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The Mazur-Ulam property for a Banach space which
satisfies a separation condition

By

Osamu HATORI*

Abstract

After some preparations in section 1, we recall the three well known concepts: the Choquet
boundary, the Silov boundary, and the strong boundary points in section 2. We need to define
them by avoiding the confusion which appears because of the variety of names of these concepts;
they sometimes differs from authors to authors. We describe the relationship between the
three concepts emphasizing the case where a function space strongly separates the points in
the underlying space. We study C-rich spaces, lush spaces, and extremely C-regular spaces
concerning with the Mazur-Ulam property in section 3. We show that a uniform algebra and
the uniform closure of the real part of a uniform algebra with the supremum norm are C-rich
spaces, hence lush spaces. We prove that a uniformly closed subalgebra of the algebra of all
complex-valued continuous functions on a locally compact Hausdorff space which vanish at
infinity is extremely C-regular provided that it separates the points of the underlying space
and has no common zeros. We exhibit a space of harmonic functions which has the Mazur-
Ulam property (Corollary 3.8). The main concern in sections 4 through 6 is the Mazur-Ulam
property. We exhibit a sufficient condition on a Banach space which has the Mazur-Ulam
property and the complex Mazur-Ulam property (Propositions 4.11 and 4.12). In sections 5
and 6 we consider a Banach space with a separation condition (*) (Definition 5.1). We prove
that a real Banach space satisfying (*) has the Mazur-Ulam property (Theorem 6.1), and a
complex Banach space satisfying (%) has the complex Mazur-Ulam property (Theorem 6.3).
Applying these theorems and the results in the previous sections we prove that an extremely
C-regular real (resp. complex) linear subspace has the (resp. complex) Mazur-Ulam property
(Corollary 6.2 (resp. 6.4)) in section 6. As a consequence we prove that any closed subalgebra of
the algebra of all complex-valued continuous functions defined on a locally compact Hausdorff
space has the complex Mazur-Ulam property (Corollary 6.5).
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§1. Introduction

Tingley’s problem asks whether every surjective isometry between the unit spheres
of Banach spaces is linearly extended to a surjective isometry between the whole spaces.
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Tingley [53] raised this problem in 1987. First solution of Tingley’s problem seems to
be due to Wang [54], who dealt with the space of all K-valued (K = R or C) continuous
functions which vanish at infinity on a locally compact Hausdorff space Y (cf. [55]). A
considerable number of interesting results have shown that Tingley’s problem has an
affirmative answer in concrete spaces, and no counterexample is known. According to
[58, p.730], Ding was the first to consider Tingley’s problem between different type of
spaces [20]. In fact, Ding [21, Corollary 2| proved that the real Banach space of all
null sequences of real numbers satisfies what we now call the Mazur-Ulam property.
Liu [32] also had an early contribution to the Tingley’s problem on different types of
spaces. Later, Cheng and Dong [15] formally introduced the concept of the Mazur-Ulam

property.

Definition 1.1. A real Banach space B has the Mazur-Ulam property if for any
real Banach space B’, every surjective isometry from the unit sphere of B onto the unit
sphere of B’ admits an extension to a surjective real-linear isometry from B onto B’.

Tan [47, 48, 49] showed that the space LP(R) for o-finite positive measure space has
the Mazur-Ulam property. Boyko, Kadets, Martin and Werner introduced C-richness
[11, Definition 2.3] and lushness [11, Definition 2.1] for subspaces of continuous functions
and proved that a C-rich subspace is lush [11, Theorem 2.4]. Tan, Huang and Liu [50]
introduced the notion of local GL (generalized lush) spaces and proved that every local
GL space has the Mazur-Ulam property.

Tanaka [52] opened another direction in the study of Tingley’s problem by exhibit-
ing a positive solution for the Banach algebra of complex matrices. Mori and Ozawa
[35] proved that the Mazur-Ulam property for unital C*-algebras and real von Neu-
mann algebras. Cueto-Avellaneda and Peralta [18] proved that the complex (resp. real)
Banach space of all continuous maps taking values in a complex (resp. real) Hilbert
space has the Mazur-Ulam property (cf. [19]). The results by Becerra-Guerrero, Cueto-
Avellaneda, Fernandez-Polo and Peralta [6] and Kalenda and Peralta [31] proved that
any JBW*-triple has the Mazur-Ulam property. Peralta and Svarc [40] extends the
results of Mori and Ozawa [35] for unital JB*-algebras.

The Mazur-Ulam property for a Banach space of dimension 2 has remained unsolved
for many years. The final solution was exhibited by the remarkable outstanding advance
of Banakh [4] who proved that any Banach space of dimension 2 has the Mazur-Ulam
property. The problem on a Banach space of a finite dimension greater than 2 seems
to be still open. The study of the Mazur-Ulam property is nowadays a challenging
subject of study (cf. [13, 56]). Jiménez-Vargas, Morales-Compoy, Peralta and Ramirez
[28, Theorems 3.8, 3.9] probably provided the first example of complex Banach spaces
having the complex Mazur-Ulam property (cf. [38]). Hatori [26] formally introduced
the concept of the complex Mazur-Ulam property.
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Definition 1.2. A complex Banach space B is said to have the complex Mazur-
Ulam property, emphasizing the term ‘complex’, if for any complex Banach space B’,
every surjective isometry from the unit sphere of B onto the unit sphere of B’ admits

an extension to a surjective real-linear isometry from B onto B’

Note that a complex Banach space has the complex Mazur-Ulam property provided
that it has the Mazur-Ulam property as a real Banach space since a complex Banach
space is a real Banach space simultaneously.

The complex Mazur-Ulam property for uniform algebras was proved in [26]. The
existence of unit in a uniform algebra is a key point for the proof of the property.
The complex Mazur-Ulam property for a uniformly closed algebra on a locally compact
Hausdorff space is a problem in [26]. Cueto-Avellaneda, Hirota, Miura and Peralta [17]
recently showed that each surjective isometry between the unit spheres of two uniformly
closed algebras on locally compact Hausdorff spaces which separates the points without
common zeros admits an extension to a surjective real linear isometry between these
algebras. Very recently, Cabezas, Cueto-Avellaneda, Hirota, Miura and Peralta [14]
proved the complex Mazur-Ulam property for a commutative JB*-triple. Both results
concerns the spaces of continuous functions without constants. Peralta [39] probably
gives the first example of an infinite dimensional non-commutative C*-algebra con-
taining no unitaries and with the Mazur-Ulam property. Note that the Mazur-Ulam
property, or even the complex Mazur-Ulam property for general non-unital C*-algebras
seems to be still missing.

In this paper we further study the problem on the complex Mazur-Ulam property.
We introduce a separation condition which is named (x) for a Banach space in section
5. We prove that a real (resp. complex) Banach space which satisfies the condition
() has the (resp. complex) Mazur-Ulam property. An extremely C-regular subspace
satisfies the condition (). It was introduced by Fleming and Jamison [24, Definition
2.3.9], which is a generalization of an extremely regular subspace coined by Cengiz [16].
We prove that an extremely C-regular complex linear subspace has the complex Mazur-
Ulam property (Corollary 6.4). As a consequence the complex Mazur-Ulam property
for a closed subalgebra of the algebra of all complex-valued continuous functions defined
on a locally compact Hausdorff space is established (Corollary 6.5).

We recall the notions of the Choquet boundary, the strong boundary, and the strong
separation of the points in the underlying space in section 3. We are aware that many
of results in section 3 are a part of folklore, but for the sake of self-contained exposition
and for the convenience of the readers who might not be familiar with these concepts
for function spaces without constants, we include as many complete proofs of results as
possible.

For a real or complex Banach space B the unit sphere {a € B : ||a|]| = 1} of B is
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denoted by S(B) and the closed unit ball {a € B : ||a|| < 1} by Ball(B). The set of all
maximal convex subsets of S(B) is denoted by §5. We denote by K = R (resp. C) the
set of all real (resp. complex) numbers. We denote the open unit disk in C by D, the
closed unit disk by D, and T = {z € K : |z| = 1}. Throughout the paper Y denotes
a locally compact Hausdorff space and X a compact Hausdorff space. The space of all
K-valued continuous functions on Y which vanish at infinity is denoted by Cy(Y,K). If
Y is compact, then we simply denote C'(Y, K) instead of Cy(Y,K). The supremum norm
on a subset W of Y is denoted by | - |loo(w) OF || - [0+ For a function f € Co(Y,K) and
S C Y, we denote the restriction of f on S by f|S. For A C Cy(Y,K) and S C Y, we
denote A|S = {f|S: f € A}.

§2. Strong boundary points, Choquet boundary points and Silov

boundary points

§ 2.1. Function spaces which strongly separate the points in the
underlying spaces

The definition of “strongly separate the points” in this paper is due to that of
Araujo and Font [2]. Some authors use this term for a different notion (cf. Stout [46,
p.36] and Miura [33, p.779] )

Definition 2.1. Let F be a complex (resp. real) linear subspace of Cy(Y,C)
(resp. Co(Y,R)). We say that E (resp. strongly) separates the points of Y, if for
every pair z,y € Y with = # y there exists f € E such that f(x) # f(y) (resp.
|f(x)| # |f(y)|). We say that E has no common zeros if for every = € Y there exists
f € E such that f(x) # 0.

The following example exhibits an important space of functions which separates,
but does not strongly separate the points of the underlying space.

Example 2.2.  The space Cy(Y,R) and Cy(Y,C) strongly separate points of Y
and have no common zeros by the Urysohn’s lemma. Let B be a complex Banach space.
For a € B we denotes a : Ball(B*) \ {0} — C by a(q) = g(a) for ¢ € Ball(B*) \ {0}.
Then B = {a : a € B} is a uniformly closed subspace of Cy(Ball(B*) \ {0}, C) which
separates the points of Ball(B*)\ {0}. On the other hand |a(p)| = |a(—p)| for any a € B
and p € Ball(B*)\ {0}, that is, B does not strongly separate the points of the underlying
space Ball(B*) \ {0}. The situation is similar for a real Banach space.

In some cases, both separation conditions are equivalent. In fact, we have the
following.
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Proposition 2.3.  Supposes that E is a K-linear subspace of C(X,K), such that
1 € E, where X is a compact Hausdorff space. If E separates the points of X, then E
strongly separates the points of X. Suppose that A is a subalgebra of Co(Y,K) which
separates the points of Y. Then A strongly separates the points of Y.

Proof. We prove the first assertion. Suppose that x,y € X with  # y. Then
there exists f € E such that f(z) # f(y). If f(x) =0, then |f(z)| # |f(y)|. If f(x) #0
then |f| or |f+ f(x)| separates x and y, where f+ f(z) € E since E contains constants.

Next suppose that A is a subalgebra of Cy(Y,K). Suppose that z,y € Y with
x # y. Then there exists f € A such that f(x) # f(y). If f(y) =0, then f(x) # 0 and
|f(x)| # |f(y)| follows. We may assume that f(y) = 1. Suppose that |f(z)| = |f(y)|-
Then there exists a complex number A with unit modulus such that f(y) = A\f(z). As
A # 1, we infer that A% + \| < 2. Hence we have

[f(z) + f(2)*] = N+ X[ <2=[f(y) + f(y)°].
Hence f + f2 € A strongly separates z and y. O

Definition 2.4. We say that A is a uniform algebra on a compact Hausdorff
space X if A is a closed subalgebra of C'(X,C) which contains constants and separates
the points of X.

A uniform algebra on X not only separates the points of X but also strongly
separates the points of X since A contains constants. For the theory of uniform algebras,
see [12, 25, 46]. A uniform algebra is called a function algebra in [12].

§ 2.2. Strong boundary points

The author kindly points out that the definition of a strong boundary point some-
times differs from authors to authors. Stout in [46, Definition 7.6] says that zo € Y is
a strong boundary point for a certain subalgebra of Cy(Y,C) with some condition if for
each open neighborhood U of xg there exists f € A such that

1= f(zo) =|flloc and |f(z)| < 1forallz € Y \U.

Araujo and Font [3, p. 80] follow this definition not only for a subalgebra but also for a
linear subspace. Rao and Roy [43, Definition 8] recall the notion of a strong boundary
point from [46] for a linear subspace. Note that a weak peak point (peak point in the
weak sense in [12]) for a uniform algebra (function algebra in [12]) is also referred to as
a strong boundary point in [12, p.96]. In a book of Gamelin [25] a weak peak set (resp.
point) is referred to as a p-set (resp. point) or a generalized peak set (resp. point).
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The definition of a strong boundary point for a K-linear subspace E of Cy(Y, K)
due to Fleming and Jamison [24, Definition 2.3.9]: a point zy € Y is a strong boundary
point for E if for each open neighborhood U of z(, and each € > 0, there exists f € F
such that 1 = f(xo) = ||f]|, and |f(z)| < e for all z € Y\ U, is stronger than that given
in Definition 2.5. Note that the formula in the fourth line of [24, Definition 2.3.9] reads
as 1 = f(sp) = ||f]|: not s but sq.

In this paper, we adapt the definition of a strong boundary point for a subspaces
of Cy(Y,K) following Stout.

Definition 2.5. Let E be a K-linear subspace of Cy(Y,K). We say that a point
xo € Y is a strong boundary point for E if for each open neighborhood U of x( there
exists f € E such that

1= f(x0) = || flloo, and |f(x)] <1 forallz € Y\ U.

We say that a closed subset K of Y is a peak set for E if there exists a function f € F
such that
f=1lon Kand |f|<1lonY \ K.

We say that any such f peaks on K and f is a peaking function for K. A weak peak set
(or peak set in the weak sense) for F is a non-empty intersection of peak sets for E. A
point yo € Y is called a peak point for E if {yo} is a peak set for E. A point yo € Y is
called a weak peak point (or peak point in the weak sense) for E if {yo} is a weak peak
set for F.

The following exhibits simple examples which show that the condition of a strong

boundary point in the sense of Fleming and Jamison is strictly stronger than that in
Definition 2.5.

Example 2.6. Let fo: (0,1] — R be defined as

t, 0<t<i,
fo(t): 3 5 1 :
Let g : (0,1] — R be
0, 0<t<i
o)=1" L
—t-3H@t-1), I<t<1

Put £ = {\fo + pgo : A, u € K}. Then E is a K-linear subspace of Cy((0, 1], K) which
strongly separates the points of (0,1]. The point % is a strong boundary point (in the
sense of Definition 2.5) for the space E while it does not satisfy the condition due to
Fleming and Jamison [24, Definition 2.3.9].
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Example 2.7. Let E ={f: f(t) = at+b,3a,b € K} C C([0,1],K). Then 0 and
1 are strong boundary points in the sense of Definition 2.5. On the other hand, there is
no strong boundary points in the sense of Fleming and Jamison.

In some situation, both are equivalent.

