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Abstract

Let e and v be minimal tripotents in a JBW∗-triple M . We introduce the notion of triple

transition pseudo-probability from e to v as the complex number TTP (e, v) = φv(e), where

φv is the unique extreme point of the closed unit ball of M∗ at which v attains its norm.

In the case of two minimal projections in a von Neumann algebra, this correspond to the

usual transition probability. We prove that every bijective transformation Φ preserving triple

transition pseudo-probabilities between the lattices of tripotents of two atomic JBW∗-triples

M and N admits an extension to a bijective (complex) linear mapping between the socles of

these JBW∗-triples. If we additionally assume that Φ preserves orthogonality, then Φ can be

extended to a surjective (complex-)linear (isometric) triple isomorphism from M onto N . In

case that M and N are two spin factors or two type 1 Cartan factors we show, via techniques

and results on preservers, that every bijection preserving triple transition pseudo-probabilities

between the lattices of tripotents of M and N automatically preserves orthogonality, and hence

admits an extension to a triple isomorphism from M onto N .

§ 1. Introduction

The available mathematical models for quantum mechanic make use of complex

Hilbert spaces to define the states of a quantum system. Given a complex Hilbert

space H, the normal state space of S(H) is identified, via trace duality, with those
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positive norm-one elements (states) in the predual of the von Neumann algebra, B(H),

of all bounded linear operators on H. Each observable is associated with a self-adjoint

operator A ∈ B(H), and its expected value on the the system in state p is A(p) = tr(Ap),

where tr(.) stands for the usual trace on B(H). The elements in S(H) are called the

normal states of a quantum system associated to the Hilbert space H. The extreme

points of S(H), as a convex set inside the closed unit ball of B(H)∗, are called pure

states, and they can be also identified with rank-one projections on H. The set of all

rank-one projections on H will be denoted by P1(H), while P(H) or P(B(H)) will

stand for the set of all (orthogonal) projections on H.

If two pure states are represented by the minimal projections p = ξ⊗ξ and q = η⊗η,
with ξ and η in the unit sphere of H, according to Born’s rule, the transition probability

from p to q is defined as

TP (p, q) = tr(pq) = tr(pq∗) = tr(qp∗) = |〈ξ, η〉|2.

Here, and along this note, for ξ in another complex Hilbert space K and η ∈ H, the

symbol ξ ⊗ η will stand for the operator from H to K defined by ξ ⊗ η(ζ) := 〈ζ, η〉ξ.

A bijective map Φ : P1(H) → P1(H) is called a symmetry transformation or a

Wigner symmetry if it preserves the transition probability between minimal projections,

that is,

TP (Φ(p),Φ(q)) = tr(Φ(p)Φ(q)) = tr(pq) = TP (p, q), for all (p, q ∈ P1(H)).

A linear (respectively, conjugate-linear) mapping u : H → H is called a unitary

(respectively, an anti-unitary) if uu∗ = u∗u = 1. The celebrated Wigner’s theorem

admits the following statement:

Theorem 1.1. (Wigner theorem, [41], [36, page 12]) Let H be a complex Hilbert

space. A bijective mapping Φ : P1(H) → P1(H) is a symmetry transformation if and

only if there is an either unitary or anti-unitary operator u on H, unique up to multipli-

cation by a unitary scalar, such that Φ(p) = upu∗ for all p ∈ P1(H). Furthermore, the

real linear (actually complex-linear or conjugate-linear) mapping T : B(H) → B(H),

T (x) = uxu∗ is a ∗-automorphism whose restriction to P1(H) coincides with Φ.

It is known (see, for example, [10, §4 and 6]) that for a complex Hilbert space H

with dim(H) ≥ 3, the following mathematical models employed in the Hilbert space

formulation of quantum mechanics are equivalent:

(M.1) The set P of pure states on H (which algebraically corresponds to the set P1(H))

whose automorphisms are the bijections preserving transition probabilities.
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(M.2) The orthomodular lattice L of closed subspaces of H, or equivalently, the lattice

of all projections in B(H), where the automorphisms are the bijections preserving

orthogonality and order.

The equivalence of these two models implies that if dim(H) ≥ 3, every bijection

Φ : P(B(H)) → P(B(H)) preserving the partial ordering and orthogonality in both

directions is given by a real linear ∗-automorphism on B(H) determined either by a

unitary or by an anti-unitary operator on H (cf. [10, §2.3 and Proposition 4.9]).

The lattice of projections in B(H) is a subset of the strictly bigger lattice of partial

isometries in B(H). We recall that an element e in B(H) is a partial isometry if ee∗

(equivalently, e∗e) is a projection. Partial isometries are also called tripotents since

an element e is a partial isometry if and only if ee∗e = e. Let the symbol PI(H) =

U(B(H)) stand for the set of all partial isometries on H. We shall write PI1(H) =

Umin(B(H)) for the set of all rank–1 or minimal partial isometries on H. We say that

e, v ∈ U(B(H)) are orthogonal if and only if {ee∗, vv∗} and {e∗e, v∗v} are two sets of

orthogonal projections. The standard partial ordering on U(B(H)) is defined in the

following terms: e ≤ u if u− e is a partial isometry orthogonal to e.

L. Molnár seems to be the first author in considering a Wigner type theorem for

bijections on the lattice of partial isometries of B(H) preserving the partial order and

orthogonality in both directions.

Theorem 1.2. [37, Theorem 1] Let H be a complex Hilbert space with dim(H) ≥
3. Suppose that Φ : U(B(H)) → U(B(H)) is a bijective transformation which preserves

the partial ordering and the orthogonality between partial isometries in both directions.

If Φ is continuous (in the operator norm) at a single element of U(B(H)) different from

0, then Φ extends to a real-linear triple isomorphism.

During the mini-symposium “Research on preserver problems on Banach algebras

and related topics” held at RIMS (Research Institute for Mathematical Sciences), Kyoto

University on October 25–27, 2021, the author of this note presented the following

generalization of the previous theorem to the case of atomic JBW∗-triples (i.e. JB∗-

triples which are ℓ∞-sums of Cartan factors).

Theorem 1.3. [18, Theorem 6.1] Let M =

ℓ∞⊕
i∈I

Ci and N =

ℓ∞⊕
j∈J

C̃j be atomic

JBW∗-triples, where Ci and Cj are Cartan factors with rank ≥ 2. Suppose that Φ :

U(M) → U(N) is a bijective transformation which preserves the partial ordering in both

directions and orthogonality between tripotents. We shall additionally assume that Φ

is continuous at a tripotent u = (ui)i in M with ui 6= 0 for all i (or we shall simply

assume that Φ|Tu is continuous at a tripotent (ui)i in M with ui 6= 0 for all i). Then
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there exists a real linear triple isomorphism T :M → N such that T (w) = Φ(w) for all

w ∈ U(M).

It should be remarked that the hypothesis concerning the ranks of the Cartan

factors in the previous theorem cannot be relaxed (cf. [18, Remark 3.6]). Anyway, the

validity of the result for rank-2 Cartan factors is undoubtedly an advantage.

Back to the essence of Wigner theorem expressed in Theorem 1.1, we find the

following contribution by L. Molnár.

Theorem 1.4. [37, Theorem 2] Let Φ : Umin(B(H)) → Umin(B(H)) be a bijec-

tive mapping satisfying

(1.1) tr(Φ(e)
∗
Φ(v)) = tr(e∗v), for all e, v ∈ Umin(B(H)).

Then Φ extends to a surjective complex-linear isometry. Moreover, one of the following

statements holds:

(a) there exist unitaries u,w on H such that Φ(e) = uew (e ∈ Umin(B(H)));

(b) there exist anti-unitaries u,w on H such that Φ(e) = ue∗w (e ∈ Umin(B(H))).

Let us observe that for each minimal partial isometry e in B(H), the functional

φe(x) = tr(e∗x) is the unique extreme point of the closed unit ball of B(H)∗, the

predual of B(H), at which e attains its norm. A similar property holds in the wider

setting of JBW∗-triples (see subsection 1.1 for details and definitions). Namely, for

each minimal tripotent e in a JBW∗-triple, M, there exists a unique pure atom (i.e. an

extreme point of the closed unit ball of M∗) φe at which e attains its norm and the

corresponding Peirce-2 projection writes in the form P2(e)(x) = φe(x)e for all x ∈ M

(cf. [19, Proposition 4]). The mapping

Umin(M) → ∂e(BM∗), e 7→ φe

is a bijection from the set of minimal tripotents in M onto the set of pure atoms of

M . Given two minimal tripotents e and v in a JBW∗-triple M , we define the triple

transition pseudo-probability from e to v as the complex number given by TTP (e, v) =

φv(e). So, the hypothesis (1.1) in Theorem 1.4 is equivalent to say that Φ preserves

triple transition pseudo-probabilities. In the case of B(H), the triple transition pseudo-

probability between two minimal projections is precisely the usual transition probability.

