Surjective isometries on an algebra of analytic functions with C^{n}-boundary values

By

Yuta Enami* and Takeshi Miura**

Abstract

Let $\mathbb{D}, \overline{\mathbb{D}}$ and \mathbb{T} be the open unit disk, closed unit disk and unit circle in \mathbb{C}. Let $A^{n}(\overline{\mathbb{D}})$ denote the algebra of all continuous functions f on $\overline{\mathbb{D}}$ which are analytic in \mathbb{D} and whose restrictions $\left.f\right|_{\mathbb{T}}$ to \mathbb{T} are of class C^{n}. For each $f \in A^{n}(\overline{\mathbb{D}})$, the k-th derivative of $\left.f\right|_{\mathbb{T}}$ as a function on \mathbb{T} is denoted by $D^{k}(f)$. We characterize surjective, not necessarily linear, isometries on $A^{n}(\overline{\mathbb{D}})$ with respect to the norm $\|f\|_{\overline{\mathbb{D}}}+\sum_{k=1}^{n}\left\|D^{k}(f)\right\|_{\mathbb{T}} / k!$, where $\|\cdot\|_{\overline{\mathbb{D}}}$ and $\|\cdot\|_{\mathbb{T}}$ are the supremum norms on $\overline{\mathbb{D}}$ and \mathbb{T}, respectively.

§ 1. Introduction

A mapping $T: E_{1} \rightarrow E_{2}$ between two normed spaces $\left(E_{1},\|\cdot\|_{1}\right)$ and $\left(E_{2},\|\cdot\|_{2}\right)$ is called an isometry if

$$
\|T(f)-T(g)\|_{2}=\|f-g\|_{1}
$$

for every $f, g \in E_{1}$. We emphasize that we do not assume linearity for T. The characterization of isometries is a classical problem. Banach [1] characterized surjective, not necessarily linear, isometries on the Banach space $C_{\mathbb{R}}(K)$ of all continuous realvalued functions on a compact metric space K with the supremum norm. After that, characterizations of surjective linear isometries were given for various Banach spaces. For the space $C^{1}[0,1]$ of all continuously differentiable functions on $[0,1]$, Rao and Roy

[^0][14] determined the general form of surjective complex-linear isometries on $C^{1}[0,1]$ with respect to the norm $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$, where $\|\cdot\|_{\infty}$ stands for the supremum norm. Novinger and Oberlin [13] consider the space S^{p} of all analytic functions on the open unit disk whose derivatives belong to the Hardy space H^{p}. They gave a characterization of complex-linear isometries on $S^{p}(1 \leq p<\infty)$ with respect to the norm $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{H^{p}}$. Jarosz investigated a class of unital semisimple commutative Banach algebras with the so-called natural norm. Jarosz [7] proved that every surjective unital complex-linear isometry with respect to the natural norm is actually an isometry with respect to the supremum norm. Note that the norm $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$ becomes a natural norm on $C^{1}[0,1]$.

One of the most interesting results on study of isometries was proved by Mazur and Ulam. The Mazur-Ulam theorem [10] states that every surjective isometry between normed spaces must be (real) affine. Applying the Mazur-Ulam theorem, surjective, not necessarily linear, isometries were studied on various normed spaces by many researchers. Hatori and the second author [6] gave the characterization of surjective isometries between function algebras. Kawamura, Koshimizu and the second author [9] introduced a unified framework to treat several norms on $C^{1}[0,1]$, and gave the characterization of surjective isometries on $C^{1}[0,1]$ with respect to various norms including $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$. Concerning such a framework, Kawamura [8] also considers the algebra $C^{1}(\mathbb{T})$ of all continuously differentiable functions on the unit circle \mathbb{T}, and gave the characterization of surjective isometries on $C^{1}(\mathbb{T})$ with respect to norms belonging to the framework. The second author and Niwa [11, 12] introduce the Novinger-Oberlin type space S_{A} of all analytic functions whose derivatives belong to the disk algebra. The space S_{A} admits several norms. They determined general forms of surjective isometries with respect to some norms, including $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$.

§1.1. Notations and Main results

In this paper, let \mathbb{N} and \mathbb{N}_{0} be the sets of all positive integers and non-negative integers, respectively. For $m_{1}, m_{2} \in \mathbb{N}_{0}$ with $m_{1} \leq m_{2}$, we set $\mathbb{N}_{m_{1}}^{m_{2}}=\left\{k \in \mathbb{N}_{0}: m_{1} \leq\right.$ $\left.k \leq m_{2}\right\}$.

For a compact Hausdorff space K, let $C(K)$ denote the Banach space of all complexvalued continuous functions on K, with the supremum norm

$$
\|f\|_{K}=\sup _{x \in K}|f(x)| \quad(f \in C(X)) .
$$

The constant functions on K taking the value only 0 and 1 are denoted by $\mathbf{0}$ and $\mathbf{1}$, respectively. Let \mathbb{T} be the unit circle in the complex plane \mathbb{C}. For $n \in \mathbb{N}$, a function $f: \mathbb{T} \rightarrow \mathbb{C}$ is said to be of class C^{n} if the function F on \mathbb{R} defined by $F(t)=f\left(e^{2 \pi i t}\right)$ is of class C^{n} in the usual sense. We denote by $C^{n}(\mathbb{T})$ the subalgebra of $C(\mathbb{T})$ consisting
of all functions of class C^{n}. Let \mathbb{D} be the open unit disk, and let $\overline{\mathbb{D}}=\mathbb{D} \cup \mathbb{T}$ be the closed unit disk. The disk algebra $A(\overline{\mathbb{D}})$ is the Banach algebra of all continuous functions on $\overline{\mathbb{D}}$ which are analytic in \mathbb{D}, with the supremum norm $\|\cdot\|_{\overline{\mathbb{D}}}$. Note that, by the maximum modulus principle, $\|f\|_{\overline{\mathbb{D}}}=\|f\|_{\mathbb{T}}$ for every $f \in A(\overline{\mathbb{D}})$.

Throughout this paper, we fix $n \in \mathbb{N}$. The main object of this paper is the algebra

$$
A^{n}(\overline{\mathbb{D}})=\left\{f \in A(\overline{\mathbb{D}}):\left.f\right|_{\mathbb{T}} \in C^{n}(\mathbb{T})\right\}
$$

For each $f \in A^{n}(\overline{\mathbb{D}})$ and $k \in \mathbb{N}_{1}^{n}$, the k-th derivative of $\left.f\right|_{\mathbb{T}}$ at $e^{2 \pi i t_{0}} \in \mathbb{T}$ is denoted by

$$
D^{k}(f)\left(e^{2 \pi i t_{0}}\right)=\left.\left(\frac{1}{2 \pi}\right)^{k} \frac{d^{k}}{d t^{k}}\right|_{t=t_{0}} f\left(e^{2 \pi i t}\right)
$$

Let $D^{0}(f)=\left.f\right|_{\mathbb{T}}$. Since $\left.f\right|_{\mathbb{T}}$ is a function of class C^{n}, the function $D^{k}(f): \mathbb{T} \rightarrow \mathbb{C}$ is continuous on \mathbb{T} for every $k \in \mathbb{N}_{0}^{n}$. Note that D^{k} satisfies the Leibniz rule

$$
D^{k}(f g)=\sum_{j=0}^{k}\binom{k}{j} D^{k-j}(f) D^{j}(g)
$$

for every $f, g \in A^{n}(\overline{\mathbb{D}})$. For each $f \in A^{n}(\overline{\mathbb{D}})$, set

$$
\|f\|_{\Sigma}=\|f\|_{\mathbb{D}}+\sum_{k=1}^{n} \frac{1}{k!}\left\|D^{k}(f)\right\|_{\mathbb{T}}=\sum_{k=0}^{n} \frac{1}{k!}\left\|D^{k}(f)\right\|_{\mathbb{T}} .
$$

Then $\left(A^{n}(\overline{\mathbb{D}}),\|\cdot\|_{\Sigma}\right)$ is a unital commutative Banach algebra. The following theorem is the main result of this paper.

Theorem 1.1. Suppose that $T: A^{n}(\overline{\mathbb{D}}) \rightarrow A^{n}(\overline{\mathbb{D}})$ is a surjective, not necessarily linear, isometry with respect to the norm $\|\cdot\|_{\Sigma}$. Then there exist constants $c, \lambda \in \mathbb{T}$ such that

$$
\begin{array}{ll}
T(f)(z)=T(\mathbf{0})(z)+c f(\lambda z) & \left(\forall f \in A^{n}(\overline{\mathbb{D}}), \forall z \in \overline{\mathbb{D}}\right), \quad \text { or } \\
T(f)(z)=T(\mathbf{0})(z)+\overline{c f(\overline{\lambda z})} & \left(\forall f \in A^{n}(\overline{\mathbb{D}}), \forall z \in \overline{\mathbb{D}}\right) .
\end{array}
$$

Conversely, every mapping $T: A^{n}(\overline{\mathbb{D}}) \rightarrow A^{n}(\overline{\mathbb{D}})$ which is one of the above forms is a surjective isometry on $A^{n}(\overline{\mathbb{D}})$ with respect to the norm $\|\cdot\|_{\Sigma}$, where $T(\mathbf{0})$ is an arbitrary function in $A^{n}(\overline{\mathbb{D}})$.

§1.2. Some remarks

Note first that $\left(A^{n}(\overline{\mathbb{D}}),\|\cdot\|_{\Sigma}\right)$ is a unital semisimple commutative Banach algebra. Moreover, the norm $\|\cdot\|_{\Sigma}$ is a natural norm in the sense of Jarosz [7]. Hence it is
relatively easy to determine the general form of surjective complex-linear isometry T on $A^{n}(\overline{\mathbb{D}})$ with $T(\mathbf{1})=\mathbf{1}$ by the result of Jarosz [7, Theorem and Proposition 2]. On the other hand, our study is more complicated. In fact, we will investigate surjective isometry T on $A^{n}(\overline{\mathbb{D}})$, which need not be complex-linear nor unital, that is, $T(\mathbf{1})=\mathbf{1}$ in Theorem 1.1.

The second author and Niwa [11] introduce the space S_{A} of all analytic functions f on \mathbb{D} whose derivative f^{\prime} is continuously extended to $\overline{\mathbb{D}}$, where f^{\prime} is the usual derivative with respect to the complex variable. It is well-known that a holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$ is continuously extended to $\overline{\mathbb{D}}$ with absolutely continuous boundary value if and only if the derivative f^{\prime} belongs to the Hardy space H^{1} (see [4, Theorem 3.11]). As a consequence of the fact, every function in S_{A} is continuously extended to $\overline{\mathbb{D}}$. The continuous extension of f will be denoted by \hat{f}. Now, for each $f \in S_{A}$, we set

$$
\|f\|_{\Sigma, S_{A}}=\|\hat{f}\|_{\overline{\mathbb{D}}}+\left\|\widehat{f^{\prime}}\right\|_{\overline{\mathbb{D}}} .
$$

Then the space S_{A} becomes a unital commutative Banach algebra. The Banach algebra S_{A} is isometrically isomorphic to $A^{1}(\overline{\mathbb{D}})$. More precisely, we have the following proposition, which can be verified by the same argument as [4, Theorem 3.11].

Proposition 1.2. A holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$ is continuously extended to $\overline{\mathbb{D}}$ and its extension \hat{f} belongs to $A^{1}(\overline{\mathbb{D}})$ if and only if f belongs to S_{A}. Moreover, if $f \in S_{A}$, then $\|\hat{f}\|_{\Sigma}=\|f\|_{\Sigma, S_{A}}$.

In [12], a characterization of surjective, not necessarily linear, isometries on S_{A} with respect to the norm $\|\cdot\|_{\Sigma, S_{A}}$ was given. Hence Theorem 1.1 is considered as a generalization of the result.

§ 2. Preliminaries and embedding of $A^{n}(\overline{\mathbb{D}})$ into $C(X)$

§2.1. Polynomials

First, we consider each polynomial p as a function on $\overline{\mathbb{D}}$. It is obvious that $p \in$ $A^{n}(\overline{\mathbb{D}})$. Let $p(z)=a_{0}+\cdots+a_{m} z^{m}$. For $k \in \mathbb{N}$, let $p^{(k)}$ denote the k-th formal derivative of p, that is, $p^{(k)}(z)=k^{\underline{k}} a_{k}+\cdots+m^{\underline{k}} a_{m} z^{m-k}$, where $m^{\underline{k}}$ is the falling factorial $m(m-1) \cdots(m-k+1)$. Note that $D^{k}(p)=\left.p^{(k)}\right|_{\mathbb{T}}$ does not hold. In fact, $D^{k}\left(\iota^{j}\right)(z)=i^{k} j^{k} z^{j}$, where $\iota^{j}(z)=z^{j}$. More generally, we see that $D^{k}(p)$ can be represented as

$$
\begin{equation*}
D^{k}(p)(z)=i^{k} \sum_{j=1}^{m} j^{k} a_{j} z^{j} . \tag{2.1}
\end{equation*}
$$

On the other hand, the chain rule implies that $D^{1}(p)(z)=i p^{(1)}(z)$ and $D^{2}(p)(z)=$ $-p^{(2)}(z) z^{2}-p^{(1)}(z) z$. By induction, we see that $D^{k}(p)$ can also be represented as

$$
\begin{equation*}
D^{k}(p)(z)=\sum_{j=1}^{k} c_{j} p^{(j)}(z) z^{j} \tag{2.2}
\end{equation*}
$$

where c_{1}, \ldots, c_{k} are constants independent of the polynomial p.
For $m \in \mathbb{N}_{0}$, let $M_{m+1, n+1}(\mathbb{T})$ denote the set of all $(m+1) \times(n+1)$ matrices whose entries belong to \mathbb{T}.