Proposition 2.8.  Let E be a K-subalgebra of Cy(Y,K). Suppose that z € Y.
Then x is a strong boundary point in the sense of Definition 2.5 if and only if it is a

strong boundary point in the sense of Fleming and Jamison.

Proof. Suppose that x is a strong boundary point in the sense of Definition 2.5.
Suppose that U is an open neighborhood of xy and € > 0. Then there exists a function
f € E such that 1 = f(xg) = || f||s, and |f(z)] <1 for all x € Y \ U. As f vanishes at
infinity, there exists an 0 < M < 10 such that |f(x)| < M for all x € Y \ U. Choose
a large natural number n so that M™ < e. Then f* € F and 1 = f™(x0) = || f"|co>
and |f"(z)| < e for all x € Y \ U, that is, ¢ is a strong boundary point in the sense of
Fleming and Jamison.

It is straightforward that a strong boundary point in the sense of Fleming and
Jamison is one in the sense of Defintion 2.5 O

Recall that the peripheral range Ran,(f) of f € Cy(Y,C) is the set {z € f(Y) :
|z| = || flloc}- A function f € E is a peaking function for a closed subsest of Y if and
only if Ran,(f) = {1}.

Proposition 2.9.  Let E be a uniformly closed K-linear subspace of Co(Y,K).
Let xg € Y. Then the following are equivalent.

(i) The point xq is a strong boundary point for E,

(ii) for every open neighborhood U of xq, there exists f € E such that
f(xo) =1=|flloc and |f(x)| <1 for everyz € Y \ U

and Ran,(f) = {1},

(iii) the point xo is a weak peak point for E

Proof. We prove (i) implies (ii). Suppose (i) holds. Let U be an open neigh-
borhood of zy. Then there exists f € E with f(zg) = 1 = ||f|l and |f| < 1 on
Y\U. Put U, ={y €Y :|f(y) — 1| < 1/n} for each positive integer n. Then U N U,
is an open neighborhood of zg. As f~1(1) = (o, Un, f1(1) is a Gs set, which is
an intersection of a countable open sets. By (i) there exists a function f, € E such



THE MAZUR-ULAM PROPERTY AND POINT-SEPARATION PROPERTY 37

that fn(z0) =1 = ||fallocs |ful <1 on Y\ (UNU,). Put g = > 2 (fn/2"). Then
g € E since E is closed in Cy(Y,K). For every x € Y \ U, we have x € Y \ (U N Uy),
hence |fi(z)| < 1, so |g(xz)| < 1. Suppose that |g(y)] = 1 for some y € Y. Since
1=lg(y)] <> 07 I1fa(y)]/2" < 1, we infer that |f,(y)] = 1 for every n. We conclude
that © € (., U,. Put h = (f + ¢)/2. Then h(z9) =1 = ||h|lc and |h| <1 on Y \ U.
Suppose that |h(z)| =1 for z € Y. Since

(2.1) L=1[h(z)| = |(f(2) +9()/2 < (IF(2)] + 9(2)])/2 <1

and || flloo = |lgllcc = 1, we infer that |g(z)| = 1. Hence z € (2, U,. Since f~1(1) =
N, U, we infer that f(z) = 1. By (2.1) we get g(z) = 1. Therefore h(z) = 1. Thus
Ran,(h) = {1}.

To prove (ii) implies (iii), assume (ii). Let y € Y \ {zo}. There is an open neigh-
borhood U, of z such that y ¢ U,. By (ii) there is a function f, € E such that
fy(xo) =1 = || fylloos |fyl < 1 on the closed set Y \ U, , and Ran,(f,) = {1}. Then
f;7 (1) is a peak set which contains zo and y ¢ f;'(1). Hence Nyey\{zo} [t (1) = {zo}
is a weak peak set, so zg is a weak peak point for F.

To prove (iii) implies (i), assume (iii): there exists a family of peak sets {K,}
such that (), Ko = {x0}. Suppose that U is an open neighborhood of {z¢}. Then
. Ko C U. By considering the one point compactification, if necessary, we infer that
there is a finite number of aq,...,«, such that ﬂzzl K., c U. Let f; € E be a
function which peaks on K, . Then f = %Z?Zl fj is in E and peaks on (\;_; Ko,
Hence f(z9) =1 = ||f|lc- Since Y \U C Y \(j_, Ka,, we have [f| <1 on Y \U. O

Note that if E is a K-linear subspace of C'(X,K) for a compact Hausdorff space X
and 1 € E, which needs not to be uniformly closed, then (i) of Proposition 2.9 implies
(ii) of Proposition 2.9. In fact, if g € X is a strong boundary point and U is an open
neighborhood and f € E satisfies 1 = f(z9) = [|f|looc- Then (f + 1)/2 satisfies the
condition (ii). On the other hand if E is not uniformly closed nor 1 ¢ F, then (i) needs
not imply (ii).

Example 2.10. Let Y = T. For any positive integer n, let f, be a continuous
function on Y such that f,,(z) = z for any z € Y with |1 — z| < 1/n and |f,(z)| < 1 for
any z € Y with |1 — z| > 1/n. Let E be a linear subspace generated by {1} U {f,}52,.
Note that E is a K-linear subspace of C(Y,K) which is not uniformly closed. Then 1 is
a strong boundary point for E, while 1 does not satisfy the condition (ii) of Proposition
2.9

If the corresponding space E is an algebra, we have the following.

Corollary 2.11.  Let A be a closed subalgebra of Cy(Y,K). Let xo € Y. Then
the following are equivalent.
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(i) The point zq is a strong boundary point for A,

(ii) For every open neighborhood U of xg, and € > 0, there ezists f € A such that

f(@o) = 1= [|flloc and |f(2)| <& for every z € Y\ U,

(iii) For every open neighborhood U of xo, and € > 0, there ezists f € A such that
f(xo) =1=|flleo and |f(x)| < € for every z € Y \ U
and Ran,(f) = {1},

(iv) The point xg is a weak peak point for A

Proof. By Proposition 2.8 we have that (i) and (ii) are equivalent. The rest of the
proof is easily followed by Proposition 2.9 O

To study subspace E in Cy(Y,K) it is usefull to consider the addition of constant.
We add constant functions in a subspace of Cy(Y, K).

Definition 2.12. For a locally compact Hausdorff space Y, we denote by Y., =
Y U{oo} the one-point-compactification of Y. Let E be a K-linear subspace of Cy(Y, K).
For f € ¥ we denote by f the unique extension of f on Y,

fy), yeY
0, Yy = Q.

fly) =

Then f is continuous on Ya,. We denote
E4+K={FeC(Yo,K):F=f+c, feEceK}.
Then F + K is a K-linear subspace of C(Ya, K) which contains constants.

We may sometimes suppose that E is a closed subspace of F + K without a confu-
sion. It is easy to see that F+K separates the points of Y., and has no common zeros
provided that E separates the points of Y and it has no common zeros. By a routine
exercise we have that £+ K is closed in C(Ya, K) if E is closed in Cy(Y,K). It is also a
routine exercise to see that for F' € E+K, F = f for a f € E if and only if F(c0) = 0.

Lemma 2.13.  Suppose that E is a K-linear subspace of Co(Y,K). If xg € Y is
a strong boundary point for E, then xqy is a strong boundary point for F +K.

Proof. 'The proof is trivial and is omitted. O

The converse of the above lemma does not hold in general.
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Example 2.14. Let E be the same space defined in Example 2.6. Then 1 is not
a strong boundary point for £. On the other hand, 1 is a strong boundary point for
E+K.

The converse of Lemma 2.13 holds for a closed subalgebra of Cy(Y, K).

Proposition 2.15.  Suppose that A is a closed subalgebra of Co(Y,K). A point

xg €Y is a strong boundary point for A if and only if it is a strong boundary point for
A+K.

Proof. Suppose that o € Y is a strong boundary point for A + K. For any open
neighborhood U of xy in Y, U may be considered as an open neighborhood of z in Y.
Hence there exists a function F € A 4+ K such that F(z¢) = 1 = ||F||e and |F| < 1
on Y \ U. We note that co ¢ U. Hence we may suppose that |F(c0)| < 1. Put
7:{z€C:|2|<1} = {2€C:|z| <1} by

n(z) = 1—F(c0) z—F(0)
1—F(0) 1-F(c0)z’

ze{zeC:|z| <1}

if K = C. We infer that 7(F(c0)) = 0 and w(1) = 1. As 7 is uniformly approximated by
analytic polynomials (in fact, w(rz) for any 0 < r < 1 is uniformly approximated by the
Taylor expansion on {z € C : |z| < 1}, and 7(rz) — m(z) uniformly on {z € C : |z| < 1})
and as A + C is uniformly closed algebra, we have wo F' € A+ C. If K = R, then put
m:[-1,1] = [-1,1] by

1 F (o)

oty = d TP T TRy THEES F(c0)
F (o

1—F1(oo)t N 1—}(0)0)» F(oo) <t < 1.

Then 7(F(oc0)) = 0 and w(1) = 1. By the Weierstrass approximation theorem 7 is
uniformly approximated by polynomials on [—1,1]. Hence wo F € A+ R. In any case
we have that 7o F € A+ K, mo F(co) = 0. Thus there exists f € A such that F = f.
Then we have that ||f|lco = [|[F|lec =1 and f(z) = 7o F(z) =x(1) = 1. As |n(2)| < 1
for any |z| < 1, we have |ro F| < 1 on Yy \ U. Therefore |f| <1 on Y \ U. It follows
that xq is a strong boundary point for A.

The converse statement is just Lemma 2.13 U

§2.3. The Choquet boundary and the Silov boundary

The Choquet boundary was first mentioned by that name in a paper of Bishop and
de Leeuw [7, p.306]. Definitions of Choquet boundary differ from case to case, although
they are equivalent in the possible situation where the definitions can be applied. A
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definition of the Choquet boundary for K-linear subspace of C(X,K), for a compact
Hausdorff space X, which contains constant functions is described by Phelps in [37,
Section 6]. Let E be a K-linear subspace of C(X,K). Suppose that 1 € E. The state
space of E is K(E) = {¢ € E* : ¢(1) = 1 = ||¢||} (cf. [37, p.27]). The Choquet
boundary in [37] is defined as the set of all x € Y such that the point evaluation 7, is in
ext(K(F)), the set of all extreme points of the state space. Since it is easy to see that
Text(K(F)) = ext(Ball(E*)), the two definitions of the Choquet boundary (Definition
2.16 and Definition in [37, p.29]) are equivalent provided that Y is compact and 1 € E.
In section 8 of [37] Phelps describs an equivalent form of the Choquet boundary for a
uniform algebra in terms of strong boundary points by referring a theorem of Bishop
and de Leeuw. Browder [12, Section 2-2] exhibits a definition of the Choquet boundary
for a uniform algebra in terms of mesures, which is also equivalent to that exhibited in
Definition 2.16 in the case of a uniform algebra. Rao and Roy [43, p.176] defines the
Choquet boundary for a uniformly closed complex linear subspace of C(X,C) which
separates the points of a compact Hausdorff space X, in a similar way as our Definition
2.16.

We are aware of the fact that some results in this subsection are a part of folklore,
but for the sake of a self-contained exposition we have included as many proofs as
possible of all the results stated.

2.3.1. Definition of the Choquet boundary.

We recall the notion of the Chogquet boundary for a K-subspace of Cy(Y,K) from
[24, Definition 2.3.7], which was stated by Novinger [36, p.274]. See also [44].

For a K-linear subspace E of Cy(Y,K) and x € Y, 7,, denotes the point evaluation
at x, that is, 7, : £ — K such that 7,.(f) = f(x) for f € E. If E contains constants,
then ||7,|| = 1. In general, 7, € Ball(E*) and ||7,|| needs not be 1. For example, put

E={f e P(D): f(0)=0}(D\{0}),

where P(D) is the disk algebra on the closed unit disk D in the complex plane. Let
x € D, the open disk. Then ||7,| = |z| by the Schwarz lemma.

We define the Choquet boundary for a K-linear subspace which needs not to be
closed, not to separate the points of the underlying space, may have common zeros.

Definition 2.16.  Suppose that E is a K-linear subspace of Cy(Y,K). The Cho-
quet boundary for FE denoted by Ch(FE) is the set of all z € Y such that the point eval-
uation 7, is in ext(Ball((E, || - ||oo)*)), the set of all extreme points of Ball((E, || - ||s)*),
where (E, | - ||c) denotes the normed linear space E with the uniform norm || - ||s.

Note that even if E is a Banach space with some norm other than the uniform one,
we consider the space (F, | - ||o) to define the Choquet boundary.
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2.3.2. The representing measures and the Arens-Kelley theorem revisited

It is crucial for the foregoing discussion on the Choquet boundaries that measure
theoretic arguments should be concerned. We begin by recalling the representing mea-
sures for bounded linear functionals. See [37].

Definition 2.17. Let E be a K-linear subspace of Cy(Y,K). Suppose that ¢ €
E*. We say that a complex regular Borel measure m on Y is a representing measure for
o if
o) = [ fim, feE

and ||m|| = ||¢||, where ||m]|| = |m|(Y) is the total valuation of m.

Existence of a representing measure for any ¢ € E* is as follows: let ¢ € E*.
By the Hahn-Banach extension theorem there is ® € Cy(Y,K)* which extends ¢ and
ol = ||®||. Then by the Riesz-Kakutani theorem, there exists a complex regular Borel
measure m such that ®(f) = [ fdm for every f € Cy(Y,K) and ||m|| = ||®|. Hence m
is a representing measure for ¢. Recall that the support supp(m) of a complex regular
Borel measure m is the set

{z €Y : |m|(G) > 0 for every open neighborhood G of =},

where |m| is the total valuation measure of m.

Versions of the Arens-Kelley theorem, which characterizes extreme points of the
unit ball in the dual space of a subspace of Cy(Y,K), have been obtained by a variety of
authors. The Arens-Kelley theorem and the following corollary are well known, however
for the sake of a self-contained exposition and for the convenience of the readers we
include complete proofs.

For x € Y we denote the point mass at x by D,: D, is a complex regular Borel
measure on Y such that D,({z}) =1 = ||D,]|.

The Arens-Kelley theorem .  Suppose that ¢ € extBall(Cy(Y,K)*). Then
there exists a unique x € Y and X\ € T such that ¢ = A1,.. The representing measure for
¢ is only AD,. Conversely, AT, is an extreme point of Ball(Cy(Y,K)*) for every x € Y
and A € T.

Proof. Let ¢ € extBall(Cy(Y,K)*) and m a representing measure for ¢. Let
y € supp(m) arbitrary. Suppose that |m|(U) = 1 for every open neighborhood U of
y. By the regularity of m we infer that |m|({y}) = 1 = |m||, hence m = AD, for
unimodular complex number .