We shall show that this pseudo-probability is symmetric in the sense that TTP (e, v) =

TTP (v, e), for every couple of minimal tripotents e, v ∈M .

We shall also see below that the triple transition pseudo-probability between any

two minimal projections p and q in a von Neumann algebra W is zero if and only if p
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and q are orthogonal (i.e. pq = 0). The same equivalence does not necessarily hold when

projections are replaced with tripotents or partial isometries, for example, the partial

isometries e =

(
1 0

0 0

)
and v =

(
0 1

0 0

)
are not orthogonal inM2(C), but TTP (e, v) = 0.

This is a theoretical handicap for the triple transition pseudo-probability. However,

despite Theorem 1.3 above does not hold for rank-one JB∗-triples (cf. [18, Remark

3.6]), every (non-necessarily surjective) mapping between the lattices of tripotents of

two rank-one JB∗-triples preserving triple transition pseudo-probabilities always admits

an extension to a linear and isometric triple homomorphism between the corresponding

JB∗-triples (see Proposition 2.2). This will be obtained by an application of a theorem

of Ding on the extension of isometries on the unit sphere of a Hilbert space [13].

In Theorem 2.3 we establish that if M and N are atomic JBW∗-triples and Φ :

Umin(M) → Umin(N) is a bijective transformation preserving triple transition pseudo-

probabilities between the sets of minimal tripotents, then there exists a bijective (com-

plex) linear mapping T0 from the socle of M onto the socle of N whose restriction to

Umin(M) is Φ, where the socle of a JB∗-triple is the subspace linearly generated by its

minimal tripotents. If we additionally assume that Φ preserves orthogonality, then we

prove the existence of a surjective (complex-)linear (isometric) triple isomorphism from

M onto N extending the mapping Φ (cf. Corollary 2.5).

Due to the just commented result, the natural question is whether every bijection

between the sets of minimal tripotents in two atomic JBW∗-triples preserving triple

transition pseudo-probabilities must automatically preserve orthogonality among them.

The rest of the paper is devoted to present a couple of positive answers to this problem

in the case of spin and type 1 Cartan factors.

Section 3 is devoted to study bijections preserving triple transition pseudo-proba-

bilities between the sets of minimal tripotents in two spin factors. We shall show that

any such bijection preserves orthogonality, and hence admits an extension to a triple

isomorphism between the spin factors (see Theorem 3.2). The proof is based on an

remarkable results on preservers, due to J. Chmieliński, asserting that a non-vanishing

mapping between two inner product spaces is linear and preserves orthogonality in the

Euclidean sense if and only if it is a positive multiple of a linear isometry [11, Theorem

1].

In section 4 we also establish a positive answer to the problem stated above in the

case of a bijection between the sets of minimal tripotents in two type 1 Cartan factors

(see Theorem 4.4). On this occasion, our arguments run closer to those given by Molnár

in the proof of Theorem 1.4. For this purpose we shall establish a variant of several

results previously explored by M. Marcus, B.N. Moyls [35], R. Westwick [40] and M.

Omladič and P. Šemrl [38]. We concretely prove in Theorem 4.3 that for each linear
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bijection Φ : soc(B(H1,K1)) → soc(B(H2,K2)) preserving rank-one operators in both

directions, where H1,H2,K1 and K2 are complex Hilbert spaces with dimensions ≥ 2,

one of the next statements holds:

(a) either there are bijective linear mappings u : K1 → K2, and v : H1 → H2 such that

Φ(ξ ⊗ η) = u(ξ ⊗ η)v = u(ξ)⊗ v(η) (ξ ∈ K1, η ∈ H1);

(b) or there are bijective conjugate-linear mappings u : H1 → K2, v : K1 → H2 such

that Φ(ξ ⊗ η) = u(ξ ⊗ η)∗v = u(η ⊗ ξ)v = u(η)⊗ v(ξ) (ξ ∈ K1, η ∈ H1).

Let us finish this introduction with a kind of announcement or statement of inten-

tions, it would be desirable to find a positive argument to prove that every bijection

between the sets of minimal tripotents in two atomic JBW∗-triple automatically pre-

serves orthogonality. Perhaps a more general point of view could provide a better

understanding. At the present moment it seems a open problem. Some other additional

questions also arise after this first study on triple transition pseudo-probabilities.

§ 1.1. Definitions and terminology

The model which motivated the study of C∗-algebras is the space B(H), of all

bounded linear operators on a complex Hilbert space H. Left and right weak∗ closed

ideals of B(H) are precisely subspaces of the form B(H)p and pB(H), respectively,

where p is a projection in B(H). These ideals are identified with subspaces of operators

of the form B(p(H),H) and B(H, p(H)). However, given two complex Hilbert spaces

H and K (where we can always assume that K is a closed subspace of H), the Banach

space B(H,K), of all bounded linear operators from H to K, is not, in general, a C∗-

subalgebra of some B(H). Despite of this handicap, B(H,K) is stable under products

of the form

(1.2) {x, y, z} =
1

2
(xy∗z + zy∗x) (x, y, z ∈ B(H,K)).

Closed (complex) subspaces of B(H,K) which are closed for the triple product defined in

(1.2) were called J∗-algebras by L. Harris in [27, 28]. J∗-algebras include, in particular,

all C∗-algebras, all JC∗-algebras, all complex Hilbert spaces, and all ternary algebras

of operators. Harris also proved that the open unit ball of every J∗-algebra enjoys

the interesting holomorphic property of being a bounded symmetric domain (see [27,

Corollary 2]). In [7], R. Braun, W. Kaup and H. Upmeier extended Harris’ result by

showing that the open unit ball of every (unital) JB∗-algebra satisfies the same property.

If the holomorphic-property ”being a bounded symmetric domain” is employed to

classify the open unit balls of complex Banach spaces, the definitive result is due to W.

-
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Kaup, who in his own words “introduced the concept of JB∗-triple and showed that every

bounded symmetric domain in a complex Banach space is biholomorphically equivalent to

the open unit ball of a JB∗-triple, and in this way, the category of all bounded symmetric

domains with base point is equivalent to the category of JB∗-triples” (see [31]).

A complex Banach space E is called a JB∗-triple if it admits a continuous triple

product {·, ·, ·} : E×E×E → E, which is symmetric and bilinear in the first and third

variables, conjugate-linear in the middle one, and satisfies the following axioms:

(a) (Jordan identity)

L(a, b)L(x, y) = L(x, y)L(a, b) + L(L(a, b)x, y)− L(x, L(b, a)y)

for a, b, x, y in E, where L(a, b) is the operator on E given by x 7→ {a, b, x};

(b) L(a, a) is a hermitian operator with non-negative spectrum for all a ∈ E;

(c) ‖{a, a, a}‖ = ‖a‖3 for every a ∈ E.

The first examples of JB∗-triples include C∗-algebras and B(H,K) spaces with

respect to the triple product given in (1.2), the latter are known as Cartan factors of

type 1.

There are six different types of Cartan factors, the first one has been introduced in

the previous paragraph. In order to define the next two types, let j be a conjugation (i.e.

a conjugate-linear isometry or period 2) on a complex Hilbert space H. We consider

a linear involution on B(H) defined by x 7→ xt := jx∗j. Cartan factors of type 2 and

3 are the JB∗-subtriples of B(H) of all t-skew-symmetric and t-symmetric operators,

respectively.