Proposition 2.1. Let $m \in \mathbb{N}_{0}$. Let $W=\left[w_{j, k}\right]_{j, k} \in M_{m+1, n+1}(\mathbb{T})$, and assume that $w_{0,0} \notin\left\{w_{1,0}, \ldots, w_{m, 0}\right\}$. Then there exists a polynomial p such that $p\left(w_{0,0}\right) \neq 0$ and $D^{k}(p)\left(w_{j, k}\right)=0$ for every $(j, k) \neq(0,0)$, that is,

$$
\left[\begin{array}{cccc}
p\left(w_{0,0}\right) & D^{1}(p)\left(w_{0,1}\right) & \cdots & D^{n}(p)\left(w_{0, n}\right) \tag{2.3}\\
p\left(w_{1,0}\right) & D^{1}(p)\left(w_{1,1}\right) & \cdots & D^{n}(p)\left(w_{1, n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
p\left(w_{m, 0}\right) & D^{1}(p)\left(w_{m, 1}\right) & \cdots & D^{n}(p)\left(w_{m, n}\right)
\end{array}\right]=\left[\begin{array}{ccc}
* 0 & \cdots & 0 \\
00 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & \cdots
\end{array}\right] .
$$

Proof. Let $I_{0}=\left\{(j, k) \in \mathbb{N}_{0}^{m} \times \mathbb{N}_{0}^{n}: w_{j, k} \neq w_{0,0}\right\}$, and let

$$
q(z)=\prod_{(j, k) \in I_{0}}\left(z-w_{j, k}\right)^{k+1} .
$$

By definition, $q\left(w_{0,0}\right) \neq 0$. If $(j, k) \in I_{0}$, then the formal derivatives $q(z), q^{(1)}(z), \ldots$, $q^{(k)}(z)$ have the factor $\left(z-w_{j, k}\right)$, and thus, by equality (2.2), we have $D^{k}(q)\left(w_{j, k}\right)=0$. Hence we obtain $q\left(w_{0,0}\right) \neq 0=D^{k}(q)\left(w_{j, k}\right)$ for every $(j, k) \in I_{0}$. If, in addition, $D^{k}(q)\left(w_{0,0}\right)=0$ for every $k \in \mathbb{N}_{1}^{n}$, then q satisfies the condition (2.3). In this cases, q is the desired polynomial.

Now, assume that $D^{k}(q)\left(w_{0,0}\right) \neq 0$ for some $k \in \mathbb{N}_{1}^{n}$. Let $k_{1} \in \mathbb{N}_{1}^{n}$ be the smallest $k \in \mathbb{N}_{1}^{n}$ such that $D^{k}(q)\left(w_{0,0}\right) \neq 0$. Then

$$
D^{1}(q)\left(w_{0,0}\right)=\cdots=D^{k_{1}-1}(q)\left(w_{0,0}\right)=0 \neq D^{k_{1}}(q)\left(w_{0,0}\right)
$$

In particular, $D^{k}(q)\left(w_{0,0}\right)=0$ for all $k \in \mathbb{N}_{1}^{k_{1}-1}$. Let $r(z)=q(z)-2 q\left(w_{0,0}\right)$. Since $r\left(w_{0,0}\right)=-q\left(w_{0,0}\right) \neq 0$, we have $(q r)\left(w_{0,0}\right) \neq 0$. Moreover, if $(j, k) \in I_{0}$, then the Leibniz rule shows that $D^{k}(q r)\left(w_{j, k}\right)=0$. Note that $D^{k}(r)\left(w_{0,0}\right)=D^{k}(q)\left(w_{0,0}\right)=0$ for every $k \in \mathbb{N}_{1}^{k_{1}-1}$, and that $D^{k_{1}}(r)\left(w_{0,0}\right)=D^{k_{1}}(q)\left(w_{0,0}\right) \neq 0$. By the Leibniz rule, $D^{k}(q r)\left(w_{0,0}\right)=0$ for every $k \in \mathbb{N}_{1}^{k_{1}-1}$. We also have

$$
\begin{aligned}
D^{k_{1}}(q r)\left(w_{0,0}\right) & =q\left(w_{0,0}\right) \cdot D^{k_{1}}\left(r_{0}\right)\left(w_{0,0}\right)+D^{k_{1}}(q)\left(w_{0,0}\right) \cdot r\left(w_{0,0}\right) \\
& =q\left(w_{0,0}\right) \cdot D^{k_{1}}(q)\left(w_{0,0}\right)-D^{k_{1}}(q)\left(w_{0,0}\right) \cdot q\left(w_{0,0}\right)=0 .
\end{aligned}
$$

Hence we obtain $D^{k}(q r)\left(w_{0,0}\right)=0$ for all $k \in \mathbb{N}_{1}^{k_{1}}$. This shows that the polynomial $q r$ has not only the same properties as q, but also $D^{k_{1}}(q r)\left(w_{0,0}\right)=0$. Finally, applying the above argument repeatedly, at most finitely many times, we obtain a polynomial p satisfying condition (2.3). The proof is completed.

Proposition 2.2. Let $m \in \mathbb{N}_{0}$, and let $k_{0} \in \mathbb{N}_{0}^{n}$. Let $W=\left[w_{j, k}\right]_{j, k} \in$ $M_{m+1, n+1}(\mathbb{T})$, and assume that $w_{0, k_{0}} \notin\left\{w_{1, k_{0}}, \ldots, w_{m, k_{0}}\right\}$. Then there exists a polynomial p such that $D^{k_{0}}(p)\left(w_{0, k_{0}}\right) \neq 0$ and $D^{k}(p)\left(w_{j, k}\right)=0$ for every $(j, k) \neq\left(0, k_{0}\right)$, that is,

$$
\left[\begin{array}{ccccc}
p\left(w_{0,0}\right) & \cdots & D^{k_{0}}(p)\left(w_{0, k_{0}}\right) & \cdots & D^{n}(p)\left(w_{0, n}\right) \tag{2.4}\\
p\left(w_{1,0}\right) & \cdots & D^{k_{0}}(p)\left(w_{1, k_{0}}\right) & \cdots & D^{n}(p)\left(w_{1, n}\right) \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
p\left(w_{m, 0}\right) & \cdots & D^{k_{0}}(p)\left(w_{m, k_{0}}\right) & \cdots & D^{n}(p)\left(w_{m, n}\right)
\end{array}\right]=\left[\begin{array}{cccc}
0 \cdots & \cdots & \cdots & 0 \\
0 \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 \cdots & \cdots & \cdots & 0
\end{array}\right] .
$$

Proof. Let $I_{1}=\left\{(j, k) \in \mathbb{N}_{0}^{m} \times \mathbb{N}_{0}^{n}: w_{j, k} \neq w_{0, k_{0}}\right\}$, and let $\left\{z_{1}, \ldots, z_{m^{\prime}}\right\}$ be an enumeration of $\left\{w_{j, k}:(j, k) \in I_{1}\right\}$. Applying Proposition 2.1 to the following $\left(m^{\prime}+1\right) \times(n+1)$ matrix

$$
W^{\prime}=\left[\begin{array}{cccc}
w_{0, k_{0}} & w_{0, k_{0}} & \cdots & w_{0, k_{0}} \\
z_{1} & z_{1} & \cdots & z_{1} \\
\vdots & \vdots & \ddots & \vdots \\
z_{m^{\prime}} & z_{m^{\prime}} & \cdots & z_{m^{\prime}}
\end{array}\right]
$$

we see that there exists a polynomial q such that

$$
\begin{cases}q\left(w_{0, k_{0}}\right) \neq 0=D^{l}(q)\left(w_{0, k_{0}}\right) & \left(\forall l \in \mathbb{N}_{1}^{n}\right), \\ D^{l}(q)\left(w_{j, k}\right)=0 & \left(\forall(j, k) \in I_{1}, \forall l \in \mathbb{N}_{0}^{n}\right) .\end{cases}
$$

Assume that we have constructed a polynomial r such that

$$
\begin{equation*}
D^{k_{0}}(r)\left(w_{0, k_{0}}\right)=1 \neq 0=D^{l}(r)\left(w_{0, k_{0}}\right) \tag{2.5}
\end{equation*}
$$

for every $l \in \mathbb{N}_{0}^{n} \backslash\left\{k_{0}\right\}$. Set $p(z)=q(z) r(z)$. Since $q\left(w_{0, k_{0}}\right) \neq 0=D^{l}(q)\left(w_{0, k_{0}}\right)$ for every $l \in \mathbb{N}_{1}^{n}$, the Leibniz rule implies that $D^{k_{0}}(p)\left(w_{0, k_{0}}\right) \neq 0=D^{k}(p)\left(w_{0, k_{0}}\right)$ for every $k \in \mathbb{N}_{0}^{n} \backslash\left\{k_{0}\right\}$. Moreover, if $(j, k) \in I_{1}$, then $D^{l}(q)\left(w_{j, k}\right)=0$ for every $l \in \mathbb{N}_{0}^{n}$, and thus the Leibniz rule implies that $D^{k}(p)\left(w_{j, k}\right)=0$. Hence $p(z)$ satisfies the condition (2.4).

Now, it remains to construct a polynomial r satisfying the condition (2.5). It follows from equality (2.1) that a polynomial $r(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ satisfies the condition (2.5) if and only if the coefficients of r satisfy the system of $n+1$ linear equations

$$
\sum_{j=0}^{n} j^{k} w_{0, k_{0}}^{j} a_{j}= \begin{cases}i^{-k_{0}} & \left(k=k_{0}\right) \\ 0 & (\text { otherwise })\end{cases}
$$

The system of linear equations has a solution $\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{C}^{n+1}$. Indeed, the determinant
is non-zero, because the right-hand side of the above equality is a determinant of a Vandermonde matrix whose columns are the geometric sequence with pairwise distinct common ratios. Hence we can find a polynomial r satisfying the condition (2.5). The proof is completed.

Proposition 2.3. Let $k_{0} \in \mathbb{N}_{0}^{n}$, let $w_{k_{0}}, \ldots, w_{n} \in \mathbb{T}$, and assume that $w_{k_{0}} \notin$ $\left\{w_{k_{0}+1}, \ldots, w_{n}\right\}$. For each $\varepsilon>0$ and each neighborhood V of $w_{k_{0}}$ in \mathbb{T}, there exists a polynomial p such that

$$
\begin{cases}\left\|D^{l}(p)\right\|_{\mathbb{T}}<\varepsilon & \left(l \in \mathbb{N}_{0}^{k_{0}-1}\right), \tag{2.6}\\ \left\|D^{k_{0}}(p)\right\|_{\mathbb{T}}=D^{k_{0}}(p)\left(w_{k_{0}}\right)=k_{0}!, & \\ \left\|D^{k_{0}}(p)\right\|_{\mathbb{T} \backslash V}<\varepsilon, & \left(l \in \mathbb{N}_{k_{0}+1}^{n}\right),\end{cases}
$$

where $\left\|D^{k_{0}}(p)\right\|_{\mathbb{T} \backslash V}$ is the supremum of $\left|D^{k_{0}}(p)\right|$ on $\mathbb{T} \backslash V$.
Proof. For each $m \in \mathbb{N}$, consider the polynomial

$$
p_{m}(z)=\frac{(-i)^{k_{0}}}{2^{m}} \sum_{j=0}^{m} \frac{1}{(m+j)^{k_{0}}}\binom{m}{j}\left(\overline{w_{k_{0}}} z\right)^{m+j}
$$

Let us show that the sequence $\left\{p_{m}\right\}_{m}$ has the following properties

$$
\begin{cases}\left\|D^{l_{1}}\left(p_{m}\right)\right\|_{\mathbb{T}} \rightarrow 0 & (m \rightarrow \infty) \tag{2.7}\\ \left\|D^{k_{0}}\left(p_{m}\right)\right\|_{\mathbb{T}}=D^{k_{0}}\left(p_{m}\right)\left(w_{k_{0}}\right)=1 & (\forall m \in \mathbb{N}) \\ \left\|D^{k_{0}}\left(p_{m}\right)\right\|_{\mathbb{T} \backslash V} \rightarrow 0 & (m \rightarrow \infty) \\ \mid D^{l_{2}}\left(p_{m}\right)\left(w_{l_{2}}\right) \rightarrow 0 & (m \rightarrow \infty)\end{cases}
$$

for every neighborhood V of $w_{k_{0}}$ in $\mathbb{T}, l_{1} \in \mathbb{N}_{0}^{k_{0}-1}$ and $l_{2} \in \mathbb{N}_{k_{0}+1}^{n}$.
First, by equality (2.1), we have

$$
D^{l}\left(p_{m}\right)(z)=\frac{(-i)^{k_{0}-l}}{2^{m}} \sum_{j=0}^{m} \frac{1}{(m+j)^{k_{0}-l}}\binom{m}{j}\left(\overline{w_{k_{0}}} z\right)^{m+j}
$$

for every $l \in \mathbb{N}_{0}^{k_{0}}$. In particular,

$$
D^{k_{0}}\left(p_{m}\right)(z)=\left(\frac{\overline{w_{k_{0}}} z+\left(\overline{w_{k_{0}}} z\right)^{2}}{2}\right)^{m}
$$

For each $l \in \mathbb{N}_{0}^{k_{0}}$ and $w \in \mathbb{T}$,

$$
\left|D^{l}\left(p_{m}\right)(w)\right| \leq \frac{1}{2^{m}} \sum_{j=0}^{m} \frac{1}{(m+j)^{k_{0}-l}}\binom{m}{j} \leq \frac{1}{2^{m}} \sum_{j=0}^{m} \frac{1}{m^{k_{0}-l}}\binom{m}{j}=\frac{1}{m^{k_{0}-l}},
$$

and thus $\left\|D^{l}\left(p_{m}\right)\right\|_{\mathbb{T}} \leq 1 / m^{k_{0}-l}$. This shows that $\left\|D^{l}\left(p_{m}\right)\right\|_{\mathbb{T}} \rightarrow 0$ as $m \rightarrow \infty$ for every $l \in \mathbb{N}_{0}^{k_{0}-1}$, and that $\left\|D^{k_{0}}\left(p_{m}\right)\right\|_{\mathbb{T}} \leq 1$ for every $m \in \mathbb{N}$. Since $D^{k_{0}}\left(p_{m}\right)\left(w_{k_{0}}\right)=1$, we obtain $\left\|D^{k_{0}}\left(p_{m}\right)\right\|_{\mathbb{T}}=D^{k_{0}}\left(p_{m}\right)\left(w_{k_{0}}\right)=1$. Let V be a neighborhood of $w_{k_{0}}$ in \mathbb{T}. Since

$$
\sup _{z \in \mathbb{T} \backslash V}\left|\frac{\overline{w_{k_{0}}} z+\left(\overline{w_{k_{0}}} z\right)^{2}}{2}\right|<1,
$$

we have $\left\|D^{k_{0}}\left(p_{m}\right)\right\|_{\mathbb{T} \backslash V} \rightarrow 0$ as $m \rightarrow \infty$.
Let us verify the rest of the property in (2.7). Let $l \in \mathbb{N}_{1}^{n-k_{0}}$. By equality (2.2),

$$
D^{k_{0}+l}\left(p_{m}\right)(z)=i^{l} \sum_{j=1}^{l} c_{j}\left(D^{k_{0}}\left(p_{m}\right)\right)^{(j)}(z) z^{j},
$$

