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Surjective isometries on an algebra of analytic

functions with Cn-boundary values

By

Yuta Enami∗ and Takeshi Miura∗∗

Abstract

Let D, D and T be the open unit disk, closed unit disk and unit circle in C. Let An(D)
denote the algebra of all continuous functions f on D which are analytic in D and whose

restrictions f |T to T are of class Cn. For each f ∈ An(D), the k-th derivative of f |T as a

function on T is denoted byDk(f). We characterize surjective, not necessarily linear, isometries

on An(D) with respect to the norm ∥f∥D +
∑n

k=1 ∥D
k(f)∥T/k!, where ∥ · ∥D and ∥ · ∥T are the

supremum norms on D and T, respectively.

§ 1. Introduction

A mapping T : E1 → E2 between two normed spaces (E1, ‖ · ‖1) and (E2, ‖ · ‖2) is
called an isometry if

‖T (f)− T (g)‖2 = ‖f − g‖1

for every f, g ∈ E1. We emphasize that we do not assume linearity for T . The char-

acterization of isometries is a classical problem. Banach [1] characterized surjective,

not necessarily linear, isometries on the Banach space CR(K) of all continuous real-

valued functions on a compact metric space K with the supremum norm. After that,

characterizations of surjective linear isometries were given for various Banach spaces.

For the space C1[0, 1] of all continuously differentiable functions on [0, 1], Rao and Roy
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[14] determined the general form of surjective complex-linear isometries on C1[0, 1] with

respect to the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞, where ‖ · ‖∞ stands for the supremum

norm. Novinger and Oberlin [13] consider the space Sp of all analytic functions on the

open unit disk whose derivatives belong to the Hardy space Hp. They gave a charac-

terization of complex-linear isometries on Sp (1 ≤ p < ∞) with respect to the norm

‖f‖ = ‖f‖∞ + ‖f ′‖Hp . Jarosz investigated a class of unital semisimple commutative

Banach algebras with the so-called natural norm. Jarosz [7] proved that every surjective

unital complex-linear isometry with respect to the natural norm is actually an isometry

with respect to the supremum norm. Note that the norm ‖f‖ = ‖f‖∞+‖f ′‖∞ becomes

a natural norm on C1[0, 1].

One of the most interesting results on study of isometries was proved by Mazur

and Ulam. The Mazur-Ulam theorem [10] states that every surjective isometry between

normed spaces must be (real) affine. Applying the Mazur-Ulam theorem, surjective,

not necessarily linear, isometries were studied on various normed spaces by many re-

searchers. Hatori and the second author [6] gave the characterization of surjective

isometries between function algebras. Kawamura, Koshimizu and the second author [9]

introduced a unified framework to treat several norms on C1[0, 1], and gave the char-

acterization of surjective isometries on C1[0, 1] with respect to various norms including

‖f‖ = ‖f‖∞ + ‖f ′‖∞. Concerning such a framework, Kawamura [8] also considers the

algebra C1(T) of all continuously differentiable functions on the unit circle T, and gave

the characterization of surjective isometries on C1(T) with respect to norms belonging

to the framework. The second author and Niwa [11, 12] introduce the Novinger-Oberlin

type space SA of all analytic functions whose derivatives belong to the disk algebra. The

space SA admits several norms. They determined general forms of surjective isometries

with respect to some norms, including ‖f‖ = ‖f‖∞ + ‖f ′‖∞.

§ 1.1. Notations and Main results

In this paper, let N and N0 be the sets of all positive integers and non-negative

integers, respectively. For m1,m2 ∈ N0 with m1 ≤ m2, we set Nm2
m1

= {k ∈ N0 : m1 ≤
k ≤ m2}.

For a compact Hausdorff spaceK, let C(K) denote the Banach space of all complex-

valued continuous functions on K, with the supremum norm

‖f‖K = sup
x∈K

|f(x)| (f ∈ C(X)).

The constant functions on K taking the value only 0 and 1 are denoted by 0 and 1,

respectively. Let T be the unit circle in the complex plane C. For n ∈ N, a function

f : T → C is said to be of class Cn if the function F on R defined by F (t) = f(e2πit) is

of class Cn in the usual sense. We denote by Cn(T) the subalgebra of C(T) consisting
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of all functions of class Cn. Let D be the open unit disk, and let D = D∪T be the closed

unit disk. The disk algebra A(D) is the Banach algebra of all continuous functions on D
which are analytic in D, with the supremum norm ‖ · ‖D. Note that, by the maximum

modulus principle, ‖f‖D = ‖f‖T for every f ∈ A(D).
Throughout this paper, we fix n ∈ N. The main object of this paper is the algebra

An(D) = {f ∈ A(D) : f |T ∈ Cn(T)}.

For each f ∈ An(D) and k ∈ Nn
1 , the k-th derivative of f |T at e2πit0 ∈ T is denoted by

Dk(f)(e2πit0) =

(
1

2π

)k
dk

dtk

∣∣∣∣
t=t0

f(e2πit).

Let D0(f) = f |T. Since f |T is a function of class Cn, the function Dk(f) : T → C is

continuous on T for every k ∈ Nn
0 . Note that Dk satisfies the Leibniz rule

Dk(fg) =
k∑

j=0

(
k

j

)
Dk−j(f)Dj(g)

for every f, g ∈ An(D). For each f ∈ An(D), set

‖f‖Σ = ‖f‖D +

n∑
k=1

1

k!
‖Dk(f)‖T =

n∑
k=0

1

k!
‖Dk(f)‖T.

Then (An(D), ‖ · ‖Σ) is a unital commutative Banach algebra. The following theorem is

the main result of this paper.

Theorem 1.1. Suppose that T : An(D) → An(D) is a surjective, not necessarily

linear, isometry with respect to the norm ‖·‖Σ. Then there exist constants c, λ ∈ T such

that

T (f)(z) = T (0)(z) + cf(λz) (∀f ∈ An(D),∀z ∈ D), or

T (f)(z) = T (0)(z) + cf(λz) (∀f ∈ An(D),∀z ∈ D).

Conversely, every mapping T : An(D) → An(D) which is one of the above forms

is a surjective isometry on An(D) with respect to the norm ‖ · ‖Σ, where T (0) is an

arbitrary function in An(D).

§ 1.2. Some remarks

Note first that (An(D), ‖ · ‖Σ) is a unital semisimple commutative Banach algebra.

Moreover, the norm ‖ · ‖Σ is a natural norm in the sense of Jarosz [7]. Hence it is
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relatively easy to determine the general form of surjective complex-linear isometry T

on An(D) with T (1) = 1 by the result of Jarosz [7, Theorem and Proposition 2]. On

the other hand, our study is more complicated. In fact, we will investigate surjective

isometry T on An(D), which need not be complex-linear nor unital, that is, T (1) = 1

in Theorem 1.1.

The second author and Niwa [11] introduce the space SA of all analytic functions f

on D whose derivative f ′ is continuously extended to D, where f ′ is the usual derivative

with respect to the complex variable. It is well-known that a holomorphic function

f : D → C is continuously extended to D with absolutely continuous boundary value

if and only if the derivative f ′ belongs to the Hardy space H1 (see [4, Theorem 3.11]).

As a consequence of the fact, every function in SA is continuously extended to D. The
continuous extension of f will be denoted by f̂ . Now, for each f ∈ SA, we set

‖f‖Σ,SA
= ‖f̂‖D + ‖f̂ ′‖D.

Then the space SA becomes a unital commutative Banach algebra. The Banach al-

gebra SA is isometrically isomorphic to A1(D). More precisely, we have the following

proposition, which can be verified by the same argument as [4, Theorem 3.11].

Proposition 1.2. A holomorphic function f : D → C is continuously extended

to D and its extension f̂ belongs to A1(D) if and only if f belongs to SA. Moreover, if

f ∈ SA, then ‖f̂‖Σ = ‖f‖Σ,SA
.

In [12], a characterization of surjective, not necessarily linear, isometries on SA

with respect to the norm ‖ · ‖Σ,SA
was given. Hence Theorem 1.1 is considered as a

generalization of the result.