A Cartan factor of type 4, also called a spin factor, is a complex Hilbert space M

provided with a conjugation x 7→ x, where the triple product and the norm are defined

by

(1.3) {x, y, z} = 〈x, y〉z + 〈z, y〉x− 〈x, z〉y,

and

(1.4) ‖x‖2 = 〈x, x〉+
√

〈x, x〉2 − |〈x, x〉|2,

respectively (cf. [17, Chapter 3]). The Cartan factors of types 5 and 6 (also called

exceptional Cartan factors) are spaces of matrices over the eight dimensional complex

algebra of Cayley numbers; the type 6 consists of all 3× 3 self-adjoint matrices and has

a natural Jordan algebra structure, and the type 5 is the subtriple consisting of all 1×2

matrices (see [32, 27, 29] and the recent references [22, §6.3 and 6.4], [23, §3] for more

details).
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An element e in a JB∗-triple E is called a tripotent if {e, e, e} = e. When a C∗-

algebra is regarded as a JB∗-triple with the triple product in (1.2), tripotents and partial

isometries correspond to the same elements. If we fix a tripotent e in E, we can find a

decomposition of the space in terms of the eigenspaces of the operator L(e, e) which is

expressed as follows:

(1.5) E = E0(e)⊕ E1(e)⊕ E2(e),

where Ek(e) := {x ∈ E : L(e, e)x = k
2x} is a subtriple of E called the Peirce-k subspace

(k = 0, 1, 2). Peirce-k projection is the name given to the natural projection of E onto

Ek(e), and it is usually denoted by Pk(e). The Peirce-2 subspace E2(e) is a unital

JB∗-algebra with respect to the product and involution given by x ◦e y = {x, e, y} and

x∗e = {e, x, e}, respectively.
A tripotent e in E is called algebraically minimal (respectively, complete or alge-

braically maximal) if E2(e) = Ce 6= {0} (respectively, E0(e) = {0}). We shall say that

e is a unitary tripotent if E2(e) = E. The symbols U(E), Umin(E), and Umax(E) will

stand for the sets of all tripotents, minimal tripotents, and complete tripotents in E,

respectively.

A JB∗-triple might contain no non-trivial tripotents, that is the case of the JB∗-

triple C0[0, 1] of all complex-valued continuous functions on [0, 1] vanishing at 0. How-

ever, in a JB∗-triple E the extreme points of its closed unit ball are precisely the com-

plete tripotents in E (cf. [7, Lemma 4.1], [33, Proposition 3.5] or [14, Corollary 4.8]).

Thus, every JB∗-triple which is also a dual Banach space contains an abundant set of

tripotents. JB∗-triples which are additionally dual Banach spaces are called JBW∗-

triples. Each JBW∗-triple admits a unique (isometric) predual and its triple product is

separately weak∗ continuous (cf. [2]).

A JBW∗-triple is called atomic if it coincides with the w∗-closure of the linear span

of its minimal tripotents. A very natural example is given by B(H), where each minimal

tripotent is of the form ξ ⊗ η with ξ, η in the unit sphere of H. Every Cartan factor is

an atomic JBW∗-triple. Cartan factors are enough to exhaust all possible cases since

every atomic JBW∗-triple is an ℓ∞-sum of Cartan factors (cf. [20, Proposition 2 and

Theorem E]).

The notion of orthogonality between tripotents is an important concept in the

theory of JB∗-triples. Suppose e and v are two tripotents in a JB∗-triple E. According

to the standard notation (see, for example [34, 3]) we say that e is orthogonal to u

(e ⊥ u in short) if {e, e, u} = 0. It is known that e ⊥ u if and only if {u, u, e} = 0

(and the latter is equivalent to any of the next statements: L(e, u) = 0; L(u, e) = 0;

e ∈ E0(u); u ∈ E0(e) cf. [34, Lemma 3.9]). It is worth to remark that two projections p

and q in a C∗-algebra A, regarded as a JB∗-triple, are orthogonal if and only if pq = 0

-
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(that is, they are orthogonal in the usual sense).

We can also speak about orthogonality for pairs of general elements in a JB∗-triple

E. We shall say that x and y in E are orthogonal (x ⊥ y in short) if L(x, y) = 0

(equivalently L(y, x) = 0, compare [9, Lemma 1.1] for several reformulations). Any two

orthogonal elements a and b in JB∗-triple E are M -orthogonal in a strict geometric

sense, that is, ‖a+ b‖ = max{‖a‖, ‖b‖} (see [19, Lemma 1.3(a)]).

Building upon the relation “being orthogonal” we can define a canonical order “≤”

on tripotents in E given by e ≤ u if and only if u − e is a tripotent and u − e ⊥ e.

This partial ordering is precisely the order consider by L. Molnár in Theorem 1.2,

and it provides an important tool in JB∗-triples (see, for example, the recent papers

[25, 26, 22, 23, 21, 24] where it plays an important role). The partial order in U(E)

enjoys several interesting properties; for example, e ≤ u if and only if e is a projection

in the JB∗-algebras E2(e) (cf. [3, Lemma 3.2] or [19, Corollary 1.7] or [22, Proposition

2.4]). In particular, if e and p are tripotents (i.e. partial isometries) in a C∗-algebra

A regarded as a JB∗-triple with the triple product in (1.2) and p is a projection, the

condition e ≤ p implies that e is a projection in A with e ≤ p in the usual order on

projections (i.e. pe = e).

A non-zero tripotent e in E is called (order) minimal (respectively, (order) max-

imal) if 0 6= u ≤ e for a tripotent u in E implies that u = e (respectively, e ≤ u for a

tripotent u in E implies that u = e). Clearly, every algebraically minimal tripotent is

(order) minimal but the reciprocal implication does not necessarily hold, for example,

the unit element in C[0, 1] is order minimal but not algebraically minimal. In the C∗-

algebra C0[0, 1], of all continuous functions on [0, 1] vanishing at 0, the zero tripotent

is order maximal but it is not algebraically maximal. In the setting of JBW∗-triples

these pathologies do not happen, that is, in a JBW∗-triple order and algebraic maximal

(respectively, minimal) tripotents coincide (cf. [14, Corollary 4.8] and [3, Lemma 4.7]).

A triple homomorphism between JB∗-triples E and F is a linear map T : E → F

such that T{a, b, c} = {T (a), T (b), T (c)} for all a, b, c ∈ E. Every triple homomorphism

between JB∗-triples is continuous [1, Lemma 1]. A triple isomorphism is a bijective

triple homomorphism. Clearly, the inclusion T (U(E)) ⊆ U(F ) holds for each triple ho-

momorphism T , while the equality T (U(E)) = U(F ) is true for every triple isomorphism

T . Every injective triple homomorphism is an isometry (see [1, Lemma 1]). Actually a

deep result in the theory of JB∗-triples, established by W. Kaup in [31, Proposition 5.5],

proves that a linear bijection between JB∗-triples is a triple isomorphism if and only if

it is an isometry. Therefore, each triple isomorphism T : E → F induces a surjective

isometry T |U(E) : U(E) → U(F ) which preserves orthogonality and partial order in both

directions. Similar arguments prove that the mappings T |Umin(E) : Umin(E) → Umin(F )

and T |Umax(E) : Umax(E) → Umax(F ) are surjective isometries.
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Along this note, the unit sphere of each normed space X will be denoted by S
X
,

and we shall write T for SC .

§ 2. Maps preserving triple transition pseudo-probabilities between

minimal tripotents

As we recalled at the introduction, the transition probability between two minimal

projections p = ξ ⊗ ξ and q = η ⊗ η in B(H) is given by tr(pq) = tr(pq∗) = tr(qp∗) =

|〈ξ, η〉|2. Let us observe that each minimal projection p = ξ⊗ ξ in B(H) is bi-univocally

associated with a pure normal state φp ∈ B(H)∗ (i.e. an extreme point of the normal

state space) at which p attains its norm. Clearly φp is identified with the pure normal

state given by φ(a) = (ξ ⊗ ξ)(a) := 〈a(ξ), ξ〉 = tr(ap) (a ∈ B(H)). Thus, the transition

probability between p and q is given by the identity

(2.1) tr(pq) = |〈ξ, η〉|2 = |φp(q)|2 = |φq(p)|2.

For each minimal partial isometry e = ξ ⊗ η in B(H), with ξ, η unitary vectors in

H, there exists a unique extreme point φe of the closed unit ball of C1(H) = B(H)∗

such that φe(e) = 1. Actually φe is defined by φe(x) := 〈x(ξ), η〉 = tr(e∗x) (x ∈ B(H)).

Motivated by the identity in (2.1), for each couple e, v of minimal partial isometries in

B(H), we define the triple transition pseudo-probability between e and v as the scalar

φe(v) –this is not a real probability, since it actually takes complex values. The question

is whether we can extend this definition to the wider setting of Cartan factors and atomic

JBW∗-triples.

The lacking of a positive cone in general JB∗-triples induced us to replace the

lattice of projections in B(H) by the poset of tripotents in a Cartan factor or in an

atomic JBW∗-triple in our recent study on bijections preserving the partial ordering

and orthogonality between the poset of two atomic JBW∗-triples in [18]. Here we

introduce the triple transition pseudo-probability between two minimal tripotents in an

atomic JBW∗-triple. To understand well the definition we need to recall some geometric

properties of JBW∗-triples. Following [19], the extreme points of the closed unit ball,

BM∗ , of the predual, M∗, of a JBW∗-tripleM are called atoms or pure atoms. We recall

that the extreme points of the convex set of all positive functionals with norm ≤ 1 in

the predual of a von Neumann algebra are called pure states. The symbol ∂e(BM∗) will

stand for the set of all pure atoms of M .