where c_{1}, \ldots, c_{l} are constants independent of m. Thus, to show that $D^{k_{0}+l}\left(p_{m}\right)(z) \rightarrow 0$ as $m \rightarrow \infty$, it suffices to prove that $\left(D^{k_{0}}\left(p_{m}\right)\right)^{(j)}\left(w_{k_{0}+l}\right) \rightarrow 0$ as $m \rightarrow \infty$ for every $j \in \mathbb{N}_{1}^{l}$. Fix $j_{0} \in \mathbb{N}_{1}^{l}$. It is easy to see that for each positive integer m with $j_{0}<m$, the j_{0}-th formal derivative of $D^{k_{0}}\left(p_{m}\right)$ can be written as

$$
\left(D^{k_{0}}\left(p_{m}\right)\right)^{\left(j_{0}\right)}(z)=\sum_{j=1}^{j_{0}} m^{\underline{j}} q_{j}(z)\left(\frac{\overline{w_{k_{0}}} z+\left(\overline{w_{k_{0}}} z\right)^{2}}{2}\right)^{m-j}
$$

where $q_{1}, \ldots, q_{j_{0}}$ are polynomials independent of m. By our hypothesis on $w_{k_{0}}$, we have $\left|\overline{w_{k_{0}}} w_{k_{0}+l}+\left(\overline{w_{k_{0}}} w_{k_{0}+l}\right)^{2}\right| / 2<1$, and thus

$$
m^{\underline{j}} q_{j}\left(w_{k_{0}+l}\right)\left(\frac{\overline{w_{k_{0}}} w_{k_{0}+l}+\left(\overline{w_{k_{0}}} w_{k_{0}+l}\right)^{2}}{2}\right)^{m-j} \rightarrow 0 \quad(m \rightarrow \infty)
$$

for every $j \in \mathbb{N}_{0}^{j_{0}}$, and thus $\left(D^{k_{0}}\left(p_{m}\right)\right)^{\left(j_{0}\right)}\left(w_{k_{0}+l}\right) \rightarrow 0$ as $m \rightarrow \infty$, as desired.
Now, let $\varepsilon>0$, and let V be a neighborhood of $w_{k_{0}}$ in \mathbb{T}. Choose $m \in \mathbb{N}$ so large that

$$
\left\|D^{l_{1}}\left(p_{m}\right)\right\|_{\mathbb{T}},\left\|D^{k_{0}}\left(p_{m}\right)\right\|_{\mathbb{T} \backslash V},\left|D^{l_{2}}\left(p_{m}\right)\left(w_{l_{2}}\right)\right|<\frac{1}{k_{0}!} \varepsilon
$$

for every $l_{1} \in \mathbb{N}_{0}^{k_{0}-1}$ and $l_{2} \in \mathbb{N}_{k_{0}+1}^{n}$. Then $p=k_{0}!p_{m}$ satisfies the condition (2.6).

§ 2.2. Embedding of $A^{n}(\overline{\mathbb{D}})$ into $C(X)$

Let $X=\mathbb{T}^{2 n+1}$ be the compact Hausdorff space endowed with the product topology. We will write each element in X as $x=(\mathbf{w}, \boldsymbol{\zeta})$, where $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right) \in \mathbb{T}^{n+1}$ and $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. For simplicity of notation, we always assume $\zeta_{0}=1$. For each $f \in A^{n}(\overline{\mathbb{D}})$, define $\tilde{f}: X \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\tilde{f}(x)=f\left(w_{0}\right)+\sum_{k=1}^{n} \frac{1}{k!} D^{k}(f)\left(w_{k}\right) \zeta_{k}=\sum_{k=0}^{n} \frac{1}{k!} D^{k}(f)\left(w_{k}\right) \zeta_{k} \tag{2.8}
\end{equation*}
$$

for every $x=\left(w_{0}, \ldots, w_{n}, \zeta_{1}, \ldots, \zeta_{n}\right) \in X$. It is obvious that \tilde{f} is continuous on X. Note that $\tilde{\mathbf{1}}$ is the constant function on X taking the value only 1. In this notation, Proposition 2.2 is reformulated as follows:

Proposition 2.4. Let $k_{0} \in \mathbb{N}_{0}^{n}$, and let $\mathbf{w}_{0}, \ldots, \mathbf{w}_{m} \in \mathbb{T}^{n+1}$. For $j \in \mathbb{N}_{0}^{m}$, write $\mathbf{w}_{j}=\left(w_{j, 0}, \ldots, w_{j, n}\right)$. Assume that the $k_{0}-$ th coordinate $w_{0, k_{0}}$ of \mathbf{w}_{0} is distinct from those of $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$, namely, $w_{0, k_{0}} \notin\left\{w_{1, k_{0}}, \ldots, w_{m, k_{0}}\right\}$. Then there exists $f \in A^{n}(\overline{\mathbb{D}})$ such that

$$
\tilde{f}\left(\mathbf{w}_{0}, \boldsymbol{\zeta}\right)=\zeta_{k_{0}} \neq 0=\tilde{f}\left(\mathbf{w}_{1}, \boldsymbol{\zeta}\right)=\cdots=\tilde{f}\left(\mathbf{w}_{m}, \boldsymbol{\zeta}\right)
$$

for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. In particular, if $\boldsymbol{\zeta}_{0}, \ldots, \boldsymbol{\zeta}_{m} \in \mathbb{T}^{n}$, and if $x_{j}=\left(\mathbf{w}_{j}, \boldsymbol{\zeta}_{j}\right)$, then f can be chosen so that $\tilde{f}\left(x_{0}\right)=1 \neq 0=\tilde{f}\left(x_{1}\right)=\cdots=\tilde{f}\left(x_{m}\right)$.

Proof. By Proposition 2.2, we can find $f \in A^{n}(\overline{\mathbb{D}})$ such that $D^{k_{0}}(f)\left(w_{0, k_{0}}\right) \neq 0$ and $D^{k}(f)\left(w_{j, k}\right)=0$ for every $(j, k) \in\left(\mathbb{N}_{0}^{m} \times \mathbb{N}_{0}^{n}\right) \backslash\left\{\left(0, k_{0}\right)\right\}$. Multiplying a constant if needed, we may assume that $D^{k_{0}}(f)\left(w_{0, k_{0}}\right)=k_{0}$!. Then equality (2.8) shows that $\tilde{f}\left(\mathbf{w}_{0}, \boldsymbol{\zeta}\right)=\zeta_{k_{0}}$ and $\tilde{f}\left(\mathbf{w}_{1}, \boldsymbol{\zeta}\right)=\cdots=\tilde{f}\left(\mathbf{w}_{m}, \boldsymbol{\zeta}\right)=0$ for all $\boldsymbol{\zeta}=\left(z_{1}, \ldots, \zeta_{n}\right)$.

Assume that $\boldsymbol{\zeta}_{0}, \ldots, \boldsymbol{\zeta}_{m} \in \mathbb{T}^{n}$, and that $x_{j}=\left(\mathbf{w}_{j}, \boldsymbol{\zeta}_{j}\right)$. Replacing f with the product of f and the complex conjugate of the k_{0}-th coordinate of $\boldsymbol{\zeta}_{0}$, we have $\tilde{f}\left(x_{0}\right)=$ $1 \neq 0=\tilde{f}\left(x_{1}\right)=\cdots=\tilde{f}\left(x_{m}\right)$.

Let $\widetilde{A^{n}}=\left\{\tilde{f}: f \in A^{n}(\overline{\mathbb{D}})\right\}$, and define $U: A^{n}(\overline{\mathbb{D}}) \rightarrow \widetilde{A^{n}}$ by

$$
\begin{equation*}
U(f)=\tilde{f} \quad\left(f \in A^{n}(\overline{\mathbb{D}})\right) . \tag{2.9}
\end{equation*}
$$

Note that $\widetilde{A^{n}}$ is a complex linear subspace of $C(X)$, and hence $\widetilde{A^{n}}$ is a normed space with the supremum norm $\|\cdot\|_{X}$.

Lemma 2.5. The mapping U, defined by (2.9), is a surjective complex-linear isometry from $\left(A^{n}(\overline{\mathbb{D}}),\|\cdot\|_{\Sigma}\right)$ onto $\left(\widetilde{A^{n}},\|\cdot\|_{X}\right)$.

Proof. By definition, it is obvious that U is surjective and complex-linear. To show that U is an isometry, fix $f \in A^{n}(\overline{\mathbb{D}})$. For each $x=\left(w_{0}, \ldots, w_{n}, \zeta_{1}, \ldots, \zeta_{n}\right) \in X$,

$$
|\tilde{f}(x)|=\left|\sum_{k=0}^{n} \frac{1}{k!} D^{k}(f)\left(w_{k}\right) \zeta_{k}\right| \leq \sum_{k=0}^{n} \frac{1}{k!}\left|D^{k}(f)\left(w_{k}\right)\right| \leq \sum_{k=0}^{n} \frac{1}{k!}\left\|D^{k}(f)\right\|_{\mathbb{T}}=\|f\|_{\Sigma}
$$

and thus we obtain $\|\tilde{f}\|_{X} \leq\|f\|_{\Sigma}$. On the other hand, for each $k \in \mathbb{N}_{0}^{n}$, choose $w_{0, k} \in \mathbb{T}$ so that $\left|D^{k}(f)\left(w_{0, k}\right)\right|=\left\|D^{k}(f)\right\|_{\mathbb{T}}$. For each $k \in \mathbb{N}_{0}^{n}$, we set

$$
\zeta_{0, k}=\frac{f\left(w_{0,0}\right)}{\left|f\left(w_{0,0}\right)\right|} / \frac{D^{k}(f)\left(w_{0, k}\right)}{\left|D^{k}(f)\left(w_{0, k}\right)\right|}
$$

Here $f\left(w_{0,0}\right) /\left|f\left(w_{0,0}\right)\right|$ and $D^{k}(f)\left(w_{0, k}\right) /\left|D^{k}(f)\left(w_{0, k}\right)\right|$ read 1 if $f\left(w_{0,0}\right)=0$ and $D^{k}(f)\left(w_{0, k}\right)=0$, respectively. We also set $\zeta_{0,0}=1$. Let $x_{0}=\left(w_{0,1}, \ldots, w_{0, n}, \zeta_{0,1}, \ldots\right.$, $\left.\zeta_{0, n}\right) \in X$. Since $D^{k}(f)\left(w_{0, k}\right) \zeta_{0, k}$ has the same argument as $f\left(w_{0,0}\right)$, we have

$$
\begin{aligned}
\|f\|_{\Sigma} & =\sum_{k=0}^{n} \frac{1}{k!}\left\|D^{k}(f)\right\|_{\mathbb{T}}=\sum_{k=0}^{n} \frac{1}{k!}\left|D^{k}(f)\left(w_{0, k}\right)\right|=\left|\sum_{k=0}^{n} \frac{1}{k!} D^{k}(f)\left(w_{0, k}\right) \zeta_{0, k}\right| \\
& =\left|\tilde{f}\left(x_{0}\right)\right| \leq\|\tilde{f}\|_{X} .
\end{aligned}
$$

Therefore we obtain $\|\tilde{f}\|_{X}=\|f\|_{\Sigma}$, which proves that U is an isometry, as desired.
Lemma 2.6. The subspace $\widetilde{A^{n}}$ of $C(X)$ separates the points of X, that is, for each pair of distinct points $x_{0}, x_{1} \in X$ there exists a function $\tilde{f} \in \widetilde{A^{n}}$ such that $\tilde{f}\left(x_{0}\right) \neq$ $\tilde{f}\left(x_{1}\right)$.

Proof. Let $x_{0}, x_{1} \in X$ be distinct points, and write $x_{j}=\left(w_{j, 0}, \ldots, w_{j, n}, \zeta_{j, 1}, \ldots\right.$, $\left.\zeta_{j, n}\right)$ for $j=0,1$. Assume that $w_{0, k_{0}} \neq w_{1, k_{0}}$ for some $k_{0} \in \mathbb{N}_{0}^{n}$. By Proposition 2.4, there exists $f_{0} \in A^{n}(\overline{\mathbb{D}})$ such that $\tilde{f}_{0}\left(x_{0}\right) \neq 0=\tilde{f}_{0}\left(x_{1}\right)$.

Now, assume that $w_{0, k}=w_{1, k}$ for every $k \in \mathbb{N}_{0}^{n}$. Then $\zeta_{0, k_{1}} \neq \zeta_{1, k_{1}}$ for some $k_{1} \in \mathbb{N}_{1}^{n}$. Set $\mathbf{w}=\left(w_{0,0}, \ldots, w_{0, n}\right)=\left(w_{1,0}, \ldots, w_{1, n}\right)$. By Proposition 2.4, there exists $f_{1} \in A^{n}(\overline{\mathbb{D}})$ such that $\tilde{f}_{1}(\mathbf{w}, \boldsymbol{\zeta})=\zeta_{k_{1}}$ for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$. Hence we have $\tilde{f}_{1}\left(x_{0}\right)=\zeta_{0, k_{1}} \neq \zeta_{1, k_{1}}=\tilde{f}_{1}\left(x_{1}\right)$. The proof is completed.

We have proved that $\widetilde{A^{n}}$ is a uniformly closed subspace of $C(X)$ which separates the points of X and contains the constant function $\tilde{\mathbf{1}}$. In the rest of this section, we consider the set $\operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)$ of all extreme points of the unit ball $\left(\widetilde{A^{n}}\right)_{1}^{*}$ of the dual space $\left(\widetilde{A^{n}}\right)^{*}$ of $\widetilde{A^{n}}$.

For each $x \in X$, the point evaluation δ_{x} at x is a functional $\delta_{x}: \widetilde{A^{n}} \rightarrow \mathbb{C}$ defined by $\delta_{x}(\tilde{f})=\tilde{f}(x)$ for every $\tilde{f} \in \widetilde{A^{n}}$. By the Arens-Kelley theorem (see [3, Lemma V.8.6]),
every extreme point of the unit ball $\left(\widetilde{A^{n}}\right)_{1}^{*}$ is of the form $\lambda \delta_{x}$ for some $x \in X$ and $\lambda \in \mathbb{T}$. Recall that the Choquet boundary of $\widetilde{A^{n}}$ is the set

$$
\operatorname{Ch}\left(\widetilde{A^{n}}\right)=\left\{x \in X: \delta_{x} \in \operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)\right\}
$$

Then the set $\operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)$ can be written as

$$
\begin{equation*}
\operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)=\left\{\lambda \delta_{x}: \lambda \in \mathbb{T}, x \in \operatorname{Ch}\left(\widetilde{A^{n}}\right)\right\} \tag{2.10}
\end{equation*}
$$

Let $x \in X$. Recall that a representing measure for δ_{x} is a positive regular Borel measure μ on X such that

$$
\delta_{x}(\tilde{f})=\int_{X} f d \mu
$$

for every $\tilde{f} \in \widetilde{A^{n}}$. Since $\left\|\delta_{x}\right\|=\delta_{x}(\tilde{\mathbf{1}})=1$, we see that every representing measure μ must be a probability measure. Note also that there exists at least one representing measure for δ_{x}, namely, the Dirac measure concentrated at x. The Choquet boundary of $\widetilde{A^{n}}$ can be characterized in terms of representing measures.