Suppose that there exists an open neighborhood Uy of y with |m|(Up) < 1. As
y € supp(m), 0 < |m|(Up) holds. By the definition of |m| we have

|m|(Uy) = Sup{z Im(G;)| : G is a Borel set, U;G; = Uy, G; N G; =0 for i # j},
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hence there is G; such that m(G;) # 0. By the (inner) regularity of m, there exists a

compact subset L C G C Uy with 0 < |m(L)|. Also there exists an open set V with

L C V C Uy such that |/m|(V \ L) < |m(L)|/2. By the Urysohn’s lemma there exists

fo € Co(Y,R) such that 0 < fo <1, fo=1o0n L, and fo =0on Y \ V. Then we have
0 <|m(L)| < |m|(L) < [m|(V) < |m|(Us) < 1.

Hence we also have 0 < |m|(Y \ V) < 1. Put

1
b1(9) = V) /ngm, g € Co(Y,K)
and )
P2(g9) = (Y \ V) /Y\V gdm, g e Cy(Y,K).

As m is a representing measure for ¢ we have ¢ = |m|(V)o1 + |m|(Y \ V)2, where
Im|(V) + m[(Y \ V) = |m| = 1. As ¢ € extBall(Co(Y,K)*) we have ¢ = ¢1 = ¢o.

Then
1

?(fo) = ¢2(fo) = V) Sy

since fo =0 on Y \ V. On the other hand

1 1
16(fo)] = 161(fo)| = ‘W/Vfodm‘ > s (I/Lfodm|—|/V\L fodm|>

1 [m(L)]
iy (D)= ml (VA 1) > g
hence ¢(fy) # 0, which is a cotradiction.

Suppose that m is a representing measure for A7,.. Let U be an open neighborhood
of . Then by the Urysohn’s lemma there exists f € Cy(Y,K) such that 0 < f <1 on
Y, f(z)=1,and f=0o0n Y \ U. Since

fodm =0

>

> 0,

1= f(@) = ma(f) = / fdm] < /U fldlm] < m|(U) < 1,

we see that supp(m) C U. As U can be arbitrary, we see that supp(m) = {z}. Thus we
infer that m = AD,.

Suppose conversely that xop € Y and \g € T and ¢g9 = A\g7. Suppose that ¢g =
(p1 + ¢2)/2 for ¢; € Ball(Cy(Y,K)*), j = 1,2. Let p; be a representing measure for ¢;.
We prove that supp(p1) = {zo}. Suppose not. As the support of a regular measure is
not empty, there exists y € supp(u1) \ {zo}. Then by the Urysohn’s lemma there exists
f € Co(Y,R) such that f(y) =0< f < 1= f(xg). Put U ={z€Y : f(z) < 1/2}.
Then U is an open neighborhood of y, and 0 < |u1|(U) < 1 since y € supp(p1). Thus

< [ Sl [ 1Sl < a0+ (7 0) < 1
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It follows that
L=[go(f)] < (|¢1 ()| +o2())/2 < 1,

which is a contradiction proving that supp(u1) = {xo}. We infer that ¢ = A7, for
A1 € T. In the same way we have that ¢o = A\a7,, for Ay € T. Since

Ao = ¢o(f) = (¢1(f) + ¢2(f))/2 = (A + X2)/2

and |A;| = 1 for j = 0,1,2 we infer that \g = Ay = X2. Thus ¢ = ¢2 = ¢9. We
concluded that ¢g € ext Ball(Cy(Y,K)*). O

Corollary 2.18.  Suppose that E is a K-linear subspace of Cy(Y,K). Suppose
that ¢ € extBall(E*). Then there exist y € Y and A € T such that ¢ = A7,.

Proof. Put
S ={p e Cy(Y,K)": ¢ is a Hahn-Banach extension of ¢}.

Then S is a non-empty weak*-closed convex subset of Cp(Y,K). Then the Krein-
Milman theorem asserts that there exists a ® € ext(S). Then & is an extreme point of
Ball(Cy(Y,K)*). In fact, suppose that ® = (&1 + ®3)/2 for &1, Py € Ball(Cy(Y,K)*).
Then ¢ = ®|E = (®1|E + ®2|E)/2, and ®,|E € Ball(E*) for j = 1,2. As ¢ is an
extreme point of Ball(E*), we have ®;|E = ®5|E = ¢. Since

L= loll = ;| B[l < [[®;] =1,

we have || ®;|| =1 for j = 1,2. Hence ®; € S for j =1,2. As ® is an extreme point in
S, we have & = ®; = 5. Thus ¢ € ext(Cy(Y,K)*). By the Arens-Kelley theorem there
exists y € Y and A € T such that & = AD,. Thus we see that ¢ = ®|E = AD,,. 0

Note that A7, needs not to be an extreme point of Ball(E*) in general. In fact,
70 € extBall(P(D)*) for the disk algebra on the closed unit disk D in the complex
plane.

2.3.3. Relationship among three properties about a point = : (i) being a
strong boundary point; (ii) being in the Choquet boundary; (iii) the repre-
senting measure for the point evaluation at x is unique.

Let E be a K-linear subspace of Cy(Y,K) and z € Y. We study the relationship of
the following (i), (ii) and (iii) :

(i) z is a strong boundary point for F,

(ii) = € Ch(E),
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(iii) the representing measure for 7, is only D,.

We recall the definition of the boundary.

Definition 2.19.  Suppose that E is a K-linear subspace of Cp(Y,K). A subset
L of Y is said to be a boundary if for each f € F there exists a point z € L such that

[F (@) = 1/ lloo-

The following may be well known, for example, [37, Proposition 6.3] states about
the case where F contains 1 and Y is compact. However for the sake of a self-contained
exposition and for the convenience of the readers we include many proofs as possible.

Proposition 2.20.  Suppose that E is a K-linear subspace of Co(Y,K). Then
the Choquet boundary Ch(E) is a boundary.

Proof. Let f € E. We may assume that || f|lcc = 1. Then there exists y € Y such
that |f(y)| = 1. Put L = {¢ € Ball(E*) : ¢(f) = f(y)}. As 1, € L, L is non-empty
weak*-closed convex subset of Ball(E*). The Krein-Milman theorem asserts that there
exists ¢g € ext L. Then ¢ is an extreme point of Ball(£*). In fact, suppose that
b0 = (p1 + ¢2)/2 for ¢1, ¢2 € Ball(E*). Then by

L=1[f)] = 1o1(f) + ¢2()I/2 < (921 () + [92(f)]) /2 <1

we have ¢ (f) = éa(f). By do = (é1 + 62)/2 we infer that f(y) = do(f) = é1(f) =
d2(f). Thus ¢1,¢2 € L. As ¢ € ext L we have ¢pg = ¢1 = ¢3. Thus ¢y € ext Ball(E*).
By Corollary 2.18 there exists * € Y and a unimodular complex number A such that
¢o = AT, on E. Note that x € Ch(E) since Mgy = 7, is an extreme point of Ball(E*)
for A\ is a unimodular complex number. We have

[f(@)| = A7 ()] = |do ()] = [f ()] = [If]]-
O

Proposition 2.21.  Let E be a K-linear subspace of Cy(Y,K). Suppose that
x €Y is a strong boundary point for E. Then the representing measure for 7, is only
D,

Proof. Suppose that x € Y is a strong boundary point for E and m is its repre-
senting measure. Let U be an open neighborhood of z. Since x is a strong boundary
point, there is a function f € E with f(z) =1 = ||f||c and |f| <1 on Y \ U. Thus
1= |7(f)] < |Imall <1, 50 we have 1 = ||| = [|m].

We prove supp (m) = {x}. Suppose contrarily that there exists y € supp(m) \ {z}.
Then there exists an open neighborhood V' of y and an open neighborhood W of z such
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that WNV = (). There exists g € E such that g(z) =1 = ||g|loc, |g] < 1 on Y\W. Since
Y \ W is closed set, there exists § > 0 such that |[g| <1—don Y\W. AsWNV =0 we
have |g| <1—46 on V. Since y € supp(m) we have |m|(V) > 0. Since 7,(g) = [ gdm,

we have
| = r(g)] < /V gldjm| + /Y o] < (1= (V) + m(V\ V) < 1

which is a contradiction proving that supp(m) \ {x} = 0. As m is a regular measure,
supp(m) is not empty, so supp(m) = {x}. Thus m = AD,, for some unimodular complex
number . As

1= g(a) = l9) = [ gim = [ gd(AD.) = Ag(e).
we have that A =1 and m = D, O

Proposition 2.22.  Let E be a K-linear subspace of Co(Y,K). Let x € Y. Sup-
pose that the representing measure for T, is only D,. Then x € Ch(E).

Proof. Suppose that x € Y and the representing measure for 7, is only D,. Let
To = (¢1+ ¢2)/2 for ¢1, p2 € Ball(E*). Suppose that m; is a representing measurer for
¢; for j =1,2. Then (m; + mg)/2 is a representing measure for 7,,. Thus

I (f)] = \ [ satm, +m2>/2\ < Il (s + ma)/2]
for every f € E. Thus
L= rall < [ + ma)/2]] < (fma] + fmal)/2 = 1.

Hence ||(m1 +mz2)/2|| = ||7]|, so (m1 +m3)/2 is the representing measure for 7,. Thus
D, = (my + ms2)/2 and

1= Dy({z}) = (mi({z}) + ma({z}))/2.

As |mj({z})| <1 for j = 1,2, we have that m;({z}) =1 for j = 1,2. As |jm;|| =1
for 7 = 1,2 we infer that mqy = mo = D, and 7, = ¢1 = ¢3. We conclude that
7. € ext(Ball(E*)), so € Ch(E). O

The following corollary is straightforward from Propositions 2.21, 2.22.

Corollary 2.23.  Suppose that E is a K-linear subspace of Co(Y,K). Suppose
that © € Y is a strong boundary point. Then x € Ch(E).
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The converse of Proposition 2.22 does not hold in general. Let P(D) be the disk
algebra on the closed unit disk D. Let

E={feP(D): f@i)=1if(1)}.

Then FE is a uniformly closed C-linear subspace of C(D,C) which separates the points
of D and has no common zeros. In fact f(z) = z € E separates the points in D and
fly) =y # 0 for y € D with y # 0. Put g(z) = (z —1)(z —i). Then g € E and
g(0) =i # 0. Thus E has no common zeros on D. Furthermore we have the following.

Proposition 2.24. Let E={f € P(D): f(i) =if(1)}. Then 1 € Ch(E), and

D1, the point mass at the point 1 € D, and —iD; are representing measures for .

Proof. Suppose that 71 = (p + ¢)/2 for some p,q € Ball(E*). As 11(z) = 1, we
infer that ||7|| = 1. Since 1 = 7 (2) = (p(z) + ¢(z))/2 and |p(2)| < 1, |g(2)| < 1 we
infer that p(z) = ¢(z) = 1. Hence ||p|| = ||¢|| = 1. Let m, be a representing measure for
p and m, a representing measure for g. We show that supp(m,,) C {1,7}. Suppose not;
suppose that there exists y € supp(m,) \ {1,4}.

Suppose that |y| < 1. As {1,i} is a peak interpolation set for P(D) (cf. [12,
p.111] or [27, Lemma 4.1]), there is a function f € P(D) such that f(1) = 1,= ||f||
and f(i) = ¢. By the maximum absolute value principle for analytic functions, we infer
that |f(y)| < 1. Hence there is a positive integer n such that |f4"*1(y)] < 1/2. As
iff (1) = fAn*L(5) we have f4"*! € E. Then put h = f4n+1

Suppose that |y| = 1. As {1,7,y} is a peak interpolation set [12, p.111], there exists
h € P(D) such that f(1) =1 = |||, h(i) = i, and |h(y)| < 1/2.

Let U, be an open neighborhood of y such that |h| < 1/2 on U,. Since y € supp(my)
and the measure m,, is regular, we have 0 < |m,|(U,). Then we get

1 _
P <1 [ i)+ [ i) < Sl ) + lmy (D) U) < 1

Uy

Since |g(h) < 1, we get
L= [n(h)] < (Ip(h) +q(h)])/2 <1,

which is a contradiction proving that supp(m,) C {1,4}. Then we infer that there exists
two complex numbers A\, and p, with |A,| + |p,| = 1 such that m, = A\, D1 + ppD; In
the same way there exists two complex number A, and p, with |\;| + |¢e| = 1 such
that my = A\yD1 + pgD;. Hence we obtain that @Dl + ’“”TWDi is a representing

measure for 7% = 71. Thus

f(l) — Ap;Aq (1)+ Np;_'uqf(i) — (AP;ACI _'_Z-:UJP;—/LQ) f(l)
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for every f € E. Hence
Ap + A +iup+ﬂq Ap Hiplp | AgF ik

2.2 = =1.
(22) 2 2 2 * 2
Since .
Ap + ik < Aol + |1p] :1
2 - 2 2
and _
Ag +ifig < [Aql + lg| 1
2 - 2 2’

we infer from (2.2) that A\, 4+ ip, = 1. Thus

p(f) = )‘pf(l) + ppf(i) = ()‘p + iﬂp)f(l) = f(1) =7(f)

for every f € E. We have that 71 = p, so 1 € ext(Ball(E*)). We conclude that
1 € Ch(E). It is evident that D; and —iD; are different representing measures for
T1- O

The strong separation condition ensures uniqueness of the representing measure for
the point evaluation at a Choquet boundary point. In fact, we have

Proposition 2.25.  Let FE be a K-linear subspace of Co(Y,K). Then the follow-
g 18 equivalent.

(i) E strongly separates the points of Ch(FE),

(ii) for every x € Ch(E), the representing measure for T, is only D, .

Proof. We prove (i) implies (ii). Suppose that z € Ch(E) and m a representing
measure for 7,. Note that ||7,|| = 1 since 7, € ext Ball(E*). We have ||m| = 1. Let
y € supp(m). We prove that for every open neighborhood U of y we have |m|(U) = 1.
(If it were proved, then m = AD,, for some complex number A of modulus 1 since m is

a regular measure. Then

(2.3 f@) =) = [ fdm = [ FaAD, = Af(0) = xr, (1

for every f € E. Then we have 7, = A7,. Since 7, is an extreme point of Ball(E*),
T, is also an extreme point of Ball(E*). Thus y € Ch(E). By the condition (i) that
E strongly separates the points of Ch(E), we have from (2.3) that A = 1 and = = v.
Thus m = D, follows.) Suppose not: suppose that there is an open neighborhood Uy
of y such that |m|(Uy) # 1. Then |m|(Up) < 1 as ||m| = 1. As m is regular and
y € supp(m), we have 0 < |m|(Up). Since |/m|(Y) = ||m|| =1, |m|(Y \ Up)| > 0. Put

1

<P1(f)=m Uofdm7 [ €L,
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1
L d E.
ml (Y \ To) /Y\Uof m, fe

It follows that @1, @2 € Ball(E*) and 7, = |m|(Up)p1+|m|(Y \Up)p2, where m|(Uy) > 0,
Im|(Y \ Up) > 0 and |m|(Uy) + |m|(Y \ Up) = 1. As 7, € extBall(E*), we have that
T. = ¢1. In the same way we have

p2(f) =

1
Tm(f)—W/Vfdm, fer

for any open neighborhood V' of y with V' C Uy. Since f is continuous, for every € > 0,
there exists an open neighborhood V. of y such that |f — f(y)| < € on V.. Hence

F) - f / F(y) — fldlm| < e.

