a new bosonic variable and σ2
= σaσa, and so on.

By using (8)–(10) and a well-known formula, ∫Rdx eipx
= 2πδ(p), (4) with (2) can be rewritten as

ρ(v) = lim
ϵ→+0

A−1
(2π)−Nπ−N

(−1)N
∫ dCdλdϕdσdψ̄dψdφ̄dφ eS1 , (11)

where
S1 = −αC2

+ iλa(va − Cabcvbvc) − σ2
− 2iσMϕ − ϵϕ2

− φ̄φ − ψ̄Mφ − φ̄Mψ + ϵψ̄ψ, (12)

with a new bosonic variable λa (a = 1, 2, . . . , N) to rewrite the δ-functions.
Next, let us perform the integrations over C and λ in the expression (11). Let us first consider C. The terms containing C in (12) are

SC = −αC2
− i Cabcλavbvc + 4iCabcvaσbϕc + 2Cabcvaψ̄bφc + 2Cabcvaφ̄bψc. (13)

Then, we obtain

∫
R#C

dC eSC = A eδSC , (14)

where

δSC =
1
α
(

1
6∑s
(−

i
2
λsavsbvsc + 2ivsaσsbϕsc + vsa ψ̄ sbφsc + vsa φ̄ sbψsc))

2

, (15)

where the summation is over all the permutations of a, b, c, which is necessary because C is a symmetric tensor. By explicitly expanding (15),
we obtain
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δSC = −
∣v∣4

12α
λaBabλb − iλa(Da + D̃a) + E1 + E2 + E3, (16)

where
Bab = δab + 2v̂a v̂b = I�ab + 3I∥ab,

Da =
∣v∣3

3α
(ψ̄∥φ∥ + φ̄∥ψ∥)v̂a +

∣v∣3

3α
(ψ̄aφ∥ + ψ̄∥φa + φ̄aψ∥ + φ̄∥ψa),

D̃a =
2i
α
vbvc ⋅

1
6∑s

vsaσsbϕsc ,

E1 =
1
α
(

1
6∑s
(ψ̄ saφsbvsc + φ̄ saψsbvsc))

2

,

E2 = −
4
α
(

1
6∑s

vsaσsbϕsc)

2

,

E3 =
4i
α
(vaψ̄bφc + vaφ̄bψc) ⋅

1
6∑s

vsaσsbϕsc.

(17)

Here, v̂ = v/∣v∣, ψ̄∥ = ψ̄a v̂a, etc., and I∥ and I� are, respectively, the projection matrices to the parallel and transverse subspaces to v̂.
Next, let us perform the integration over λ. Picking up the terms containing λ (with no C) in (12) and (16), we obtain

Sλ = −
∣v∣4

12α
λaBabλb + iλa(va −Da − D̃a). (18)

Considering that B is a sum of the projection matrices as in (17), we obtain

∫
RN

dλ eSλ = ∣v∣−2N
(12πα)

N
2 (det B)−

1
2 eδSλ , (19)

where det B = 3 from (17), and

δSλ = −3α∣v∣−4
(v −D − D̃)aB−1

ab (v −D − D̃)b

= −α∣v∣−2
+ 2α∣v∣−3D∥ + 2α∣v∣−3D̃∥

− 3α∣v∣−4
(D� ⋅D� +

1
3

D2
∥ + 2D� ⋅ D̃� + D̃2

� +
2
3

D∥D̃∥ +
1
3

D̃2
∥). (20)

Here, we have used B−1
= I� + 1

3 I∥, D� ⋅ D̃� = D� aD̃� a, and so on, where X� (X = D, D̃) denotes vector X projected to the transverse subspace
to v̂. From (17), the projections of D and D̃ are more explicitly given by

D∥ =
∣v∣3

α
(ψ̄∥φ∥ + φ̄∥ψ∥),

D� =
∣v∣3

3α
(ψ̄�φ∥ + ψ̄∥φ� + φ̄�ψ∥ + φ̄∥ψ�),

D̃∥ =
2i∣v∣3

α
σ∥ϕ∥,

D̃� =
2i∣v∣3

3α
(σ∥ϕ� + σ�ϕ∥).

(21)

The first term in the second line of (20) is a constant contribution to the potential. The second and the third terms in the same line are
corrections to the kinetic terms of the parallel components of the fermions and the bosons, respectively. The other terms describe the four
interaction terms among the bosons and the fermions. Collecting the results above, we obtain the following intermediate expression:

ρ(v) = lim
ϵ→+0

3
N−1

2 π−
3N
2 α

N
2 ∣v∣−2N e

− α
∣v∣2 (−1)N

∫ dϕdσdψ̄dψdφ̄dφ eK̃ F+K̃ B+Ṽ F+Ṽ B+Ṽ BF , (22)
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where
K̃F = −φ̄� ⋅ φ� − ψ̄� ⋅ φ� − φ̄� ⋅ ψ� + ϵψ̄� ⋅ ψ� − φ̄∥φ∥ + ψ̄∥φ∥ + φ̄∥ψ∥ + ϵψ̄∥ψ∥,

K̃B = −σ�2
− 2iσ� ⋅ ϕ� − ϵϕ�2

− σ∥
2
+ 2iσ∥ϕ∥ − ϵϕ∥

2,

ṼF = E1 − 3α∣v∣−4
(D� ⋅D� +

1
3

D2
∥),

ṼB = E2 − 3α∣v∣−4
(D̃2
� +

1
3

D̃2
∥),

ṼBF = E3 − 3α∣v∣−4
(2D� ⋅ D̃� +

2
3

D∥D̃∥).