§ 2. Preliminaries and embedding of An(D) into C(X)

§ 2.1. Polynomials

First, we consider each polynomial p as a function on D. It is obvious that p ∈
An(D). Let p(z) = a0 + · · · + amzm. For k ∈ N, let p(k) denote the k-th formal

derivative of p, that is, p(k)(z) = kk ak + · · · + mk amzm−k, where mk is the falling

factorial m(m − 1) · · · (m − k + 1). Note that Dk(p) = p(k)|T does not hold. In fact,

Dk(ιj)(z) = ikjkzj , where ιj(z) = zj . More generally, we see that Dk(p) can be

represented as

Dk(p)(z) = ik
m∑
j=1

jkajz
j .(2.1)
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On the other hand, the chain rule implies that D1(p)(z) = ip(1)(z) and D2(p)(z) =

−p(2)(z)z2 − p(1)(z)z. By induction, we see that Dk(p) can also be represented as

Dk(p)(z) =
k∑

j=1

cjp
(j)(z)zj ,(2.2)

where c1, . . . , ck are constants independent of the polynomial p.

For m ∈ N0, let Mm+1,n+1(T) denote the set of all (m+1)× (n+1) matrices whose

entries belong to T.

Proposition 2.1. Let m ∈ N0. Let W = [wj,k]j,k ∈ Mm+1,n+1(T), and assume

that w0,0 6∈ {w1,0, . . . , wm,0}. Then there exists a polynomial p such that p(w0,0) 6= 0

and Dk(p)(wj,k) = 0 for every (j, k) 6= (0, 0), that is,
p(w0,0) D1(p)(w0,1) · · · Dn(p)(w0,n)

p(w1,0) D1(p)(w1,1) · · · Dn(p)(w1,n)
...

...
. . .

...

p(wm,0)D
1(p)(wm,1) · · · Dn(p)(wm,n)

 =


∗ 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 .(2.3)

Proof. Let I0 = {(j, k) ∈ Nm
0 × Nn

0 : wj,k 6= w0,0}, and let

q(z) =
∏

(j,k)∈I0

(z − wj,k)
k+1.

By definition, q(w0,0) 6= 0. If (j, k) ∈ I0, then the formal derivatives q(z), q(1)(z), . . . ,

q(k)(z) have the factor (z−wj,k), and thus, by equality (2.2), we have Dk(q)(wj,k) = 0.

Hence we obtain q(w0,0) 6= 0 = Dk(q)(wj,k) for every (j, k) ∈ I0. If, in addition,

Dk(q)(w0,0) = 0 for every k ∈ Nn
1 , then q satisfies the condition (2.3). In this cases, q

is the desired polynomial.

Now, assume that Dk(q)(w0,0) 6= 0 for some k ∈ Nn
1 . Let k1 ∈ Nn

1 be the smallest

k ∈ Nn
1 such that Dk(q)(w0,0) 6= 0. Then

D1(q)(w0,0) = · · · = Dk1−1(q)(w0,0) = 0 6= Dk1(q)(w0,0).

In particular, Dk(q)(w0,0) = 0 for all k ∈ Nk1−1
1 . Let r(z) = q(z) − 2q(w0,0). Since

r(w0,0) = −q(w0,0) 6= 0, we have (qr)(w0,0) 6= 0. Moreover, if (j, k) ∈ I0, then the

Leibniz rule shows that Dk(qr)(wj,k) = 0. Note that Dk(r)(w0,0) = Dk(q)(w0,0) = 0

for every k ∈ Nk1−1
1 , and that Dk1(r)(w0,0) = Dk1(q)(w0,0) 6= 0. By the Leibniz rule,

Dk(qr)(w0,0) = 0 for every k ∈ Nk1−1
1 . We also have

Dk1(qr)(w0,0) = q(w0,0) ·Dk1(r0)(w0,0) +Dk1(q)(w0,0) · r(w0,0)

= q(w0,0) ·Dk1(q)(w0,0)−Dk1(q)(w0,0) · q(w0,0) = 0.

-
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Hence we obtain Dk(qr)(w0,0) = 0 for all k ∈ Nk1
1 . This shows that the polynomial qr

has not only the same properties as q, but also Dk1(qr)(w0,0) = 0. Finally, applying

the above argument repeatedly, at most finitely many times, we obtain a polynomial p

satisfying condition (2.3) . The proof is completed.

Proposition 2.2. Let m ∈ N0, and let k0 ∈ Nn
0 . Let W = [wj,k]j,k ∈

Mm+1,n+1(T), and assume that w0,k0 6∈ {w1,k0 , . . . , wm,k0}. Then there exists a polyno-

mial p such that Dk0(p)(w0,k0
) 6= 0 and Dk(p)(wj,k) = 0 for every (j, k) 6= (0, k0), that

is, 
p(w0,0) · · · Dk0(p)(w0,k0

) · · · Dn(p)(w0,n)

p(w1,0) · · · Dk0(p)(w1,k0
) · · · Dn(p)(w1,n)

...
. . .

...
. . .

...

p(wm,0) · · · Dk0(p)(wm,k0
) · · · Dn(p)(wm,n)

 =


0 · · · ∗ · · · 0
0 · · · 0 · · · 0
...
. . .

...
. . .

...

0 · · · 0 · · · 0

 .(2.4)

Proof. Let I1 = {(j, k) ∈ Nm
0 × Nn

0 : wj,k 6= w0,k0
}, and let {z1, . . . , zm′} be

an enumeration of {wj,k : (j, k) ∈ I1}. Applying Proposition 2.1 to the following

(m′ + 1)× (n+ 1) matrix

W ′ =


w0,k0

w0,k0
· · · w0,k0

z1 z1 · · · z1
...

...
. . .

...

zm′ zm′ · · · zm′

 ,

we see that there exists a polynomial q such thatq(w0,k0
) 6= 0 = Dl(q)(w0,k0

) (∀l ∈ Nn
1 ),

Dl(q)(wj,k) = 0 (∀(j, k) ∈ I1,∀l ∈ Nn
0 ).

Assume that we have constructed a polynomial r such that

Dk0(r)(w0,k0
) = 1 6= 0 = Dl(r)(w0,k0

)(2.5)

for every l ∈ Nn
0 \ {k0}. Set p(z) = q(z)r(z). Since q(w0,k0

) 6= 0 = Dl(q)(w0,k0
) for

every l ∈ Nn
1 , the Leibniz rule implies that Dk0(p)(w0,k0) 6= 0 = Dk(p)(w0,k0) for every

k ∈ Nn
0 \ {k0}. Moreover, if (j, k) ∈ I1, then Dl(q)(wj,k) = 0 for every l ∈ Nn

0 , and thus

the Leibniz rule implies that Dk(p)(wj,k) = 0. Hence p(z) satisfies the condition (2.4).

Now, it remains to construct a polynomial r satisfying the condition (2.5). It follows

from equality (2.1) that a polynomial r(z) = a0+a1z+ · · ·+anz
n satisfies the condition

(2.5) if and only if the coefficients of r satisfy the system of n+ 1 linear equations

n∑
j=0

jkwj
0,k0

aj =

i−k0 (k = k0),

0 (otherwise).

□ 
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The system of linear equations has a solution (a0, . . . , an) ∈ Cn+1. Indeed, the deter-

minant ∣∣∣∣∣∣∣∣∣∣∣∣

1w0,k0 2w2
0,k0

. . . nwn
0,k0

0w0,k0
22w2

0,k0
. . . n2wn

0,k0

0w0,k0 23w2
0,k0

. . . n3wn
0,k0

...
...

...
. . .

...

0w0,k0 2
nw2

0,k0
. . . nnwn

0,k0

∣∣∣∣∣∣∣∣∣∣∣∣
= w

n(n+1)
2

0,k0

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

0 1 2 . . . n

0 1 22 . . . n2

...
...
...
. . .

...

0 1 2n . . . nn

∣∣∣∣∣∣∣∣∣∣∣∣
is non-zero, because the right-hand side of the above equality is a determinant of a

Vandermonde matrix whose columns are the geometric sequence with pairwise distinct

common ratios. Hence we can find a polynomial r satisfying the condition (2.5). The

proof is completed.

Proposition 2.3. Let k0 ∈ Nn
0 , let wk0 , . . . , wn ∈ T, and assume that wk0 6∈

{wk0+1, . . . , wn}. For each ε > 0 and each neighborhood V of wk0
in T, there exists a

polynomial p such that
‖Dl(p)‖T < ε (l ∈ Nk0−1

0 ),

‖Dk0(p)‖T = Dk0(p)(wk0
) = k0!,

‖Dk0(p)‖T\V < ε,

|Dl(p)(wl)| < ε (l ∈ Nn
k0+1),

(2.6)

where ‖Dk0(p)‖T\V is the supremum of |Dk0(p)| on T \ V .

Proof. For each m ∈ N, consider the polynomial

pm(z) =
(−i)k0

2m

m∑
j=0

1

(m+ j)k0

(
m

j

)
(wk0

z)m+j .