By [19, Proposition 4], for each minimal tripotent e in a JBW∗-tripleM there exists

a unique pure atom φe satisfying P2(e)(x) = φe(x)e for all x ∈ M . Furthermore, the

mapping

Umin(M) → ∂e(BM∗), e 7→ φe
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is a bijection from the set of minimal tripotents in M onto the set of pure atoms of M .

We are now in a position to introduce the key notion of this note.

Definition 2.1. Let e and v be minimal tripotents in a JBW∗-triple M . We

define the triple transition pseudo-probability from e to v as the complex number given

by

(2.2) TTP (e, v) = φv(e).

Observe that every triple transition pseudo-probability lies in the closed unit ball

of C. Formally speaking, the triple transition pseudo-probability is not a probability

because it can take complex values. However, it satisfies many interesting and natural

properties. For example, by [19, Lemma 2.2] we have

(2.3) TTP (v, e) = φe(v) = φv(e) = TTP (e, v),

for every e, v ∈ Umin(M), which is naturally expressing the property of symmetry of

the triple transition pseudo-probability.

If p and q are two minimal projections in a von Neumann algebra W , having in

mind that φp is a norm-one functional attaining its norm at p, it follows that φp is

a positive normal state on W , and hence TTP (q, p) = φp(q) is a real number in the

interval [0, 1] and coincides with TTP (p, q) = φq(p). Therefore the new notion of triple

transition pseudo-probability agrees with the usual transition probability in the case of

minimal projections.

Molnár’s theorem [37, Theorem 2], presented as Theorem 1.4 in the introduction,

can be now restated in the following terms: Let Φ : Umin(B(H)) → Umin(B(H)) be

a bijective mapping preserving triple transition pseudo-probabilities. Then Φ extends

to a surjective complex-linear isometry. Inspired by Molnár’s result, it seems natural

to study the bijections preserving the triple transition pseudo-probabilities between the

sets of minimal tripotents of two atomic JBW∗-triples. The first unexpected conclusion

appears when dealing with rank-one JB∗-triples. Contrary to the serious obstacles

affecting bijective preservers of partial ordering in both directions and orthogonality in

the case of rank-one Cartan factors cf. [18, Remark 3.6]), preservers of triple transition

pseudo-probabilities between sets of minimal tripotents have an excellent behaviour in

the case of rank-one Cartan factors.

Let us first recall that a subset S of a JB∗-triple E is called orthogonal if 0 /∈ S
and a ⊥ b for all a, b ∈ S. The minimal cardinal number r satisfying card(S) ≤ r for

every orthogonal subset S ⊆ E is called the rank of E. Spin factors have rank 2 and

the exceptional Cartan factors of type 5 and 6 have ranks 2 and 3, respectively. A

JB∗-triple has finite rank if and only if it is reflexive (cf. [8, Proposition 4.5] and [12,
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Theorem 6] or [6, 5]). Furthermore, if E is a JB∗-triple of rank-one, it must be reflexive

and a rank-one Cartan factor, and moreover, it must be isometrically isomorphic to a

complex Hilbert space (see the discussion in [5, §3] and [32, Table 1 in page 210]).

The rank of a tripotent e in a JB∗-triple E is defined as the rank of E2(e). It is

known that for each tripotent e in a Cartan factor C we have r(e) = r(C2(e)) = n <∞
if and only if it can be written as an orthogonal sum of n mutually orthogonal minimal

tripotents in C (see, for example, [32, page 200]).

The rank theory plays a fundamental role in the different solutions to Tingley’s

problem in the case of compact C∗-algebras [39] and weakly compact JB∗-triples [15, 16],

as well as to prove that every JBW∗-triple satisfies the Mazur–Ulam property [4, 30].

In our next result we shall apply some of the techniques developed in the just quoted

results.

Proposition 2.2. Let Φ : Umin(E) → Umin(F ) be a transformation preserving

triple transition pseudo-probabilities, that is,

TTP (Φ(u),Φ(e)) = φΦ(e)(Φ(u)) = φe(u) = TTP (u, e), for all e, u ∈ Umin(E),

where E and F are two rank-one JB∗-triples. Then Φ extends to a (complex-)linear

isometric triple homomorphism from E to F .

Proof. As we have seen before the statement of this proposition, we can assume

that E and F are two complex Hilbert spaces regarded as type 1 Cartan factors. We

observe that U(E)\{0} = Umin(E) = S
E
, the unit sphere of E, and U(F )\{0} =

Umin(F ) = S
F
. Since for each e ∈ S

E
, φe is precisely the functional given by φe(x) =

〈x, e〉 (x ∈ E), the hypothesis on Φ is equivalent to

〈Φ(u),Φ(e)〉 = 〈u, e〉, for all e, u ∈ Umin(E) = S
E
.

A simple computation shows that

‖Φ(e)− Φ(v)‖2 = 〈Φ(e)− Φ(v),Φ(e)− Φ(v)〉
= 〈Φ(e),Φ(e)〉 − 〈Φ(v),Φ(e)〉 − 〈Φ(e),Φ(v)〉+ 〈Φ(v),Φ(v)〉
= 〈e, e〉 − 〈v, e〉 − 〈e, v〉+ 〈v, v〉 = ‖e− v‖2,

for all e, v ∈ S(E). That is Φ : S
E
→ S

F
is an isometry. Moreover, by the assumptions

on Φ we also have

〈−Φ(e),Φ(−e)〉 = −〈Φ(e),Φ(−e)〉 = −〈e,−e〉 = 1,

which proves that Φ(−e) = −Φ(e), for all e ∈ S
E
. An application of the solution to

Tingley’s problem for Hilbert spaces established by G.G. Ding in [13, Theorem 2.2]
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guarantees the existence of a real linear isometry T : E → F whose restriction to S
E
is

Φ.

We shall finally show that T is complex linear. As before, by the assumptions on

Φ, for each λ ∈ T we also have

〈λΦ(e),Φ(λe)〉 = λ〈Φ(e),Φ(λe)〉 = λ〈e, λe〉 = 1,

witnessing that Φ(λe) = λΦ(e), for all e ∈ S
E
and λ ∈ T. The rest is clear.

Let us note that in the previous proposition we are not assuming that Φ is injective

nor surjective.

It is now time to see a handicap or a limitation of the triple transition pseudo-

probability. Let p and q be two minimal projections in a von Neumann algebra W .

Suppose that the transition probability between p and q, as given in (2.1), is zero, that

is φp(q) = 0, or equivalently, P2(p)(q) = pqp = 0. Since 0 = pqp = (pq)(pq)∗, we deduce

that pq = qp = 0, and thus q = (1 − p)q(1 − q) = P0(p)(q) ⊥ p. This property does

not always hold when projections are replaced with tripotents or partial isometries,

for example if e and v are minimal tripotents in a Cartan factor C with v ∈ C1(e) we

clearly have φe(v) = 0 but e and v are not orthogonal. A simple example can be given by

e =

(
1 0

0 0

)
and v =

(
0 1

0 0

)
inM2(C). However, every (real linear) triple homomorphism

between JB∗-triples preserves orthogonality. Despite of this handicap, we can now get a

first extension of every bijective transformation preserving triple transition probabilities

between the sets of minimal tripotents of two atomic JBW∗-triples to their socles.

Let us first recall some structure results for atomic JBW∗-triples. Every JBW∗-

triple M decomposes as the orthogonal sum of two weak∗-closed ideals A and N , where

A is an atomic JBW∗-triple (called the atomic part of M) and N contains no minimal

tripotents [19, Theorem 2]. Furthermore, M∗ decomposes as the ℓ1-sum of two norm

closed subspaces A∗–the predual of A– and N∗–the predual of N– satisfying that A∗ is

the norm closure of the linear span of all pure atoms of M and the closed unit ball of

N∗ contains no extreme points [19, Theorem 1].

At this stage the reader should also get some information about elementary JB∗-

triples. Let Cj be a Cartan factor of type j ∈ {1, . . . , 6}. The elementary JB∗-triple, Kj ,

of type j associated with Cj is defined as follows: K1 = K(H1,H2); Ki = C ∩K(H)

when C is of type i = 2, 3, and Kj = Cj in the remaining cases (cf. [8]). For each

elementary JB∗-triple of type j, its bidual space is precisely a Cartan factor of j.