(23)

Here, K̃F , ṼF contain only the fermions, K̃B, ṼB contain only the bosons, and ṼBF is a mixture. Note that the quadratic terms of the parallel
components in K̃F and K̃B have been corrected by the aforementioned terms from the second line of (20).

Now, we want to compute ṼB, ṼF , ṼBF more explicitly. The computation of ṼF in (23) is essentially the same as the derivation of the
four Fermi interaction terms in Ref. 17 for R = 1. By noting that two of the terms in Ref. 17 do not appear, because ψ̄� ⋅ ψ̄� = φ̄� ⋅ φ̄� = 0 (for
R = 1), we obtain

ṼF = −
∣v∣2

6α
((ψ̄ � ⋅ φ�)2

+ (φ̄� ⋅ ψ�)2
+ 2ψ̄� ⋅ φ̄�φ� ⋅ ψ� + 2ψ̄� ⋅ ψ�φ̄� ⋅ φ�). (24)

What seems surprising in this expression is that the parallel components of the fermions cancel out from the interactions after all.
As for ṼB and ṼBF in (23), by using the results of the computations of E2 and E3 in Appendix A, we obtain

ṼB = −
2∣v∣2

3α
(σ�2ϕ�2

+ (σ� ⋅ ϕ�)2
),

ṼBF =
2i∣v∣2

3α
(ψ̄� ⋅ σ� φ� ⋅ ϕ� + φ̄� ⋅ σ� ψ� ⋅ ϕ� + ψ̄� ⋅ ϕ� φ� ⋅ σ� + φ̄� ⋅ ϕ� ψ� ⋅ σ�).

(25)

We again find the surprising fact that no parallel components appear in ṼB and ṼBF .
Because the parallel components only exist in K̃B, K̃F and do not interact, these can trivially be integrated out that generates the overall

factors of π and −1 for the bosons and fermions, respectively. Therefore, we finally obtain

ρ(v) = lim
ϵ→+0

3
N−1

2 π−
3N
2 +1α

N
2 ∣v∣−2N e

− α
∣v∣2 (−1)N−1

∫ dϕ�dσ�dψ̄�dψ�dφ̄�dφ� eK̃ �F+K̃ �B+Ṽ F+Ṽ B+Ṽ BF , (26)

where
K̃�F = −φ̄� ⋅ φ� − ψ̄� ⋅ φ� − φ̄� ⋅ ψ� + ϵψ̄� ⋅ ψ�,

K̃�B = −σ�
2
− 2iσ� ⋅ ϕ� − ϵϕ�2,

(27)

and ṼF , ṼB, ṼBF are given in (24) and (25).

IV. INTEGRATIONS OVER FERMIONS
In expression (26), the variables projected to the transverse directions, i.e., ψ̄�, etc., just represent N − 1-dimensional degrees of freedom

with no other restrictions. Therefore, we can simply regard them as N − 1-dimensional variables from the beginning. The external variable,
the vector v, only appears in the coupling constants of the four interactions through ∣v∣. Therefore, we can simply write

ρ(v) = lim
ϵ→+0

3
N−1

2 π−
3N
2 +1α

N
2 ∣v∣−2N e

− α
∣v∣2 (−1)N−1

∫
N∗

dϕdσdψ̄dψdφ̄dφ eKF+KB+VF+VB+VBF , (28)

where all the variables are N − 1-dimensional and

KF = −φ̄ ⋅ φ − ψ̄ ⋅ φ − φ̄ ⋅ ψ + ϵψ̄ ⋅ ψ,

KB = −σ2
− 2iσ ⋅ ϕ − ϵϕ2,

VF = −
∣v∣2

6α
((ψ̄ ⋅ φ)2

+ (φ̄ ⋅ ψ)2
+ 2ψ̄ ⋅ φ̄ φ ⋅ ψ + 2ψ̄ ⋅ ψ φ̄ ⋅ φ),

VB = −
2∣v∣2

3α
(σ2ϕ2

+ (σ ⋅ ϕ)2
),

VBF =
2i∣v∣2

3α
(ψ̄ ⋅ σ φ ⋅ ϕ + φ̄ ⋅ σ ψ ⋅ ϕ + ψ̄ ⋅ ϕ φ ⋅ σ + φ̄ ⋅ ϕψ ⋅ σ).

(29)
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Note that, for simplicity, we are abusively using the same notations of the variables as those in Sec. III with a different dimension, and to
indicate this difference, the symbol N∗ is attached to the integral symbol in (28).

To compute ρ(v) explicitly, we first perform the fermionic integrations. The integrand in (28) can be expanded in the fermions. A useful
property in this expansion is that the expansion in VBF stops at the fourth order,

eVBF =
4

∑
n=0

1
n!
(VBF)

n. (30)

This can be proven as follows: The fermions in VBF are projected to ϕ or σ. Therefore, VBF contains only eight independent fermions in total,
i.e., ψ̄ ⋅ ϕ, ψ̄ ⋅ σ,ψ ⋅ ϕ,ψ ⋅ σ, φ̄ ⋅ ϕ, φ̄ ⋅ σ,φ ⋅ ϕ,φ ⋅ σ. Since each term of VBF contains two of these fermions and products of more than eight of
these fermions vanish, we obtain

(VBF)
n
= 0 for n > 4. (31)

We also note that when σ = ±ϕ, only four of these fermions are independent. Therefore,

(VBF)
n
= 0 for n > 2, when σ = ±ϕ. (32)

Now, we want to determine the functional forms of the fermionic integrals of each summand in (30),

βn =
(−1)N−1

n! ∫
N∗

dψ̄dψdφ̄dφ (VBF)
neKF+VF (n ≤ 4). (33)

From the form of VBF and the O(N − 1) symmetry, βn should be a polynomial function of σ2,ϕ2, σ ⋅ ϕ, and its order in σ,ϕ should be 2n.
In addition, each term of the polynomial function should contain equal numbers of σ and ϕ, and the polynomial function should also be
invariant under the interchange σ ↔ ϕ as a whole.