Proposition 2.7. Assume that each representing measure μ for δ_{x} is concentrated at x. Then δ_{x} is an extreme point of $\left(\widetilde{A^{n}}\right)_{1}^{*}$, that is, $x \in \operatorname{Ch}\left(\widetilde{A^{n}}\right)$.

Proof. Assume that δ_{x} is written as $\delta_{x}=(1-t) \xi_{1}+t \xi_{2}$ for some $\xi_{1}, \xi_{2} \in\left(\widetilde{A^{n}}\right)_{1}^{*}$ and $t \in(0,1)$. Then $\left|\xi_{1}(\tilde{\mathbf{1}})\right|,\left|\xi_{2}(\tilde{\mathbf{1}})\right| \leq 1$, and that $1=\delta_{x}(\tilde{\mathbf{1}})=(1-t) \xi_{1}(\tilde{\mathbf{1}})+t \xi_{2}(\tilde{\mathbf{1}})$. Since 1 is an extreme point of the closed unit disk $\overline{\mathbb{D}}$, we have $\xi_{1}(\tilde{\mathbf{1}})=\xi_{2}(\tilde{\mathbf{1}})=1$. It is well-known that the Dirac measure concentrated at x is the only representing measure for δ_{x} if and only if δ_{x} is an extreme point of the weak $*$-compact convex set $\left\{\xi \in\left(\widetilde{A^{n}}\right)_{1}^{*}: \xi(\tilde{\mathbf{1}})=1\right\}$ (see [2, Theorem 2.2.8]). Hence $\delta_{x}=\xi_{1}=\xi_{2}$, that is, δ_{x} is an extreme point of $\left(\widetilde{A^{n}}\right)_{1}^{*}$.

Consider the subset X_{0} of $X=\mathbb{T}^{2 n+1}$ consisting of all those points $\left(w_{0}, \ldots, w_{n}\right.$, $\left.\zeta_{1}, \ldots, \zeta_{n}\right)$ such that w_{0}, \ldots, w_{n} are mutually distinct:

$$
\begin{equation*}
X_{0}=\left\{\left(w_{0}, \ldots, w_{n}, \zeta_{1}, \ldots, \zeta_{n}\right) \in X: w_{j} \neq w_{k} \quad(j \neq k)\right\} \tag{2.11}
\end{equation*}
$$

It is clear that X_{0} is dense in X. Let us show that every point in X_{0} is an extreme point of the dual ball $\left(\widetilde{A^{n}}\right)_{1}^{*}$. To see this, fix an arbitrary point $x_{0}=\left(w_{0,0}, \ldots, w_{0, n}, \zeta_{0,1}, \ldots, \zeta_{0, n}\right)$ $\in X_{0}$. For simplicity of notation, we set $\zeta_{0,0}=1$. In view of Proposition 2.7, it suffices to show that any representing measure μ for $\delta_{x_{0}}$ is concentrated at x_{0}.

Lemma 2.8. Any representing measure μ for $\delta_{x_{0}}$ is concentrated on the set $\left\{w_{0,0}\right\} \times \cdots \times\left\{w_{0, n}\right\} \times \mathbb{T}^{n}$.

Proof. For each $k \in \mathbb{N}_{0}^{n}$, we set $X^{(k)}=\mathbb{T}^{k} \times\left\{w_{0, k}\right\} \times \cdots \times\left\{w_{0, n}\right\} \times \mathbb{T}^{n}$ and $X^{(n+1)}=$ $X=\mathbb{T}^{2 n+1}$. Let us show that each representing measure μ for $\delta_{x_{0}}$ is concentrated on $X^{\left(k_{0}\right)}$ for every $k_{0} \in \mathbb{N}_{0}^{n}$ by induction. Fix an arbitrary representing measure μ for $\delta_{x_{0}}$. If $k_{0}=n+1$, then μ is concentrated on $X^{(n+1)}=\mathbb{T}^{2 n+1}$ by definition. Assume that μ is concentrated on $X^{\left(k_{0}+1\right)}$ for $k_{0} \in \mathbb{N}_{0}^{n}$; we will prove that it is concentrated on $X^{\left(k_{0}\right)}$.

Let W be an arbitrary open neighborhood of $w_{0, k_{0}}$ in \mathbb{T}, and set

$$
\begin{aligned}
Q_{W} & =\mathbb{T}^{k_{0}} \times W \times\left\{w_{0, k_{0}+1}\right\} \times \cdots \times\left\{w_{0, n}\right\} \times \mathbb{T}^{n}, \quad \text { and } \\
Q_{W^{c}} & =\mathbb{T}^{k_{0}} \times W^{c} \times\left\{w_{0, k_{0}+1}\right\} \times \cdots \times\left\{w_{0, n}\right\} \times \mathbb{T}^{n},
\end{aligned}
$$

where $W^{c}=\mathbb{T} \backslash W$. Note that $Q_{W^{c}}$ is the complement of Q_{W} in $X^{\left(k_{0}+1\right)}$. Let us show that $\mu\left(Q_{W}\right)=1$. To see this, choose ε with $0<\varepsilon<1 / n$ arbitrarily. By Proposition 2.3 , there exists $f_{0} \in A^{n}(\overline{\mathbb{D}})$ such that

$$
\begin{cases}\left\|D^{l}\left(f_{0}\right)\right\|_{\mathbb{T}}<\varepsilon & \left(l \in \mathbb{N}_{0}^{k_{0}-1}\right), \\ \left\|D^{k_{0}}\left(f_{0}\right)\right\|_{\mathbb{T}}=D^{k_{0}}\left(f_{1}\right)\left(w_{0, k_{0}}\right)=k_{0}!, & \\ \left\|D^{k_{0}}\left(f_{0}\right)\right\|_{\mathbb{T} \backslash W}<\varepsilon, & \left(l \in \mathbb{N}_{k_{0}+1}^{n}\right) . \\ \left|D^{l}\left(f_{0}\right)\left(w_{0, l}\right)\right|<\varepsilon & \end{cases}
$$

It follows from equality (2.8) that $\left\|\tilde{f}_{0}\right\|_{X^{\left(k_{0}+1\right)}}<n \varepsilon+1$ and $\left\|\tilde{f}_{0}\right\|_{Q_{W^{c}}}<(n+1) \varepsilon$. Also we have

$$
\left|\sum_{k \in \mathbb{N}_{0}^{n} \backslash\left\{k_{0}\right\}} \frac{1}{k!} D^{k}\left(f_{0}\right)\left(w_{0, k}\right) \zeta_{0, k}\right|<n \varepsilon<1 .
$$

Since μ is a representing measure for $\delta_{x_{0}}$ concentrated on $X^{\left(k_{0}+1\right)}$, we have

$$
\int_{X^{\left(k_{0}+1\right)}} \tilde{f}_{0} d \mu=\delta_{x_{0}}\left(\tilde{f}_{0}\right)=\zeta_{0, k_{0}}+\sum_{k \in \mathbb{N}_{0}^{n} \backslash\left\{k_{0}\right\}} \frac{1}{k!} D^{k}\left(f_{0}\right)\left(w_{0, k}\right) \zeta_{0, k}
$$

and thus

$$
\begin{aligned}
1-n \varepsilon & <\left|\delta_{x_{0}}\left(\tilde{f}_{0}\right)\right|=\left|\int_{X^{\left(k_{0}+1\right)}} \tilde{f}_{0} d \mu\right| \leq\left|\int_{Q_{W}} \tilde{f}_{0} d \mu\right|+\left|\int_{Q_{W^{c}}} \tilde{f}_{0} d \mu\right| \\
& <(n \varepsilon+1) \mu\left(Q_{W}\right)+(n+1) \varepsilon \mu\left(Q_{W^{c}}\right) .
\end{aligned}
$$

Since ε is arbitrary, we have $1 \leq \mu\left(Q_{W}\right) \leq \mu(X)=1$, that is, $\mu\left(Q_{W}\right)=1$.
Now, let $\left\{W_{n}\right\}_{n}$ be a decreasing sequence of open neighborhoods of $w_{0, k_{0}}$ in \mathbb{T} whose intersection is precisely the singleton $\left\{w_{0, k_{0}}\right\}$. Then $\left\{Q_{W_{n}}\right\}$ is a decreasing sequence of sets of measure 1 with respect to μ and $\bigcap_{n=1}^{\infty} Q_{W_{n}}=X^{\left(k_{0}\right)}$. Therefore $\mu\left(X^{\left(k_{0}\right)}\right)=1$, that is, μ is concentrated on $X^{\left(k_{0}\right)}$. Consequently, we have proved that μ is concentrated on $X^{(k)}$ for every $k \in \mathbb{N}_{0}^{n}$, in particular, it is concentrated on $X^{(0)}=\left\{w_{0,0}\right\} \times \cdots \times$ $\left\{w_{0, n}\right\} \times \mathbb{T}^{n}$.

Lemma 2.9. Any representing measure μ for $\delta_{x_{0}}$ is concentrated at the point x_{0}.

Proof. For simplicity, set $X^{\prime}=\left\{w_{0,0}\right\} \times \cdots \times\left\{w_{0, n}\right\} \times \mathbb{T}^{n}$ and $\mathbf{w}_{0}=\left(w_{0,0}, \ldots, w_{0, n}\right)$. Fix $k_{0} \in \mathbb{N}_{1}^{n}$. By Proposition 2.4, there exists $f_{1} \in A^{n}(\overline{\mathbb{D}})$ such that $\tilde{f}_{1}\left(\mathbf{w}_{0}, \boldsymbol{\zeta}\right)=\zeta_{k_{0}}$ for every $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. Since, by lemma 2.8 , the measure μ concentrated on $\left\{w_{0,0}\right\} \times \cdots \times\left\{w_{n}\right\} \times \mathbb{T}^{n}$, we have

$$
\zeta_{0, k_{0}}=\delta_{x_{0}}\left(\tilde{f}_{1}\right)=\int_{X^{\prime}} \tilde{f}_{1} d \mu=\int_{X^{\prime}} \zeta_{k_{0}} d \mu(\mathbf{w}, \boldsymbol{\zeta})
$$

and thus

$$
\int_{X^{\prime}}\left(1-\overline{\zeta_{0, k_{0}}} \zeta_{k_{0}}\right) d \mu(\mathbf{w}, \boldsymbol{\zeta})=0
$$

Since μ is a positive measure, it follows that

$$
\int_{X^{\prime}}\left(1-\operatorname{Re}\left[\overline{\zeta_{0, k_{0}}} \zeta_{k_{0}}\right]\right) d \mu(\mathbf{w}, \boldsymbol{\zeta})=0 .
$$

Hence the measure of the set $\left\{(\mathbf{w}, \boldsymbol{\zeta}) \in X^{\prime}: \operatorname{Re}\left[\overline{\zeta_{0, k_{0}}} \zeta_{k_{0}}\right] \neq 1\right\}$ with respect to μ must be zero. This proves that μ is concentrated on $\left\{w_{0,0}\right\} \times \cdots \times\left\{w_{0, n}\right\} \times \mathbb{T}^{k_{0}-1} \times\left\{\zeta_{0, k_{0}}\right\} \times \mathbb{T}^{n-k_{0}}$. Since this holds for every $k_{0} \in \mathbb{N}_{1}^{n}$, it follows that μ is concentrated at x_{0}.

It now follows from Proposition 2.7 and Lemma 2.9 that X_{0} is contained in the Choquet boundary $\operatorname{Ch}\left(\widetilde{A^{n}}\right)$. Set

$$
\begin{equation*}
\mathcal{B}=\left\{\lambda \delta_{x}: \lambda \in \mathbb{T}, x \in X\right\} . \tag{2.12}
\end{equation*}
$$

It is easy to see that \mathcal{B} is a closed subset of the unit ball $\left(\widetilde{A^{n}}\right)_{1}^{*}$ of the dual space of $\widetilde{A^{n}}$, and thus it is a compact Hausdorff space with respect to the relative weak $*$-topology. Let $\mathbb{T} \times X$ be the compact Hausdorff space endowed with the product topology. Define $\mathbf{h}: \mathbb{T} \times X \rightarrow \mathcal{B}$ by

$$
\begin{equation*}
\mathbf{h}(\lambda, x)=\lambda \delta_{x} \quad((\lambda, x) \in \mathbb{T} \times X) \tag{2.13}
\end{equation*}
$$

The proof of the following lemma is the same argument as [12, Lemma 2.7].
Lemma 2.10. The mapping $\mathbf{h}: \mathbb{T} \times X \rightarrow \mathcal{B}$ is a homeomorphism from $\mathbb{T} \times X$ onto \mathcal{B}. In particular, $\mathbf{h}\left(\mathbb{T} \times \operatorname{Ch}\left(\widetilde{A^{n}}\right)\right)=\operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)$.

Proof. By definition, \mathbf{h} is surjective. Since $\widetilde{A^{n}}$ separates the points of X, and since $\widetilde{A^{n}}$ contains the constant function $\tilde{\mathbf{1}}$, we see that \mathbf{h} is injective.

To show that \mathbf{h} is continuous, choose sequences $\left\{\lambda_{n}\right\}_{n} \subset \mathbb{T}$ and $\left\{x_{k}\right\}_{k} \subset X$ converging to $\lambda \in \mathbb{T}$ and $x \in X$, respectively. For each $\tilde{f} \in \widetilde{A^{n}}$,

$$
\mathbf{h}\left(\lambda_{k}, x_{k}\right)(\tilde{f})=\lambda_{k} \tilde{f}\left(x_{k}\right) \rightarrow \lambda \tilde{f}(x)=\mathbf{h}(\lambda, x)(\tilde{f}) \quad(k \rightarrow \infty)
$$

Thus the sequence $\left\{\mathbf{h}\left(\lambda_{k}, x_{k}\right)\right\}_{k}$ converges to $\mathbf{h}(\lambda, x)$ with respect to the relative weak *-topology, which proves the continuity of \mathbf{h}. Since \mathbf{h} is a bijective continuous mapping from the compact space $\mathbb{T} \times X$ onto the Hausdorff space \mathcal{B}, it must be a homeomorphism from $\mathbb{T} \times X$ onto \mathcal{B}. In particular, equality (2.10) shows that $\mathbf{h}\left(\mathbb{T} \times \operatorname{Ch}\left(\widetilde{A^{n}}\right)\right)=$ $\operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)$.