Let us show that the sequence {pm}m has the following properties
‖Dl1(pm)‖T → 0 (m → ∞),

‖Dk0(pm)‖T = Dk0(pm)(wk0) = 1 (∀m ∈ N),

‖Dk0(pm)‖T\V → 0 (m → ∞),

|Dl2(pm)(wl2)| → 0 (m → ∞)

(2.7)

for every neighborhood V of wk0 in T, l1 ∈ Nk0−1
0 and l2 ∈ Nn

k0+1.

First, by equality (2.1), we have

Dl(pm)(z) =
(−i)k0−l

2m

m∑
j=0

1

(m+ j)k0−l

(
m

j

)
(wk0

z)m+j

□ 
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for every l ∈ Nk0
0 . In particular,

Dk0(pm)(z) =

(
wk0z + (wk0z)

2

2

)m

.

For each l ∈ Nk0
0 and w ∈ T,

|Dl(pm)(w)| ≤ 1

2m

m∑
j=0

1

(m+ j)k0−l

(
m

j

)
≤ 1

2m

m∑
j=0

1

mk0−l

(
m

j

)
=

1

mk0−l
,

and thus ‖Dl(pm)‖T ≤ 1/mk0−l. This shows that ‖Dl(pm)‖T → 0 as m → ∞ for every

l ∈ Nk0−1
0 , and that ‖Dk0(pm)‖T ≤ 1 for every m ∈ N. Since Dk0(pm)(wk0

) = 1, we

obtain ‖Dk0(pm)‖T = Dk0(pm)(wk0
) = 1. Let V be a neighborhood of wk0

in T. Since

sup
z∈T\V

∣∣∣∣wk0
z + (wk0

z)2

2

∣∣∣∣ < 1,

we have ‖Dk0(pm)‖T\V → 0 as m → ∞.

Let us verify the rest of the property in (2.7). Let l ∈ Nn−k0
1 . By equality (2.2),

Dk0+l(pm)(z) = il
l∑

j=1

cj(D
k0(pm))(j)(z)zj ,

where c1, . . . , cl are constants independent of m. Thus, to show that Dk0+l(pm)(z) → 0

as m → ∞, it suffices to prove that (Dk0(pm))(j)(wk0+l) → 0 as m → ∞ for every

j ∈ Nl
1. Fix j0 ∈ Nl

1. It is easy to see that for each positive integer m with j0 < m, the

j0-th formal derivative of Dk0(pm) can be written as

(Dk0(pm))(j0)(z) =

j0∑
j=1

mj qj(z)

(
wk0

z + (wk0
z)2

2

)m−j

,

where q1, . . . , qj0 are polynomials independent of m. By our hypothesis on wk0 , we have

|wk0
wk0+l + (wk0

wk0+l)
2|/2 < 1, and thus

mj qj(wk0+l)

(
wk0

wk0+l + (wk0
wk0+l)

2

2

)m−j

→ 0 (m → ∞)

for every j ∈ Nj0
0 , and thus (Dk0(pm))(j0)(wk0+l) → 0 as m → ∞, as desired.

Now, let ε > 0, and let V be a neighborhood of wk0
in T. Choose m ∈ N so large

that

‖Dl1(pm)‖T, ‖Dk0(pm)‖T\V , |Dl2(pm)(wl2)| <
1

k0!
ε

for every l1 ∈ Nk0−1
0 and l2 ∈ Nn

k0+1. Then p = k0!pm satisfies the condition (2.6). □ 
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§ 2.2. Embedding of An(D) into C(X)

LetX = T2n+1 be the compact Hausdorff space endowed with the product topology.

We will write each element in X as x = (w, ζ), where w = (w0, . . . , wn) ∈ Tn+1 and

ζ = (ζ1, . . . , ζn) ∈ Tn. For simplicity of notation, we always assume ζ0 = 1. For each

f ∈ An(D), define f̃ : X → C by

f̃(x) = f(w0) +
n∑

k=1

1

k!
Dk(f)(wk)ζk =

n∑
k=0

1

k!
Dk(f)(wk)ζk(2.8)

for every x = (w0, . . . , wn, ζ1, . . . , ζn) ∈ X. It is obvious that f̃ is continuous on X.

Note that 1̃ is the constant function on X taking the value only 1. In this notation,

Proposition 2.2 is reformulated as follows:

Proposition 2.4. Let k0 ∈ Nn
0 , and let w0, . . . ,wm ∈ Tn+1. For j ∈ Nm

0 , write

wj = (wj,0, . . . , wj,n). Assume that the k0-th coordinate w0,k0
of w0 is distinct from

those of w1, . . . ,wm, namely, w0,k0 6∈ {w1,k0 , . . . , wm,k0}. Then there exists f ∈ An(D)
such that

f̃(w0, ζ) = ζk0
6= 0 = f̃(w1, ζ) = · · · = f̃(wm, ζ)

for all ζ = (ζ1, . . . , ζn) ∈ Tn. In particular, if ζ0, . . . , ζm ∈ Tn, and if xj = (wj , ζj),

then f can be chosen so that f̃(x0) = 1 6= 0 = f̃(x1) = · · · = f̃(xm).

Proof. By Proposition 2.2, we can find f ∈ An(D) such that Dk0(f)(w0,k0
) 6= 0

and Dk(f)(wj,k) = 0 for every (j, k) ∈ (Nm
0 × Nn

0 ) \ {(0, k0)}. Multiplying a constant

if needed, we may assume that Dk0(f)(w0,k0
) = k0!. Then equality (2.8) shows that

f̃(w0, ζ) = ζk0
and f̃(w1, ζ) = · · · = f̃(wm, ζ) = 0 for all ζ = (z1, . . . , ζn).

Assume that ζ0, . . . , ζm ∈ Tn, and that xj = (wj , ζj). Replacing f with the

product of f and the complex conjugate of the k0-th coordinate of ζ0, we have f̃(x0) =

1 6= 0 = f̃(x1) = · · · = f̃(xm).

Let Ãn = {f̃ : f ∈ An(D)}, and define U : An(D) → Ãn by

U(f) = f̃ (f ∈ An(D)).(2.9)

Note that Ãn is a complex linear subspace of C(X), and hence Ãn is a normed space

with the supremum norm ‖ · ‖X .

Lemma 2.5. The mapping U , defined by (2.9), is a surjective complex-linear

isometry from (An(D), ‖ · ‖Σ) onto (Ãn, ‖ · ‖X).

□ 
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Proof. By definition, it is obvious that U is surjective and complex-linear. To

show that U is an isometry, fix f ∈ An(D). For each x = (w0, . . . , wn, ζ1, . . . , ζn) ∈ X,

|f̃(x)| =

∣∣∣∣∣
n∑

k=0

1

k!
Dk(f)(wk)ζk

∣∣∣∣∣ ≤
n∑

k=0

1

k!
|Dk(f)(wk)| ≤

n∑
k=0

1

k!
‖Dk(f)‖T = ‖f‖Σ,

and thus we obtain ‖f̃‖X ≤ ‖f‖Σ. On the other hand, for each k ∈ Nn
0 , choose w0,k ∈ T

so that |Dk(f)(w0,k)| = ‖Dk(f)‖T. For each k ∈ Nn
0 , we set

ζ0,k =
f(w0,0)

|f(w0,0)|

/
Dk(f)(w0,k)

|Dk(f)(w0,k)|

Here f(w0,0)/|f(w0,0)| and Dk(f)(w0,k)/|Dk(f)(w0,k)| read 1 if f(w0,0) = 0 and

Dk(f)(w0,k) = 0, respectively. We also set ζ0,0 = 1. Let x0 = (w0,1, . . . , w0,n, ζ0,1, . . . ,

ζ0,n) ∈ X. Since Dk(f)(w0,k)ζ0,k has the same argument as f(w0,0), we have

‖f‖Σ =
n∑

k=0

1

k!
‖Dk(f)‖T =

n∑
k=0

1

k!
|Dk(f)(w0,k)| =

∣∣∣∣∣
n∑

k=0

1

k!
Dk(f)(w0,k)ζ0,k

∣∣∣∣∣
= |f̃(x0)| ≤ ‖f̃‖X .

Therefore we obtain ‖f̃‖X = ‖f‖Σ, which proves that U is an isometry, as desired.

Lemma 2.6. The subspace Ãn of C(X) separates the points of X, that is, for

each pair of distinct points x0, x1 ∈ X there exists a function f̃ ∈ Ãn such that f̃(x0) 6=
f̃(x1).