From the above considerations, we uniquely obtain for n = 1,

β1 = a1σ ⋅ ϕ. (34)

Here, a1 is a function of ϵ and ∣v∣2/α, and all ai below are also so.
For n = 2, we have two possibilities,

β2 = a2(σ ⋅ ϕ)2
+ a3σ2ϕ2. (35)

As for n = 3, β3 must vanish for σ = ±ϕ due to (32). Considering also the other conditions mentioned above, we uniquely obtain

β3 = a4(σ2ϕ2σ ⋅ ϕ − (σ ⋅ ϕ)3
). (36)

As for n = 4, we need not only (32) but also the following property: Taking the derivatives of (VBF)
4 with respect to σ,ϕ three times

or less must vanish when σ = ±ϕ. This can be proven as follows. Obviously, (VBF)
4 is proportional to the product of the eight projected

fermions, ψ̄ ⋅ ϕ, ψ̄ ⋅ σ, . . .. After taking the derivatives of this three times or less with respect to σ,ϕ, each term contains at least five of the
eight projected fermions. Therefore, all these terms vanish for σ = ±ϕ because of the same reason for (32). Now, using this property, we can
uniquely determine

β4 = a5(σ2ϕ2
− (σ ⋅ ϕ)2

)
2
. (37)

Collecting all the results above, we conclude that the fermionic integrations of the partition function has the following general form:

∫
N∗

dψ̄dψdφ̄dφ eKF+VF+VBF = a0 + a1σ ⋅ ϕ + a2(σ ⋅ ϕ)2
+ a3σ2ϕ2

+ a4(σ2ϕ2σ ⋅ ϕ − (σ ⋅ ϕ)3
) + a5(σ2ϕ2

− (σ ⋅ ϕ)2
)

2
. (38)

Here, ai are generally functions of ϵ and ∣v∣2/α, but ϵ in them turn out to simply disappear in the ϵ→ +0 limit in (28) without any essential
roles. Therefore, in the following computations, we ignore it by just putting ϵ = 0 in ai.

V. INTEGRATIONS OVER BOSONS
Assuming the form (38) of the fermionic integrations, we perform the bosonic integrations but one in this section.
Let us first generalize the bosonic kinetic term by introducing new parameters ϵi (i = 1, 2, 3),
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Kϵ
B = −ϵ1σ2

− 2iϵ2 σ ⋅ ϕ − ϵ3ϕ2, (39)

where ϵ1, ϵ3 > 0 are assumed for the convergence of the bosonic integration. The original kinetic term in (29) corresponds to ϵ1 = ϵ2 = 1, ϵ3 = ϵ.
Using this new kinetic term, (28), and (38), ρ(v) can be expressed as

ρ(v) = 3
N−1

2 π−
3N
2 +1α

N
2 ∣v∣−2N e

− α
∣v∣2 GN , (40)

where

GN = (a0 + a1D2 + a2D2
2 + a3D1 + a4(D1D2 −D3

2) + a5(D1 −D2
2)

2
)∫

N∗
dσdϕ eKϵ

B+VB ∣
ϵ1=ϵ2=1
ϵ3=+0

, (41)

with D1, D2 being the following partial derivative operators:

D1 =
∂2

∂ϵ1∂ϵ3
,

D2 = −
1
2i

∂

∂ϵ2
.

(42)

The bosonic integration in (41) does not seem to be fully integrable, but it has a simpler expression. Since σ appears at most quadratically
in Kϵ

B + VB, the σ integration can be performed,

∫
N∗

dσ eKϵ
B+VB = π

N−1
2 (ϵ1 + 8zϕ2

)
− 1

2 (ϵ1 + 4zϕ2
)

N−2
2 exp(−

(ϵ2
2 + ϵ3(ϵ1 + 8zϕ2

))ϕ2

ϵ1 + 8zϕ2 ), (43)

where for brevity we have introduced

z =
∣v∣2

6α
. (44)

(43) does not depend on the angular directions of ϕ, and therefore, the integration over these produces the spherical vol-
ume, 2π(N−1)/2

∣ϕ∣N−2
/Γ[(N − 1)/2]. Then, after applying the derivative operators in (41) and performing a replacement of variable,

∣ϕ∣ =
√

x/
√

1 − 8zx, we obtain

GN =
πN−1

4 Γ[N−1
2 ]
∫

1
8z

0
dx e−xx

N−3
2 (1 − 4zx)−

N+2
2

⋅ (4a0 + 2(−2ia1 + a2 + (N − 1)a3)x

+ (8iza1 − (3 + 4z)(a2 + a3) − i(N − 2)a4)x2
+ 8z(a2 + a3)x3

), (45)

where we have used
64z2a0 − 8iza1 + (4z − 1)a2 + (−1 − 4z + 8(N − 1)z)a3 − i(N − 2)a4 +N(N − 2)a5 = 0 (46)

to delete a5. As we will see in Sec. VI, (46) holds for all the cases we consider (namely, N ≤ 8). In fact, this relation is essentially important
because otherwise the integrand has an extra factor 1/(1 − 8zx), and the feasibility of the integration over x which will be performed in Sec. VI
would become unclear.