\S 3. Surjective real-linear isometries on $\left(\widetilde{A^{n}},\|\cdot\|_{X}\right)$

In this section, we will characterize the surjective real-linear isometries on the Banach space $\left(\widetilde{A^{n}},\|\cdot\|_{X}\right)$. Throughout this section, fix a surjective real-linear isometry $S: \widetilde{A^{n}} \rightarrow \widetilde{A^{n}}$. Define $S_{*}:\left(\widetilde{A^{n}}\right)^{*} \rightarrow\left(\widetilde{A^{n}}\right)^{*}$ by

$$
S_{*}(\xi)(\tilde{f})=\operatorname{Re}[\xi(S(\tilde{f}))]-i \operatorname{Re}[\xi(S(i \tilde{f}))]
$$

for every $\xi \in\left(\widetilde{A^{n}}\right)^{*}$ and $\tilde{f} \in \widetilde{A^{n}}$. Note that S_{*} is a well-defined surjective reallinear isometry on $\left(\widetilde{A^{n}}\right)^{*}$ with respect to the operator norm. In particular, we have $S_{*}\left(\operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)\right)=\operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)$. Proof of the next lemma is the same as that of [12, Lemma 2.8].

Lemma 3.1. Let \mathcal{B} be the compact Hausdorff space defined by (2.12). Then $S_{*}(\mathcal{B})=\mathcal{B}$.

Proof. Let $\mathbf{h}: \mathbb{T} \times X \rightarrow \mathcal{B}$ be the mapping defined by (2.13). Then $\mathbf{h}\left(\mathbb{T} \times \operatorname{Ch}\left(\widetilde{A^{n}}\right)\right)$ $=\operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)=S_{*}\left(\operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)\right)$. Since $X_{0} \subset \operatorname{Ch}\left(\widetilde{A^{n}}\right) \subset X$, where X_{0} is the subset of $X=\mathbb{T}^{2 n+1}$ defined by (2.11), we have

$$
\begin{aligned}
S_{*}\left(\mathbf{h}\left(\mathbb{T} \times X_{0}\right)\right) & \subset S_{*}\left(\mathbf{h}\left(\mathbb{T} \times \operatorname{Ch}\left(\widetilde{A^{n}}\right)\right)\right)=S_{*}\left(\operatorname{ext}\left(\left(\widetilde{A^{n}}\right)_{1}^{*}\right)\right) \\
& =\mathbf{h}\left(\mathbb{T} \times \operatorname{Ch}\left(\widetilde{A^{n}}\right)\right) \subset \mathbf{h}(\mathbb{T} \times X)=\mathcal{B}
\end{aligned}
$$

Recall that the closure $\overline{X_{0}}$ of X_{0} coincides with X, since X_{0} is dense in X. It follows from Lemma 2.10 that

$$
\mathcal{B}=\mathbf{h}(\mathbb{T} \times X)=\mathbf{h}\left(\mathbb{T} \times \overline{X_{0}}\right)=\overline{\mathbf{h}\left(\mathbb{T} \times X_{0}\right)},
$$

where $\overline{\mathbf{h}\left(\mathbb{T} \times X_{0}\right)}$ is the closure of $\mathbf{h}\left(\mathbb{T} \times X_{0}\right)$ in \mathcal{B} with respect to the relative weal *-topology. Since S_{*} is a surjective real-linear isometry on $\left(\widetilde{A^{n}}\right)^{*}$ with respect to the operator norm, S_{*} is a homeomorphism with respect to the weak *-topology, and thus

$$
S_{*}(\mathcal{B})=S_{*}\left(\overline{\mathbf{h}\left(\mathbb{T} \times X_{0}\right)}\right)=\overline{S_{*}\left(\mathbf{h}\left(\mathbb{T} \times X_{0}\right)\right)} \subset \mathcal{B}
$$

Hence $S_{*}(\mathcal{B}) \subset \mathcal{B}$. Applying the same argument to S_{*}^{-1}, we see that $S_{*}^{-1}(\mathcal{B}) \subset \mathcal{B}$. Thus $S_{*}(\mathcal{B})=\mathcal{B}$.

Definition 3.2. Let $p_{1}: \mathbb{T} \times X \rightarrow \mathbb{T}$ and $p_{2}: \mathbb{T} \times X \rightarrow X$ be the canonical projections. Define $\alpha: \mathbb{T} \times X \rightarrow \mathbb{T}$ and $\Phi: \mathbb{T} \times X \rightarrow X$ by

$$
\alpha=p_{1} \circ \mathbf{h}^{-1} \circ S_{*} \circ \mathbf{h}, \quad \text { and } \quad \Phi=p_{2} \circ \mathbf{h}^{-1} \circ S_{*} \circ \mathbf{h} .
$$

Note that α and Φ are surjective continuous mappings. By definition, for each $(\lambda, x) \in \mathbb{T} \times X$, we have $\left(S_{*} \circ \mathbf{h}\right)(\lambda, x)=\mathbf{h}(\alpha(\lambda, x), \Phi(\lambda, x))$, that is, $S_{*}\left(\lambda \delta_{x}\right)=$ $\alpha(\lambda, x) \delta_{\Phi(\lambda, x)}$. Now for each $\lambda \in \mathbb{T}$, let $\alpha_{\lambda}(x)=\alpha(\lambda, x)$. Then

$$
S_{*}\left(\lambda \delta_{x}\right)=\alpha_{\lambda}(x) \delta_{\Phi(\lambda, x)} \quad(\forall(\lambda, x) \in \mathbb{T} \times X)
$$

Lemma 3.3. \quad There exists $s_{0} \in\{ \pm 1\}$ such that $\alpha_{i}(x)=i s_{0} \alpha_{1}(x)$ for all $x \in X$.
Proof. First, let us show that for each $x \in X, \alpha_{i}(x)=i \alpha_{1}(x)$ or $\alpha_{i}(x)=-i \alpha_{1}(x)$. Fix $x \in X$. For $\lambda_{0}=\frac{1+i}{\sqrt{2}} \in \mathbb{T}$, the real-linearity of S_{*} implies that

$$
\sqrt{2} \alpha_{\lambda_{0}}(x) \delta_{\Phi\left(\lambda_{0}, x\right)}=S_{*}\left(\sqrt{2} \lambda_{0} \delta_{x}\right)=S_{*}\left(\delta_{x}\right)+S_{*}\left(i \delta_{x}\right)=\alpha_{1}(x) \delta_{\Phi(1, x)}+\alpha_{i}(x) \delta_{\Phi(i, x)}
$$

Hence we have $\sqrt{2} \alpha_{\lambda_{0}}(x) \delta_{\Phi\left(\lambda_{0}, x\right)}=\alpha_{1}(x) \delta_{\Phi(1, x)}+\alpha_{i}(x) \delta_{\Phi(i, x)}$. Evaluating this equality at $\tilde{\mathbf{1}}$, we obtain $\sqrt{2} \alpha_{\lambda_{0}}(x)=\alpha_{1}(x)+\alpha_{i}(x)$. Since $\left|\alpha_{\lambda_{0}}(x)\right|=1$, we have

$$
\sqrt{2}=\left|\alpha_{1}(x)+\alpha_{i}(x)\right|=\left|1+\alpha_{i}(x) \overline{\alpha_{1}(x)}\right|
$$

and thus $\alpha_{i}(x) \overline{\alpha_{1}(x)} \in\{ \pm i\}$. Therefore $\alpha_{i}(x)=i \alpha_{1}(x)$ or $\alpha_{i}(x)=-i \alpha_{1}(x)$.
Now, we set

$$
K_{+}=\left\{x \in X: \alpha_{i}(x)=i \alpha_{1}(x)\right\} \quad \text { and } \quad K_{-}=\left\{x \in X: \alpha_{i}(x)=-i \alpha_{1}(x)\right\} .
$$

Then $K_{+} \cup K_{-}=X$ and $K_{+} \cap K_{-}=\emptyset$. The continuity of α_{1} and α_{i} implies that K_{+} and K_{-}are closed in X. Since $X=\mathbb{T}^{2 n+1}$ is connected, $K_{+}=X$ or $K_{-}=X$. This proves the existence of $s_{0} \in\{ \pm 1\}$ such that $\alpha_{i}(x)=i s_{0} \alpha_{1}(x)$ for every $x \in X$.

Lemma 3.4. For each $\lambda=r+i t \in \mathbb{T}$ with $r, t \in \mathbb{R}$, and each $x \in X$,

$$
\begin{equation*}
\lambda^{s_{0}} \tilde{f}(\Phi(\lambda, x))=r \tilde{f}(\Phi(1, x))+i s_{0} t \tilde{f}(\Phi(i, x)) \tag{3.1}
\end{equation*}
$$

for every $\tilde{f} \in \widetilde{A^{n}}$.
Proof. Let $\lambda=r+i t \in \mathbb{T}$ with $r, t \in \mathbb{R}$, and let $x \in X$. Since S_{*} is real-linear,

$$
\alpha_{\lambda}(x) \delta_{\Phi(\lambda, x)}=S_{*}\left(\lambda \delta_{x}\right)=r S_{*}\left(\delta_{x}\right)+t S_{*}\left(i \delta_{x}\right)=r \alpha_{1}(x) \delta_{\Phi(1, x)}+i s_{0} t \alpha_{1}(x) \delta_{\Phi(i, x)}
$$

and thus $\alpha_{\lambda}(x) \delta_{\Phi(\lambda, x)}=\alpha_{1}(x)\left(r \delta_{\Phi(1, x)}+i s_{0} t \delta_{\Phi(i, x)}\right)$. Evaluating this equality at $\tilde{\mathbf{1}}$, we have $\alpha_{\lambda}(x)=\alpha_{1}(x)\left(r+i s_{0} t\right)$. Since $\lambda \in \mathbb{T}$ and $s_{0} \in\{ \pm 1\}$, we have $\lambda^{s_{0}}=r+i s_{0} t$. Hence $\alpha_{\lambda}(x)=\lambda^{s_{0}} \alpha_{1}(x)$. This implies that $\lambda^{s_{0}} \delta_{\Phi(\lambda, x)}=r \delta_{\Phi(1, x)}+i s_{0} t \delta_{\Phi(i, x)}$. Therefore we obtain $\lambda^{s_{0}} \tilde{f}(\Phi(\lambda, x))=r \tilde{f}(\Phi(1, x))+i s_{0} t \tilde{f}(\Phi(i, x))$ for every $\tilde{f} \in \widetilde{A^{n}}$.

Definition 3.5. For $j \in \mathbb{N}_{0}^{2 n}$, let $q_{j}: X=\mathbb{T}^{2 n+1} \rightarrow \mathbb{T}$ be the j-th canonical projection. Define $\varphi_{0}, \ldots, \varphi_{n}, \chi_{1}, \ldots, \chi_{n}: \mathbb{T} \times X \rightarrow \mathbb{T}$ by

$$
\varphi_{k}=q_{k} \circ \Phi \quad\left(k \in \mathbb{N}_{0}^{n}\right), \quad \text { and } \quad \chi_{k}=q_{n+k} \circ \Phi \quad\left(k \in \mathbb{N}_{1}^{n}\right),
$$

that is, $\Phi(\lambda, x)=\left(\varphi_{0}(\lambda, x), \ldots, \varphi_{n}(\lambda, x), \chi_{1}(\lambda, x), \ldots, \chi_{n}(\lambda, x)\right)$ for every $(\lambda, x) \in \mathbb{T} \times X$. For simplicity of notation, we set $\chi_{0}(\lambda, x)=1$ for all $(\lambda, x) \in \mathbb{T} \times X$.

Note that the mappings $\varphi_{0}, \ldots, \varphi_{n}, \chi_{1}, \ldots, \chi_{n}$ are surjective continuous mappings for every $k \in \mathbb{N}_{1}^{n}$. For each $\lambda \in \mathbb{T}$ and $x \in X$, we set $\varphi_{k, \lambda}(x)=\varphi_{k}(\lambda, x)$ and $\chi_{k, \lambda}(x)=$ $\chi_{k}(\lambda, x)$. Then $\Phi(\lambda, x)=\left(\varphi_{0, \lambda}(x), \ldots, \varphi_{n, \lambda}(x), \chi_{1, \lambda}(x), \ldots, \chi_{n, \lambda}(x)\right)$, and thus equality (2.8) implies that

$$
\begin{equation*}
\tilde{f}(\Phi(\lambda, x))=\sum_{k=0}^{n} \frac{1}{k!} D^{k}(f)\left(\varphi_{k, \lambda}(x)\right) \chi_{k, \lambda}(x) \tag{3.2}
\end{equation*}
$$

for every $f \in A^{n}(\overline{\mathbb{D}})$ and $(\lambda, x) \in \mathbb{T} \times X$.
Lemma 3.6. Let $k \in \mathbb{N}_{0}^{n}$, and let $\lambda \in \mathbb{T}$. Then $\varphi_{k, \lambda}(x)=\varphi_{k, 1}(x)$ for every $x \in X$.

Proof. Fix $x \in X$. Let us show that $\varphi_{k, \lambda}(x) \in\left\{\varphi_{k, 1}(x), \varphi_{k, i}(x)\right\}$ for every $k \in \mathbb{N}_{0}^{n}$ and every $\lambda \in \mathbb{T}$. Suppose, on the contrary, that $\varphi_{k_{0}, \lambda_{0}}(x) \notin\left\{\varphi_{k_{0}, 1}(x), \varphi_{k_{0}, i}(x)\right\}$ for some $k_{0} \in \mathbb{N}_{0}^{n}$ and $\lambda_{0} \in \mathbb{T}$. By Proposition 2.4, there exists $f_{0} \in A^{n}(\overline{\mathbb{D}})$ such that

$$
\tilde{f}_{0}\left(\Phi\left(\lambda_{0}, x\right)\right)=1 \neq 0=\tilde{f}_{0}(\Phi(1, x))=\tilde{f}_{0}(\Phi(i, x)) .
$$

Substituting these equalities into equality (3.1), we obtain $\lambda_{0}^{s_{0}}=0$, which is a contradiction. Consequently, $\varphi_{k, \lambda}(x) \in\left\{\varphi_{k, 1}(x), \varphi_{k, i}(x)\right\}$ for every $k \in \mathbb{N}_{0}^{n}$ and $\lambda \in \mathbb{T}$.