The socle of a JB∗-triple E, soc(E), is the (non-necessarily closed) linear subspace

of E generated by all minimal tripotents in E. For example, the socle of B(H) is the

subspace, F(H), of all finite rank operators, and it is not, in general, closed. If C is a

□ 
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Cartan factor of finite rank (or, more generally, a reflexive JB∗-triple), every element

in C can be written as a finite linear combination of mutually orthogonal minimal

tripotents (see [8, Proposition 4.5 and Remark 4.6] or [5]), and thus the socle of C

is the whole C–that is soc(C) = K(C) = C. For a general Cartan factor we have

soc(C)
∥−∥

= K(C) and K(C)
w∗

= C. In an atomic JBW∗-triple M , the symbol K(M)

will stand for the c0-sum of the elementary JB∗-triples associated with the Cartan

factors expressing M as an ℓ∞-sum.

Theorem 2.3. Let Φ : Umin(M) → Umin(N) be a bijective transformation pre-

serving triple transition pseudo-probabilities (i.e., TTP (Φ(v),Φ(e)) = φΦ(e)(Φ(v)) =

φe(v) = TTP (v, e), for all e, v in Umin(M)), where M and N are atomic JBW∗-triples.

Then there exists a bijective (complex) linear mapping T0 : soc(M) → soc(N) whose

restriction to Umin(M) is Φ.

Proof of Theorem 2.3. Clearly, the pure atoms of M and N are norming sets for

K(M) and K(N), respectively. Let us suppose that
m∑
i=1

αiei =
m∑
j=1

βjvj ∈ soc(M), where

αi, βj ∈ C and ei, vj ∈ Umin(M). By the hypothesis on Φ, for each ψ ∈ ∂e(BN∗), there

exists Φ(w) = w̃ ∈ Umin(N) (and w ∈ Umin(M)) such that ψ = ψw̃ = ψΦ(w). It also

follows from the hypotheses that

ψ

(
m∑
i=1

αiΦ(ei)

)
= ψΦ(w)

(
m∑
i=1

αiΦ(ei)

)
=

m∑
i=1

αiψΦ(w) (Φ(ei))

=
m∑
i=1

αiψw (ei) = ψw

(
m∑
i=1

αiei

)
= ψw

 m∑
j=1

βjvj


=

m∑
j=1

βjψw (vj) =

m∑
j=1

βjψΦ(w) (Φ(vj))

= ψΦ(w)

 m∑
j=1

βjΦ(vj)

 = ψ

 m∑
j=1

βjΦ(vj)

 .

The arbitrariness of ψ ∈ ∂e(BM∗) together with the fact that the set of pure atoms of

N separates the point of K(M) imply that

m∑
i=1

αiΦ(ei) =
m∑
j=1

βjΦ(vj).

Therefore, the mapping T0 : soc(M) → soc(N), T0

(∑m
i=1 αiei

)
=
∑m

i=1 αiΦ(ei) is

well-defined and linear. We further know that T0(e) = Φ(e) for all e ∈ Umin(M).
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We can similarly define a linear mappingR0 : soc(N) → soc(M) satisfyingR0(Φ(e)) =

e for all e ∈ Umin(M) and R0 = T−1
0 . Therefore T0 and R0 are bijections.

It should be remarked that, at this stage the hypotheses of the previous Theorem

2.3 do not imply, in a simple way, that the linear mapping T0 is continuous. Actually, if

e1, . . . , en are mutually orthogonal minimal tripotents inM , we have
∥∥∥T0(∑n

j=1 ej

)∥∥∥ =∥∥∥∑n
j=1 Φ(ej)

∥∥∥ ≤ n.We cannot get a better bound without assuming orthogonality (and

henceM -orthogonality) on the minimal tripotents Φ(e1), . . . ,Φ(en). In this line we recall

next a result by F.J. Herves and J.M. Isidro from [29].

Theorem 2.4. [29, Theorem in page 199] Let E be a finite-rank JB∗-triple, and

let T : E → E be a linear mapping (continuity is not assumed). Then the following

statements are equivalent:

(1) T is a triple automorphism.

(2) T (Umin(E)) = Umin(E) and preserves orthogonality.

We establish now a hybrid version of the previous two results.

Corollary 2.5. Let Φ : Umin(M) → Umin(N) be a bijective transformation pre-

serving orthogonality and triple transition pseudo-probabilities (i.e. TTP (Φ(v),Φ(e)) =

φΦ(e)(Φ(v)) = φe(v) = TTP (v, e), for all e, v in Umin(M)), where M and N are atomic

JBW∗-triples. Then Φ extends (uniquely) to a surjective complex-linear (isometric)

triple isomorphism from M onto N .

Proof. By Theorem 2.3 there exists a linear bijection T0 : soc(M) → soc(N) whose

restriction to Umin(M) coincides with Φ. By hypotheses, given u, v ∈ Umin(M) with

u ⊥ v, we have Φ(u) ⊥ Φ(v). Having in mind that for each x in the closed unit ball

of soc(M) there exists a finite family {en}n of mutually orthogonal minimal tripotents

in M and {λn}n in R+ such that x =
∑
n

λnen and 1 = ‖x‖ = max{λn : n} (cf. [8,

Remark 4.6]). It follows from the definition of T0 that

T0(x) = T0

(∑
n

λnen

)
=
∑
n

λnT0(en) =
∑
n

λnΦ(en),

and hence ‖T0(x)‖ = ‖x‖, because, by hypotheses, {Φ(en)}n is a family of mutually

orthogonal minimal tripotents in N . Furthermore, by the previous conclusion

{T0(x), T0(x), T0(x)} =
∑
n

λ3n{Φ(en),Φ(en),Φ(en)}

=
∑
n

λ3nΦ(en) =
∑
n

λ3nT0(en) = T0({x, x, x}),

□ 
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which shows that T0 is a contractive triple isomorphism from soc(M) onto soc(N).

We can therefore find a continuous linear extension of T0 to a continuous (isometric)

linear triple isomorphism from K(M) onto K(N) denoted by the same symbol T0. The

bitransposed mapping T ∗∗
0 : K(M)∗∗ = M → K(N)∗∗ = N is a triple isomorphism

whose restriction to Umin(M) coincides with Φ. This finishes the proof of the result.

It seems a natural (and important) question to ask whether a bijection preserv-

ing triple transition pseudo-probabilities between the sets of minimal tripotents in two

atomic JBW∗-triples also preserves orthogonality. That is, whether in Corollary 2.5

the hypothesis concerning preservation of orthogonality can be relaxed. This will be

answered for spin and type 1 Cartan factors along the next sections.

§ 3. The case of spin factors

As well as the study of those maps preserving triple transition pseudo-probabilities

between the sets of minimal tripotents in two rank-one JB∗-triples deserved its own

treatment in Proposition 2.2, the case of spin factors is also worth to study by itself.

Let us fix a spin factor M whose inner product, involution and triple product are

given by 〈·, ·〉, x 7→ x, and

{a, b, c} = 〈a, b〉c+ 〈c, b〉a− 〈a, c̄〉b̄,

respectively (cf. the definition in page 7). It is usually assumed that dim(M) ≥ 3;

actually if dim(M) = 2, the defined structure produces C ⊕∞ C, which is not a factor

(cf. [32, Remark 4.3]). The real subspace

M−
R

= {a ∈M : a = ā},

of all fixed points for the involution · is a real Hilbert space with respect to the restricted

inner product 〈a, b〉 = <e〈a, b〉 (a, b ∈ M−
R
), and M = M−

R
⊕ iM−

R
. We shall also make

use of the real Hilbert space H =MR given by the real underlying space of M equipped

with the inner product <e〈., .〉. Clearly M−
R

is a closed subspace of MR . The symbol

⊥2 will denote orthogonality in the Euclidean sense.

Each triple automorphism Φ on the spin factor M is precisely described in the

following form:

Φ(a+ ib) = λ(U(a) + iU(b)) for all a, b ∈M−
R
,

where λ ∈ T and U : M−
R

→ M−
R

is a unitary operator (cf. [29, Theorem in page 196]

or [17, Section 3.1.3]).

□ 
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The set of tripotents in M has been intensively studied along the last forty years.

If we exclude the zero tripotent, M only contains tripotents of rank-one (minimal) and

of rank-two (maximal and unitaries). In the second case we have

Umax(M) = {λa : λ ∈ T, a ∈ S
M

−
R
},

while

(3.1) Umin(M) =

{
a+ ib

2
: a, b ∈ S

M
−
R
, 〈a, b〉 = 0

}
(see, for example, [17, Section 3.1.4] or [22, Lemma 6.1], [18] or [30, Section 3]).