IS
Hence f(y) = f(z) for every f € E, so 7, = T,. As 7, is an extreme point of Ball(E*), so
is 7,. Hence y € Ch(E). Since E strongly separates the points of Ch(E), we have that
x = y. It follows that for any y € supp(m), y coincides with z, that is, supp(m) = {z},
which is a contradiction since we assume that |m|(Up) < 1. We conclude that |m|(U) = 1
for any open neighborhood U of y.

We prove (ii) implies (i) by reductio ad absurdum. Suppose that E does not strongly
separate the points of Ch(F): there exists a pair  and y of different points in Ch(E)
such that the equation |f(z)| = |f(y)| holds for every f € E. As 7, € extBall(E"),
|7z]] = 1 holds, so there exists fo € E such that fy(x) = 1. Then there exists a
complex number A\g with |[\g| = 1 such that fy(y) = Mo fo(z) = Ao. For any f € E with
f(x) # 0 there exists a complex number A; of unit modulus such that f(y) = A f(x).

As (f/f(x) + fo)(x) = 2, we have

Ar+ 2o = (F/F@) + o)) = Ap/s@)y+50 (F/ (@) + o) (@) = 2X5) £ (2)+ 56

for every f € E with f(z) # 0. As [Af| = |Xo| = [Af/f(z)+5 | = 1 we infer that Ay = Ag.
Thus f(y) = Ao f(x) for every f € E with f(z) # 0. This equation also holds for f € E
with f(z) = 0. We conclude that f(y) = Aof(z) for every f € E. Thus \D, is a
representing measure for 7,. As x # y we have at least two representing measures D,
and XoDy for 7. O

Corollary 2.26. Let E be a K-linear subspace of Cy(Y,K). Suppose that E
strongly separates the points of Ch(E). Then x € Y is in the Choquet boundary if and
only if the representing measure for 7, is only D,.

Proof. 1t is straightforward from Propositions 2.22, 2.25. O
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If £ is a subspace of C'(X,K) which contains constants or E is a subalgebra of
Co(Y,K) which separates the points of Y, then the Choquet boundary points are char-
acterized by the uniqueness of the representing measures for the corresponding point

evaluations.

Corollary 2.27.  Supposes that X is a compact Hausdorff space and F is a K-
linear subspace of C(X,K) which separates the points of X and contains constants.
Then x € Y 1is in the Choquet boundary if and only if the representing measure for T,
15 only D,.

Proof. Proposition 2.3 asserts that E strongly separates the points of X. Then
by Corollary 2.26 we have the conclusion. O

Corollary 2.28.  Suppose that E is a subalgebra of Co(Y,K) which separates the
points of Y. Then x € Y is in the Choquet boundary if and only if the representing
measure for 7, is only D,.

Proof. Proposition 2.3 asserts that E strongly separates the points of X. Then
by Corollary 2.26 we have the conclusion. O

We summarize the results to generalize a theorem of Bishop and de Leeuw on a
characterization of the Choquet boundary for uniform algebras [37, p. 39], [12, Theorem
2.2.6] (cf. [42, Theorem 2.1], [43, Theorem 9]).

Theorem 2.29.  Suppose that A is a closed K-subalgebra of Cy (Y, K) which sepa-
rates the points of Y and has no common zeros. Let x € Y .The following are equivalent.

(i) x € Ch(A),
(i') = € Ch(A +K),
(ii) z is a strong boundary point for A,
(ii") x is a strong boundary point for A+ K,
(iii) the representing measure for the point evaluation T, on A is only D,,

(iv) there exists a pair of 0 < a < 8 < 1 such that for every open neighborhood U of
x there exists a function f € A such that ||f|leo < 1, |f(2)| > B, and |f| < a on
Y\U,

(v) for every pair of 0 < a < 8 < 1 and for every open neighborhood U of x there exists
a function f € A such that ||fllee <1, |f(2)] > B, and |f| <@ on Y\ U.
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Proof. If K =R, then by the Stone-Weierstrass theorem, A = Cy(Y,R). It follows
that the conditions in (i) through (v) hold for every z € Y.

Suppose that K = C. (i) <> (iii) is just Corollary 2.28. (ii) — (i) is Corollary 2.23.
(ii) » (ii’) is Proposition 2.15.

Since A + C is a uniform algebra on Y, (i') — (ii’) follows from the Bishop-de
Leeuw theorem (cf. [37, p.39], [12, Theorem 2.2.6]).

We prove (i) — (i'). Let x € Ch(A). To distinguish the point evaluations on A and
A+ C, denote the point evaluation on A+ C by 75, : A+ C — C. The point evaluation
on A is denoted 7, as usual. Suppose that 7, = (p + ¢)/2, where p, q € Ball((4 4+ C)*).
As 1 =7,(1) = (p(1) +¢(1))/2 and |p(1)[ <1, |¢(1)] < 1 we infer that p(1) = ¢(1) = 1.
Hence for each f + X € A+ C we have

() +A=T(f +X) = ((f + ) +a(f + ) /2= p(f) +a(f)) /2 + A,

Define p’ : A — C by p'(g) = p(g) for g € A, we have p’ € Ball(A*). In the same way
¢’ can be defined and ¢’ € Ball(A*). By the above equality we have 7, = (p' + ¢’)/2.
As 7, € ext(Ball(A*)), p’ = ¢ = 7. It follows that p = ¢ = 7, proving that 7, €
ext(Ball(A + C)*), so = € Ch(A + C).

We prove (i') — (i). Suppose that z € Ch(A+C), in other wards, 7, € ext(Ball(A+
C)*). We have already proved that (i’) implies (ii’) and (ii’) implies (ii). Hence z is
a strong boundary point for A. Thus we infer that 1 = ||7,| = |7]A| = 1. Let A,
denote a Hahn-Banach extension on A + C of Tx’A We show that A, = 7,. By the
Riesz-Kakutani theorem there exists m, of a representing measure of A, on Y,,. Note
that [|mg|| = |Az]| = |74l = 1 and AL(f + \) = f(f—f—/\)dmm for f+ X e A+C.
Note also that 1 = 7,(1) = f 1dm, ensures that m, is a probability measure. As x is
a strong boundary point for A, by Proposition 2.9 there exists a family {K,} of peak
sets for A such that (), Ko = {z}. Denote f, € A the corresponding peaking function
for K,. By the bounded convergence theorem for the probability measure m, we get

1= Am(fg) = /fgdmx — mm(Ka)

asn — oo since f, = 1 on K, and |f,| < 1 on Y\ K,. We see that m,(K,) = 1 for every
peak set K, for A which contains . Let U be an open neighborhood of z in Y. Although
Y needs not be compact, by considering that U and K/ s are subsets of compact space
Yo, there exists a finite number of Kq,,..., K, such that U D (;_, Ka,. Then
we have 1 = m.(j_; Ka;) < m,(U) < 1. As U is arbitrary open neighborhood
of x, we get m,({x}) = 1 since m, is a regular measure. Thus m, = D,. Hence
Aw(f—l—)\) = ff—l—Ade :fx(f~|—)\) for every f+ A € A+ C. We get that A, = 7.
We prove that 7, € ext(Ball(A*)). Suppose that 7, = (p + ¢)/2 for some p,q €
Ball(A*). Let p: A — C be defined as p(f) = p(f), f € Aand G: A — C be defined as
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d(f) = q(f), f € A. Note that it is well defined since f — f is a bijection from A onto
A. Note also that

(59 0= (") =rth =it fea

so Ty|A = (p + ¢)/2. Let p and ¢ be Hahn-Banach extensions of p and § on A + C
respectively. As (p -+ ¢)/2 is an extension of (p + §)/2 = 7| A, we have

L=Ilp+a)/2l =+ a)/2ll < 6+ q)/2l < (lpll + llg])/2 = 1.

Thus ||(p + ¢)/2|| = 1, so (p+ ¢)/2 is a Hahn-Banach extension of 7,|A. By the result
in the previous paragraph that a Hahn-Banach extension of 7"36|A is always 7, we have

7. = (p+4)/2.

As 7, € ext(Ball(A + C*)) we have p = ¢ = 7,. For every f € A we have 7,(f) = 7.(f),

P(f) = B(f) = p(f), and d(f) = 4(f) = q(f) for every f € A, we have 7,(f) = p(f) =
q(f) for every f € A. We conclude that p = ¢ = 7, 7, € ext(Ball(A*)). It follows that
x € Ch(A).

Suppose that iv) holds. We prove (ii’). For every open neighborhood (as a subset
of Yso) U of x there exists a function f € A ¢ A+ C such that ||f|ls <1, |f(z)] > 8,
and |f| < @ on Y, \ U. Then by [12, Theorem 2.3.4] we have z is a strong boundary
point for A + C; (ii’) holds.

Suppose that (ii’) holds. We prove (iv). Let U be an open neighborhood of z. As
we have already pointed out that (ii’) is equivalent to (ii), there exists f € A such that
f(x)=1=|f|loc and |f| <1 on Y \U. As Y \ U is closed, there exists § < 1 such that
|fl] <donY\U. Put « =6 and f = (1+«)/2. Then we have that || f|| =1 = f(z) > 8
and |f| < « on Y \ U; iv) holds.

(v) — (iv) is trivial.

We prove (ii) — (v). Suppose that = is a strong boundary point for A. Let «, 3
be any pair such that 0 < o < 8 < 1. Let U be an arbitrary open neighborhood of .
Then there exists f € A such that f(z) =1=|f| and |[f| <1on Y \U. As Y\ U is
closed, there exists § < 1 such that |f| < d on Y \ U. For a sufficiently large positive
integer n the inequality " < « holds. Thus f" € A satisfies 8 < [f"(z)| =1 = || /"]~
and |f"]| <aonY\U. O

Even if F is a strongly separating K-linear subspace of Cy(Y,K), a point y €
Ch(E + K) needs not be a point in Ch(E).

Example 2.30. Let E be the space defined in Example 2.6. Then 1 ¢ Ch(E)
while 1 € Ch(E + K). The reason is as follows. The space E is strongly separating.
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Hence t € (0,1] is in Ch(E) (resp. Ch(E + K)) if and only if the representing measure
for 74 is unique. It is trivial that D; and —D% are both representing measure for 7.
Thus 1 ¢ Ch(E). On the other hand 1 is a strong boundary point for £ + K. Thus
1 € Ch(E +K).

2.3.4. The Silov boundary

According to [3, p.80] the existence of Silov boundary for a subalgebra of C(X,K)
which separates the points of X and contains constant is given by Silov [45]. A simple
proof of the existence of the Silov boundary for a K-linear subspace of C'(X,K) which
separates the points of X and contains constants for a compact Hausdorff space is
exhibited by Bear [5]. In [37, Proposition 6.4] Phelps showed that the closure of the
Choquet boundary is the Silov boundary. For further references on Silov boundary see
3, 8, 9, 30, 43] for example.

Definition 2.31. Let E be a K-linear subspace of Cy(Y,K). We say that a
closed subset K of Y is a Silov boundary for E if it is the smallest closed boundary in
the sense that it is a boundary for E and K C L for any closed boundary (a boundary
for F which is a closed subset of Y') L for E.

Araujo and Font [3, Theorem 1] proved that the closure of the Choquet boundary
for E is the Silov boundary for E if F is a K-linear subspace of Cy(Y,K) which strongly
separates the points of Y. The following slightly generalizes it.

Proposition 2.32.  Let E be a K-linear subspace of Co(Y,K). If E strongly

separates the points of Ch(E), then the closure Ch(E) of the Choquet boundary in'Y is
the Silov boundary for E.

Proof. Let K be a closed boundary for E. Let z € Ch(E). We prove that x € K.
As K is a boundary, the restriction E|K of E on K is uniformly closed K-subspace of
Co(K,K). The restriction map T': E — FE|K by T(f) = f|K, f € E is a bijection and
an isometry. We define 7, : E|K — K by 7.(F) = 7.(T"1(F)), F € E|K. Then

T*OT.m(f) :Tm(T(f)):Tx(T_l(T(f))) :Tx(f)a [ €F,

so we infer that T* o7, = 7, on F.
We prove that 7, € ext(Ball(F|K)*). Suppose that 7, = (p+¢q)/2 for p,q € (E|K)*.

Then
T*op+T*oq

2
As 7, € ext E* we have T* op = T* o ¢ = 7,. Hence p = q¢ = 7, since T™ is a bijection.
It follows that 7, € ext(Ball(E|K)*).

T, =T o7, =
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By Corollary 2.18 there exist y € K and A € T such that 7, = A7y |(E|K), where
T |(E|K) : E|K — K by (1y|(E|K))(F) = F(y) for each F' € E|K. It is well defined
since y € K. We have

(T o (my(EIK)))(f) = (my (EIK)NT(f)) = (r[(E[EK))(fIK) = fly) = 7y(f), f€E,
SO

7 (f) = (T7 o 72)(f) = (T" o Ay [(EIK)))(f) = Ay (f), [ e€E.
Thus 7, = A1y, on E. It follows that D, and AD, are representing measures for 7,,. By
Proposition 2.25 we see that a representing measure for 7, is only D, since we assume
E strongly separates the points of Ch(FE). We conclude that = = y and A = 1. Thus

x € K, Ch(E) C K, so the closure Ch(FE) of Ch(E) is a subset of K. As Ch(F) is a

boundary for E (Proposition 2.20) so is Ch(E). We conclude that Ch(E) is the Silov
boundary. U

It is not always the case that the Silov boundary exists. A simple example is as
follows.

Example 2.33. Let E = {f € C(T,C) : f(A\) = Af(1), A € T}. Then F is
C-linear subspace of C(T,C) which separates the points in T. It is easy to see that
Ch(E) = T. On the other hand {\} is a closed boundary for F, for each A € T. Thus
there is no smallest closed boundary for E.

Even if the Silov boundary exists, it needs not coincide with the closure of the

Choquet boundary.

Example 2.34. Let X =[0,1]JU{2}. Let E = {f € C(X,K) : f(2) = —f(1)}. It
is evident that [0, 1] is the Silov boundary and Ch(E) = X. Note that Ch(FE) separates,
but does not strongly separate, 1 and 2. Note also that —D; and Dy are representing

measures for 7o

Corollary 2.35.  Let E be a K-linear subspace of Co(Y,K) which separates the
points of Y, If Y is compact and E contains constants, or E is a subalgebra of Co(Y,K),
then the closure Ch(E) of Ch(E) in'Y is the Silov boundary.