Now, we see that, for fixed $x \in X$ and $k \in \mathbb{N}_{0}^{n}$, the mapping $\lambda \mapsto \varphi_{k, \lambda}(x)$ is a continuous map from the connected space \mathbb{T} onto $\left\{\varphi_{k, 1}(x), \varphi_{k, i}(x)\right\}$. Hence $\left\{\varphi_{k, 1}(x), \varphi_{k, i}(x)\right\}$ must be a singleton, that is, $\varphi_{k, \lambda}(x)=\varphi_{k, 1}(x)$ for every $k \in \mathbb{N}_{0}^{n}, \lambda \in \mathbb{T}$ and $x \in X$.

Lemma 3.7. For each $k \in \mathbb{N}_{1}^{n}$, there exists $s_{k} \in\{ \pm 1\}$ such that $\chi_{k, i}(x)=$ $s_{0} s_{k} \chi_{k, 1}(x)$ for every $x \in X$.

Proof. Fix $x \in X$ and $k \in \mathbb{N}_{1}^{n}$. Let us show that $\chi_{k, i}(x)=\chi_{k, 1}(x)$ or $\chi_{k, i}(x)=$ $-\chi_{k, 1}(x)$. Let $\lambda_{0}=\frac{1+i}{\sqrt{2}}$. By Lemma 3.6, $\Phi(\mu, x)=\left(\varphi_{0,1}(x), \ldots, \varphi_{n, 1}(x), \chi_{1, \mu}(x), \ldots\right.$,
$\left.\chi_{n, \mu}(x)\right)$ for $\mu=1, i, \lambda_{0}$. Applying Proposition 2.4 with $\mathbf{w}_{0}=\left(\varphi_{0,1}(x), \ldots, \varphi_{n, 1}(x)\right)$, we can find $f \in A^{n}(\overline{\mathbb{D}})$ such that

$$
\tilde{f}\left(\varphi_{0,1}(x), \ldots, \varphi_{n, 1}(x), \boldsymbol{\zeta}\right)=\zeta_{k}
$$

for every $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. In particular, we have $\tilde{f}_{0}(\Phi(\mu, x))=\chi_{k, \mu}(x)$ for every $\mu=1, i, \lambda_{0}$. Substituting these equalities to equality (3.1), we have $\sqrt{2} \lambda_{0}^{s_{0}} \chi_{k, \lambda_{0}}(x)=$ $\chi_{k, 1}(x)+i s_{0} \chi_{k, i}(x)$. Since $\chi_{k, \lambda_{0}}(x) \in \mathbb{T}$, we obtain

$$
\sqrt{2}=\left|\chi_{k, 1}(x)+i s_{0} \chi_{k, i}(x)\right|=\left|1+i s_{0} \chi_{k, i}(x) \overline{\chi_{k, 1}(x)}\right|
$$

and thus $i s_{0} \chi_{k, i}(x) \overline{\chi_{k, 1}(x)} \in\{ \pm i\}$. Hence $\chi_{k, i}(x)=s_{0} \chi_{k, 1}(x)$ or $\chi_{k, i}(x)=-s_{0} \chi_{k, 1}(x)$.
Now, we set

$$
L_{k,+}=\left\{x \in X: \chi_{k, i}(x)=s_{0} \chi_{k, 1}(x)\right\} \quad \text { and } \quad L_{k,-}=\left\{x \in X: \chi_{k, i}(x)=-s_{0} \chi_{k, 1}(x)\right\} .
$$

Then $L_{k,+} \cup L_{k,-}=X$ and $L_{k,+} \cap L_{k,-}=\emptyset$. The continuity of $\chi_{k, 1}$ and $\chi_{k, i}$ implies that $L_{k,+}$ and $L_{k,-}$ are closed sets in the connected space $X=\mathbb{T}^{2 n+1}$, and thus we obtain $L_{k,+}=X$ or $L_{k,-}=X$. This guarantees the existence of $s_{k} \in\{ \pm 1\}$ such that $\chi_{k, i}(x)=s_{0} s_{k} \chi_{k, 1}(x)$ for every $x \in X$.

In the rest of this paper, we use the following notation. If $a, b \in \mathbb{R}$ and $s \in\{ \pm 1\}$, we denote $a+i s b$ by $[a+i b]^{s}$, that is, for each $\lambda \in \mathbb{C},[\lambda]^{1}=\lambda$, and $[\lambda]^{-1}=\bar{\lambda}$. Clearly, $[\lambda \mu]^{s}=[\lambda]^{s}[\mu]^{s}$ for all $\lambda, \mu \in \mathbb{C}$. It is also clear that $[\lambda]^{s}=\lambda^{s}$ whenever $\lambda \in \mathbb{T}$.

Lemma 3.8. For each $f \in A^{n}(\overline{\mathbb{D}})$ and $x \in X$,

$$
\begin{equation*}
S(\tilde{f})(x)=\sum_{k=0}^{n} \frac{1}{k!}\left[\alpha_{1}(x) D^{k}(f)\left(\varphi_{k, 1}(x)\right) \chi_{k, 1}(x)\right]^{s_{k}} . \tag{3.3}
\end{equation*}
$$

Proof. Let $f \in A^{n}(\overline{\mathbb{D}})$, and let $x \in X$. By the definition of S_{*}, we have $\operatorname{Re}\left[S_{*}(\xi)(\tilde{f})\right]$ $=\operatorname{Re}[\xi(S(\tilde{f}))]$ for every $\xi \in\left(\widetilde{A^{n}}\right)^{*}$. Taking $\xi=\delta_{x}$ and $\xi=i \delta_{x}$, we derive that $\operatorname{Re}[S(\tilde{f})(x)]=\operatorname{Re}\left[S_{*}\left(\delta_{x}\right)(\tilde{f})\right]$ and $\operatorname{Im}[S(\tilde{f})(x)]=-\operatorname{Re}\left[S_{*}\left(i \delta_{x}\right)(\tilde{f})\right]$, respectively. Therefore

$$
\begin{equation*}
S(\tilde{f})(x)=\operatorname{Re}\left[S_{*}\left(\delta_{x}\right)(\tilde{f})\right]-i \operatorname{Re}\left[S_{*}\left(i \delta_{x}\right)(\tilde{f})\right] \tag{3.4}
\end{equation*}
$$

Recall that $S_{*}\left(\delta_{x}\right)=\alpha_{1}(x) \delta_{\Phi(1, x)}$ and $S_{*}\left(i \delta_{x}\right)=i s_{0} \alpha_{1}(x) \delta_{\Phi(i, x)}$. Substituting these equalities into equality (3.4), we obtain

$$
\begin{equation*}
S(\tilde{f})(x)=\operatorname{Re}\left[\alpha_{1} \tilde{f}(\Phi(1, x))\right]+i \operatorname{Im}\left[s_{0} \alpha_{1}(x) \tilde{f}(\Phi(i, x))\right] \tag{3.5}
\end{equation*}
$$

It follows from Lemmas 3.6 and 3.7 that

$$
\begin{align*}
& \Phi(1, x)=\left(\varphi_{0,1}(x), \ldots, \varphi_{n, 1}(x), \chi_{1,1}(x), \ldots, \chi_{n, 1}(x)\right) \quad \text { and } \\
& \Phi(i, x)=\left(\varphi_{0,1}(x), \ldots, \varphi_{n, 1}(x), s_{0} s_{1} \chi_{1,1}(x), \ldots, s_{0} s_{n} \chi_{n, 1}(x)\right) . \tag{3.6}
\end{align*}
$$

Keeping in mind that $s_{0}^{2}=1$, equalities (3.2), (3.5) and (3.6) imply that

$$
\begin{aligned}
S(\tilde{f})(x)= & \operatorname{Re}\left[\alpha_{1}(x) \sum_{k=0}^{n} \frac{1}{k!} D^{k}(f)\left(\varphi_{k, 1}(x)\right) \chi_{k, 1}(x)\right] \\
& +i \operatorname{Im}\left[\alpha_{1}(x) \sum_{k=0}^{n} \frac{1}{k!} D^{k}(f)\left(\varphi_{k, 1}(x)\right) s_{k} \chi_{k, 1}(x)\right] \\
= & \sum_{k=0}^{n} \frac{1}{k!}\left[\alpha_{1}(x) D^{k}(f)\left(\varphi_{k, 1}(x)\right) \chi_{k, 1}(x)\right]^{s_{k}} .
\end{aligned}
$$

This completes the proof.
For simplicity, we may write $\varphi_{k}(x)=\varphi_{k, 1}(x)$ and $\chi_{k}(x)=\chi_{k, 1}(x)$ for every $x \in X$. Then equality (3.3) is reduced to

$$
\begin{equation*}
S(\tilde{f})(x)=\sum_{k=0}^{n} \frac{1}{k!}\left[\alpha_{1}(x) D^{k}(f)\left(\varphi_{k}(x)\right) \chi_{k}(x)\right]^{s_{k}} \tag{3.7}
\end{equation*}
$$

for every $f \in A^{n}(\overline{\mathbb{D}})$ and $x \in X$.

§4. Proof of the main theorem

Let $T: A^{n}(\overline{\mathbb{D}}) \rightarrow A^{n}(\overline{\mathbb{D}})$ be a surjective, not necessarily linear, isometry on the Banach space $\left(A^{n}(\overline{\mathbb{D}}),\|\cdot\|_{\Sigma}\right)$. Define $T_{0}: A^{n}(\overline{\mathbb{D}}) \rightarrow A^{n}(\overline{\mathbb{D}})$ by

$$
T_{0}(f)=T(f)-T(\mathbf{0})
$$

for every $f \in A^{n}(\overline{\mathbb{D}})$. By the Mazur-Ulam theorem (see [5, Theorem 1.3.5]), T_{0} is a surjective real-linear isometry on $\left(A^{n}(\overline{\mathbb{D}}),\|\cdot\|_{\Sigma}\right)$. Let $S_{0}: \widetilde{A^{n}} \rightarrow \widetilde{A^{n}}$ be defined by $U \circ T_{0} \circ U^{-1}$, where U is defined by (2.9). Since U is a surjective complex-linear isometry from $A^{n}(\overline{\mathbb{D}})$ onto $\widetilde{A^{n}}, S_{0}$ is a surjective real-linear isometry on $\widetilde{A^{n}}$. Note that $S_{0}(\tilde{f})=\widetilde{T_{0}(f)}$ for every $f \in A^{n}(\overline{\mathbb{D}})$. Replacing S by S_{0} in equality (3.7), we obtain

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{k!} D^{k}\left(T_{0}(f)\right)\left(w_{k}\right) \zeta_{k}=\sum_{k=0}^{n} \frac{1}{k!}\left[\alpha_{1}(x) D^{k}(f)\left(\varphi_{k}(x)\right) \chi_{k}(x)\right]^{s_{k}} \tag{4.1}
\end{equation*}
$$

for every $f \in A^{n}(\overline{\mathbb{D}})$ and $x=\left(w_{0}, \ldots, w_{n}, \zeta_{1}, \ldots, \zeta_{n}\right) \in X$. To prove the next lemma, we need the following elementary proposition.

Proposition 4.1. Let $\lambda_{0}, \ldots, \lambda_{n} \in \mathbb{C}$, let $M \geq 0$, and assume that

$$
\begin{equation*}
\left|\lambda_{0}+\sum_{k=1}^{n} \lambda_{k} \zeta_{k}\right|=M \tag{4.2}
\end{equation*}
$$

for every $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. Then there exists $k_{0} \in \mathbb{N}_{0}^{n}$ such that $\left|\lambda_{k_{0}}\right|=M$ and $\lambda_{k}=0$ for every $k \in \mathbb{N}_{0}^{n} \backslash\left\{k_{0}\right\}$.

Proof. If $M=0$, then the proposition is clearly true. Assume that $M \neq 0$. Dividing (4.2) by M, we may assume that $M=1$. Multiplying $\lambda_{0}, \ldots, \lambda_{n}$ by a suitable constant with modulus 1 , we may also assume that λ_{0} is non-negative. Note that at least one λ_{k} is non-zero. Assume $\lambda_{k_{0}} \neq 0$. Choose $\zeta_{1}, \ldots, \zeta_{n} \in \mathbb{T}$ so that $\lambda_{k} \zeta_{k}=\left|\lambda_{k}\right|$ for every $k \in \mathbb{N}_{0}^{n}$. By assumption, we have

$$
\left|\left|\lambda_{k_{0}}\right| \pm \sum_{k \in \mathbb{N}_{0}^{n} \backslash\left\{k_{0}\right\}}\right| \lambda_{k}| |=\left|\lambda_{0}+\lambda_{k_{0}} \zeta_{k_{0}}+\sum_{k \in \mathbb{N}_{1}^{n} \backslash\left\{k_{0}\right\}} \pm \lambda_{k} \zeta_{k}\right|=1 .
$$

Set $\beta=\sum_{k \in \mathbb{N}_{0}^{n} \backslash\left\{k_{0}\right\}}\left|\lambda_{k}\right|$. Since $\left|\lambda_{k_{0}}\right|$ and β are non-negative numbers, the above equalities imply that $\left|\lambda_{k_{0}}\right|+\beta=1$, and that either $\beta-\left|\lambda_{k_{0}}\right|=1$ or $\left|\lambda_{k_{0}}\right|-\beta=1$. If we had $\beta-\left|\lambda_{k_{0}}\right|=1$, then, subtracting this equality from $\left|\lambda_{k_{0}}\right|+\beta=1$, we would obtain $2\left|\lambda_{0}\right|=0$, which contradicts $\lambda_{0} \neq 0$. Hence we have $\left|\lambda_{k_{0}}\right|-\beta=1$. Subtracting this equality from $\left|\lambda_{k_{0}}\right|+\beta=1$, we obtain $\beta=0$, which shows that $\lambda_{k}=0$ for all $k \in \mathbb{N}_{0}^{n} \backslash\left\{k_{0}\right\}$.

Lemma 4.2. \quad There exists a constant $c \in \mathbb{T}$ such that $\alpha_{1}(x)=c$ for all $x \in X$ and that $T_{0}(\mathbf{1})=c^{s_{0}}$.