It is well-known, and easy to check, that for each minimal tripotent v = a+ib
2 with

a, b ∈ S
M

−
R
, 〈a, b〉 = 0 the Peirce-0 and Peirce-1 subspaces are the following:

(3.2) M0(v) = Cv, and M1(v) = {x ∈M : x ⊥2 v, v} = {x ∈M : x ⊥2 a, b}.

Another important fact to have in mind is the following: for each minimal tripotent

v in a spin factor M we have

(3.3) P2(v)(x) = 2〈x, v〉v, and hence φv(x) = 2〈x, v〉 (x ∈M).

The next technical lemma is presented separately to simplify the arguments.

Lemma 3.1. Let v and w be minimal tripotents in a spin factor M . Suppose

that M1(v) = M1(w). Then w lies in the linear span of v and v. If we additionally

assume that TTP (w, v) = φv(w) = 0, then w belongs to Tv ⊂M0(v).

Proof. Let us write v = a+ib
2 , w = c+id

2 with a, b, c, d ∈ S
M

−
R
and 〈a, b〉 = 0 = 〈c, d〉.

Since {x ∈ M : x ⊥2 a, b} = M1(v) = M1(w) = {x ∈ M : x ⊥2 c, d}, it follows

that the Euclidean orthogonal complements of the sets {a, b} and {c, d} in M coincide.

It is straightforward to check that, under these circumstances, c = α1a + α2b and

d = β1a+ β2b, with (α1, α2), (β1, β2) ∈ Sℓ22(R) ≡ T . Therefore

w =
c+ id

2
=
α1a+ α2b+ i(β1a+ β2b)

2
∈ span{v, v},

as desired.

Finally, if TTP (w, v) = φv(w) = 0, the expression of the pure states given in (3.3)

assures that

0 = φv(w) = 2〈w, v〉 = 2

〈
α1a+ α2b+ i(β1a+ β2b)

2
,
a+ ib

2

〉
,



18 A.M. Peralta

or equivalently,

α1 + β2 = 0 = β1 − α2,

that is, β1 + iβ2 = α2 − iα1 = (−i)(α1 + iα2), and thus

w =
(α1 + iα2)a+ (α2 − iα1)b

2
= (α1 + iα2)

a− ib

2
∈ Tv,

which finishes the proof.

We can now prove that every bijection preserving triple transition pseudo-proba-

bilities between the sets of minimal tripotents in two spin factors also preserves orthog-

onality, and consequently extends to a triple isomorphism between the spin factors.

Theorem 3.2. Let Φ : Umin(M) → Umin(N) be a bijective transformation pre-

serving triple transition pseudo-probabilities (i.e., TTP (Φ(v),Φ(e)) = φΦ(e)(Φ(v)) =

φe(v) = TTP (v, e), for all e, v in Umin(M)), where M and N are spin factors. Then

there exists a (unique) triple isomorphism T :M → N whose restriction to Umin(M) is

Φ.

Proof. We shall denote by the same symbols 〈., .〉 and x 7→ x the inner products

and the involutions on M and N . Let T0 : soc(M) → soc(N) be the linear bijection

whose restriction to Umin(M) is Φ given by Theorem 2.3. SinceM andN are spin factors

with rank-two we have soc(M) = M and soc(N) = N. Furthermore, every element x

in M writes in the form x = λ1v1 + λ2v2, where v1 and v2 are two orthogonal minimal

tripotents in M , λi ∈ [0, ‖x‖]. In particular, ‖T0(x)‖ ≤ λ1‖Φ(v1)‖+ λ2‖Φ(v2)‖ ≤ 2‖x‖.
Therefore T0 is a bounded linear bijection from M onto N sending minimal tripotents

to minimal tripotents and preserving triple transition pseudo-probabilities.

Let us take a, b ∈ S
M

−
R

with 〈a, b〉 = 0. Let us write T0(a) = a1 + ia2 and T0(b) =

b1+ib2, with aj , bj ∈ N−
R
. Since the elements T0(

a+ib
2 ) = (a1−b2)+i(b1+a2)

2 and T0(
a−ib
2 ) =

(a1+b2)+i(a2−b1)
2 are minimal tripotents we deduce that the following identities hold:

‖a1 − b2‖22 = ‖a2 + b1‖22 = 1,

‖a1 + b2‖22 = ‖a2 − b1‖22 = 1,

〈a1 + b2, a2 − b1〉 = 0,

〈a1 − b2, a2 + b1〉 = 0,

,

equivalently,

(3.4)


‖a1‖22 + ‖b2‖22 = ‖b1‖22 + ‖a2‖22 = 1,

〈a1, b2〉 = 0 = 〈a2, b1〉,
〈a1, a2〉 − 〈b1, b2〉 = 0,

〈a1, b1〉 − 〈a2, b2〉 = 0.

□ 
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On the other hand, by (3.3), for each minimal tripotent v in a spin factor we have

φv(x) = 2〈x, v〉. Applying now that Φ (and T0) preserves triple transition pseudo-

probabilities among minimal tripotents and the explicit expression of the pure atoms

given above we have

0 = 2

〈
a+ ib

2
,
a− ib

2

〉
= φ a−ib

2

(
a+ ib

2

)
= φT0( a−ib

2 )

(
T0

(
a+ ib

2

))
= 2

〈
T0

(
a+ ib

2

)
, T0

(
a− ib

2

)〉
= 2

〈
(a1 − b2) + i(b1 + a2)

2
,
(a1 + b2) + i(a2 − b1)

2

〉.

By computing the imaginary parts in the previous equality we arrive at

0 =

〈
(b1 + a2)

2
,
(a1 + b2)

2

〉
−
〈
(a1 − b2)

2
,
(a2 − b1)

2

〉
equivalently,

〈a1, b1〉+ 〈a2, b2〉 = 0,

which combined with the equality in the fourth line of (3.4) gives

〈a1, b1〉 = 〈a2, b2〉 = 0.

The last identity together with the conclusion in the second line of (3.4) show that

〈a1, b1〉 = 〈a2, b2〉 = 〈a1, b2〉 = 〈a2, b1〉 = 0

⇔ aj ⊥2 bk, j, k = 1, 2 in the Hilbert spaceNR.

We have therefore shown that

(3.5) a⊥2 b in the Hilbert spaceM−
R

⇒ T0(a) ⊥2 T0(b) in the Hilbert space NR .

Therefore T0|M−
R
:M−

R
→ NR is an injective linear mapping preserving orthogonal-

ity in the Hilbert sense, that is, 〈a, b〉 = 0 ⇒ 〈T0(a), T0(b)〉 = 0. Another interesting

result on preservers, proved by J. Chmieliński, assures that T0|M−
R

is a positive multiple

of an isometry, that is, there exists a positive γ and a real linear isometry U :M−
R

→ NR

such that T0|M−
R
= γU (cf. [11, Theorem 1]).

We shall next prove that γ = 1. Indeed, let us fix two orthogonal elements a, b in

the unit sphere of M−
R
. By hypothesis, v̂ = T0(

a+ib
2 ) = γU(a)+iγU(b)

2 = γ U(a)+iU(b)
2 is a

minimal tripotent in N . It is well-known that in this case

(3.6)

〈
U(a) + iU(b)

2
,
U(a)− iU(b)

2

〉
=
〈
γ−1v̂, γ−1v̂

〉
= γ−2

〈
v̂, v̂
〉
= 0.
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By applying the properties of U and the previous identity we get{
U(a) + iU(b)

2
,
U(a) + iU(b)

2
,
U(a) + iU(b)

2

}
= 2

〈
U(a) + iU(b)

2
,
U(a) + iU(b)

2

〉
U(a) + iU(b)

2

−

〈
U(a) + iU(b)

2
,
U(a)− iU(b)

2

〉
U(a)− iU(b)

2

=
1

2

(
‖U(a)‖22 + ‖U(b)‖22

) U(a) + iU(b)

2

=
1

2

(
‖a‖22 + ‖b‖22

) U(a) + iU(b)

2
=
U(a) + iU(b)

2

,

witnessing that U(a)+iU(b)
2 is a tripotent. Since U(a)+iU(b)

2 = γ−1v̂ we obtain γ = 1 as

desired.