VI. ANALYTIC EXPRESSIONS
In this section, we explicitly compute the integration (45) for each case of N ≤ 8 to obtain exact analytic expressions. What is surprising

is that the seemingly difficult integrations can be done explicitly. The apparent reason is that the integrand of (45) turns out to be a sum of a
total derivative and a simple integrable function.

A. N = 1
This case is trivial, since the integration in (28) can just be ignored. We obtain

ρN=1(v) = π−
1
2 α

1
2 ∣v∣−2e

− α
∣v∣2 . (47)

Since v = 1/C for N = 1 from (1), ρN=1(v)dv is indeed equivalent to α1/2π−1/2e−αC2
dC, which is the Gaussian distribution of C.
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B. N = 2
In this case, since the variables in (28) are all one-dimensional, we can ignore the indices. Then, we immediately obtain

VN=2
F = −4z ψ̄ψφ̄φ,

VN=2
B = −8z σ2ϕ2,

VN=2
BF = 8iz σϕ(ψ̄φ + φ̄ψ).

(48)

Hence, by explicitly expanding the integrand, we obtain

∫
N∗

dψ̄dψdφ̄dφ eKN=2
F +VN=2

F +VN=2
BF = 1 + 4z − 16izσϕ − 64z2σ2ϕ2. (49)

This determines
a0 = 1 + 4z,
a1 = −16iz,

a2 = −64z2,
Others = 0

(50)

by comparing with (38). This indeed satisfies (46). Putting (50) into (45), we obtain

GN=2 =
√
π∫

1
8z

0
dx e−xx−

1
2 (1 + 4z − 8zx)

=
√
π((1 + 4z)γ[

1
2

,
1
8z
] − 8zγ[

3
2

,
1
8z
])

=
√
π(γ[

1
2

,
1
8z
] +
√

8z e−
1
8z ),

(51)

where the lower incomplete gamma function γ[⋅, ⋅] is defined by

γ[a, y] = ∫
y

0
dt ta−1 e−t , (52)

and we have used its property,
γ[a + 1, y] = aγ[a, y] − yae−y. (53)

The lower incomplete gamma function with index 1/2 in (51) is related to the error function by

γ[
1
2

, y] =
√
π erf[

√
y]. (54)

Therefore, from (44) and (51), GN=2 is represented by a combination of polynomial, exponential, and error functions of ∣v∣. This is common
to the other cases of N shown below.

C. N = 3
The fermionic integration of (38) seems too complicated to perform by hand. Rather, we use a Mathematica package for Grassmann

variables.26 The result is
a0 = 1 + 4z + 28z2,

a1 = −16i(z + 2z2
),

a2 = −32(3z2
+ 2z3

),

a3 = −32(−z2
+ 6z3

),

a4 = −256iz3,

a5 = 256z4.

(55)
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This indeed satisfies (46). Then, by putting this into (45), we obtain

GN=3 = π2
∫

1
8z

0
dx

e−x

(1 − 4zx)
5
2
(1 + 4z + 28z2

− 16z(1 + 3z + 14z2
)x

+ 16z2
(5 + 16z + 16z2

)x2
− 128z3

(1 + 4z)x3
). (56)

A surprising fact is that the integrand in (56) is actually a total derivative, and we therefore obtain

GN=3 = −π2
∫

1
8z

0
dx

d
dx
(

e−x

(1 − 4zx)
3
2
(1 − 2z − 4z(3 + 4z)x + 32z2

(1 + 4z)x2
))

= π2
(1 − 2z + 4

√
2ze−

1
8z ).

(57)

D. Larger odd N
The strategy taken in Sec. VI C can be generalized for larger odd N in the following manner. We first compute ai (i = 0, 1, . . . , 5), which

are listed for N = 5, 7 in Appendix B, by using the aforementioned Mathematica package. They indeed satisfy (46). Then, by putting them into
(45), we obtain GN . Similarly to the case of N = 3 in Sec. VI C, what we find is that the integrand of GN is a total derivative of the following
form for N = 5, 7:

GN:odd =
πN−1

4 Γ[N−1
2 ]
∫

1
8z

0
dx

d
dx

e−x
∑

N+1
2

n=0 bnxn

(1 − 4zx)
N
2

, (58)

where bn (n = 0, 1, . . . , (N + 1)/2) are some polynomial functions of z. The explicit forms of bn are given in Appendix B. Therefore, we obtain

GN:odd =
πN−1

4 Γ[N−1
2 ]

⎛
⎜
⎝

2
N
2 e−

1
8z

N+1
2

∑
n=0

bn

(8z)n − b0

⎞
⎟
⎠

. (59)

By using bi in Appendix B, the explicit expressions of GN for N = 5, 7 are given by

GN=5 = π4
(1 − 12z + 12z2

+
√

2e−
1
8z (1 + 12z + 12z2

)),

GN=7 = π6⎛

⎝
1 − 30z + 180z2

− 120z3
+

√
2e−

1
8z

8z
(1 + 8z + 120z2

− 480z3
+ 2640z4

)
⎞

⎠
.