Proof. Let x0, x1 ∈ X be distinct points, and write xj = (wj,0, . . . , wj,n, ζj,1, . . . ,

ζj,n) for j = 0, 1. Assume that w0,k0 6= w1,k0 for some k0 ∈ Nn
0 . By Proposition 2.4,

there exists f0 ∈ An(D) such that f̃0(x0) 6= 0 = f̃0(x1).

Now, assume that w0,k = w1,k for every k ∈ Nn
0 . Then ζ0,k1 6= ζ1,k1 for some

k1 ∈ Nn
1 . Set w = (w0,0, . . . , w0,n) = (w1,0, . . . , w1,n). By Proposition 2.4, there

exists f1 ∈ An(D) such that f̃1(w, ζ) = ζk1
for all ζ = (ζ1, . . . , ζn). Hence we have

f̃1(x0) = ζ0,k1
6= ζ1,k1

= f̃1(x1). The proof is completed.

We have proved that Ãn is a uniformly closed subspace of C(X) which separates

the points of X and contains the constant function 1̃. In the rest of this section, we

consider the set ext((Ãn)∗1) of all extreme points of the unit ball (Ãn)∗1 of the dual space

(Ãn)∗ of Ãn.

For each x ∈ X, the point evaluation δx at x is a functional δx : Ãn → C defined by

δx(f̃) = f̃(x) for every f̃ ∈ Ãn. By the Arens-Kelley theorem (see [3, Lemma V.8.6]),

□ 

□ 
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every extreme point of the unit ball (Ãn)∗1 is of the form λδx for some x ∈ X and λ ∈ T.
Recall that the Choquet boundary of Ãn is the set

Ch(Ãn) = {x ∈ X : δx ∈ ext((Ãn)∗1)}.

Then the set ext((Ãn)∗1) can be written as

ext((Ãn)∗1) = {λδx : λ ∈ T, x ∈ Ch(Ãn)}.(2.10)

Let x ∈ X. Recall that a representing measure for δx is a positive regular Borel

measure µ on X such that

δx(f̃) =

∫
X

fdµ

for every f̃ ∈ Ãn. Since ‖δx‖ = δx(1̃) = 1, we see that every representing measure µ

must be a probability measure. Note also that there exists at least one representing

measure for δx, namely, the Dirac measure concentrated at x. The Choquet boundary

of Ãn can be characterized in terms of representing measures.

Proposition 2.7. Assume that each representing measure µ for δx is concen-

trated at x. Then δx is an extreme point of (Ãn)∗1, that is, x ∈ Ch(Ãn).

Proof. Assume that δx is written as δx = (1 − t)ξ1 + tξ2 for some ξ1, ξ2 ∈ (Ãn)∗1
and t ∈ (0, 1). Then |ξ1(1̃)|, |ξ2(1̃)| ≤ 1, and that 1 = δx(1̃) = (1 − t)ξ1(1̃) + tξ2(1̃).

Since 1 is an extreme point of the closed unit disk D, we have ξ1(1̃) = ξ2(1̃) = 1.

It is well-known that the Dirac measure concentrated at x is the only representing

measure for δx if and only if δx is an extreme point of the weak ∗-compact convex set

{ξ ∈ (Ãn)∗1 : ξ(1̃) = 1} (see [2, Theorem 2.2.8]). Hence δx = ξ1 = ξ2, that is, δx is an

extreme point of (Ãn)∗1.

Consider the subset X0 of X = T2n+1 consisting of all those points (w0, . . . , wn,

ζ1, . . . , ζn) such that w0, . . . , wn are mutually distinct:

X0 = {(w0, . . . , wn, ζ1, . . . , ζn) ∈ X : wj 6= wk (j 6= k)}.(2.11)

It is clear thatX0 is dense inX. Let us show that every point inX0 is an extreme point of

the dual ball (Ãn)∗1. To see this, fix an arbitrary point x0 = (w0,0, . . . , w0,n, ζ0,1, . . . , ζ0,n)

∈ X0. For simplicity of notation, we set ζ0,0 = 1. In view of Proposition 2.7, it suffices

to show that any representing measure µ for δx0
is concentrated at x0.

Lemma 2.8. Any representing measure µ for δx0
is concentrated on the set

{w0,0} × · · · × {w0,n} × Tn.

□ 
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Proof. For each k ∈ Nn
0 , we setX

(k) = Tk×{w0,k}×· · ·×{w0,n}×Tn andX(n+1) =

X = T2n+1. Let us show that each representing measure µ for δx0 is concentrated on

X(k0) for every k0 ∈ Nn
0 by induction. Fix an arbitrary representing measure µ for δx0

.

If k0 = n+ 1, then µ is concentrated on X(n+1) = T2n+1 by definition. Assume that µ

is concentrated on X(k0+1) for k0 ∈ Nn
0 ; we will prove that it is concentrated on X(k0).

Let W be an arbitrary open neighborhood of w0,k0
in T, and set

QW = Tk0 ×W × {w0,k0+1} × · · · × {w0,n} × Tn, and

QW c = Tk0 ×W c × {w0,k0+1} × · · · × {w0,n} × Tn,

where W c = T \W . Note that QW c is the complement of QW in X(k0+1). Let us show

that µ(QW ) = 1. To see this, choose ε with 0 < ε < 1/n arbitrarily. By Proposition

2.3, there exists f0 ∈ An(D) such that
‖Dl(f0)‖T < ε (l ∈ Nk0−1

0 ),

‖Dk0(f0)‖T = Dk0(f1)(w0,k0
) = k0!,

‖Dk0(f0)‖T\W < ε,

|Dl(f0)(w0,l)| < ε (l ∈ Nn
k0+1).

It follows from equality (2.8) that ‖f̃0‖X(k0+1) < nε+ 1 and ‖f̃0‖QWc < (n+ 1)ε. Also

we have ∣∣∣∣∣∣
∑

k∈Nn
0 \{k0}

1

k!
Dk(f0)(w0,k)ζ0,k

∣∣∣∣∣∣ < nε < 1.

Since µ is a representing measure for δx0
concentrated on X(k0+1), we have∫

X(k0+1)

f̃0dµ = δx0
(f̃0) = ζ0,k0

+
∑

k∈Nn
0 \{k0}

1

k!
Dk(f0)(w0,k)ζ0,k,

and thus

1− nε < |δx0
(f̃0)| =

∣∣∣∣∫
X(k0+1)

f̃0dµ

∣∣∣∣ ≤ ∣∣∣∣∫
QW

f̃0dµ

∣∣∣∣+ ∣∣∣∣∫
QWc

f̃0dµ

∣∣∣∣
< (nε+ 1)µ(QW ) + (n+ 1)εµ(QW c).

Since ε is arbitrary, we have 1 ≤ µ(QW ) ≤ µ(X) = 1, that is, µ(QW ) = 1.

Now, let {Wn}n be a decreasing sequence of open neighborhoods of w0,k0 in T whose

intersection is precisely the singleton {w0,k0
}. Then {QWn

} is a decreasing sequence of

sets of measure 1 with respect to µ and
⋂∞

n=1 QWn = X(k0). Therefore µ(X(k0)) = 1,

that is, µ is concentrated on X(k0). Consequently, we have proved that µ is concentrated

on X(k) for every k ∈ Nn
0 , in particular, it is concentrated on X(0) = {w0,0} × · · · ×

{w0,n} × Tn. □ 
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Lemma 2.9. Any representing measure µ for δx0
is concentrated at the point

x0.

Proof. For simplicity, setX ′ = {w0,0}×· · ·×{w0,n}×Tn andw0 = (w0,0, . . . , w0,n).

Fix k0 ∈ Nn
1 . By Proposition 2.4, there exists f1 ∈ An(D) such that f̃1(w0, ζ) = ζk0

for every ζ = (ζ1, . . . , ζn) ∈ Tn. Since, by lemma 2.8, the measure µ concentrated on

{w0,0} × · · · × {wn} × Tn, we have

ζ0,k0
= δx0

(f̃1) =

∫
X′

f̃1dµ =

∫
X′

ζk0
dµ(w, ζ),

and thus ∫
X′

(1− ζ0,k0
ζk0

)dµ(w, ζ) = 0.

Since µ is a positive measure, it follows that∫
X′

(1− Re[ζ0,k0
ζk0

])dµ(w, ζ) = 0.

Hence the measure of the set {(w, ζ) ∈ X ′ : Re[ζ0,k0
ζk0

] 6= 1} with respect to µ must be

zero. This proves that µ is concentrated on {w0,0}×· · ·×{w0,n}×Tk0−1×{ζ0,k0}×Tn−k0 .