Let us go back to the identity in (3.6) to deduce that

(3.7)

0 =
〈
U(a) + iU(b), U(a)− iU(b)

〉
=
〈
U(a), U(a)

〉
−
〈
U(b), U(b)

〉
+ i
〈
U(a), U(b)

〉
+ i
〈
U(b), U(a)

〉
=
〈
U(a), U(a)

〉
−
〈
U(b), U(b)

〉
+ 2i

〈
U(a), U(b)

〉
.

Since in this argument the roles of a and b are completely symmetric, by replacing a+ib
2

with b+ia
2 we derive

(3.8)
0 =

〈
U(b), U(b)

〉
−
〈
U(a), U(a)

〉
+ 2i

〈
U(b), U(a)

〉
=
〈
U(b), U(b)

〉
−
〈
U(a), U(a)

〉
+ 2i

〈
U(a), U(b)

〉
.

Now, adding (3.7) and (3.8) we get

(3.9)
〈
T0(a), T0(b)

〉
=
〈
U(a), U(b)

〉
= 0, for all a, b ∈ S

M
−
R

with a ⊥2 b.

We shall next show that for any minimal tripotent v = a+ib
2 the identities

(3.10) N1(T0(v)) = T0 (M1(v)) = T0 (M1(v)) = N1(T0(v)) = N1(T0(v))

hold. The second and fourth equalities are clear becauseM1(v) =M1(v) and N1(T0(v))

= N1(T0(v)) (cf. (3.2)). For the third one suppose that dim(M) = dim(M−
R ) ≥ 4,

and observe that in this case every minimal tripotent in M1(v) is of the form c+id
2 with

c, d ∈M−
R and c, d ⊥2 a, b, and every element in M1(v) writes as the linear combination
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of a minimal tripotent of this form and its orthogonal. Having in mind (3.9) and the

properties of U we obtain{
T0(v), T0(v), T0

(
c+ id

2

)}
=

{
U(a) + iU(b)

2
,
U(a) + iU(b)

2
,
U(c) + iU(d)

2

}
=

〈
U(a) + iU(b)

2
,
U(a) + iU(b)

2

〉
U(c) + iU(d)

2

+

〈
U(c) + iU(d)

2
,
U(a) + iU(b)

2

〉
U(a) + iU(b)

2

−

〈
U(a) + iU(b)

2
,
U(c)− iU(d)

2

〉
U(a)− iU(b)

2

=
1

2

U(c) + iU(d)

2
,

witnessing that T0
(
c+id
2

)
= U(c)+iU(d)

2 ∈ N1 (T0(v)) , and consequently T0 (M1(v)) ⊆
N1(T0(v)), but the equality holds by the bijectivity of T0.

If dim(M) = dim(M−
R ) = 3, then M1(v) is one dimensional and of the form Cc

with c in the unit sphere of M−
R and c ⊥2 a, b. In this case, by the properties of U and

(3.9), we get

{T0(v), T0(v), T0 (αc)} =

{
U(a) + iU(b)

2
,
U(a) + iU(b)

2
, αU(c)

}
=

〈
U(a) + iU(b)

2
,
U(a) + iU(b)

2

〉
αU(c)

+

〈
αU(c),

U(a) + iU(b)

2

〉
U(a) + iU(b)

2

−
〈
U(a) + iU(b)

2
, αU(c)

〉
U(a)− iU(b)

2
=

1

2
αU(c).

This shows that T0 (M1(v)) ⊆ N1(T0(v)), and consequently, T0 (M1(v)) = N1(T0(v)).

The same argument shows the validity of the first equality in (3.10).

We have therefore proved that N1(T0(v)) = N1(T0(v)), and since, by hypothesis,

TTP (T0(v), T0(v)) = TTP (v, v) = 0, Lemma 3.1 assures that T0(v) ∈ T T0(v), and

thus T0(v) ⊥ T0(v) in the spin factor N . Since v = a+ib
2 is any arbitrary minimal

tripotent in M and each minimal tripotent orthogonal to v lies in Tv, we deduce that

T0 preserves orthogonality among Umin(M). Finally, Corollary 2.5 asserts that T0 is a

triple isomorphism.

§ 4. The case of type 1 Cartan factors

This section is aimed to study those bijections preserving triple transition pseudo-

probabilities between the sets of minimal tripotents of two type 1 Cartan factors. In

□ 



22 A.M. Peralta

this case we shall try to extend the arguments settled by L. Molnár in [37, Theorem 2].

For this purpose we shall focus on those linear operators between type 1 Cartan factors

preserving rank-one operators. Let us begin by recalling a result by M. Marcus, B.N.

Moyls [35] and R. Westwick [40].

Theorem 4.1. [35, 40] Let T : Mm,n(C) → Mm,n(C) be a linear mapping

sending rank-one operators to rank-one operators. Then there exist invertible matri-

ces u ∈Mm(C) and v ∈Mn(C) such that one of the next statements holds:

(1) T (a) = uav for all a ∈Mm,n(C);

(2) m = n and T (a) = uatv for all a ∈Mm,n(C); where at denotes the transpose of a.

One of the key tools employed by Molnár in [37, Theorem 2] is the following con-

sequence of a result due to M. Omladič and P. Šemrl.

Theorem 4.2. [38, Theorem 3.3] Let H be a complex Hilbert space. Suppose

Φ : soc(B(H)) → soc(B(H)) is a surjective linear transformation preserving the rank-

one operators in both directions. Then:

(a) either there are bijective linear mappings u, v on H such that Φ(ξ⊗η) = u(ξ)⊗v(η)
(ξ, η ∈ H);

(b) or there are bijective conjugate-linear mappings u, v on H such that Φ(ξ ⊗ η) =

u(η)⊗ v(ξ) (ξ, η ∈ H).

It is known that (linear) triple automorphisms on a type 1 Cartan factor of the

form B(H,K) are either of the form T (x) = uxv (x ∈ B(H,K)), with u ∈ B(K) and

v ∈ B(H) unitaries, or dim(H) =dim(K) and T (x) = ux∗v (x ∈ B(H,K) ≡ B(H)),

with u, v : H → H anti-unitaries (cf. [32, page 199]). We establish next the tool

required for our purposes. It should be noted that we have strengthened the hypotheses

with respect to the mentioned result by Omladič and Šemrl, but the current statement

will serve for our goals in this note.

Theorem 4.3. Let Φ : soc(B(H1,K1)) → soc(B(H2,K2)) be a bijective linear

transformation, where H1,H2,K1 and K2 are complex Hilbert spaces with dimensions

≥ 2. Suppose that Φ preserves rank-one operators in both directions. Then:

(a) either there are bijective linear mappings u : K1 → K2, and v : H1 → H2 such that

Φ(ξ ⊗ η) = u(ξ)⊗ v(η) (ξ ∈ K1, η ∈ H1);

(b) or there are bijective conjugate-linear mappings u : H1 → K2, v : K1 → H2 such

that Φ(ξ ⊗ η) = u(η)⊗ v(ξ) (ξ ∈ K1, η ∈ H1).
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Proof. We shall mimic the notation and arguments by Omladič and Šemrl in [38].

So, for each ξ ∈ Kj , η ∈ Hj we set Lξ := {ξ⊗η : η ∈ Hj} and Rη := {ξ⊗η : ξ ∈ Kj}. It is
not hard to check, as in the proof of [38, Lemma 2.1], that Lξ and Rη are maximal among

additive subgroups of rank-one operators, that is, every additive group of soc(Hj ,Kj)

consisting of operators of rank-one is either a subgroup of an Lξ, for a vector ξ ∈ K, or

a subgroup of an Rη for η ∈ Hj .

Step 1. We claim that for every ξ ∈ K1, either there is a ξ̂ ∈ K2, depending on ξ,

such that Φ(Lξ) = Lξ̂, or there is an η̂ ∈ H2, depending on ξ, such that Φ(Lξ) = Rη̂.

This is clear because Φ is linear, bijective, and preserves rank-one operators in both

directions, and thus it must preserve maximal additive subgroups of rank-one operators.