(60)

Let us finally comment on our equipment. The computations were done on a machine that had a Xeon W2295 (3.0 GHz, 18 cores), 128
GB DDR4 memory, and Ubuntu 20 as OS. The computation of ai quickly takes longer time as N becomes larger. GN=8, which appears in
Subsection VI E, was the largest feasible case, while we failed to obtain GN=9 seemingly because of a memory shortage.

E. Larger even N
The difference from the odd case of Sec. VI D is that the integrand of GN is a sum of a total derivative and a simple integrable term,

GN =
πN−1

4 Γ[N−1
2 ]
∫

1
8z

0
dx
⎛

⎝
c0 x−

1
2 e−x
+

d
dx

x
1
2 e−x
∑

N
2

n=0 bnxn

(1 − 4zx)
N
2

⎞

⎠
. (61)

Then, by doing the integration, we obtain

GN =
πN−1

4 Γ[N−1
2 ]

⎛
⎜
⎝

c0γ[
1
2

,
1
8z
] + 2

N
2 e−

1
8z

N
2

∑
n=0

bn

(8z)n+ 1
2

⎞
⎟
⎠

. (62)
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The lists of ai, bi, c0 for N = 4, 6, 8 are given in Appendix C. ai indeed satisfy (46). By putting the values of bi, c0, we obtain the explicit forms of
GN as

GN=4 = π
5
2 (6
√

2e−
1
8z
√

z(1 + 2z) + (1 − 6z) γ[
1
2

,
1
8z
]),

GN=6 = π
9
2
⎛

⎝

2
√

2e−
1
8z (1 + 15z + 180z3

)

3
√

z
+ (1 − 20z + 60z2

) γ[
1
2

,
1
8z
]
⎞

⎠
,

GN=8 = π
13
2
⎛

⎝

√
2e−

1
8z (1 + 210z2

− 2100z3
+ 12 600z4

+ 25 200z5
)

15z
3
2

+ (1 − 42z + 420z2
− 840z3

) γ[
1
2

,
1
8z
]
⎞

⎠
.

(63)

VII. COMPARISON WITH MONTE CARLO SIMULATIONS
In this section, we compare the results in Sec. VI with Monte Carlo simulations. The procedure is basically the same as that used in

Refs. 16 and 17. To make this paper self-contained, however, we review the method below.
The eigenvector equation (1) is a system of polynomial equations and it can be solved by an appropriate polynomial equation solver,

unless N is too large. We use Mathematica 13 for this purpose. It gives generally complex solutions to Eq. (1), and we pick up only real ones,
since we are only counting real eigenvectors (or Z-eigenvalues). Whether this method covers all the real solutions or not can be checked by
whether the number of generally complex solutions obtained for each C by a polynomial equation solver agrees with the known number
2N
− 1.23 (In fact, for large N, Mathematica 13 seems to miss a few solutions for some C. We have not pursued the reason for that, but the

missing portion is ∼10−4 even for our largest case of N = 16, and is statistically irrelevant in the present study.)
With the above method of solving the eigenvector equation (1), our procedure of Monte Carlo simulation is given as follows:

● Randomly generate a real symmetric tensor C with components, Cijk = σ/
√

d(i, j, k) (1 ≤ i ≤ j ≤ k ≤ N), where σ has a normal
distribution with mean value zero and standard deviation one, and d(i, j, k) is a degeneracy factor,

d(i, j, k) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, i = j = k
3, i = j ≠ k, i ≠ j = k, k = i ≠ j
6, i ≠ k ≠ j ≠ i

. (64)

This random generation of C corresponds to α = 1/2 in (4) since

C2
= CabcCabc =

N

∑
i≤ j≤k=1

d(i, j, k)C2
ijk (65)

due to C being a symmetric tensor.
● Compute the real eigenvectors of a generated C by the aforementioned method.
● Store each size ∣v∣ of all the real eigenvectors.
● Repeat the above processes.

By this procedure, we obtain a sequence of sizes of real eigenvectors, ∣v∣i (i = 1, 2, . . . , L). Then, the size distribution of real eigenvectors can
be obtained by

ρMC
size((k + 1/2)δv) =

1
δvNC

L

∑
i=1

θ(kδv < ∣v∣i ≤ (k + 1)δv), (66)

where δv is a bin size, NC is the total number of randomly generated C, k = 0, 1, 2, . . ., and θ(⋅) is a support function that takes 1 if the
inequality of the argument is satisfied, but zero otherwise. For the comparison with the analytical results obtained in Sec. VI, (66) should be
compared with the size distribution,

ρsize(∣v∣) = ρ(v)SN−1∣v∣
N−1, (67)

where SN−1 = 2πN/2
/Γ[N/2] denotes the surface volume of a unit sphere in an N-dimensional space and the vector v in the argument of ρ(⋅)

is an arbitrary vector of size ∣v∣ due to the rotational symmetry.
Since a Z-eigenvalue is related with the size of an eigenvector by relation (6), the real (or Z-) eigenvalue distribution is given by

ρMC
eig ((k + 1/2)δζ) =

1
δζNC

L

∑
i=1

θ(kδζ < 1/∣v∣i ≤ (k + 1)δζ), (68)
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FIG. 1. The results of the Monte Carlo simulation for N = 8, NC = 10 000 are compared with the analytic expressions. Left: the eigenvector size distribution. The Monte Carlo
result (66) with δv = 0.03 (dots) is compared with (67) using (40) and GN=8 in (63) (solid line). Right: the eigenvalue distribution. The Monte Carlo result (68) with δζ = 0.03
(dots) is compared with the analytic expression through (7).

where δζ is a bin size. This quantity should be compared with (7).
In Fig. 1, the Monte Carlo results are compared with the analytic expressions for N = 8. They agree precisely. Similar precise agreement

has been obtained for all N ≤ 8.