Since this holds for every k0 ∈ Nn
1 , it follows that µ is concentrated at x0.

It now follows from Proposition 2.7 and Lemma 2.9 that X0 is contained in the

Choquet boundary Ch(Ãn). Set

B = {λδx : λ ∈ T, x ∈ X}.(2.12)

It is easy to see that B is a closed subset of the unit ball (Ãn)∗1 of the dual space of Ãn,

and thus it is a compact Hausdorff space with respect to the relative weak ∗-topology.
Let T×X be the compact Hausdorff space endowed with the product topology. Define

h : T×X → B by

h(λ, x) = λδx ((λ, x) ∈ T×X).(2.13)

The proof of the following lemma is the same argument as [12, Lemma 2.7].

Lemma 2.10. The mapping h : T ×X → B is a homeomorphism from T ×X

onto B. In particular, h(T× Ch(Ãn)) = ext((Ãn)∗1).

Proof. By definition, h is surjective. Since Ãn separates the points of X, and since

Ãn contains the constant function 1̃, we see that h is injective.

□ 
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To show that h is continuous, choose sequences {λn}n ⊂ T and {xk}k ⊂ X con-

verging to λ ∈ T and x ∈ X, respectively. For each f̃ ∈ Ãn,

h(λk, xk)(f̃) = λkf̃(xk) → λf̃(x) = h(λ, x)(f̃) (k → ∞).

Thus the sequence {h(λk, xk)}k converges to h(λ, x) with respect to the relative weak

∗-topology, which proves the continuity of h. Since h is a bijective continuous mapping

from the compact space T × X onto the Hausdorff space B, it must be a homeomor-

phism from T×X onto B. In particular, equality (2.10) shows that h(T× Ch(Ãn)) =

ext((Ãn)∗1).

§ 3. Surjective real-linear isometries on (Ãn, ‖ · ‖X)

In this section, we will characterize the surjective real-linear isometries on the

Banach space (Ãn, ‖ · ‖X). Throughout this section, fix a surjective real-linear isometry

S : Ãn → Ãn. Define S∗ : (Ãn)∗ → (Ãn)∗ by

S∗(ξ)(f̃) = Re[ξ(S(f̃))]− iRe[ξ(S(if̃))]

for every ξ ∈ (Ãn)∗ and f̃ ∈ Ãn. Note that S∗ is a well-defined surjective real-

linear isometry on (Ãn)∗ with respect to the operator norm. In particular, we have

S∗(ext((Ãn)∗1)) = ext((Ãn)∗1). Proof of the next lemma is the same as that of [12,

Lemma 2.8].

Lemma 3.1. Let B be the compact Hausdorff space defined by (2.12). Then

S∗(B) = B.

Proof. Let h : T×X → B be the mapping defined by (2.13). Then h(T×Ch(Ãn))

= ext((Ãn)∗1) = S∗(ext((Ãn)∗1)). Since X0 ⊂ Ch(Ãn) ⊂ X, where X0 is the subset of

X = T2n+1 defined by (2.11), we have

S∗(h(T×X0)) ⊂ S∗(h(T× Ch(Ãn))) = S∗(ext((Ãn)∗1))

= h(T× Ch(Ãn)) ⊂ h(T×X) = B.

Recall that the closure X0 of X0 coincides with X, since X0 is dense in X. It follows

from Lemma 2.10 that

B = h(T×X) = h(T×X0) = h(T×X0),

where h(T×X0) is the closure of h(T × X0) in B with respect to the relative weal

∗-topology. Since S∗ is a surjective real-linear isometry on (Ãn)∗ with respect to the

operator norm, S∗ is a homeomorphism with respect to the weak ∗-topology, and thus

S∗(B) = S∗

(
h(T×X0)

)
= S∗(h(T×X0)) ⊂ B.

□ 
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Hence S∗(B) ⊂ B. Applying the same argument to S−1
∗ , we see that S−1

∗ (B) ⊂ B. Thus
S∗(B) = B.

Definition 3.2. Let p1 : T × X → T and p2 : T × X → X be the canonical

projections. Define α : T×X → T and Φ : T×X → X by

α = p1 ◦ h−1 ◦ S∗ ◦ h, and Φ = p2 ◦ h−1 ◦ S∗ ◦ h.

Note that α and Φ are surjective continuous mappings. By definition, for each

(λ, x) ∈ T × X, we have (S∗ ◦ h)(λ, x) = h(α(λ, x),Φ(λ, x)), that is, S∗(λδx) =

α(λ, x)δΦ(λ,x). Now for each λ ∈ T, let αλ(x) = α(λ, x). Then

S∗(λδx) = αλ(x)δΦ(λ,x) (∀(λ, x) ∈ T×X).

Lemma 3.3. There exists s0 ∈ {±1} such that αi(x) = is0α1(x) for all x ∈ X.

Proof. First, let us show that for each x ∈ X, αi(x) = iα1(x) or αi(x) = −iα1(x).

Fix x ∈ X. For λ0 = 1+i√
2
∈ T, the real-linearity of S∗ implies that

√
2αλ0

(x)δΦ(λ0,x) = S∗(
√
2λ0δx) = S∗(δx) + S∗(iδx) = α1(x)δΦ(1,x) + αi(x)δΦ(i,x).

Hence we have
√
2αλ0

(x)δΦ(λ0,x) = α1(x)δΦ(1,x) +αi(x)δΦ(i,x). Evaluating this equality

at 1̃, we obtain
√
2αλ0

(x) = α1(x) + αi(x). Since |αλ0
(x)| = 1, we have

√
2 = |α1(x) + αi(x)| = |1 + αi(x)α1(x)|,

and thus αi(x)α1(x) ∈ {±i}. Therefore αi(x) = iα1(x) or αi(x) = −iα1(x).

Now, we set

K+ = {x ∈ X : αi(x) = iα1(x)} and K− = {x ∈ X : αi(x) = −iα1(x)}.

Then K+ ∪K− = X and K+ ∩K− = ∅. The continuity of α1 and αi implies that K+

and K− are closed in X. Since X = T2n+1 is connected, K+ = X or K− = X. This

proves the existence of s0 ∈ {±1} such that αi(x) = is0α1(x) for every x ∈ X.

Lemma 3.4. For each λ = r + it ∈ T with r, t ∈ R, and each x ∈ X,

λs0 f̃(Φ(λ, x)) = rf̃(Φ(1, x)) + is0tf̃(Φ(i, x))(3.1)

for every f̃ ∈ Ãn.

Proof. Let λ = r + it ∈ T with r, t ∈ R, and let x ∈ X. Since S∗ is real-linear,

αλ(x)δΦ(λ,x) = S∗(λδx) = rS∗(δx) + tS∗(iδx) = rα1(x)δΦ(1,x) + is0tα1(x)δΦ(i,x),

□ 

□ 
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and thus αλ(x)δΦ(λ,x) = α1(x)(rδΦ(1,x) + is0tδΦ(i,x)). Evaluating this equality at 1̃, we

have αλ(x) = α1(x)(r+is0t). Since λ ∈ T and s0 ∈ {±1}, we have λs0 = r+is0t. Hence

αλ(x) = λs0α1(x). This implies that λs0δΦ(λ,x) = rδΦ(1,x) + is0tδΦ(i,x). Therefore we

obtain λs0 f̃(Φ(λ, x)) = rf̃(Φ(1, x)) + is0tf̃(Φ(i, x)) for every f̃ ∈ Ãn.

Definition 3.5. For j ∈ N2n
0 , let qj : X = T2n+1 → T be the j-th canonical

projection. Define φ0, . . . , φn, χ1, . . . , χn : T×X → T by

φk = qk ◦ Φ (k ∈ Nn
0 ), and χk = qn+k ◦ Φ (k ∈ Nn

1 ),

that is, Φ(λ, x) = (φ0(λ, x), . . . , φn(λ, x), χ1(λ, x), . . . , χn(λ, x)) for every (λ, x) ∈ T×X.

For simplicity of notation, we set χ0(λ, x) = 1 for all (λ, x) ∈ T×X.

Note that the mappings φ0, . . . , φn, χ1, . . . , χn are surjective continuous mappings

for every k ∈ Nn
1 . For each λ ∈ T and x ∈ X, we set φk,λ(x) = φk(λ, x) and χk,λ(x) =

χk(λ, x). Then Φ(λ, x) = (φ0,λ(x), . . . , φn,λ(x), χ1,λ(x), . . . , χn,λ(x)), and thus equality

(2.8) implies that

f̃(Φ(λ, x)) =
n∑

k=0

1

k!
Dk(f)(φk,λ(x))χk,λ(x)(3.2)

for every f ∈ An(D) and (λ, x) ∈ T×X.