Proof. 1f'Y is compact and E contains constants, then E strongly separates the
points of Y by Proposition 2.3. If F is a subalgebra of Cy(Y,K), then by Proposition
2.3 asserts that F strongly separates the points of Y. Hence by Proposition 2.32 we
have the conclusion. O

Note that the case of 1 € E is described in [37, Proposition 6.4]. Note also that if
Y is compact and F is a strongly separating space, then [43, Proposition 6] described
the above corollary.
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The following is a well known example that shows the Choquet boundary needs
not to be closed even if the Silov boundary exists.

Example 2.36. Let A = {f € P(D) : f(0) = f(1)}|T, where p(D) is the disk
algebra on the closed unit disk D. Then A is a uniform algebra on the unit circle T.
Then Ch(A) = T\ {1} since every point A € T \ {1} is a peak point with the peaking
function (z + \)/2 while 1 is not a peak point by the maximum absolute value principle
for analytic functions. Note that the Silov boundary is T.

§ 3. (-rich spaces, lush spaces and extremely C-regular spaces

§3.1. (-richness, lushness, the numerical index and the Mazur-Ulam
property.

A C-rich subspace was introduced by Boyko, Kadets, Martin and Werner [11].

Definition 3.1 ([11]). A closed K-linear subspace F of C'(X,K), K = C or R,
is called C'-rich if for every nonempty open subset U of X and € > 0, there exists a
positive function h. of norm 1 with support inside U such that the distance from h. to
F is less than e.

Suppose that X is a compact Hausdorff space without isolated points. Suppose also
that p1,...,pn, € C(X,K)*. Then E = ﬂ?zl pj_l(O) is a C-rich subspace of C(X,K)
[11, Proposition 2.5]. Furthermore, if X is perfect, then every subspace of C(X,K) of
codimension finite is C-rich since in this case C-richness is equivalent to richness [29,
Proposition 1.2]. Another example is a uniform algebra. Recall that a uniform algebra
A on a compact Hausdorff space X if A is a closed subalgebra of C'(X, C) which contains
constants and separates the points of X.

Proposition 3.2.  Let A be a uniform algebra on a compact Hausdorff space X
and S the Silov boundary. Then A|S = {f € C(S,C): F = fon S for some F € A} is
a C-rich C-subspace of C(S,C).

Proof. Let U be an open subset of S and g9 > 0 arbitrary. We may suppose
that U is a proper subset of S. Let 0 < ¢ < min{1/2,e0/(v/5 + 1)}. It is known
that the Choquet boundary Ch(A) for A is dense in S and each point z € Ch(A) is a
strong boundary point [12] (cf. Theorem 2.29 and Corollary 2.35). Hence there exist
p € UNCh(A) and f € A|S such that f(p) =1 = f|lcc and |f| <1 on S\ U. Since A
is closed under the multiplication, we may suppose that |f| < 1/2 on S\ U. Put

A={z€D:Rez>0, |Imz| <e}.
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Then by the well known Carathéodory theorem (cf. [41]) there is a homeomorphism
7. : D — A such that 7. is analytic from D onto the interior of A. We may assume
that 7.(1) = 1 and 7.({z € D : |z] < 1/2}) € {# € A : Rez < ¢}. As m. is
uniformly approximated by analytic polynomials on D, we have ¢ = 7. o f € A|S.
Note that 0 < Reg < 1 on S. By Urysohn’s lemma there exists a continuous function
h:S — [0, 1] such that

0, if Reg(y) <e¢,

h(y) =
1, if Reg(y) > 2e.

Ify e S\ U, then |f(y)| < 1/2,s0 Reg(y) = Re(mz o f)(y) <e. Thus hg =0o0n S\ U.

As g(p) = m= o f(p) = 1 we have that hg(p) = 1. As |[gllec = 9(p) =1 = h(p) = [|h]le
we have ||hgllcc = 1. We show that ||hg — g|| < VBe. Let y € S. If Reg(y) > 2¢,
then h(y) = 1. Hence (hg — g)(y) = 0. Suppose that Reg(y) < 2. As 0 < h(y) < 1,
|h(y) — 1] < 1. As g(y) € A and Reg(y) < 2¢ we infer that |g(y)| < v/5e. Hence

((hg — 9)W)| = lg(y)[|h(y) — 1| < V/5e.

As Reg > 0 on X, we have 0 < hReg < 1. Put hg = hReg. Then hq is a positive
function of norm 1 since ho(p) =1. Ash =0on S\ U, we have hp =0 on S\ U. Thus
the support of hg is inside of U. We have

lho = gllee < [Ihg = gllse + [Ihllocl| Re g — glloo < Ve + & < eo.
Thus d(hg, A|S) < eq O

In the rest of the section B for a subset B € Cy(Y,K) denotes the uniform closure
of B. In the same way as the proof of Proposition 3.2 we see the following.

Proposition 3.3.  Suppose that A is a uniform algebra on a compact Hausdorff
space X and S its Silov boundary. Then Re A|S is a C-rich R-subspace of C(X,R).

Proof. Let U be an open subset U of S and £y > 0 arbitrary. In fact, a given U
and g9 > 0, hg and g € A are the same functions as in the proof of Proposition 3.2 we
have [|ho — Re g||co < €0. O

A lush space was introduced by Boyko, Kadets, Martin and Werner [11].

Definition 3.4. Let B be a K-Banach space. Let § > 0 and p € S(B*). The
slice denoted by SL(Ball(B),p,?d) is

{a € Ball(B) : Rep(a) > 1 —§}.
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B is said to be K-lush if for every a,b € S(B) and € > 0, there exists ¢ € S(B*) such
that b € SL(Ball(B), q,¢) and
d(a,co(TSL(Ball(B),q,¢))) < e.
where co(-) stands the convex hull.

Boyko, Kadets, Martin and Werner [11, Theorem 2.4] proved that a C-rich K-
subspace of C(X,K) for a compact Hausdorff space X is K-lush. Tan, Huang and Liu
introduced a local-Gl-space in [50], which is a real Banach space. They proved that
R-lush space is a local-GL-space [50, Example 3.6] and every local-GL-space has the
Mazur-Ulam property. Let us briefly recall that a real Banach space B is GL-space if
for every a € S(B) and every 0 < ¢ < 1 there exists a p € S(B*) such that

d(b, SL(Ball(B),p,¢)) + d(—b, SL(Ball(B),p,e)) < 2+¢

for all b € S(B). A real Banach space B is said to be a local GL-space if for every
separable subspace E of B , there exists a GL-subspace E’ such that £ C E' C B.

Corollary 3.5.  FEvery uniform algebra is C-lush. The uniform closure of the real

part of a uniform algebra is R-lush and consequently it has the Mazur-Ulam property.
Before proving Corollary 3.5 we show two lemmas to prove it.

Lemma 3.6. Let A be a uniform algebra on a compact Hausdorff space X and
S a boundary for A. Then

IRe flloox) = [ Re flloo(s)

for every f € A.

Proof. Suppose that || Re fol|oo(x) 7 | Re follso(s) for some fy € A, whence we have
| Re follso(x) > | Re follso(s)- There exists yo € X such that | Re fo(yo)| = || Re foloo(x)-
We may assume Re fo(yo) > 0. (If Re fo(yo) < 0, then replace fy by —fy.) Hence

Re fo(yo) > || Re folloo(s),
and
|| exp Re follso(x) > exp Re fo(yo) > exp || Re follso(s) > |l expRe folloo(s)-

As | exp fo(y)| = expRe fo(y) for every y € X, we have || exp foloo(x) = [l expRe folloo(x)
and || exp folloo(s) = || exp Re fo|so(s). Hence we get

| exp folloo(x) > |l exp folloo(s)

which is against that S is a boundary and exp fo € A. Thus we have that || Re f||oo(x) =
| Re flloo(s) for every f € A. O
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Lemma 3.7. Let A be a uniform algebra on a compact Hausdorff space X and
S a boundary for A. Then we have Re A|S = Re A|S.

Proof. Since the inclusion Re A|S D Re A|S is obvious, we need to prove the
reverse inclusion. Let u € Re A|S arbitrary. Then there exists a sequence {u,} in
Re A|S such that ||u, — u[/s(s) — 0 as n — oo. Then by the axion of choice there is
a sequence {U,} in Re A such that U,|S = w, for every positive integer n. Then we
have by Lemma 3.6 that |[un, — tmlloo(s) = [|[Un — Unm|lso(x) for every n and m. Hence
{U,.} is a Cauchy sequence since so is the sequence {u, }. There is U € Re A such that
|Un = Ulloo(x) —+ 0 as n — oco. Then

||Un - U|S||oo(S) < ||Un - UHoo(X) — 0
as n — 00, so that u = U|S € Re A|S. We conclude that Re A|S C Re A|S. O

Proof of Corollary 3.5 .  Let A be a uniform algebra on X and S the Silov bound-
ary for A. Then by Proposition 3.2, A|S is C-rich C-subspace of C'(S,C). Then by [11,
Theorem 2.4] we see that A|S is C-lush. Note that lushness is invariant under the
isometries by definition of lushness. Therefore A is C-lush since S is a closed boundary
for A and the restriction map is obviously an isometry of A onto A|S by definition of a
boundary.

By Proposition 3.3 Re A|S is C-rich. Then [11, Theorem 2.4] ensures that Re A|S
is R-lush. As the Silov boundary is a boundary, we have Re A|S = Re A|S by Lemma
3.7. Hence Re A|S is R-lush. Consider the restriction map I: ReA — Re A|S. As
| Re flloo(x) = | Re flloo(s) for every f € A, the map I is a surjective isometry. Since

lushness is invariant under the isometries, we see that Re A is R-lush. Tan, Huang and
Liu proved that R-lush space is a local-GL-space [50, Example 3.6] and every local-GL-
space has the Mazur-Ulam property [50, Theorem 3.8]. Hence Re A has the Mazur-Ulam

property.

O

Recall that a uniform algebra A on a compact Hausdorff space X is a Dirichlet

algebra provided that Re A = C(X,R). Several uniform algebras including the disk al-

gebra on the unit circle is a Dirichlet algebra. Uniform algebras needs not be Dirichlet

in many cases. The ball algebra and the polydisk algebra on the ball and the poly-

disk of dimension 2 or greater are not Dirichlet algebras even on the Silov boundaries
respectively. For further information see [12, 25, 46]. Let

E = {u € C(D,R): u is harmonic on D}.

By solving the Dirichlet problem, any real-valued continuous function on T is extended
to a continuous function on D which is harmonic on D. Hence E|T = C(T,R) and E is
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isometric to E|T since every function in E takes the maximum value and the minimum
value on T as it is harmonic on D. By a theorem of Fang and Wang [23, Theorem 3.2]
the Banach space C(T,R) has the Mazur-Ulam property, hence E has the Mazur-Ulam
property. This is also proved by Corollary 3.5 as follows. Let A(D) be the disk algebra
on the closed unit disk D. It is trivial that Re A(D) C E. Since the uniform limit of a
sequence of harmonic functions are harmonic, we infer that F is uniformly closed. Thus
we have Re A(D) C E. Conversely suppose that U € E. As the restriction A(D)|T (the
disk algebra on the unit circle) is a Dirichlet algebra on T. There is a sequence {U, }
of functions in Re A(D) such that ||U,|T — U|T||s(ry — 0 as n — oo. As U and every
U,, are harmonic on the open unit disk D, we have by the maximum value principle of

harmonic functions that

1Un = Ullso(p) = IUn|T = U[T||so(r) = 0

as n — 0o. We have proved that U € Re A(D). It follows that Re A(D) = E. By
Corollary 3.5 we have that E has the Mazur-Ulam property. In general we have the
following.

Corollary 3.8.  Suppose that A(RQ) is a uniform algebra on a compact subset
Q of the complex plane C which consists of complex-valued continuous functions on 2
which is analytic on the interior of Q). Then every function in Re A(Q2) is harmonic on

the interior of Q. In particular, Re A(Q2) has the Mazur-Ulam property.

Proof. 'The uniform limit of a sequence of harmonic functions is harmonic. Hence
every function in Re A(2) is harmonic on the interior of Q2. By Corollary 3.5 we have
the conclusion. O

It seems not to be known if a C-lush space has the complex Mazur-Ulam property
or not. We proved that a uniform algebra has the complex Mazur-Ulam property in
[26].

According to [22] the numerical index of a Banach space was introduced by Lumer
in 1968. For the algebra of all bounded linear operators L(B) on a Banach space B,

the numerical index is
n(B) = inf{v(A) : A€ L(B),|lAl| =1},
where v/(A) is the numerical radius given by
v(A) = sup{|p(A(a))| : a € S(B),p € S(B"), p(a) = 1}.

Boyko, Kadets, Martin and Werner [11, Proposition 2.2] showed that the numetrical
index of a lush space is 1. Hence we see that
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Corollary 3.9.  Let A be a uniform algebra. Then n(A) = n(ReA) = 1. Let
E ={u € C(D,R): u is harmonic on D}. Then n(E) = 1.

Proof. By Corollary 3.5 A is C-lush and Re A is R-lush. By Proposition 2.2 in
[11] we have the conclusion.

As we have shown (just before Corollary 3.8) that E = Re A(D), where A(D) is
the disk algebra on the closed unit disk. Hence we have n(E) = 1. O

§ 3.2. Extremely regular spaces and extremely C-regular spaces.

The concept of an extremely regular space was given by Cengiz [16]. Extremely
C-regular spaces were introduced by Fleming and Jamison [24, Definition 2.3.9].

Definition 3.10. A K-linear subspace E of Cy(Y,K) is said to be extremely C-
reqular (resp. regular) if for each x in the Choquet boundary! Ch(E) (resp. = € Y)
satisfies the condition that for each ¢ > 0 and each open neighborhood U of z, there
exists f € E such that f(z) =1=|f||e, and |f| <eon Y \ U.

We may say that a K-linear subspace E of Cy(Y, K) is extremely C-regular if every
point in the Choquet boundary is a strong boundary point in the sense of Fleming and
Jamison.

Suppose that m is a complex regular Borel continuous measure on Y. Then E =
{f € Co(Y,C) : [ fdm = 0} is an extremely regular closed subspace of Cy(Y,C) (see
[16, Theorem]).

Theorem 3.11.  Suppose that E is a uniformly closed extremely C-regular K-
linear subspace of Co(Y,K). The following are equivalent.

(i) x € Ch(E),
(ii) x is a strong boundary point for E,

(iii) the representing measure for the point evaluation T, on E is only D,,

Proof. Since E is extremely C-regular, E strongly separates the points in Ch(FE).
By Corollary 2.26 we have that (i) <> (iii). The implication (i) — (ii) also follows from
the definition of the extremely C-regularity. Suppose that (ii) holds. Then by Corollary
2.23 (i) holds. O

Abrahamsen, Nygaard and Poldvere [1] introduced a somewhat regular subspaces
of Cy(Y,K), which is a generalization of extremely regular subspaces.