Step 2. If there exists ξ0 ∈ K1\{0} such that Φ(Lξ0) = Lξ̂0
for some ξ̂0 ∈ K2

depending on ξ0 (respectively, Φ(Lξ0) = Rη̂0
for some η̂0 ∈ H2, depending on ξ0), then

for each ξ ∈ K1, Φ(Lξ) = Lξ̂ for some ξ̂ ∈ K2 depending on ξ (respectively, Φ(Lξ) = Rη̂

for some η̂ ∈ H2, depending on ξ). We shall only prove the first statement. Suppose we

can find ξ0 and ξ1 in K1\{0} such that Φ(Lξ0) = Lξ̂0
for some ξ̂0 ∈ K2 depending on ξ0

and Φ(Lξ1) = Rη̂1
for some η̂1 ∈ H2, depending on ξ1. Observing that Lξ0 = Lξ1 if and

only if ξ0 and ξ1 are linearly dependent, it follows from the assumptions that ξ0 and

ξ1 must be linearly independent. The element ξ̂0 ⊗ η̂1 ∈ Lξ̂0
∩ Rη̂1

= Φ(Lξ0) ∩ Φ(Lξ1),

and thus we can find η0, η1 ∈ H1\{0} such that Φ(ξ0 ⊗ η0) = ξ̂0 ⊗ η̂1 = Φ(ξ1 ⊗ η1). The

injectivity of Φ assures that ξ0 ⊗ η0 = ξ1 ⊗ η1, however this equality implies that ξ0 and

ξ1 are linearly dependent, which is impossible.

Step 3. Let us assume, by Steps 1 and 2, that for each ξ ∈ K1, there exists a

ξ̂ ∈ K2, depending on ξ, such that Φ(Lξ) = Lξ̂. Consequently, for each η ∈ H1 there

exists a unique vξ(η) ∈ H2 such that

(4.1) Φ(ξ ⊗ η) = ξ̂ ⊗ vξ(η).

It is easy to see that vξ inherits the linearity of Φ, and so vξ : H1 → H2 is a well-defined

linear bijection.

Fix a non-zero ξ0 in K1. We shall next prove the existence of a non-zero constant

τ = τ(ξ) such that vξ = τvξ0 for all ξ ∈ K1. Namely, fix η ∈ H1. If ξ̂ and ξ̂0 are linearly

independent, let us find, by the hypothesis on vξ0 , and the fact that dim(H1) ≥ 2,

another element η1 such that vξ0(η) and vξ0(η1) are linearly independent. Since the

elements ξ0 ⊗ η+ ξ ⊗ η, ξ0 ⊗ η1 + ξ ⊗ η1 and ξ0 ⊗ (η+ η1) + ξ ⊗ (η+ η1) have rank-one,
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the same holds for their images under Φ, that is, the elements
ξ̂0 ⊗ vξ0(η) + ξ̂ ⊗ vξ(η),

ξ̂0 ⊗ vξ0(η1) + ξ̂ ⊗ vξ(η1),

ξ̂0 ⊗ vξ0(η + η1) + ξ̂ ⊗ vξ(η + η1),

must be rank-one elements. It necessarily follows that each one of the sets

{vξ0(η), vξ(η)}, {vξ0(η1), vξ(η1)}, {vξ0(η + η1), vξ(η + η1)}

must be linearly dependent, which implies the existence of a non-zero constant α such

that vξ(η) = αvξ0(η) and vξ(η1) = αvξ0(η1) for every η and η1 linearly independent. It

follows from the hypothesis on the dimension of H1 that vξ = αvξ0 . The constant α

might depend on the element ξ, so we shall denote it by α(ξ) ∈ C.

Suppose now that ξ̂ and ξ̂0 are linearly dependent. Find another ξ1 such that ξ̂1

and any of {ξ̂0, ξ̂} are linearly independent. It follows from the above arguments that

vξ1 = α(ξ1)vξ0 , vξ = β(ξ)vξ1 and vξ0 = β(ξ0)vξ1 for some non-zero scalars β(ξ), β(ξ0). It

follows that β(ξ0)
−1 = α(ξ1) and vξ = β(ξ)vξ1 = β(ξ)α(ξ1)vξ0 = β(ξ)β(ξ0)

−1vξ0 . That

is, vξ is a scalar multiple of vξ0 .

We have therefore shown the existence of a mapping τ : K1 → C satisfying vξ =

τ(ξ)vξ0 for all ξ ∈ K1. Combining this fact with the conclusion in (4.1) we arrive at

Φ(ξ ⊗ η) = ξ̂ ⊗ τ(ξ)vξ0(η) = τ(ξ)ξ̂ ⊗ vξ0(η),

for all ξ ∈ K1, η ∈ H1. Defining u : K1 → K1 by u(ξ) = τ(ξ)ξ̂, we get a well-defined

bijection which inherits the linearity from that of Φ. This concludes the proof of the

first statement.

Let us briefly comment the second case.

Step 4. Let us assume now, by Steps 1 and 2, that for each ξ ∈ K1, there exists a

η̂ ∈ H2, depending on ξ, such that Φ(Lξ) = Rη̂. Consequently, for each η ∈ H1 there

exists a unique uξ(η) ∈ K2 such that

(4.2) Φ(ξ ⊗ η) = uξ(η)⊗ η̂.

Now the mapping uξ : H1 → K2 is a conjugate-linear bijection –essentially because

the mapping (ξ, η) 7→ ξ ⊗ η is sesquilinear. By repeating or adapting the arguments

in the first part of the proof, we find two conjugate-linear bijections u : H1 → K2 and

v : K1 → H2 such that Φ(ξ ⊗ η) = u(η)⊗ v(ξ), for all x ∈ K1, η ∈ H1.

It should be commented that there is certain margin to consider weaker hypotheses

in the above theorem, but the current statement is enough for our purposes.

□ 
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We have already gathered the required machinery to study bijections preserving

triple transition probabilities between subsets of minimal tripotents of two type 1 Cartan

factors.

Theorem 4.4. Let Φ : Umin(M) → Umin(N) be a bijective transformation pre-

serving triple transition pseudo-probabilities (i.e., TTP (Φ(v),Φ(e)) = φΦ(e)(Φ(v)) =

φe(v) = TTP (v, e), for all e, v in Umin(M)), whereM = B(H1,K1) and N = B(H2,K2)

are type 1 Cartan factors with dim(Hj), dim(Kj) ≥ 2. Then there exists a (unique)

triple isomorphism T :M → N whose restriction to Umin(M) is Φ.

Proof. By applying Theorem 2.3 we find a bijective linear mapping

T0 : soc(B(H1,K1)) → soc(B(H2,K2))

whose restriction to U(B(H1,K1)) is Φ. Theorem 4.3 asserts that one of the next

statements holds:

(a) There are bijective linear mappings u : K1 → K2, and v : H1 → H2 such that

Φ(ξ ⊗ η) = u(ξ)⊗ v(η) (ξ ∈ K1, η ∈ H1).

(b) There are bijective conjugate-linear mappings u : H1 → K2, v : K1 → H2 such that

Φ(ξ ⊗ η) = u(η)⊗ v(ξ) (ξ ∈ K1, η ∈ H1).

The hypothesis affirming that Φ maps minimal tripotents to minimal tripotents

can be now applied to deduce that in any of the previous cases the mappings u and

v are isometries. Therefore, u and v are surjective linear isometries in case (a) and

surjective conjugate-linear isometries in case (b). So, by defining T (x) = uxv∗ and

T (x) = ux∗v∗ (x ∈ B(H1,K1)) in cases (a) and (b), respectively, we get the desired

triple isomorphism.
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Note added in proofs. Months after this paper was accepted, the question every

bijection between the sets of minimal tripotents in two atomic JBW∗-triples automati-

cally preserves orthogonality was possitively solved in [A.M. Peralta, Preservers of triple

transition pseudo-probabilities in connection with orthogonality preservers and surjec-

tive isometries, Results Math. 78 (2023), no. 2, Paper No. 51, 23 pp.], so the main

□ 
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conclusion of this paper also holds for bijections preserving triple transition pseudo-

probabilities between sets of minimal tripotents in two atomic JBW∗-triples.
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in closed balls of C∗-algebras, J. London Math. Soc. 68 (2003), 753–761.

[7] R. Braun, W. Kaup, H. Upmeier, A holomorphic characterisation of Jordan-C∗-algebras,

Math. Z. 161 (1978), 277–290.

[8] L.J. Bunce, Ch.-H. Chu, Compact operations, multipliers and Radon-Nikodym property

in JB∗-triples, Pacific J. Math. 153 (1992), 249–265.

[9] M. Burgos, F.J. Fernández-Polo, J. Garcés, J. Mart́ınez, A.M. Peralta, Orthogonality

preservers in C∗-algebras, JB∗-algebras and JB∗-triples, J. Math. Anal. Appl. 348 (2008),

220–233.

[10] G. Casinelli, E. de Vito, P. Lahti, A. Levrero, Symmetry groups in quantum mechanics

and the theorem of Wigner on the symmetry transformations, Rev. Mat. Phys. 8 (1997),

921–941.
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