Lemma 3.6. Let k ∈ Nn
0 , and let λ ∈ T. Then φk,λ(x) = φk,1(x) for every

x ∈ X.

Proof. Fix x ∈ X. Let us show that φk,λ(x) ∈ {φk,1(x), φk,i(x)} for every k ∈ Nn
0

and every λ ∈ T. Suppose, on the contrary, that φk0,λ0
(x) 6∈ {φk0,1(x), φk0,i(x)} for

some k0 ∈ Nn
0 and λ0 ∈ T. By Proposition 2.4, there exists f0 ∈ An(D) such that

f̃0(Φ(λ0, x)) = 1 6= 0 = f̃0(Φ(1, x)) = f̃0(Φ(i, x)).

Substituting these equalities into equality (3.1), we obtain λs0
0 = 0, which is a contra-

diction. Consequently, φk,λ(x) ∈ {φk,1(x), φk,i(x)} for every k ∈ Nn
0 and λ ∈ T.

Now, we see that, for fixed x ∈ X and k ∈ Nn
0 , the mapping λ 7→ φk,λ(x) is a contin-

uous map from the connected space T onto {φk,1(x), φk,i(x)}. Hence {φk,1(x), φk,i(x)}
must be a singleton, that is, φk,λ(x) = φk,1(x) for every k ∈ Nn

0 , λ ∈ T and x ∈ X.

Lemma 3.7. For each k ∈ Nn
1 , there exists sk ∈ {±1} such that χk,i(x) =

s0skχk,1(x) for every x ∈ X.

Proof. Fix x ∈ X and k ∈ Nn
1 . Let us show that χk,i(x) = χk,1(x) or χk,i(x) =

−χk,1(x). Let λ0 = 1+i√
2
. By Lemma 3.6, Φ(µ, x) = (φ0,1(x), . . . , φn,1(x), χ1,µ(x), . . . ,

□ 

□ 
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χn,µ(x)) for µ = 1, i, λ0. Applying Proposition 2.4 with w0 = (φ0,1(x), . . . , φn,1(x)), we

can find f ∈ An(D) such that

f̃(φ0,1(x), . . . , φn,1(x), ζ) = ζk

for every ζ = (ζ1, . . . , ζn) ∈ Tn. In particular, we have f̃0(Φ(µ, x)) = χk,µ(x) for every

µ = 1, i, λ0. Substituting these equalities to equality (3.1), we have
√
2λs0

0 χk,λ0
(x) =

χk,1(x) + is0χk,i(x). Since χk,λ0
(x) ∈ T, we obtain

√
2 = |χk,1(x) + is0χk,i(x)| = |1 + is0χk,i(x)χk,1(x)|,

and thus is0χk,i(x)χk,1(x) ∈ {±i}. Hence χk,i(x) = s0χk,1(x) or χk,i(x) = −s0χk,1(x).

Now, we set

Lk,+ = {x ∈ X : χk,i(x) = s0χk,1(x)} and Lk,− = {x ∈ X : χk,i(x) = −s0χk,1(x)}.

Then Lk,+ ∪ Lk,− = X and Lk,+ ∩ Lk,− = ∅. The continuity of χk,1 and χk,i implies

that Lk,+ and Lk,− are closed sets in the connected space X = T2n+1, and thus we

obtain Lk,+ = X or Lk,− = X. This guarantees the existence of sk ∈ {±1} such that

χk,i(x) = s0skχk,1(x) for every x ∈ X.

In the rest of this paper, we use the following notation. If a, b ∈ R and s ∈ {±1},
we denote a+ isb by [a+ ib]s, that is, for each λ ∈ C, [λ]1 = λ, and [λ]−1 = λ. Clearly,

[λµ]s = [λ]s[µ]s for all λ, µ ∈ C. It is also clear that [λ]s = λs whenever λ ∈ T.

Lemma 3.8. For each f ∈ An(D) and x ∈ X,

S(f̃)(x) =
n∑

k=0

1

k!
[α1(x)D

k(f)(φk,1(x))χk,1(x)]
sk .(3.3)

Proof. Let f ∈ An(D), and let x ∈ X. By the definition of S∗, we have Re[S∗(ξ)(f̃)]

= Re[ξ(S(f̃))] for every ξ ∈ (Ãn)∗. Taking ξ = δx and ξ = iδx, we derive that

Re[S(f̃)(x)] = Re[S∗(δx)(f̃)] and Im[S(f̃)(x)] = −Re[S∗(iδx)(f̃)], respectively. There-

fore

S(f̃)(x) = Re[S∗(δx)(f̃)]− iRe[S∗(iδx)(f̃)].(3.4)

Recall that S∗(δx) = α1(x)δΦ(1,x) and S∗(iδx) = is0α1(x)δΦ(i,x). Substituting these

equalities into equality (3.4), we obtain

S(f̃)(x) = Re[α1f̃(Φ(1, x))] + i Im[s0α1(x)f̃(Φ(i, x))].(3.5)

□ 
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It follows from Lemmas 3.6 and 3.7 that

Φ(1, x) = (φ0,1(x), . . . , φn,1(x), χ1,1(x), . . . , χn,1(x)) and

Φ(i, x) = (φ0,1(x), . . . , φn,1(x), s0s1χ1,1(x), . . . , s0snχn,1(x)).
(3.6)

Keeping in mind that s20 = 1, equalities (3.2), (3.5) and (3.6) imply that

S(f̃)(x) = Re

[
α1(x)

n∑
k=0

1

k!
Dk(f)(φk,1(x))χk,1(x)

]

+ i Im

[
α1(x)

n∑
k=0

1

k!
Dk(f)(φk,1(x))skχk,1(x)

]

=
n∑

k=0

1

k!
[α1(x)D

k(f)(φk,1(x))χk,1(x)]
sk .

This completes the proof.

For simplicity, we may write φk(x) = φk,1(x) and χk(x) = χk,1(x) for every x ∈ X.

Then equality (3.3) is reduced to

S(f̃)(x) =
n∑

k=0

1

k!
[α1(x)D

k(f)(φk(x))χk(x)]
sk(3.7)

for every f ∈ An(D) and x ∈ X.

§ 4. Proof of the main theorem

Let T : An(D) → An(D) be a surjective, not necessarily linear, isometry on the

Banach space (An(D), ‖ · ‖Σ). Define T0 : An(D) → An(D) by

T0(f) = T (f)− T (0)

for every f ∈ An(D). By the Mazur-Ulam theorem (see [5, Theorem 1.3.5]), T0 is

a surjective real-linear isometry on (An(D), ‖ · ‖Σ). Let S0 : Ãn → Ãn be defined

by U ◦ T0 ◦ U−1, where U is defined by (2.9). Since U is a surjective complex-linear

isometry from An(D) onto Ãn, S0 is a surjective real-linear isometry on Ãn. Note that

S0(f̃) = T̃0(f) for every f ∈ An(D). Replacing S by S0 in equality (3.7), we obtain

n∑
k=0

1

k!
Dk(T0(f))(wk)ζk =

n∑
k=0

1

k!
[α1(x)D

k(f)(φk(x))χk(x)]
sk(4.1)

for every f ∈ An(D) and x = (w0, . . . , wn, ζ1, . . . , ζn) ∈ X. To prove the next lemma,

we need the following elementary proposition.

□ 
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Proposition 4.1. Let λ0, . . . , λn ∈ C, let M ≥ 0, and assume that∣∣∣∣∣λ0 +
n∑

k=1

λkζk

∣∣∣∣∣ = M(4.2)

for every ζ = (ζ1, . . . , ζn) ∈ Tn. Then there exists k0 ∈ Nn
0 such that |λk0 | = M and

λk = 0 for every k ∈ Nn
0 \ {k0}.

Proof. If M = 0, then the proposition is clearly true. Assume that M 6= 0.

Dividing (4.2) by M , we may assume that M = 1. Multiplying λ0, . . . , λn by a suitable

constant with modulus 1, we may also assume that λ0 is non-negative. Note that at

least one λk is non-zero. Assume λk0
6= 0. Choose ζ1, . . . , ζn ∈ T so that λkζk = |λk|

for every k ∈ Nn
0 . By assumption, we have∣∣∣∣∣∣|λk0 | ±

∑
k∈Nn

0 \{k0}

|λk|

∣∣∣∣∣∣ =
∣∣∣∣∣∣λ0 + λk0ζk0 +

∑
k∈Nn

1 \{k0}

±λkζk

∣∣∣∣∣∣ = 1.