I The definition is given in Definition 2.16
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Definition 3.12 (Definition 2.1 in [1]).  We call a K-linear subspace E of Cy(Y, K)
somewhat regular, if for every non-empty open subset Vof Y and 0 < e, there exists
f € E such that there exists 2o € V with f(z9) =1 = ||f]lec and |f| <eon Y \ V.

Proposition 3.13. A closed subalgebra A of Co(Y, C) which separates the points
of Y and has no common zeros is an extremely C-regular subspace of Cy(Y,C). In
particular, a uniform algebra on a compact Hausdorff space X is an extremely C-reqular
subspace of C(X,C). If the Choquet boundary Ch(A) is closed in Y, then A|Ch(A) is
an extremely reqular subspace of Co(Ch(A),C). Let S be the Silov boundary for A. Then
AlS is a somewhat regular subspace of Cy(S,C).

Proof. Let x € Ch(A). Suppose that U is an open neighborhood of z. Letting
B =1and ¢ = a for (v) of Theorem 2.29 we assert that there exists g € A such that
19(z)] =1 = ||g|los and |g| < e on Y \ U. Then f = g(z)g is the required function
which proves that A is extremely C-regular. If Ch(A) is closed, then by the definition
of extreme regularity, we have that A| Ch(A) is an extremely regular subspace.

Let S be a Silov boundary. We prove that A|S is somewhat regular. Let V be
a non-empty subset of S and 1 > ¢ > 0 arbitrary. By Corollary 2.35 there exists
xo € Ch(A) NV. Then there exists f € A|S such that f(xg) =1 = | follco and |f| < e.

Thus A|S is somewhat regular. O

Proposition 3.14.  Let A be a uniform algebra on a compact Hausdorff space
X. Then the space of the real parts Re A of A is an extremely C-reqular subspace of
Cr(X).

Proof. 'We prove that Ch(Re A) = Ch(A). Let p € Ch(A). As p is a strong bound-
ary point (see Theorem 2.29 and preceding comments), for every open neighborhood of
p and € > 0 there exists a function f € A such that

f(p) =1=|fllec and |f] <& on X \U

We asserts that
(3.1)
Re f(p) =1 < [|Re flloo < [|fllec =1 and |Re f(x)| < [f(z)| < € for every z € X \ U

Thus p is a strong boundary point and by Corollary 2.23 we infer that p € Ch(Re A).

Suppose conversely that p € X \ Ch(A). Then there is a representing measure
p # D, on X for the point evaluation 7,. Note that p is a probability measure (cf. [12,
p.81]). Then we have

/Re gdp = Re/gdu = Reg(p)
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for all g € A. It means that ;1 is a representing measure for 7, which is not D,. By
Corollary 2.27 we have that p € X \ Ch(Re A).
By (3.1) we see that Re A is an extremely C-regular subspace of Cr(X). O

Proposition 3.15.  Suppose that E is an extremely C-regular subspace of Co(Y, K)
for a locally compact Hausdorff space Y. Then the uniformly closure E of E is also an
extremely C-regqular subspace of Cy(Y,K).

Proof. Every ¢ € (E,| - |loo)* is uniquely extended to ¢ € (E,|| - ||oo)* with

o]l = ||¢||. Then the map ¢ — ¢ from (E,|| - [|oo)* onto (E,|| - ||oo)* is a surjective
K-linear isometry. Since 7, for 7, € (E,|| - |loo)* is 7y € (E, | - ||o0)*, We see that 7, is
in ext(Ball((E, || - ||oo)*)) if and only if 7, is in ext(Ball((E, || - ||« )*)) for y € Y. Hence
Ch(E) = Ch(E). The rest of the proof is clear. O

Applying Propositions 3.14 and 3.15 we have

Corollary 3.16.  For a uniform algebra A on a compact Hausdorff space X, the
uniform closure Re A of the real parts Re A of A is an extremely C-reqular subspace of

Cr(X).

§ 3.3. Some properties of closed subalgebras of Cy(Y,C).

In this subsection Y is an infinite locally compact Hausdorff space. Abrahamsen,
Nygaard and Poldvere [1] showed that extremely regular spaces play a role in recent
theory of Banach spaces by exhibiting that they involve the Daugavet property, the
symmetric strong diameter 2 property and so on under some additional assumptions.
We say B has the symmetric strong diameter 2 property (SSD2P) if for every ¢ > 0
and every finite collection of slices S1,...,S,,, there exists x; € S; for ¢+ = 1,....,m
and y € Ball(B) with ||y|| > 1 —¢c and z; £y € S; for all i« = 1,...,m [1, Definition
1.3]. Recall that a Banach space is almost square (ASQ) if for any finite number of
T1,...,Ty € S(B), there exists a sequence {y,} C Ball(B) such that ||z; + yx|| — 1
and ||yx|| = 1 as k — oo for all 1 < j < n [1, definition 1.3]. Recall that a Banach
space B has the Daugavet property if every rank-one operator A on B satisfies that
114+ Al =1+ ||A]|] [1, Definition 1.4]. Recall that a linear surjection 7 : Ny — Ny for
normed linear space N1 and N, is called an e-isometry if

(1 =g)llall < T ()] <A +e)lla]
for every a € Ny [1]. We have

Corollary 3.17.  Let A be a closed subalgebra of Cy(Y,C) which separates the
points of Y and has no common zeros. Then we have
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(1) A has the SSD2P,
(2) A is ASQ if the Silov boundary is non-compact,
(3) A has the Daugavet property if the Silov boundary of A is perfect,

(4) A contains an e-isometric copy of co if 0 < e < 1.

Proof. Put Ay = A|S, where S is the Silov boundary. Then the restriction map is
a surjective isometry from A onto Ag. The SSD2P, ASQ, the Daugavet property and to
contain an e-isometric copy of ¢y are inherited by an isometry, so it is enough to prove
results for Ay.

By Proposition 3.13 that Ag is a somewhat regular. Then by [1, Theorems 2.2, 2.5,
2.6, 3.1] we have the conclusions. 0

Note that Wojtaszczyk [57, Theorem 2] proved that the Daugavet equation (DE)
:I1+ Al = 1+ || A]| holds for a weakly compact operator A on a uniform algebra on
X such that the strong boundary points are dense in X and X has no isolated points.
As the strong boundary point coincides with the Choquet boundary points (Theorem
2.29) and they are dense in the Silov boundary (Proposition 2.35), the hypothesis on the
uniform algebra in the theorem of Wojtaszczyk can be seen that A is a uniform algebra
on a perfect X, where X is the Silov boundary for A. As A and A|S are isometric,
where A is a uniform algebra and S is the Silov boundary for A, Wojtaszczyk in fact
proved that the Daugavet equation holds for a weakly compact operators on a uniform
algebra of which Silov boundary is perfect.

At the end of the section we note that C-richness implies the somewhat regularity.

Proposition 3.18.  Let E be a K-linear subspace of Co(Y,K). Suppose that for
every nonempty open subset U of Y and € > 0, there exists a function h. € Cy(Y,R)
such that 0 < h. <1 = ||h||c with support inside U and that the d(he, E) <e. Then E

1s somewhat regular. We also have

(1) E has the SSD2P,

(2) E is ASQ if Y is non-compact,

(3) E has the Daugavet property if Y is perfect,

(4) E contains an e-isometric copy of co if 0 < e < 1.

In particular, if Y is compact (hence E is C-rich), then E is somewhat reqular and (1),
(8) and (4) hold.
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Proof. Let U be a nonempty open subset of X and € > 0 arbitrary. We prove
that there exists f € E and z¢ € U such that f(xg) =1 = ||f|| and |f| < e. To prove
it we may assume that ¢ < 1. Put g9 = ¢/(1 + ¢). Then there exists h € Cy(Y,R)
such that 0 < h < 1lonY,h =0o0n Y \U, ||h|| = 1, and the distance between
h and E is less than 5. Hence there exists g € E such that ||h — gljcc < €0. Then
lgllce > ||h|loo —€0 = 1—ep. As h =0o0n Y \U, we infer that |g| < ep on Y\ U. Choose
xo € Y so that [|g||c = |g(z0)]- Put f =g/g(xp). Then f € E, f(zo) =1=|f]|co and
|fl <eo/(1—e9)=eonY \U. As U and ¢ are arbitrary, we have that E is somewhat
regular. Then by [1, Theorems 2.2, 2.6, 3.1] we have the conclusion. O

§4. Sets of representatives

§4.1. Is the homogeneous extension linear?

Let B be a real or complex Banach space. Any singleton {a} of a € S(B) is convex
subset of S(B). Applying Zorn’s lemma, there exists a maximal convex subset of S(B)
which contains {a}. Hence S(B) is a union of all maximal convex subsets of S(B). We
denote the set of all maximal convex subsets of S(B) by §p. Suppose that the map
T : S(B1) — S(B3) is a surjective isometry with respect to the metric induced by the
norm, where By and By are both real Banach spaces or both complex Banach spaces.
The homogeneous extension T: By — By of T is defined as

Fra) = a||T (W) , 0£a€B
0, a=0.

By the definition 7 is a bijection which satisfies |T'(a)| = ||a|| for every a € B; and it
is positively homogeneous. The Tingley’s problem asks if T is real-linear or not.

In [26] we introduced a set of representatives which plays a role in study on complex
Mazur-Ulam property. For the convenience of the readers we recall it here. Suppose
that ' € §p for a real or complex Banach space B. It is well known that there exists
an extreme point p in the closed unit ball Ball(B*) of the dual space B* of B such that
F=p1(1)NS(B) (cf. [52, Lemma 3.3], [27, Lemma 3.1]). Recall that ext(Ball(B*))
denotes the set of all extreme points of Ball(B*). Put

Q = {q € ext(Ball(B*)) : ¢ (1) N S(B) € Fn}.

We define an equivalence relation ~ in Q). Recall that we write T = {2z € C: |z| = 1} if
B is a complex Banach space, where C denotes the space of all complex numbers, and
T = {£1} if B is a real Banach space.

In Definition 4.1 through Definition 4.4 B is a real or complex Banach space.
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Definition 4.1 (Definition 2.1 in [26]).  Let p1,p2 € Q. We denote p; ~ py if
there exists v € T such that p; (1) N S(B) = (yp2)~'(1) N S(B).

Note that yp € Q if y € T and p € Q. It is a routine argument to show that the

binary relation ~ is an equivalence relation on Q.

Definition 4.2 (Definition 2.3 in [26]). A set of all representatives with respect
to the equivalence relation ~ is simply called a set of representatives for §p.

Note that a set of representatives exists due to the axiom of choice. Note also
that a set of representatives P for §p is a norming family for B in the sense that
||| = sup,cp |p(a)| for a € B. Hence it is a uniqueness set for B.

Lemma 4.3 (Lemma 2.5 in [26]).  Let P be a set of representatives for Fp. For
F € §p there exists a unique (p,\) € P x T such that F = {a € S(B) : p(a) = A}.
Conversely, for (p,\) € P x T we have {a € S(B) : p(a) = A} is in §p5.

For each set of representatives P, Lemma 4.3 gives a bijective correspondence be-
tween §p and P x T.

Definition 4.4 (Definition 2.6 in [26]).  For (¢,A\) € @ x T, we denote F, y =
{a € S(B) : q(a) = A\}. A map

IB 23"3 — P xT
is defined by Ip(F) = (p,A) for F' = F}, x € §B.

By Lemma 4.3 the map I is well defined and bijective. An important theorem
of Cheng, Dong and Tanaka states that a surjective isometry between the unit spheres
of Banach spaces preserves maximal convex subsets of the unit spheres. This was first
exhibited by Cheng and Dong in [15, Lemma 5.1] and a complete proof was given by
Tanaka [51, Lemma 3.5].

In the following T : S(B;) — S(B2) is a surjective isometry between both real
Banach spaces or both complex Banach spaces By and By. We denote by P; a set of
representatives for §p, for j = 1,2. Applying the theorem of Cheng, Dong and Tanaka,
a bijection T : §p, — §n, is well defined.

Definition 4.5 (Definition 2.7 in [26]). The map T : Fp, — Fp, is defined by
S(F)=T(F) for F € §p,. The map ¥ is well defined and bijective. Put

U=1Ig,0T0ly : P xT—PpxT.

Define two maps
¢ZP1XT—)P2



THE MAZUR-ULAM PROPERTY AND POINT-SEPARATION PROPERTY 65

and
7T: PP xT—T
by
(4.1) U(p,A) = (¢(p,A), 7(p, A)), (p,A) € P xT.

If ¢(p,\) = ¢(p, ') for every p € P, and A\, N € T we simply write ¢(p) instead of
o(p, A).

An equivalent form of (4.1) is as follows:

(4.2) T(va)\) = F¢(p,>\),7'(p,/\)’ (p, )\) e P xT.
Note that

for every (p,\) € Py x T (cf. [26]). The reason is as follows. First it is well known that
T(—F)=—-T(F) for every F' € §p, (cf. [34, Proposition 2.3]). Hence

Fop,—x)r(p—x) = T(Fp,—x) = T(=Fp )
= —T(Fpr) = —Fopn)rmx) = Fopr),—rmn)

for every p € Py since F, _, = —F}, » by the definition of F}, . Since the map Ip, is a
bijection we have (4.3).
Rewriting (4.2) we get an essential equation in our argument.

(4.4) ¢(p, A)(T(a)) = 7(p,A), @€ Fpx.

Looking at this equation we will prove that the homogeneous extension T of T is real-
linear. Before describing a precise argument in the later subsections, we exhibit a rough
picture of the argument. Under the Hausdorff distance condition which will be given in
Definition 4.6, we have

¢<p7 )‘) = (b(pa )‘/)7 pE P

for every A and X\ in T, and

A, for some p € P,
T(p,A) =7(p,1) x q _
A, for other p’s

for A € T. We get from (4.4), under the Hausdorff distance condition on By, that

_ p(a), for some p € P,
Y AT = i 1) m, for other p’s
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for a € F) ). We emphasize that (4.5) holds for a € S(B1) with |p(a)| = 1. It is
crucial to prove (4.5) for all a € S(Bj). If the equation (4.5) holds for any a € S(B;)
without the restriction that a € F, (), then applying the definition of T' we get

- . p(a), for some p € Py
(4.6) op)(T(@) =7(p, 1) x p(a), for other p’s

for every a € By, from which we infer that

¢(p)(T(a+ b)) = ¢(p)(T(a)) + ¢(p)(rT (b))

for every pair a,b € B; and every real number r. By a further consideration, we
will conclude that T is real-linear. It means that we will arrive at the final positive
solution for Tingley’s problem if (4.5) holds for all a € S(By). We will apply the
version of additive Bishop’s lemma (Proposition 5.5) to prove the equation (4.5) for any

a € S(Bl)
§4.2. The Hausdorff distance condition.
Recall that the Hausdorff distance dg (K, L) between non-empty closed subsets K

and L of a metric space with metric d(-,-) is defined by

dy (K, L) = max{sup d(a, L),supd(b, K)}.
acK belL

Definition 4.6 (Definition 3.2 in [26]).  Let B be a complex Banach space and
P a set of representatives for §p. We say that B satisfies the Hausdorff distance
condition if the equality
dH(Fp)\,Fp/)\/) =2

holds for every pair (p, ) and (p’, \') in P x T such that p # p'.