VIII. EXTRAPOLATION TO GENERAL N
In this section, we point out a few patterns that exist in the expressions of the distributions derived for small N in Sec. VI and guess an

extrapolation to general N. A motivation for doing this is to improve the large-N expression previously obtained by an approximation using
a Schwinger–Dyson equation.17 The issue of the previous result was that while the functional form agreed well with the numerical simulation
for large-N, the overall factor did not. In this section, using the extrapolation, we will guess the overall factor for general N and find good
agreement with Monte Carlo simulations.

After a thought, one notices that GN for even N (namely, N = 2, 4, 6, 8) in Sec. VI can be expressed by the following general form:

GN:even = πN− 3
2 z

N−1
2 HN−1[

1
2
√

z
]γ[

1
2

,
1
8z
]

+
√

2πN− 3
2

N!
N
2 !

z
N−1

2 e−
1
8z (1 +

d1

z
+

d2

z2 + ⋅ ⋅ ⋅ +
dN−3

zN−3 ),
(69)

where Hn[⋅] are Hermite polynomials, di are some coefficients generally depending on N, and specifically,

d1 =
1 + (−1)

N
2

4
. (70)

As for di (i ≥ 2), we could not find reasonably simple functions of N.
Let us discuss the real eigenvalue distribution for large-N, assuming (69) with (70). Because of relations (6) and (44) and the fact that the

major part of the distribution is around ζ ∼ 0 as in Fig. 1, we are interested in a 1/z expansion of (69) with (70). By explicitly doing this, one
obtains

GN ∼
√

2πN− 3
2
Γ[N + 1]
Γ[N

2 + 1]
z

N−1
2 (1 +

1
8z
+ ⋅ ⋅ ⋅ ), (71)

where the factorials are replaced by Gamma functions to also be applicable for odd N below. By combining with the previous result in Ref. 17
that the large-N eigenvalue distribution is given by a Gaussian function of ∣v∣, one could assume that the expansion in 1/z of (71) comes from
the expression

GN ∼
√

2πN− 3
2
Γ[N + 1]
Γ[N

2 + 1]
z

N−1
2 e

1
8z . (72)

Putting this into (7) using (6), (40), and (44), we obtain

ρeig(ζ) ∼ 2−
N
2 +2α

1
2 π−

1
2

Γ[N + 1]
Γ[N

2 + 1]Γ[N
2 ]

e−
α
4 ζ

2

, (73)
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FIG. 2. The guessed large-N formula (73) (solid line) is compared with the Monte Carlo simulation (68) (dots). Left: N = 14, δζ = 0.03, NC = 400. Middle: N = 15,
δζ = 0.06, NC = 100. Right: N = 16, δζ = 0.1, NC = 72.

which indeed is a Gaussian distribution. While the coefficient α/4 in the exponent indeed agrees with the previous result in Ref. 17, the overall
factor is different. By integrating over ζ, one can obtain the mean total number of real eigenvalues in large-N as

Mean number of real eigenvalues ∼
2−

N
2 +2Γ[N + 1]

Γ[N
2 + 1]Γ[N

2 ]
. (74)

In the large-N limit, this expression indeed agrees with the result given in Refs. 13 and 20 (namely, Eq. (1.2) in Ref. 13).
In Fig. 2, we compare the large-N expression (73) with the Monte Carlo simulations for N = 14, 15, 16. [With our machine power (see

the last part of Sec. VI D), it took one full day for the computation of the N = 16 case.] They agree well, and the agreement seems to become
slightly better, as N becomes larger.

In the above discussion, we have not used the odd N cases. The reason is that we could not find simple expressions valid across all the
odd N cases obtained in Sec. VI. We merely notice

GN:odd = π
N−1z

N−1
2 HN−1(

1
2
√

z
) + d′0 e−

1
8z (1 +

d′1
z
+ ⋅ ⋅ ⋅ +

d′N−3

zN−3 ), (75)

where we do not have any simple expressions for d′i .
Rather, we find that the large-z behavior of GN:odd approaches that of GN:even, as N becomes larger. To see this, let us introduce the

parameters of the 1/z expansion as

GN ∼ e0 z
N−1

2 (1 +
e1

z
+ ⋅ ⋅ ⋅ ). (76)

As in (71), for even N, we have

e0 =

√
2πN− 3

2 Γ[N + 1]
Γ[N

2 + 1]
, e1 =

1
8

. (77)

In Fig. 3, we plot e0, e1 for each N, which are extracted by performing the 1/z expansions of the explicit expressions in Sec. VI. Indeed, e0, e1
for odd N seem to approach those for even N, as N becomes larger. This implies that the large-N formula (73) can commonly be used for both
even and odd N.

FIG. 3. The coefficients e0, e1 of the expansion (76) are plotted against N. ē0 =
√

2πN−3/2Γ[N]/Γ[N/2 + 1] [see (71)]. The values of e0, e1 for odd N seem to approach
those for even N, as N becomes larger.
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IX. SUMMARY AND FUTURE PROSPECTS
In this paper, we have explicitly computed the real eigenvalue/vector distributions for real symmetric order-three tensors with Gaussian

distributions for N ≤ 8. This has been achieved by rewriting the problem as the computation of a partition function of a zero-dimensional
boson fermion system with four interactions. We have extrapolated the exact expressions for N ≤ 8 to guess a large-N expression. Monte
Carlo simulations have been performed, and precise agreement and good agreement have been obtained for the exact small-N expressions
and the large-N expression, respectively.