Set β =
∑

k∈Nn
0 \{k0} |λk|. Since |λk0 | and β are non-negative numbers, the above equal-

ities imply that |λk0
| + β = 1, and that either β − |λk0

| = 1 or |λk0
| − β = 1. If we

had β − |λk0 | = 1, then, subtracting this equality from |λk0 | + β = 1, we would ob-

tain 2|λ0| = 0, which contradicts λ0 6= 0. Hence we have |λk0
| − β = 1. Subtracting

this equality from |λk0 | + β = 1, we obtain β = 0, which shows that λk = 0 for all

k ∈ Nn
0 \ {k0}.

Lemma 4.2. There exists a constant c ∈ T such that α1(x) = c for all x ∈ X

and that T0(1) = cs0 .

Proof. Replacing f to the constant function 1 in equality (4.1), we have

n∑
k=0

1

k!
Dk(T0(1))(wk)ζk = [α1(x)]

s0(4.3)

for every x = (w, ζ) ∈ X. If we had T0(1) = 0, then Dk(T0(1)) = 0 for all k ∈ Nn
0 , and

hence equality (4.3) would imply that 0 = [α1(x)]
s0 , which contradicts |[α1(x)]

s0 | = 1.

Thus there exists w0,0 ∈ T such that T0(1)(w0,0) 6= 0. By equality (4.3),∣∣∣∣∣T0(1)(w0,0) +
n∑

k=1

1

k!
Dk(T0(1))(wk)ζk

∣∣∣∣∣ = 1

for every w1, . . . , wn ∈ T and ζ1, . . . , ζn ∈ T. It follows from Proposition 4.1 that

Dk(T0(1)) = 0 for every k ∈ Nn
1 . Hence T0(1) is constant on T, and equality (4.3)

□ 
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shows that T0(1)(w0) = [α1(x)]
s0 for all x = (w0, . . . , wn, ζ1, . . . , ζn) ∈ X. In particular,

α1 : X → T is constant. Let c = α1(x). Then c ∈ T and T0(1)(w0) = [c]s0 = cs0 for all

w0 ∈ T.

By Lemma 4.2, equality (4.1) is reduced to

n∑
k=0

1

k!
Dk(T0(f))(wk)ζk =

n∑
k=0

1

k!
[cDk(f)(φk(x))χk(x)]

sk(4.4)

for every f ∈ An(D) and every x = (w0, . . . , wn, ζ1, . . . , ζn) ∈ X.

Lemma 4.3. Let k ∈ Nn
0 , and let (w, ζ) ∈ X, where w = (w0, . . . , wn) ∈ Tn+1

and ζ = (ζ1, . . . , ζn) ∈ Tn. Then the value φk(w, ζ) is independent of ζ.

Proof. Fix k0, k ∈ Nn
0 . Let us prove that the value φk0(w, ζ) is independent of

the k-th coordinate ζk of ζ. To see this, fix w = (w0, . . . , wn) ∈ Tn+1 and ζl ∈ T for

l ∈ Nn
1 \ {k}.
For each triple ζ0,k, ζ1,k, ζ2,k ∈ T, let xj = (w, ζ1, . . . , ζj,k, . . . , ζn) for j = 0, 1, 2,

and let Gk0 = {φk0(x0), φk0(x1), φk0(x2)}. First, let us show that Gk0 contains at most

two points. Suppose, on the contrary, that φk0
(x0), φk0

(x1) and φk0
(x2) are mutually

distinct. Then so are ζ0,k, ζ1,k and ζ2,k. By Proposition 2.2, there exists f0 ∈ An(D)
such that Dk0(f0)(φk0

(x0)) 6= 0 and that Dl(f0)(φl(xj)) = 0 for every (j, l) ∈ N2
0 ×Nn

0 .

Multiplying f0 by a suitable constant, we may assume that Dk0(f0)(φk0
(x0)) = k0!. By

equality (4.4), we have

1

k!
Dk(T0(f0))(wk)ζj,k +

∑
l∈Nn

0 \{k}

1

l!
Dl(T0(f0))(wl)ζl =

[cχk0
(x0)]

sk0 (j = 0),

0 (j = 1, 2).

Since ζ1,k 6= ζ2,k, the above equalities imply that Dk(T0(f0))(wk) = 0, and then∑
l∈Nn

0 \{k}

1

l!
Dl(T0(f0))(wl)ζl = 0.

Hence 0 = [cχk0
(x0)]

sk0 , which is a contradiction. Therefore Gk0
contains at most two

points.

Since φk0
is continuous on X, the mapping ζk 7→ φk0

(w, ζ1, . . . , ζk, . . . , ζn) is con-

tinuous on T. Thus its image Hk0 = {φk0(w, ζ1, . . . , ζk, . . . , ζn) : ζk ∈ T} is a connected

set in T. The previous paragraph implies that the above set contains at most two points,

and thus the connectedness of Hk0
shows that the set Hk0

must be a singleton. This

proves that the value φk0
(w, ζ) is independent of the k-th coordinate ζk of ζ. Since this

holds for every k ∈ Nn
1 , it follows therefore that the value φk0

(w, ζ) is independent of

ζ ∈ Tn.

□ 

□ 
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By Lemma 4.3, we may write φk(w) = φk(w, ζ) for every (w, ζ) ∈ X and every

k ∈ Nn
0 . Then we can rewrite equality (4.4) as

n∑
k=0

1

k!
Dk(T0(f))(wk)ζk =

n∑
k=0

1

k!
[cDk(f)(φk(w))χk(w, ζ)]sk(4.5)

for every f ∈ An(D) and (w, ζ) ∈ X, where w = (w0, . . . , wn) ∈ Tn+1 and ζ =

(ζ1, . . . , ζn) ∈ Tn.

Lemma 4.4. Let k0, k ∈ Nn
1 , and let w = (w0, . . . , wn) ∈ Tn+1. Assume that

χk0
(w, ζ) depends on the k-th coordinate ζk of ζ = (ζ1, . . . , ζn) ∈ Tn. Then

[χk0
(w, ζ)]sk0 = [χk0

(w, 1, . . . , 1)]sk0 ζk

for every ζ = (ζ1, . . . , ζn) ∈ Tn.

Proof. Assume that χk0
(w, ζ) depends on the k-th coordinate ζk of ζ = (ζ1, . . . , ζn)

∈ Tn. Fix w = (w0, . . . , wn) ∈ Tn+1. By Proposition 2.2, there exists f0 ∈ An(D) such
that Dk0(f0)(φk0

(w)) 6= 0 and Dl(f0)(φl(w)) = 0 for every l ∈ Nn
0 \ {k0}. Multiplying

f0 by a suitable constant, we may assume Dk0(f0)(φk0(w)) = c−1k0!. By equality (4.5),

we have

n∑
l=0

1

l!
Dl(T0(f0))(wl)ζl = [χk0

(w, ζ)]sk0

for all ζ = (ζ1, . . . , ζn) ∈ Tn. By Proposition 4.1, there is a unique number l0 ∈ Nn
0 such

that Dl0(T0(f0))(wl0) 6= 0, and thus (1/l0!) ·Dl0(T0(f0))(wl0)ζl0 = [χk0
(w, ζ)]sk0 for all

ζ = (ζ1, . . . , ζn) ∈ Tn. Since χk0(w, ζ) depends on ζk, the number l0 must be k, that is,

1

k!
Dk(T0(f0))(wk)ζk = [χk0

(w, ζ)]sk0

for all ζ = (ζ1, . . . , ζn) ∈ Tn. This shows that the value χk0(w, ζ) depends only on ζk.

Thus we have

1

k!
Dk(T0(f0))(wk) = [χk0(w, 1, . . . , 1)]sk0

Hence we obtain

ζk =
Dk(T0(f0))(wk)ζk
Dk(T0(f0))(wk)

=
[χk0

(w, ζ)]sk0

[χk0
(w, 1, . . . , 1)]sk0

,

which implies that [χk0
(w, ζ)]sk0 = [χk0

(w, 1, . . . , 1)]sk0 ζk for all ζ = (ζ1, . . . , ζn) ∈
Tn. □ 
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Lemma 4.5. Let w ∈ Tn+1. For each k ∈ N0, there exist a number σ(k) ∈ Nn
0

with σ(0) = 0 and a constant γk(w) ∈ T such that

γk(w)ζk = [cχσ(k)(w, ζ)]sσ(k)

for every ζ = (ζ1, . . . , ζn) ∈ Tn. Moreover, the mapping σ : Nn
0 → Nn

0 is bijective.