Proof. Replacing f to the constant function $\mathbf{1}$ in equality (4.1), we have

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{k!} D^{k}\left(T_{0}(\mathbf{1})\right)\left(w_{k}\right) \zeta_{k}=\left[\alpha_{1}(x)\right]^{s_{0}} \tag{4.3}
\end{equation*}
$$

for every $x=(\mathbf{w}, \boldsymbol{\zeta}) \in X$. If we had $T_{0}(\mathbf{1})=\mathbf{0}$, then $D^{k}\left(T_{0}(\mathbf{1})\right)=\mathbf{0}$ for all $k \in \mathbb{N}_{0}^{n}$, and hence equality (4.3) would imply that $0=\left[\alpha_{1}(x)\right]^{s_{0}}$, which contradicts $\left|\left[\alpha_{1}(x)\right]^{s_{0}}\right|=1$. Thus there exists $w_{0,0} \in \mathbb{T}$ such that $T_{0}(\mathbf{1})\left(w_{0,0}\right) \neq 0$. By equality (4.3),

$$
\left|T_{0}(\mathbf{1})\left(w_{0,0}\right)+\sum_{k=1}^{n} \frac{1}{k!} D^{k}\left(T_{0}(\mathbf{1})\right)\left(w_{k}\right) \zeta_{k}\right|=1
$$

for every $w_{1}, \ldots, w_{n} \in \mathbb{T}$ and $\zeta_{1}, \ldots, \zeta_{n} \in \mathbb{T}$. It follows from Proposition 4.1 that $D^{k}\left(T_{0}(\mathbf{1})\right)=\mathbf{0}$ for every $k \in \mathbb{N}_{1}^{n}$. Hence $T_{0}(\mathbf{1})$ is constant on \mathbb{T}, and equality (4.3)
shows that $T_{0}(\mathbf{1})\left(w_{0}\right)=\left[\alpha_{1}(x)\right]^{s_{0}}$ for all $x=\left(w_{0}, \ldots, w_{n}, \zeta_{1}, \ldots, \zeta_{n}\right) \in X$. In particular, $\alpha_{1}: X \rightarrow \mathbb{T}$ is constant. Let $c=\alpha_{1}(x)$. Then $c \in \mathbb{T}$ and $T_{0}(\mathbf{1})\left(w_{0}\right)=[c]^{s_{0}}=c^{s_{0}}$ for all $w_{0} \in \mathbb{T}$.

By Lemma 4.2, equality (4.1) is reduced to

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{k!} D^{k}\left(T_{0}(f)\right)\left(w_{k}\right) \zeta_{k}=\sum_{k=0}^{n} \frac{1}{k!}\left[c D^{k}(f)\left(\varphi_{k}(x)\right) \chi_{k}(x)\right]^{s_{k}} \tag{4.4}
\end{equation*}
$$

for every $f \in A^{n}(\overline{\mathbb{D}})$ and every $x=\left(w_{0}, \ldots, w_{n}, \zeta_{1}, \ldots, \zeta_{n}\right) \in X$.
Lemma 4.3. Let $k \in \mathbb{N}_{0}^{n}$, and let $(\mathbf{w}, \boldsymbol{\zeta}) \in X$, where $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right) \in \mathbb{T}^{n+1}$ and $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. Then the value $\varphi_{k}(\mathbf{w}, \boldsymbol{\zeta})$ is independent of $\boldsymbol{\zeta}$.

Proof. Fix $k_{0}, k \in \mathbb{N}_{0}^{n}$. Let us prove that the value $\varphi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})$ is independent of the k-th coordinate ζ_{k} of $\boldsymbol{\zeta}$. To see this, fix $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right) \in \mathbb{T}^{n+1}$ and $\zeta_{l} \in \mathbb{T}$ for $l \in \mathbb{N}_{1}^{n} \backslash\{k\}$.

For each triple $\zeta_{0, k}, \zeta_{1, k}, \zeta_{2, k} \in \mathbb{T}$, let $x_{j}=\left(\mathbf{w}, \zeta_{1}, \ldots, \zeta_{j, k}, \ldots, \zeta_{n}\right)$ for $j=0,1,2$, and let $G_{k_{0}}=\left\{\varphi_{k_{0}}\left(x_{0}\right), \varphi_{k_{0}}\left(x_{1}\right), \varphi_{k_{0}}\left(x_{2}\right)\right\}$. First, let us show that $G_{k_{0}}$ contains at most two points. Suppose, on the contrary, that $\varphi_{k_{0}}\left(x_{0}\right), \varphi_{k_{0}}\left(x_{1}\right)$ and $\varphi_{k_{0}}\left(x_{2}\right)$ are mutually distinct. Then so are $\zeta_{0, k}, \zeta_{1, k}$ and $\zeta_{2, k}$. By Proposition 2.2, there exists $f_{0} \in A^{n}(\overline{\mathbb{D}})$ such that $D^{k_{0}}\left(f_{0}\right)\left(\varphi_{k_{0}}\left(x_{0}\right)\right) \neq 0$ and that $D^{l}\left(f_{0}\right)\left(\varphi_{l}\left(x_{j}\right)\right)=0$ for every $(j, l) \in \mathbb{N}_{0}^{2} \times \mathbb{N}_{0}^{n}$. Multiplying f_{0} by a suitable constant, we may assume that $D^{k_{0}}\left(f_{0}\right)\left(\varphi_{k_{0}}\left(x_{0}\right)\right)=k_{0}$!. By equality (4.4), we have

$$
\frac{1}{k!} D^{k}\left(T_{0}\left(f_{0}\right)\right)\left(w_{k}\right) \zeta_{j, k}+\sum_{l \in \mathbb{N}_{0}^{n} \backslash\{k\}} \frac{1}{l!} D^{l}\left(T_{0}\left(f_{0}\right)\right)\left(w_{l}\right) \zeta_{l}= \begin{cases}{\left[c \chi_{k_{0}}\left(x_{0}\right)\right]^{s_{k_{0}}}} & (j=0) \\ 0 & (j=1,2)\end{cases}
$$

Since $\zeta_{1, k} \neq \zeta_{2, k}$, the above equalities imply that $D^{k}\left(T_{0}\left(f_{0}\right)\right)\left(w_{k}\right)=0$, and then

$$
\sum_{l \in \mathbb{N}_{0}^{n} \backslash\{k\}} \frac{1}{l!} D^{l}\left(T_{0}\left(f_{0}\right)\right)\left(w_{l}\right) \zeta_{l}=0 .
$$

Hence $0=\left[c \chi_{k_{0}}\left(x_{0}\right)\right]^{s_{k_{0}}}$, which is a contradiction. Therefore $G_{k_{0}}$ contains at most two points.

Since $\varphi_{k_{0}}$ is continuous on X, the mapping $\zeta_{k} \mapsto \varphi_{k_{0}}\left(\mathbf{w}, \zeta_{1}, \ldots, \zeta_{k}, \ldots, \zeta_{n}\right)$ is continuous on \mathbb{T}. Thus its image $H_{k_{0}}=\left\{\varphi_{k_{0}}\left(\mathbf{w}, \zeta_{1}, \ldots, \zeta_{k}, \ldots, \zeta_{n}\right): \zeta_{k} \in \mathbb{T}\right\}$ is a connected set in \mathbb{T}. The previous paragraph implies that the above set contains at most two points, and thus the connectedness of $H_{k_{0}}$ shows that the set $H_{k_{0}}$ must be a singleton. This proves that the value $\varphi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})$ is independent of the k-th coordinate ζ_{k} of $\boldsymbol{\zeta}$. Since this holds for every $k \in \mathbb{N}_{1}^{n}$, it follows therefore that the value $\varphi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})$ is independent of $\zeta \in \mathbb{T}^{n}$.

By Lemma 4.3 , we may write $\varphi_{k}(\mathbf{w})=\varphi_{k}(\mathbf{w}, \boldsymbol{\zeta})$ for every $(\mathbf{w}, \boldsymbol{\zeta}) \in X$ and every $k \in \mathbb{N}_{0}^{n}$. Then we can rewrite equality (4.4) as

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{k!} D^{k}\left(T_{0}(f)\right)\left(w_{k}\right) \zeta_{k}=\sum_{k=0}^{n} \frac{1}{k!}\left[c D^{k}(f)\left(\varphi_{k}(\mathbf{w})\right) \chi_{k}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{k}} \tag{4.5}
\end{equation*}
$$

for every $f \in A^{n}(\overline{\mathbb{D}})$ and $(\mathbf{w}, \boldsymbol{\zeta}) \in X$, where $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right) \in \mathbb{T}^{n+1}$ and $\boldsymbol{\zeta}=$ $\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$.

Lemma 4.4. Let $k_{0}, k \in \mathbb{N}_{1}^{n}$, and let $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right) \in \mathbb{T}^{n+1}$. Assume that $\chi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})$ depends on the k-th coordinate ζ_{k} of $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. Then

$$
\left[\chi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{k_{0}}}=\left[\chi_{k_{0}}(\mathbf{w}, 1, \ldots, 1)\right]^{s_{k_{0}}} \zeta_{k}
$$

for every $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$.
Proof. Assume that $\chi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})$ depends on the k-th coordinate ζ_{k} of $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ $\in \mathbb{T}^{n}$. Fix $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right) \in \mathbb{T}^{n+1}$. By Proposition 2.2 , there exists $f_{0} \in A^{n}(\overline{\mathbb{D}})$ such that $D^{k_{0}}\left(f_{0}\right)\left(\varphi_{k_{0}}(\mathbf{w})\right) \neq 0$ and $D^{l}\left(f_{0}\right)\left(\varphi_{l}(\mathbf{w})\right)=0$ for every $l \in \mathbb{N}_{0}^{n} \backslash\left\{k_{0}\right\}$. Multiplying f_{0} by a suitable constant, we may assume $D^{k_{0}}\left(f_{0}\right)\left(\varphi_{k_{0}}(\mathbf{w})\right)=c^{-1} k_{0}$!. By equality (4.5), we have

$$
\sum_{l=0}^{n} \frac{1}{l!} D^{l}\left(T_{0}\left(f_{0}\right)\right)\left(w_{l}\right) \zeta_{l}=\left[\chi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{k_{0}}}
$$

for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. By Proposition 4.1, there is a unique number $l_{0} \in \mathbb{N}_{0}^{n}$ such that $D^{l_{0}}\left(T_{0}\left(f_{0}\right)\right)\left(w_{l_{0}}\right) \neq 0$, and thus $\left(1 / l_{0}!\right) \cdot D^{l_{0}}\left(T_{0}\left(f_{0}\right)\right)\left(w_{l_{0}}\right) \zeta_{l_{0}}=\left[\chi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{k_{0}}}$ for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. Since $\chi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})$ depends on ζ_{k}, the number l_{0} must be k, that is,

$$
\frac{1}{k!} D^{k}\left(T_{0}\left(f_{0}\right)\right)\left(w_{k}\right) \zeta_{k}=\left[\chi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{k_{0}}}
$$

for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. This shows that the value $\chi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})$ depends only on ζ_{k}. Thus we have

$$
\frac{1}{k!} D^{k}\left(T_{0}\left(f_{0}\right)\right)\left(w_{k}\right)=\left[\chi_{k_{0}}(\mathbf{w}, 1, \ldots, 1)\right]^{s_{k_{0}}}
$$

Hence we obtain

$$
\zeta_{k}=\frac{D^{k}\left(T_{0}\left(f_{0}\right)\right)\left(w_{k}\right) \zeta_{k}}{D^{k}\left(T_{0}\left(f_{0}\right)\right)\left(w_{k}\right)}=\frac{\left[\chi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{k_{0}}}}{\left[\chi_{k_{0}}(\mathbf{w}, 1, \ldots, 1)\right]^{s_{k_{0}}}}
$$

which implies that $\left[\chi_{k_{0}}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{k_{0}}}=\left[\chi_{k_{0}}(\mathbf{w}, 1, \ldots, 1)\right]^{s_{k_{0}}} \zeta_{k}$ for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in$ \mathbb{T}^{n}.

Lemma 4.5. Let $\mathbf{w} \in \mathbb{T}^{n+1}$. For each $k \in \mathbb{N}_{0}$, there exist a number $\sigma(k) \in \mathbb{N}_{0}^{n}$ with $\sigma(0)=0$ and a constant $\gamma_{k}(\mathbf{w}) \in \mathbb{T}$ such that

$$
\gamma_{k}(\mathbf{w}) \zeta_{k}=\left[c \chi_{\sigma(k)}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{\sigma(k)}}
$$

for every $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. Moreover, the mapping $\sigma: \mathbb{N}_{0}^{n} \rightarrow \mathbb{N}_{0}^{n}$ is bijective.
Proof. Fix $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right) \in \mathbb{T}^{n+1}$. Recall that we set $\zeta_{0}=1$ and $\chi_{0}(\mathbf{w}, \boldsymbol{\zeta})=1$ for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. Let $\sigma(0)=0$ and $\gamma_{0}(\mathbf{w})=[c]^{s_{0}}$. Then we have $\gamma_{0}(\mathbf{w}) \in \mathbb{T}$ and $\gamma_{0}(\mathbf{w}) \zeta_{0}=\left[c \chi_{\sigma(0)}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{\sigma(0)}}$ for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$.

Let $l \in \mathbb{N}_{0}^{n}$. We now assume that we have already constructed mutually distinct numbers $\sigma(0), \ldots, \sigma(l-1)$ with $\sigma(0)=0$ and constants $\gamma_{0}(\mathbf{w}), \ldots, \gamma_{l-1}(\mathbf{w}) \in \mathbb{T}$ such that $\gamma_{k}(\mathbf{w}) \zeta_{k}=\left[c \chi_{\sigma(k)}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{\sigma(k)}}$ for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$ and every $k \in \mathbb{N}_{0}^{l-1}$. Let us construct $\sigma(l)$ and $\gamma_{l}(\mathbf{w})$. By Proposition 2.4, there exists $g_{l} \in A^{n}(\overline{\mathbb{D}})$ such that $\tilde{g}_{l}(\mathbf{w}, \boldsymbol{\zeta})=\zeta_{l}$ for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. The surjectiveity of T_{0} guarantees the existence of $f_{l} \in A^{n}(\overline{\mathbb{D}})$ such that $g_{l}=T_{0}\left(f_{l}\right)$, and thus

$$
\zeta_{l}=\widetilde{T_{0}\left(f_{l}\right)}(\mathbf{w}, \boldsymbol{\zeta})=\sum_{k=0}^{n} \frac{1}{k!} D^{k}\left(T_{0}\left(f_{l}\right)\right)\left(w_{k}\right) \zeta_{k}
$$

for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. By equality (4.5) and the induction hypothesis, we have

$$
\begin{aligned}
\zeta_{l}= & \sum_{k=0}^{n} \frac{1}{k!} D^{k}\left(T_{0}\left(f_{l}\right)\right)\left(w_{k}\right) \zeta_{k}=\sum_{k=0}^{n} \frac{1}{k!}\left[c D^{k}\left(f_{l}\right)\left(\varphi_{k}(\mathbf{w})\right) \chi_{k}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{k}} \\
= & \sum_{k=0}^{l-1} \frac{1}{\sigma(k)}\left[D^{\sigma(k)}\left(f_{l}\right)\left(\varphi_{\sigma(k)}(\mathbf{w})\right]^{s_{\sigma(k)}} \gamma_{k}(\mathbf{w}) \zeta_{k}\right. \\
& \quad+\sum_{k \neq \sigma(0), \ldots, \sigma(l-1)} \frac{1}{k!}\left[c D^{k}\left(f_{l}\right)\left(\varphi_{k}(\mathbf{w})\right) \chi_{k}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{k}}
\end{aligned}
$$

for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. It follows that $\chi_{k}(\mathbf{w}, \boldsymbol{\zeta})$ depends on ζ_{l} for some $k \in$ $\mathbb{N}_{0}^{n} \backslash\{\sigma(0), \ldots, \sigma(l-1)\}$. Choose $\sigma(l) \in \mathbb{N}_{0}^{n} \backslash\{\sigma(0), \ldots, \sigma(l-1)\}$ so that $\chi_{\sigma(l)}(\mathbf{w}, \boldsymbol{\zeta})$ depends on ζ_{l}. Then Lemma 4.4 implies that

$$
\left[\chi_{\sigma(l)}(\mathbf{w}, 1, \ldots, 1)\right]^{s_{\sigma(l)}} \zeta_{l}=\left[\chi_{\sigma(l)}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{\sigma(l)}}
$$

for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. Let $\gamma_{l}(\mathbf{w})=\left[c \chi_{\sigma(l)}(\mathbf{w}, 1, \ldots, 1)\right]^{s_{\sigma(l)}}$. Then we have $\gamma_{l}(\mathbf{w}) \in \mathbb{T}$ and $\gamma_{l}(\mathbf{w}) \zeta_{l}=\left[c \chi_{\sigma(l)}(\mathbf{w}, \boldsymbol{\zeta})\right]^{s_{\sigma(l)}}$ for all $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$.