It seems surprising that the complicated integrations of the partition function can be performed exactly with the final simple results
expressed by polynomial, exponential, and error functions. It is suspected that this is true for any N, but deeper understanding of this aspect
needed for such generalization is left for future study. Considering the final simple forms, it would be possible that there exist much easier
ways to compute the distributions than what has been done in this paper.

There would exist various directions to pursue by a similar strategy of this paper. One obvious direction is the generalization of tensors
to those with different orders and non-Gaussian distributions. It would also be interesting to pursue the possibility of topological changes of
the distributions in tensor models as in matrix models. In fact, some tensor systems seemingly suggest such possibilities.27,28 It would also be
possible to compute correlations among eigenvalues/vectors and also to incorporate complex eigenvalues/vectors.
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APPENDIX A: COMPUTATIONS OF E 2 AND E 3

From (17),

E2 = −
4
α

A1, (A1)

with

A1 = (
1
6∑s

vsaσsbϕsc)

2

. (A2)

By explicitly writing down the sum and noting that one of the symmetrization is not necessary, we obtain

A1 =
1
6
vaσbϕc(vaσbϕc + vbσcϕa + vcσaϕb + vbσaϕc + vaσcϕb + vcσbϕa)

=
1
6
(v2σ2ϕ2

+ v ⋅ σ σ ⋅ ϕ ϕ ⋅ v + v ⋅ ϕ σ ⋅ v ϕ ⋅ σ + v ⋅ σ σ ⋅ v ϕ2
+ v2 σ ⋅ ϕ ϕ ⋅ σ + v ⋅ ϕ σ2 ϕ ⋅ v)

=
∣v∣2

6
(σ2ϕ2

+ 2ϕ∥σ∥ σ ⋅ ϕ + σ∥
2ϕ2
+ ϕ∥

2σ2
+ (σ ⋅ ϕ)2

)

=
∣v∣2

6
(σ�2ϕ�2

+ (ϕ� ⋅ σ�)2
+ 2σ∥

2ϕ�2
+ 2σ�2ϕ∥

2
+ 4σ∥ϕ∥ ϕ� ⋅ σ� + 6σ∥

2ϕ∥
2
), (A3)

where we have used v ⋅ ϕ = ∣v∣ϕ∥, etc., and ϕ ⋅ σ = ϕ∥σ∥ + ϕ� ⋅ σ�, etc.
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Let us next compute

E3 =
4i
α

A2, (A4)

where
A2 = (vaψ̄bφc + vaφ̄bψc)

1
6∑s

vsaσsbϕsc (A5)

from (17). By explicitly expanding the sum, we obtain

A2 = vaψ̄bφc(vaσbϕc + vbσcϕa + vcσaϕb + vbσaϕc + vaσcϕb + vcσbϕa) + (ψ↔ φ)

=
∣v∣2

6
(ψ̄� ⋅ σ� φ� ⋅ ϕ� + ψ̄� ⋅ ϕ� φ� ⋅ σ� + φ̄� ⋅ σ� ψ� ⋅ ϕ� + φ̄� ⋅ ϕ� ψ� ⋅ σ�

+ 2ψ̄∥σ∥φ� ⋅ ϕ� + 2ϕ∥ψ̄∥φ� ⋅ σ� + 2φ∥ϕ∥ψ̄� ⋅ σ� + 2φ∥σ∥ψ̄� ⋅ ϕ�
+ 2φ̄∥σ∥ψ� ⋅ ϕ� + 2ϕ∥φ̄∥ψ� ⋅ σ� + 2ψ∥ϕ∥φ̄� ⋅ σ� + 2ψ∥σ∥φ̄� ⋅ ϕ�
+ 6ψ̄∥φ∥ϕ∥σ∥ + 6φ̄∥ψ∥ϕ∥σ∥),

(A6)

where we have taken similar computational steps as those for A1.

APPENDIX B: LISTS OF ai AND bi FOR N = 5, 7

For N = 5,
a0 = 1 − 8z + 120z2

+ 480z3
+ 2640z4,

a1 = −16i(z − 6z2
+ 60z3

+ 120z4
),

a2 = −32(3z2
− 10z3

+ 100z4
+ 200z5

),

a3 = −32(−z2
+ 10z3

+ 20z4
+ 280z5

),

a4 = −256i(z3
+ 20z5

),

a5 = 256(z4
+ 4z5

+ 28z6
)

(B1)

and
b0 = −4(1 − 12z + 12z2

),

b1 = 4(−1 + 22z − 132z2
+ 120z3

),

b2 = 48(z − 8z2
+ 60z3

+ 80z4
),

b3 = −128(z2
+ 60z4

+ 240z5
).