Proof. Fix w = (w0, . . . , wn) ∈ Tn+1. Recall that we set ζ0 = 1 and χ0(w, ζ) = 1

for all ζ = (ζ1, . . . , ζn) ∈ Tn. Let σ(0) = 0 and γ0(w) = [c]s0 . Then we have γ0(w) ∈ T
and γ0(w)ζ0 = [cχσ(0)(w, ζ)]sσ(0) for all ζ = (ζ1, . . . , ζn) ∈ Tn.

Let l ∈ Nn
0 . We now assume that we have already constructed mutually distinct

numbers σ(0), . . . , σ(l − 1) with σ(0) = 0 and constants γ0(w), . . . , γl−1(w) ∈ T such

that γk(w)ζk = [cχσ(k)(w, ζ)]sσ(k) for all ζ = (ζ1, . . . , ζn) ∈ Tn and every k ∈ Nl−1
0 .

Let us construct σ(l) and γl(w). By Proposition 2.4, there exists gl ∈ An(D) such

that g̃l(w, ζ) = ζl for all ζ = (ζ1, . . . , ζn) ∈ Tn. The surjectiveity of T0 guarantees the

existence of fl ∈ An(D) such that gl = T0(fl), and thus

ζl = T̃0(fl)(w, ζ) =
n∑

k=0

1

k!
Dk(T0(fl))(wk)ζk

for all ζ = (ζ1, . . . , ζn) ∈ Tn. By equality (4.5) and the induction hypothesis, we have

ζl =
n∑

k=0

1

k!
Dk(T0(fl))(wk)ζk =

n∑
k=0

1

k!
[cDk(fl)(φk(w))χk(w, ζ)]sk

=
l−1∑
k=0

1

σ(k)
[Dσ(k)(fl)(φσ(k)(w)]sσ(k)γk(w)ζk

+
∑

k ̸=σ(0),...,σ(l−1)

1

k!
[cDk(fl)(φk(w))χk(w, ζ)]sk

for all ζ = (ζ1, . . . , ζn) ∈ Tn. It follows that χk(w, ζ) depends on ζl for some k ∈
Nn

0 \ {σ(0), . . . , σ(l − 1)}. Choose σ(l) ∈ Nn
0 \ {σ(0), . . . , σ(l − 1)} so that χσ(l)(w, ζ)

depends on ζl. Then Lemma 4.4 implies that

[χσ(l)(w, 1, . . . , 1)]sσ(l)ζl = [χσ(l)(w, ζ)]sσ(l)

for all ζ = (ζ1, . . . , ζn) ∈ Tn. Let γl(w) = [cχσ(l)(w, 1, . . . , 1)]sσ(l) . Then we have

γl(w) ∈ T and γl(w)ζl = [cχσ(l)(w, ζ)]sσ(l) for all ζ = (ζ1, . . . , ζn) ∈ Tn.

Now, we have proved the first part of the lemma. By construction, the mapping

σ : Nn
0 → Nn

0 is injective. Since Nn
0 is a finite set, the mapping σ must be bijective.

Lemma 4.6. Let f ∈ An(D). Then

T0(f)(w0) = [cf(φ0(w))]s0(4.6)

□ 
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and

1

k!
Dk(T0(f))(wk) =

1

σ(k)!
[Dσ(k)(f)(φσ(k)(w))]sσ(k)γk(w)(4.7)

for every w = (w0, . . . , wn) ∈ Tn+1. In particular, the value φ0(w0, . . . , wn) is indepen-

dent of w1, . . . , wn ∈ T.

Proof. Fix f ∈ An(D) and w = (w0, . . . , wn) ∈ Tn. By Lemma 4.5 and equality

(4.5),

(T0(f)(w0)− [cf(φ0(w))]s0)

+
n∑

k=1

(
1

k!
Dk(T0(f))(wk)−

1

σ(k)!
[Dσ(k)(f)(φσ(k)(w))]sσ(k)γk(w)

)
ζk = 0

for every (ζ1, . . . , ζn) ∈ Tn. Applying Proposition 4.1 with M = 0, we obtain equalities

(4.6) and (4.7), as desired.

By Lemma 4.6, we may write φ(z) = φ0(z, w1, . . . , wn). Then φ : T → T is a

surjective continuous mapping. Moreover, equality (4.6) is now reduced to

T0(f)(z) = [cf(φ(z))]s0 (∀f ∈ An(D),∀z ∈ T).(4.8)

Proof of Theorem 1.1. Let ι ∈ An(D) be the function defined by ι(z) = z

for every z ∈ D. Let τ = c−s0T0(ι) ∈ An(D). Then equality (4.8) shows that

cs0τ(z) = T0(ι)(z) = [cφ(z)]s0 for every z ∈ T, and thus φ(z) = [τ(z)]s0 for every

z ∈ T. Substituting this into equality (4.8), we have

T0(f)(z) = [cf([τ(z)]s0)]s0 (∀f ∈ An(D),∀z ∈ T).(4.9)

Since T is the Shilov boundary of the disk algebra A(D), equality (4.9) holds for every

z ∈ D. Note that τ ∈ An(D) and |τ(z)| = |φ(z)| = 1 for every z ∈ T. It follows from

the maximum modulus principle that τ(D) ⊂ D.
Since T−1

0 is also a surjective real-linear isometry on (An(D), ‖ · ‖Σ), applying the

above argument to T−1
0 , there exist c′ ∈ T, ρ ∈ An(D) with ρ(D) ⊂ D, and s′0 ∈ {±1}

such that

T−1
0 (g)(z) = [c′g([ρ(z)]s

′
0)]s

′
0 (∀g ∈ An(D),∀z ∈ T).(4.10)

Substituting g = T0(1) into equality (4.10), we have 1 = [c′T0(1)([ρ(z)]
s′0)]s

′
0 . Since

T0(1) = cs0 , we obtain 1 = [c′cs0 ]s
′
0 . Substituting g = T0(ι) into (4.10), we have

z = T−1
0 (T0(ι))(z) = [c′T0(ι)([ρ(z)]

s′0)]s
′
0 = [c′cs0τ([ρ(z)]s

′
0)]s

′
0

= [c′cs0 ]s
′
0 [τ([ρ(z)]s

′
0)]s

′
0 = [τ([ρ(z)]s

′
0)]s

′
0

□ 
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for every z ∈ T. This proves that D ⊂ τ(D). Consequently τ(D) = D.
Let us show that τ : D → D is injective. Choose z1, z2 ∈ D, and assume that

τ(z1) = τ(z2). Let g0 = T−1
0 (ι). Then

z1 = T0(g0)(z1) = [cg0([τ(z1)]
s0)]s0 = [cg0([τ(z2)]

s0)]s0 = T0(g0)(z2) = z2.

Hence τ is injective.

We have proved that τ is a continuous bijection on the compact Hausdorff space

D, and thus it is a homeomorphism on D. Since φ maps T onto T, so is τ . Hence

τ |D : D → D is a homeomorphism. It is well-known that such a function must be of the

form

τ(z) = λ
z − a

1− az
(z ∈ D)

for some λ ∈ T and a ∈ D (see [15, Theorem 12.6]).

Finally, let us show that a = 0. Note that τ is analytic in the open set containing

D. Since T0(ι)(z) = cs0τ(z) for every z ∈ T, the chain rule implies that

D1(T0(ι))(z) = ics0τ ′(z)z = ics0λz
1− |a|2

(1− az)2

for every z ∈ T, where τ ′ is the derivative as a function of one complex variable. Thus

1− |a|2 = |D1(T0(ι))(z)| · |1− az|2

for every z ∈ T. On the other hand, by equality (4.7), we see that |D1(T0(ι))(w)| = 1
σ(1)! .

Hence we have

σ(1)! · (1− |a|2) = |1− az|2

for every z ∈ T. By Proposition 4.1, we obtain a = 0.

Now we have τ(z) = λz for every z ∈ D. Equality (4.9) is now reduced to

T0(f)(z) = [cf([λz]s0)]s0 (∀f ∈ An(D),∀z ∈ D).

Therefore we obtain

T (f)(z) = T (0)(z) + cf(λz) (∀f ∈ An(D),∀z ∈ D), or

T (f)(z) = T (0)(z) + cf(λz) (∀f ∈ An(D),∀z ∈ D),

as desired.
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