Now, we have proved the first part of the lemma. By construction, the mapping $\sigma: \mathbb{N}_{0}^{n} \rightarrow \mathbb{N}_{0}^{n}$ is injective. Since \mathbb{N}_{0}^{n} is a finite set, the mapping σ must be bijective.

Lemma 4.6. Let $f \in A^{n}(\overline{\mathbb{D}})$. Then

$$
\begin{equation*}
T_{0}(f)\left(w_{0}\right)=\left[c f\left(\varphi_{0}(\mathbf{w})\right)\right]^{s_{0}} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{k!} D^{k}\left(T_{0}(f)\right)\left(w_{k}\right)=\frac{1}{\sigma(k)!}\left[D^{\sigma(k)}(f)\left(\varphi_{\sigma(k)}(\mathbf{w})\right)\right]^{s_{\sigma(k)}} \gamma_{k}(\mathbf{w}) \tag{4.7}
\end{equation*}
$$

for every $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right) \in \mathbb{T}^{n+1}$. In particular, the value $\varphi_{0}\left(w_{0}, \ldots, w_{n}\right)$ is independent of $w_{1}, \ldots, w_{n} \in \mathbb{T}$.

Proof. Fix $f \in A^{n}(\overline{\mathbb{D}})$ and $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right) \in \mathbb{T}^{n}$. By Lemma 4.5 and equality (4.5),

$$
\begin{aligned}
\left(T_{0}(f)\left(w_{0}\right)\right. & \left.-\left[c f\left(\varphi_{0}(\mathbf{w})\right)\right]^{s_{0}}\right) \\
& +\sum_{k=1}^{n}\left(\frac{1}{k!} D^{k}\left(T_{0}(f)\right)\left(w_{k}\right)-\frac{1}{\sigma(k)!}\left[D^{\sigma(k)}(f)\left(\varphi_{\sigma(k)}(\mathbf{w})\right)\right]^{s_{\sigma(k)}} \gamma_{k}(\mathbf{w})\right) \zeta_{k}=0
\end{aligned}
$$

for every $\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n}$. Applying Proposition 4.1 with $M=0$, we obtain equalities (4.6) and (4.7), as desired.

By Lemma 4.6, we may write $\varphi(z)=\varphi_{0}\left(z, w_{1}, \ldots, w_{n}\right)$. Then $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ is a surjective continuous mapping. Moreover, equality (4.6) is now reduced to

$$
\begin{equation*}
T_{0}(f)(z)=[c f(\varphi(z))]^{s_{0}} \quad\left(\forall f \in A^{n}(\overline{\mathbb{D}}), \forall z \in \mathbb{T}\right) \tag{4.8}
\end{equation*}
$$

Proof of Theorem 1.1. Let $\iota \in A^{n}(\overline{\mathbb{D}})$ be the function defined by $\iota(z)=z$ for every $z \in \overline{\mathbb{D}}$. Let $\tau=c^{-s_{0}} T_{0}(\iota) \in A^{n}(\overline{\mathbb{D}})$. Then equality (4.8) shows that $c^{s_{0}} \tau(z)=T_{0}(\iota)(z)=[c \varphi(z)]^{s_{0}}$ for every $z \in \mathbb{T}$, and thus $\varphi(z)=[\tau(z)]^{s_{0}}$ for every $z \in \mathbb{T}$. Substituting this into equality (4.8), we have

$$
\begin{equation*}
T_{0}(f)(z)=\left[c f\left([\tau(z)]^{s_{0}}\right)\right]^{s_{0}} \quad\left(\forall f \in A^{n}(\overline{\mathbb{D}}), \forall z \in \mathbb{T}\right) \tag{4.9}
\end{equation*}
$$

Since \mathbb{T} is the Shilov boundary of the disk algebra $A(\overline{\mathbb{D}})$, equality (4.9) holds for every $z \in \overline{\mathbb{D}}$. Note that $\tau \in A^{n}(\overline{\mathbb{D}})$ and $|\tau(z)|=|\varphi(z)|=1$ for every $z \in \mathbb{T}$. It follows from the maximum modulus principle that $\tau(\overline{\mathbb{D}}) \subset \overline{\mathbb{D}}$.

Since T_{0}^{-1} is also a surjective real-linear isometry on $\left(A^{n}(\overline{\mathbb{D}}),\|\cdot\|_{\Sigma}\right)$, applying the above argument to T_{0}^{-1}, there exist $c^{\prime} \in \mathbb{T}, \rho \in A^{n}(\overline{\mathbb{D}})$ with $\rho(\overline{\mathbb{D}}) \subset \overline{\mathbb{D}}$, and $s_{0}^{\prime} \in\{ \pm 1\}$ such that

$$
\begin{equation*}
T_{0}^{-1}(g)(z)=\left[c^{\prime} g\left([\rho(z)]^{s_{0}^{\prime}}\right)\right]^{s_{0}^{\prime}} \quad\left(\forall g \in A^{n}(\overline{\mathbb{D}}), \forall z \in \mathbb{T}\right) \tag{4.10}
\end{equation*}
$$

Substituting $g=T_{0}(\mathbf{1})$ into equality (4.10), we have $1=\left[c^{\prime} T_{0}(\mathbf{1})\left([\rho(z)]^{s_{0}^{\prime}}\right)\right]^{s_{0}^{\prime}}$. Since $T_{0}(\mathbf{1})=c^{s_{0}}$, we obtain $1=\left[c^{\prime} c^{s_{0}}\right]^{s_{0}^{\prime}}$. Substituting $g=T_{0}(\iota)$ into (4.10), we have

$$
\begin{aligned}
z & =T_{0}^{-1}\left(T_{0}(\iota)\right)(z)=\left[c^{\prime} T_{0}(\iota)\left([\rho(z)]^{s_{0}^{\prime}}\right)\right]^{s_{0}^{\prime}}=\left[c^{\prime} c^{s_{0}} \tau\left([\rho(z)]^{s_{0}^{\prime}}\right)\right]^{s_{0}^{\prime}} \\
& =\left[c^{\prime} c^{s_{0}}\right]^{s_{0}^{\prime}}\left[\tau\left([\rho(z)]^{s_{0}^{\prime}}\right)\right]^{s_{0}^{\prime}}=\left[\tau\left([\rho(z)]^{s_{0}^{\prime}}\right)\right]^{s_{0}^{\prime}}
\end{aligned}
$$

for every $z \in \mathbb{T}$. This proves that $\overline{\mathbb{D}} \subset \tau(\overline{\mathbb{D}})$. Consequently $\tau(\overline{\mathbb{D}})=\overline{\mathbb{D}}$.
Let us show that $\tau: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$ is injective. Choose $z_{1}, z_{2} \in \overline{\mathbb{D}}$, and assume that $\tau\left(z_{1}\right)=\tau\left(z_{2}\right)$. Let $g_{0}=T_{0}^{-1}(\iota)$. Then

$$
z_{1}=T_{0}\left(g_{0}\right)\left(z_{1}\right)=\left[c g_{0}\left(\left[\tau\left(z_{1}\right)\right]^{s_{0}}\right)\right]^{s_{0}}=\left[c g_{0}\left(\left[\tau\left(z_{2}\right)\right]^{s_{0}}\right)\right]^{s_{0}}=T_{0}\left(g_{0}\right)\left(z_{2}\right)=z_{2}
$$

Hence τ is injective.
We have proved that τ is a continuous bijection on the compact Hausdorff space $\overline{\mathbb{D}}$, and thus it is a homeomorphism on $\overline{\mathbb{D}}$. Since φ maps \mathbb{T} onto \mathbb{T}, so is τ. Hence $\left.\tau\right|_{\mathbb{D}}: \mathbb{D} \rightarrow \mathbb{D}$ is a homeomorphism. It is well-known that such a function must be of the form

$$
\tau(z)=\lambda \frac{z-a}{1-\bar{a} z} \quad(z \in \mathbb{D})
$$

for some $\lambda \in \mathbb{T}$ and $a \in \mathbb{D}$ (see [15, Theorem 12.6]).
Finally, let us show that $a=0$. Note that τ is analytic in the open set containing $\overline{\mathbb{D}}$. Since $T_{0}(\iota)(z)=c^{s_{0}} \tau(z)$ for every $z \in \mathbb{T}$, the chain rule implies that

$$
D^{1}\left(T_{0}(\iota)\right)(z)=i c^{s_{0}} \tau^{\prime}(z) z=i c^{s_{0}} \lambda z \frac{1-|a|^{2}}{(1-\bar{a} z)^{2}}
$$

for every $z \in \mathbb{T}$, where τ^{\prime} is the derivative as a function of one complex variable. Thus

$$
1-|a|^{2}=\left|D^{1}\left(T_{0}(\iota)\right)(z)\right| \cdot|1-\bar{a} z|^{2}
$$

for every $z \in \mathbb{T}$. On the other hand, by equality (4.7), we see that $\left|D^{1}\left(T_{0}(\iota)\right)(w)\right|=\frac{1}{\sigma(1)!}$. Hence we have

$$
\sigma(1)!\cdot\left(1-|a|^{2}\right)=|1-\bar{a} z|^{2}
$$

for every $z \in \mathbb{T}$. By Proposition 4.1, we obtain $a=0$.
Now we have $\tau(z)=\lambda z$ for every $z \in \overline{\mathbb{D}}$. Equality (4.9) is now reduced to

$$
T_{0}(f)(z)=\left[c f\left([\lambda z]^{s_{0}}\right)\right]^{s_{0}} \quad\left(\forall f \in A^{n}(\overline{\mathbb{D}}), \forall z \in \overline{\mathbb{D}}\right)
$$

Therefore we obtain

$$
\begin{array}{ll}
T(f)(z)=T(\mathbf{0})(z)+c f(\lambda z) & \left(\forall f \in A^{n}(\overline{\mathbb{D}}), \forall z \in \overline{\mathbb{D}}\right), \quad \text { or } \\
T(f)(z)=T(\mathbf{0})(z)+\overline{c f(\overline{\lambda z})} & \left(\forall f \in A^{n}(\overline{\mathbb{D}}), \forall z \in \overline{\mathbb{D}}\right),
\end{array}
$$

as desired.

Acknowledgements We thank the anonymous referee for the helpful comments and suggestions on this manuscript.

References

[1] S. Banach, Théorie des Opérations Linéaires, Monografje Matematyczne, Warsaw, 1932.
[2] A. Browder, Introduction to Function Algebras, W.A. Benjamin, Inc., New YorkAmsterdam, 1969.
[3] N. Dunford and J. Schwartz, Linear Operators (Part I), Interscience Publishers, Inc., New York, 1958.
[4] P.L. Duren, Theory of H^{p} spaces, Academic Press, New York-London, 1970.
[5] R. Fleming and J. Jamison, Isometries on Banach spaces: function spaces, Chapman \& Hall/CRC, Boca Raton, FL, 2003.
[6] O. Hatori and T. Miura, Real-linear isometries between function algebras. II, Cent. Eur. J. Math. 11 (2013), no. 10, 1838-1842.
[7] K. Jarosz, Isometries in semisimple, commutative Banach algebras, Proc. Amer. Math. Soc. 94 (1985), no. 1, 65-71.
[8] K. Kawamura, A Banach-Stone type theorem for C^{1}-function spaces over the circle, Topology Proc. 53 (2019), 15-26.
[9] K. Kawamura, H. Koshimizu and T. Miura, Norms on $C^{1}([0,1])$ and their isometries, Acta Sci. Math. (Szeged) 84 (2018), no. 1-2, 239-261.
[10] S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris, 194 (1932), 946-948.
[11] T. Miura and N. Niwa, Surjective isometries on a Banach space of analytic functions on the open unit disc, Nihonkai Math. J. 29 (2018), no. 1, 53-67.
[12] T. Miura and N. Niwa, Surjective isometries on a Banach space of analytic functions on the open unit disc, II, Nihonkai Math. J. 31 (2020), 75-91.
[13] W.P. Novinger and D.M. Oberlin, Linear isometries of some normed spaces of analytic functions, Canad. J. Math. 37 (1985), no. 1, 62-74.
[14] N.V. Rao and A.K. Roy, Linear isometries of some function spaces, Pacific J. Math. 38 (1971), 177-192.
[15] W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill Book Co., New York, 1987.

[^0]: Received March 31, 2022. Revised June 23, 2022.
 2020 Mathematics Subject Classification(s): 46B04, 46J15
 Key Words: extreme point, function space, surjective isometry.
 The first author partially supported by JSPS KAKENHI Grant Number JP 21J21512. The second author partially supported by JSPS KAKENHI Grant Number JP $20 K 03650$
 *Graduate School of Science and Technology, Niigata University, Niigata 950-2181 Japan. e-mail: enami@m.sc.niigata-u.ac.jp
 ${ }^{* *}$ Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181 Japan. e-mail: miura@math.sc.niigata-u.ac.jp