By Lemma 3.1 in [26], di (Fp x, Fpya) = 2 provided that p # p" and F, x\NF,r _x #
(. We can formulate the notion of the condition of the Hausdorff distance in terms of

Q.

Lemma 4.7. A complexr Banach space B satisfies the Hausdorff distance condi-
tion if and only if dg(Fyx, Fy x) = 2 for every pair q and ¢’ of Q with q + ¢'.

A proof is a routine argument and is omitted.

Lemma 4.8 (Lemma 3.4 in [26]).  Let B; be a complex Banach space for j = 1,2
and T : S(B1) — S(Bs2) a surjective isometry. Suppose that By satisfies the Hausdorff
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distance condition. Let Py be a set of representatives for §p,. Then we have ¢(p, \) =
o(p, N') for everyp € Py and \,\' € T. Put

P ={pe P :r(p,i) =ir(p, 1)}
and
Pr ={pe P :7(p,i) =ir(p, )}
Then P;" and P, are possibly empty disjoint subsets of Py such that P{" U P[ = P.

Furthermore we have
T(p,\) =Ar(p,1), pe P, AeT

and
T(p,A) =Ar(p,1), pe P AT,
Proof. See the proof of [26, Lemma 3.4] 0

§4.3. The set M, , and the Mazur-Ulam property

We exhibit the definition of M), , for a real or complex Banach space. The case of a
complex Banach space is in [26, Definition 4.1]. We denote D = {z € K : |z| < 1}, where
K = R if the corresponding Banach space is a real one and K = C if the corresponding

Banach space is a complex one.

Definition 4.9. Let B be a real or complex Banach space and P a set of repre-
sentatives for Fg. For p € P and a € D we denote

My ={a€S(B):d(a,Fpyaja) <1—laf,dla, Fy_aja) <1+ |al},
where we read a/|a| =1 if a = 0.

Lemma 4.10 (cf. Lemma 4.2 in [26]).  Suppose that B; is a real or complex Ba-
nach space for j = 1,2, and T : S(B1) — S(Bs2) is a surjective isometry.
If B; is a real Banach space for j = 1,2, then we have

T(Mp,a) =70, )My (p),a

for every (p,a)) € Py x T.
If Bj is a complex Banach space j = 1,2 and By satisfies the Hausdorff distance

condition, then we have

T(p7 1)M¢(p),a7 p e Pl+

T<Mp,a) =
T(p7 I)Mqﬁ(p),aa pE Pl_

for every (p,a) € Py x T. Here P1+ and P, are defined as in Lemma 4.8.
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Proof. According to the definition of the map ¥ we have

T(Fp,ﬁ) - F¢>(p,ﬁ)ﬁ(p7ﬁ)
and
T(Fp— =) = Fop,— 20,7 (p— 27
Suppose that B; is a real Banach space. Then by the definition T = {£1}. By
(4.3) we have ¢(p,1) = ¢(p,—1) for every p € P;. Hence ¢(p, ) does not depend on

the second term for a real Banach space. We also have 7(p, —1) = —7(p, 1) for every
p € P, by (4.3). It follows that

T(Fp,2) = Fo). e 1) = T(0 D Fo(p). 2
and

T(Ep—2) = Fo)—2ro) = 70 Do), — 12

As T is a surjective isometry we have

d(a7 Fp,ﬁ) = d(T(CL), Fqﬁ(p,ﬁ),r(p,ﬁ)) = d(T(CL), F(b(p),%r(p,l))

of
= d(T(a), 7(p, ) Fyp), o) = d(m(p, )T (a), Fy(p),2;)

and

d(a, Fp,— =) = d(T(a), Fy(p,— 2).7(p.—2p) = A(T(@), Fyp),— 217 (01))
= d(T(a), T(p, 1>F¢(p)’_ﬁ> = d(T(p, 1)T(a), F¢(P),—ﬁ)

e

As T is a bijection we conclude that
7(p, VT (Mp,a) = M (p) o

for every p € P; and o € D, so

for every p € P; and o € D
A proof for the case where B, is a complex Banach space is in [26, Proof of Lemma
4.2]. O

4.3.1. A sufficient condition for the Mazur-Ulam property : the case of a
real Banach space.

Proposition 4.11.  Let B be a real Banach space and P a set of representatives
for §p. Suppose that

(4.7) Mpy.o ={a€ S(B):pla) =a}

for everyp € P and —1 < a < 1. Then B has the Mazur-Ulam property.
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Proof. Let By be a real Banach space and T': S(B;1) — S(B2) a surjective isome-
try. We first prove the following equation (4.8) for every p € P; and a € S(B;) without
assuming that [p(a)| = 1;

(4.8) ¢(p)(T(a)) = 7(p, 1)p(a)
for every p € P; and a € S(B;) with |p(a)] < 1. Let p € P, and a € S(B;). Put
a = p(a). Then by (4.7) a € M, ,. We have by Lemma 4.10 that

o(p)(T(a)) = ar(p,1) = 7(p,1)p(a).

It follows that for the homogeneous extension T of T we have

o) T©) = ot0) (117 (57 ) ) = el 1 (757 ) = (oLt

el

for every 0 # ¢ € By. As the equality <b(p)(f(0)) = 7(p,1)p(0) holds, we obtain for
a,b € By and a real number r that

¢(P)(T(a+rb) = 7(p, p(a +rb) = 7(p, D)p(a) + r7(p, )p(b)

and

o(p)(T(a) +rT(b)) = ¢(p)(T(a)) + ré()(T (b)) = 7(p, 1)p(a) +r7(p, 1)p(b).

It follows that
¢(p)(T(a +1b)) = ¢(p)(T(a) + rT (b))

for every p € Py, a,b € By, and every real number r. As ¢(P;) = P, is a norming family
we see that T is real-linear on B;. As the homogeneous extension is a norm-preserving

bijection as is described in the subsection 4.1 we complete the proof. O

4.3.2. A sufficient condition for the complex Mazur-Ulam property : the
case of a complex Banach space.
The case of a complex Banach space is exhibited in Proposition 4.4 in [26].

Proposition 4.12 (Proposition 4.4 in [26]).  Let B be a complex Banach space

and P a set of representatives for §p. Assume the following two conditions:
(i) B satisfies the Hausdorff distance condition,
(il) My o ={a € S(B) :p(a) = a} for everyp € P and a € D.

Then B has the complex Mazur-Ulam property.
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§ 5. Banach spaces which satisfy the condition (x)

Definition 5.1. Let B be a real or complex Banach space. We say that B
satisfies the condition (%) whenever there exists a set of representative P for §p with
the condition : for every p € P, € > 0, and a closed subset F' of P with respect to the
relative topology induced by the weak*-topology on B* such that p & F', there exists
a € S(B) such that p(a) =1 and |g(a)| < e for all ¢ € F.

Example 5.2. Suppose that F is a uniformly closed C-regular K-linear subspace
of Cy(Y,K). Put P = {1, : © € Ch(E)}. By Theorem 3.11 every point in Ch(E) is a
strong boundary point. Hence F}, ) for any (p, A) € P x T is a maximal convex set. Since
p % q for p,q € P with p # ¢, we have that P is a set of representatives. The condition
(%) holds with P. We proved that a closed subalgebra of Cy(Y,C) which separates the
points of Y and has no common zeros is extremely C' regular. Thus such an algebra
satisfies the condition ().

Throughout the section we assume that B is a real or complex Banach space and
P is a set of representatives for §p for which the conditon (x) is satisfied.

Lemma 5.3.  Let p1,ps € P with py # pa. Let py,pue € T. For every e > 0 and
an open neighborhood U of {p1,p2} with respect to the relative topology on P induced
by the weak*-topology on B*, there exists h € B such that ||h|| < 1+¢, p;(h) = p; for
j=1,2, and |q(h)| < € for every g € P\ U.

Proof. 'We may assume that ¢ < 1/3. Let V; be an open neighborhood of p; for
j =1,21in P such that ViUV, C U and V; NV, = (). Choose any positive real number ¢
with 0 < % < €. By the condition (*) there exists f; € B such that p;(f;) =1=|f;l|
and |q(f;)| < 9 for every g € P\ 'V, for j =1,2. As Vi NV, =0 and ps € V2 we have
p2 € P\ Vi, so |p2(f1)] < 5. We also have that |pi(f2)| < §. Hence we infer that
0 <1—I[p1(f2)p2(f1)]- Put

By — f1 —p2(fi) f2
1 —p1(fa)p2(f1)

Then we infer that p;(hi) = 1 and pa(h1) = 0. By a simple calculation we have

Lf1ll + Ip2 (fO)l]l foll
L —|p1(f2)llp2(f1)]

[ha]l < <1/(1-9).

For ¢ € P\ Vi we have

(SOl + Ip2(fD)llg(f2)]

lq
lg(h)] < L —|p1(f2)llp2(f1)|

<26/(1—6%).
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In a similar way, we have pa(he) = 1, pi(h2) = 0, ||he| < 1/(1 —§) and |g(h2)| <
26/(1 — §?) for every q € P\ U, where

hy — fo—pi(f2)fi
1 —pi(f2)p2(f1)

Put h = pi1hy + poho. Then pj(h) = p; for j = 1,2. We prove that ||h]| < 1+e.
Let ¢ € V1. Then q € P\ V,. Hence

la(h)| < lg(ha)l + lg(h2)| < [Iha]l +26/(1 = 6%) < 1/(1 = 6) +26/(1 = 6%) <1 +e.

Let ¢ € V5. Then we have ¢ € P\ Vi, and |q(h)| < 1+ ¢ follows. For ¢ € P\ (V3 U V3).
We infer that
la(P)] < lg(h1)| + |q(ho)| < 46/(1 —6%) <.

In particular, we have |q(h)| < € for every ¢ € P\ U since V; UV, C U. Since P is a
norming family we infer that ||| <1 +e. O

Proposition 5.4. Let p1,p2 € P with p1 # p2, and pi1,pue € T. Then there
exists f € S(B) such that p;(f) = p; for j =1,2.

Proof. The idea of proof comes from the proof of the Bishop’s i — % criterion (cf.
[12, Theorem 2.3.2]). We define inductively a sequence {U,} of open (with respect to
the relative topology on P induced by the weak*-topology) neighborhoods of {p1,p2},
and a sequence {h,} in B as follows : let € be as 0 < ¢ < 1/3. Let U; be any
open neighborhood of {p1,p2}. Then by Lemma 5.3 there exists h; € B such that
|hi]| < 1+4+¢, pi(h1) = g for I = 1,2, and |q(h1)| < € for every ¢ € P\ U;. Having
defined Uy, -+ ,U,_1 and hy, -+, h,_1, set

Un={{g € Un-1:lg(hj)| <1+27"e,1 <j<n—1}

By Lemma 5.3 there exists h,, € B such that ||h,|| < 1+¢, p;(h,) = p for I = 1,2, and
lg(hyn)| < € for every ¢ € P\ U,. Now let

0o h, 0o h,
pl<[)) = (Z 2_71) = pl(2n ) = 1y
n=1 n=1

forl =1,2.
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To prove ||h|| < 1, it is enough to observe |g(h)| < 1 for every ¢ € P since P is a
norming family. We consider three cases: i) ¢ € P\ U,., Uy; ii) there exists n such
that g € Uy, \ Upg1; i) ¢ € ()~ Un. It is possible since U, D Uy, 41 for every n.

Suppose that i) occurs. We have |q(h,,)| < € for every n, hence |¢(h)| < e < 1/3.

Suppose that ii) occurs. If ¢ € Uy \ Us, we have g € U, for m > 2 since {U,} is
decreasing. Thus [¢(h1)| < ||h1]] £ 1+ ¢ and |q(hy)| < € for every m > 2. Therefore

we have that -

1+e¢ €
a)| < 5=+ > =124 <1
m=2

since e <1/3. If ¢ € Uy, \Up41 for some n > 2, then |¢(h;)| < 14+27"efor1 < j <n-1.
Since q & U,41 we have that ¢ € Uy, for k > n+1. Hence |q(h)| < € for every k > n+1.
Therefore we get

oty < 37 1201 o)l g )

2
k=n+1
<(A+2")1 -2 L (142" 42" < 1

since € < 1/3.

Suppose that iii) occurs. We have |¢(h;)| < 1+27 "¢ for all n > j. Hence |g(h;)| <1
for all j, so |¢(h)| < 1. We conclude that |g(h)| < 1 for every ¢ € P.

As P is a norming family we infer that ||h]| < 1. Thus ||h|| = 1 since 1 = |p1(h)| <

I51]- O

The following proposition is a version of an additive Bishop’s lemma. The proof of
one we proved in [27, Lemma 5.3] requires the existence of the constants in the target
algebra. Proposition 5.5 is a generalization of Lemma 5.3 in [27] which is valid for every
Banach space with the condition ().

We read & =1 provided that o = 0.

laf

Proposition 5.5. Letp € P and f € Ball(B). For every 0 < r < 1 there ezist
H and H' in B such that

p(f)

(5.1) I+ 0] = 1pCt + ) = LD < 1= rlp()
and
(5.2) VH 4 fl = Lp(H + 1) = —%, IE <1+ [p(f).

Proof. Put a = p(f). The proof of of (5.1) is similar to that of Lemma 5.3 in [27],
but a small revision is required since B needs not to be closed under the multiplication.
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The proof of (5.2) is different from that of Lemma 5.3 in [27]. It requires substantial
changes.
We first prove (5.1). Let € be any real number such that 0 < e <1 —r|a|. Put

Fy={q€ P:|ra—rq(f)| >e/4}
and
F,={qeP:g/2"" <|ra—rq(f)] <e/2"'}

for a positive integer n. By the condition (x), for every positive integer n there exists
u, € B such that

pun) =1 = Jun|

and

. 1—7r 1
|Q<un)| S mln{l _T|O[|’ 27’L—|—1}

for every q € Fy U F,,. Put
[ee)
Unp,
n=1

Then u € Ball(B) since ||u,|| = 1 for every n. Since p(u) = > 7, p(;n) =1, we see
that |lul| = 1.
Letting H = (% - ra) u, we prove that ||H +rf|| < 1 in the following three cases:

(i) q € Fo; (ii) ¢ € F), for some n > 1; (iil) ¢ € P\ Up—q Fi-
(i) Let ¢ € Fy. We have

1—7r

lq(u)| +rlg(H)l < (1 —rla])—— +7r =1

[0
H < |2 -

(ii) Let g € F), for some n > 1. In this case we have

|lq ()| lq(un)| 1 1
< E <1—- =4 — .