(B2)

For N = 7,
a0 = 1 − 36z + 660z2

− 3360z3
+ 25 200z4

+ 100 800z5
+ 504 000z6,

a1 = −16i(z − 30z2
+ 440z3

− 1680z4
+ 8400z5

+ 16 800z6
),

a2 = −32(3z2
− 70z3

+ 840z4
− 1680z5

+ 11 760z6
+ 30 240z7

),

a3 = −32(−z2
+ 30z3

− 280z4
+ 1680z5

+ 5040z6
+ 36 960z7

),

a4 = −256i(z3
− 16z4

+ 168z5
+ 1680z7

),

a5 = 256(z4
− 8z5

+ 120z6
+ 480z7

+ 2640z8
)

(B3)

and
b0 = 8(−1 + 30z − 180z2

+ 120z3
),

b1 = −8(1 − 44z + 600z2
− 2640z3

+ 1680z4
),

b2 = 4(−1 + 58z − 1160z2
+ 9360z3

− 28 560z4
+ 16 800z5

),

b3 = 16(3z − 100z2
+ 1480z3

− 6720z4
+ 25 200z5

+ 33 600z6
),

b4 = −128(z2
− 20z3

+ 280z4
+ 8400z6

+ 33 600z7
).

(B4)
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APPENDIX C: LISTS OF ai ,bi ,c 0 FOR N = 4, 6, 8

For N = 4,
a0 = 1 + 60z2

+ 240z3,

a1 = −16i(z + 20z3
),

a2 = −32(3z2
+ 2z3

+ 24z4
),

a3 = −32(−z2
+ 6z3

+ 32z4
),

a4 = −256i(z3
+ 2z4

),

a5 = 256(z4
+ 4z5

)

(C1)

and
c0 = −2(−1 + 6z),
b0 = 4(−1 + 6z),

b1 = 16(3z − 2z2
+ 40z3

),

b2 = −128(z2
+ 4z3

+ 28z4
).

(C2)

For N = 6,
a0 = 1 − 20z + 280z2

+ 8400z4
+ 33 600z5,

a1 = −16i(z − 16z2
+ 168z3

+ 1680z5
),

a2 = −32(3z2
− 34z3

+ 300z4
+ 360z5

+ 2400z6
),

a3 = −32(−z2
+ 18z3

− 60z4
+ 600z5

+ 2880z6
),

a4 = −256i(z3
− 6z4

+ 60z5
+ 120z6

),

a5 = 256(z4
+ 60z6

+ 240z7
)

(C3)

and
c0 = 3(1 − 20z + 60z2

),

b0 = −6(1 − 20z + 60z2
),

b1 = 4(−1 + 18z)(1 − 20z + 60z2
),

b2 = 16(3z − 56z2
+ 540z3

− 240z4
+ 3360z5

),

b3 = −128(z2
− 8z3

+ 120z4
+ 480z5

+ 2640z6
).

(C4)

For N = 8,
a0 = 1 − 56z + 1428z2

− 15 120z3
+ 105 840z4

+ 2 116 800z6
+ 8 467 200z7,

a1 = −16i(z − 48z2
+ 1020z3

− 8640z4
+ 45 360z5

+ 302 400z7
),

a2 = −32(3z2
− 118z3

+ 2080z4
− 12 880z5

+ 58 800z6
+ 84 000z7

+ 470 400z8
),

a3 = −32(−z2
+ 46z3

− 760z4
+ 6160z5

− 8400z6
+ 117 600z7

+ 537 600z8
),

a4 = −256i(z3
− 30z4

+ 440z5
− 1680z6

+ 8400z7
+ 16 800z8

),

a5 = 256(z4
− 20z5

+ 280z6
+ 8400z8

+ 33 600z9
)

(C5)

and
c0 = −(15/2)(−1 + 42z − 420z2

+ 840z3
),

b0 = 15(−1 + 42z − 420z2
+ 840z3

),

b1 = −10(−1 + 24z)(−1 + 42z − 420z2
+ 840z3

),

b2 = 4(1 − 40z + 360z2
)(−1 + 42z − 420z2

+ 840z3
),

b3 = 48(z − 52z2
+ 1140z3

− 10 360z4
+ 50 400z5

− 16 800z6
+ 201 600z7

),

b4 = −128(z2
− 36z3

+ 660z4
− 3360z5

+ 25 200z6
+ 100 800z7

+ 504 000z8
).

(C6)
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APPENDIX D: COMPLEXITY OF THE SPHERICAL p -SPIN MODEL

Computing the distributions of the real tensor eigenvalues/vectors is the same as the computation of complexity (see, for example,
Ref. 29 for a review) of the spherical p-spin model.18,19 In this appendix, we limit ourselves to p = 3 corresponding to order-three tensors.

The Hamiltonian of the spherical p-spin model (with p = 3) is given by

H = −
1
N

Jabcσaσbσc, (D1)

with the continuous spin variable σ ∈ RN , which has a constraint

σaσa = N. (D2)

Here, the real symmetric tensor J is assumed to have the normal Gaussian distribution and can be identified with C with α = 1/2 in our
notation. To match (D2) with our notation, we introduce the change of variable,

σa =
√

Nwa, (D3)

and then, we have

H = −
√

NCabcwawbwc withwawa = 1. (D4)

The problem of computing complexity of the p-spin spherical model is to count the number of local minima (and stationary points) of
the above Hamiltonian. By using the method of Lagrange multiplier, counting the stationary points is equivalent to solve

Cabcwbwc = −
√

Nuwa, (D5)

where u ∈ R andwawa = 1 (w ∈ RN
). The value of u is the energy of the stationary point and can be identified with the same variable employed

in Ref. 20. Comparing with the Z-eigenvalue equation (5), we have the relation

ζ = −
√

Nu. (D6)

By using (D6), it can be checked that the expressions of the mean distributions of the numbers of the critical points given for general N in
Sec. 7.2 of Ref. 20 agree with our results in Sec. VI.
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