As 0 < e <1 —r|a|] we have

[g(H +rf)] < (L= rlalq(w)] + rlaf + rq(f) — raf
< (1-rla))(1 - 1/2" +1/(2"2")) + rla| + /2]
<1 =rla)@—=1/2"+1/@2"2") +1/2") +rla] < 1

(iii) Let ¢ € P\ U, —, Fy- In this case we have ¢(f) = «, hence

lg(H +7rf)] < (1 =rla))lgu)] + el <1 —rla] +rlaf = 1.
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By (i), (ii) and (iii) we have ||H 4 rf]| <1 since P is a norming family. As we will see
that p(H +rf) = a/|a|, it will follow that |[H + rf| = 1.
By simple calculations we have

It = (= re )l =2 = b = 1= sl
|| o
and
pttt ) =p (1% = ra)uers) = (& = ra) o)+ roth) = &
| o ||
We have completed the proof of (5.1).
Next we prove (5.2). Suppose that |a] = 1. Put H' = —(1 + r)f. Then we
have ||[H'|| < 14+ r < 1+ |a|. We also have that p(H' + rf) = —p(f) = —1q7 and
|H'+rf]| =|—f|| <1. Since 1 = [p(H'+rf)| < ||[H +rf|, we infer that |H'+rf| = 1.

Thus (5.2) holds if |« = 1. Suppose that « = 0. As || — f|| < 1 and p(—f) =0 = «,
we have by (5.1) that there exists H € B such that ||H —rf|| =1, p(H —rf) = ra7 and
|H|| < 1—r|a| =1. Letting H' = —H we have that |H' +rf|| =1, p(H +rf)=—-1=
—1a7 and [[H'[| = |[H|| <1 =1+ |a|. Thus (5.2) holds if ar = 0.

We assume 0 < |a| < 1. To prove (5.2) we apply induction. Define a sequence
{an} by a1 = 1/3, ant1 = (a, + 1)/2 for every positive integer n. Put I; = (0,a;]| and
I, = (ap—1,ay] for each positive integer n > 2. For each positive integer n, put

Cn ={g € Ball(B) : [p(g)| € 1.}

By induction on n we prove that for any g € C), and 0 < s < 1, there exists H, s € B
such that

p\g
(5.3) |Hyo + sl = 1 p(Hy o + 59) = — 29y, ,

Ip(g)]

If it will be proved, then (5.3) will hold for every g € Ball B such that 0 < [p(g)| < 1
since lim,, o, a, = 1. Combining with the results for « = 0 or |a| = 1, it will follows
that (5.2) holds for every f € Ball(B) and 0 < r < 1.

Suppose that g1 € C7 and 0 < s1 < 1. Put a3 = p(g1). Then 0 < || < aq. Let &1
be as 0 <&y <1—,/s1 and

<1+ p(g)l.

Ki={q€P:la—q(g)| =e1/2}.

By the condition (x) there exists v; € S(B) such that p(v1) = 1 = ||lv1]| and |g(v1)] <
€1/2 for every ¢ € K;. Look at || —2,/s1a1v1 + /5191 If ¢ € K1, then |g(v1)] < €1/2.
Therefore

g(=2/s10001 + V/s191)] < 2¢/s1]enllg(v)] + Vsila(gr)] < 2v/silenler/2 4+ /s <1
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since |a1] < 1/3. If ¢ € P\ K1, then |a; — q(g1)| < €1/2. Thus
g(=2v/s1a101+v/51091)] < Vs1lar—2aaq(v1)|[+/s1]q(g1) —an| < 3v/sifan[+y/s161/2 < 1
since since |a1| < 1/3 and €1 < 1 —/s;. We conclude that
I =2Vs10001 + Vs < 1

since P is a norming family. Put ¢} = —2/stoqv1 + /5191 Then p(g7) = —/510u.
Applying (5.1) with /s1 and g] instead of r and f respectively, we find H; € B such
that

p(g1) !
|1Hy +sig1ll =1, p(Hy +/s19)) = ==
Ip(g1)] (%1
and
[1Hy || <1—/s1lp(gh)] =1 — si|oul.
Letting Hy, s, = Hy — 2s101v1 we infer that

Hy, o, 4591 = Hp —2s100v1 + s191 = Hy +/51(—2y/s101v1 + /s191) = Hy 4+ \/519].

Hence
||H91,81 + 3191” = 1> p<H91781 + 3191) = 1

We also have
[Hgy oo | < [[H ||+ 2s1]aq|[|o]] £ 1= si|aa]| +2s1|as] = 1+ s1]ar| <1+ |aq.

We have proved that (5.3) holds for n =1
Suppose that (5.3) holds for every 1 <n < m. Let g;+1 € Crp1 and 0 < s,41 < 1
arbitrary. Put a1 = p(gm+1). Put 0 <epq1 <1 — /Smt1 and

Ky ={q € P:lamy1 — q(gm+1)| = ems1/2}
By the condition (x) there exists v,,11 € B such that
P(mt1) = 1= [[vmal]

and
5m+1

q(v <
| ( m—l—l)' z(am+1 _am)

for every q € K,,11. Put

Om+1
fm—|—1 = VSm+1 <(a'm T am—i—l) Um+1 + gm+1) .

| Qg1
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Note that ‘am- @ZE' — Qmt1| = |Qmet1] — am since ay, < |mi1| < @my1. Suppose

that ¢ € K,,+1. Then

1q(frmy1)| < \/8m+1(’am+1’ — ) |q(Vma1)] + \/5m+1|Q(9m+1)|
<V 3m+1(|05| - GM)5m+1

- 2(@ma1 — m)

+VEmt1 S VESmr1(Emr1/2+1) <1
since |p41| < @my1. Suppose that ¢ € P\ K,,+1. Then

Op+1

Ay, -

— Ut 1| 1q(Vms)| + |amy1] + 1a(gms1) — am+1|)

lq(fms1)| < \/W(
|1

< v3m+1((|04m+1| — ) + ||+ Emy1/2) = v3m+1(2|am+1| — @ + Emy1/2)
< vV Sm—|—1(2am—|—1 —am + 5m—|—1/2) Y Sm—|—1(]- + 5m—|—1/2) <1

Therefore we have that || f,,+1|| < 1 since P is a norming family. By a calculation we
have p(fimi1) = /Smi1am - == hence |p(fmi1)] = /Smi1@m < Q. It means that

[am 1]’

|p(fm+1)| € Ii for some 1 < k < m. By the hypothesis of induction there exists Hy, € B
such that

Plim (079%
HHk + v Sm—l—lfm—i—lH =1, p(Hk + \/8m+1fm_|_1) = —|(f—+1) = +1

P(fmr1)] |t 1]
and
[Hill <1+ [p(fm+1)| =1+ V/Smr1am
Put
a
Hgm+175m+l = Hk + Sm+1 | Om * m — & | Up+1-
Then Hgm+1,sm+1 + Sm+1gm+1 - Hk + \/m.ferl a‘nd
(8% +1
||Hgm+1a3m+1 + Sm+1gm+1” =1, p<Hgm+175m+1 + Sm+1gm—|—1) == .
[ey
We also have
OUm41
g il < U+ s (225 = ) v
|O‘m+1|
S 1+ vV Sm+10m + 8m—|—1(|am—|—1| - am) <1+ vV Sm+10m + \/5m+1(|04m+1| — am)
S 1 + |am+1|-

We conclude by induction that (5.3) holds if 0 < [p(g)| < 1.



THE MAZUR-ULAM PROPERTY AND POINT-SEPARATION PROPERTY 77

§ 6. Banach spaces which satisfy the condition (x) and the Mazur-Ulam
property

Theorem 6.1.  Let B be a real Banach space which satisfies the condition (x).
Then B has the Mazur-Ulam property.

Proof. Let P be a set of representative for §p with which the condition (x) is
satisfied. We prove that (4.7) of Proposition 4.11 holds. Let p € P and -1 < a <1
arbitrary. In the same way as [26, Lemma 4.3] we infer that

M, o C {a € S(B):pla) = a}.

We prove the inverse inclusion. Suppose that f € S(B) with p(f) =a. Let 0 <7 < 1
arbitrary. By Proposition 5.5 there exists H € B such that H + rf € Fp,ﬁ and
|H|| <1—r|al. Thus

|H+7rf—f||<1-—rlaj+1—r.

We infer that d(f, Fpiﬁ) <1 —|a|. We also have by Proposition 5.5 that there exists

H' € B such that H +rf € F, —2 and |H'|| <1+ |a|. Hence

|H +rf—fl|<14+a|+1—r

We infer that d(f, F, ,_I%l) <1+ |a|. Thus f € M, . Hence {f € S(B) : p(f) =a} C
M, . It follows from Proposition 4.11 that B has the Mazur-Ulam property. O

Corollary 6.2. Let E be a uniformly closed extremely C-regular R-linear sub-
space of Co(Y,R) for a locally compact Hausdorff space Y. Then E has the Mazur-Ulam
property. In particular, Co(Y,R) itself and a uniformly closed extremely reqular subspace
of Co(Y,R) has the Mazur-Ulam property.

Proof. We prove that E satisfies the condition (x). Put P = {7, : € Ch(FE)}.
By Theorem 3.11 every point in Ch(E) is a strong boundary point. Hence F), 5 for any
(p,A) € P x {£1} is a maximal convex set. Since p ¢ ¢ for p,q € P with p # ¢, we have
that P is a set of representatives. The condition (%) holds with P. Then by Theorem
6.1 we see that E has the Mazur-Ulam property. U

Theorem 6.3. Let B be a complexr Banach space which satisfies the condition
(x). Then B has the complex Mazur-Ulam property.

Proof. Let P be a set of representative for §p with which the condition (x) is
satisfied. We prove (i) and (ii) of Proposition 4.12. Let Fj x, F,y » € §p such that
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p # p'. By Proposition 5.4 there exists f € S(B) such that p(f) = —X and p'(f) = X.
Then f € F,/ n. For any g € F}, » we infer that

2=|p(f) —p@)| <|f —gll <2,

hence d(f,Fp ) = 2. Hence duy(Fpx,Fpx) = 2. As a pair Fj, » and Fj/ y with
p # p’ is arbitrary, we see that B satisfies the Hausdorff distance condition holds; (i) of
Proposition 4.12 holds.

We prove (ii) of Proposition 4.12. Let p € P and a € D arbitrary. Let 0 < r < 1
be arbitrary. By Proposition 5.5 there exists H € B with H +rf € F}, o and ||H|| <

Tal
1 — r|a|. There also exists H' € B with H' +rf € Fp,— e and |H'|| <1+ |a|. Hence

IH+rf—=fll<1—=rlaj+1-m

and
|H +rf—fll <14l +1-r

As r is arbitrary we infer that d(f, Fp,ﬁ) < 1—|al and d(f, Fp,—ﬁ) < 1+|al. It

follows that f € M, o. Thus {f € S(B) : p(f) = a} C M, ». The inverse inclusion

Mpo C{f€S(B):p(f)=a}

is by [26, Lemma 4.3]. We conclude that (ii) of Proposition 4.12 holds.
It follows from Proposition 4.12 that B has the complex Mazur-Ulam property. [J

Corollary 6.4. A uniformly closed extremely C-reqular C-linear subspace of
Co(Y,C) for a locally compact Hausdorff space has the complex Mazur-Ulam property.
In particular, Cy(Y,C) itself and a uniformly closed extremely regular C-linear subspace
of Co(Y,C) has the complex Mazur-Ulam property.

Proof. The proof that E satisfies the condition (x) is essentially the same as that
for Corollary 6.2 (cf. Example 5.2). Then by Theorem 6.3 we see that E has the
complex Mazur-Ulam property. U

Hatori [26, Theorem 4.5] proved that a uniform algebra has the complex Mazur-
Ulam property. In the proof of Theorem 4.5 in [26], it is crucial that a uniform al-
gebra contains the constants. Cabezas, Cueto-Avellaneda, Hirota, Miura and Peralta
[14, Corollary 3.2] proved that Cy(Y,C) satisfies the complex Mazur-Ulam property.
Cueto-Avellaneda, Hirota, Miura and Peralta [17, Theorem 2.1] have proved that each
surjective isometry between the unit spheres of two uniformly closed algebras on locally
compact Hausdorff spaces which separates the points without common zeros admits an
extension to a surjective real linear isometry between these algebras. The following gen-
eralizes a both theorems of Cueto-Avellaneda, Hirota, Miura and Peralta [17, Theorem
2.1] and Cabezas, Cueto-Avellaneda, Hirota, Miura and Peralta [14, Corollary 3.2].
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Corollary 6.5. A (non-zero) closed subalgebra of Co(Y,C) has the complex Mazur-
Ulam property. In particular, a uniform algebra has the complexr Mazur-Ulam property.

Proof. Let A be a non-zero closed subalgebra of Cy(Y,C). Let
C={yeY:f(y)=0forall fe A}

As we assume A # {0}, there is a non-zero function in A, so C' is a proper subset of Y.
For any pair of points  and y in Y \ C, we denote = ~ y if f(z) = f(y) for all f € A.
Then ~ is an equivalence relation on Y\ C. Let Yy be the quotient space induced by the
relation ~. Then Y} is a locally compact, possibly compact, Hausdorff space induced
by the quotient topology. We may suppose that A is a closed subalgebra of Cy(Yp, C)
which separates the points in Y and has no common zeros. Then by Proposition 3.13
A is a uniformly closed extremely C-regular C-linear subspace of Cy(Yp, C). It follows
by Corollary 6.4 that A has the complex Mazur-Ulam property.

Suppose that A is a uniform algebra on a compact Hausdorff space. Then A is a
closed subalgebra of C(X,C). Then by the first part we have that A has the complex
Mazur-Ulam property. U

§7. Final remarks

In section 5 we introduced the condition () for Banach spaces and we proved that
an extremely C-regular closed subspace of Cy(Y,K) satisfies the condition () in section
6. On the other hand we have not enough examples of Banach spaces which satisfy
the condition. Cabezas, Cueto-Avellaneda, Hirota, Miura and Peralta [14] proved that
every commutative JB* triple satisfies the complex Mazur-Ulam property. The author
does not know if a commutative JB* triple satisfies the condition (x) or not. If it would
satisfy the condition (%), we would get an alternative proof of a theorem of Cabezas,
Cueto-Avellaneda, Hirota, Miura and Peralta [14, Theorem 3.1]. It is interesting to
exhibit enough examples of Banach spaces which satisfy the condition (x). We have
proved the complex Mazur-Ulam property especially for a closed subalgebra of Cy(Y, C)
which separates the points of Y and has no common zeros, we expect it also has the
Mazur-Ulam property. It is trivial that the complex Mazur-Ulam property follows the
Mazur-Ulam property. The author does not know the converse statement : does the
Mazur-Ulam property follow the complex Mazur-Ulam property?
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