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Isometries, Jordan x-isomorphisms and order
isomorphisms on spaces of a unital C'*-algebra-valued
continuous maps

By

Shiho Or*

Abstract

This article presents a survey of the paper [14] with applications. In this paper, we study
Jordan *-isomorphisms, surjective linear isometries and order isomorphisms on the spaces of
continuous maps taking values in unital C*-algebras.

§ 1. Introduction

Let X be a compact Hausdorff space and (A, ||-||.4) a unital C*-algebra. We denote
the unit of A by 1 4. In this paper, every C*-algebra is assumed to be unital. An element
a in a C*-algebra is positive if a is self-adjoint and the spectrum o(a) C {r € R |r > 0}.
We denote by AT the collection of positive elements in A. We denote the set of all pure
states on A by PS(A). For any p € PS(.A), there exists an irreducible representation
7, : A— B(H,), where B(H,) is the Banach space of all bounded linear operators on
a Hilbert space H,. We denote C(X,.A) by the space of all A-valued continuous maps
on X with the supremum norm || - ||, that is, ||F'||ec = sup{||F(z)||4 : z € X}. When
A = C, we denote C(X,C) by C(X). For any F € C(X,.A), we define F* € C(X, A)
by F*(z) = [F(z)]* for any € X. Then C(X,.A) is a unital C*-algebra. The unit of
C(X,.A) is a constant map 1: X — A which satisfies 1(z) = 14 for any z € X.

Throughout the paper let X;, X5 be compact Hausdorff spaces and A;, Ay be
unital C*-algebras.
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Definition 1.1. Let T': A; — A5 be a bijective linear map.

e If the map T satisfies that |Ta — Tb|| 4, = ||a — b|| 4, for any a,b € Ay, T is called
an isometry.

o If both 7 and T—! preserve the order structure, i.e., a € Af if and only if T'a € A;,
then 7' is called an order isomorphism.

e If the map T holds T'(a*) = (Ta)* and T(a?) = (Ta)? for any a € A;, then T is
called a Jordan x-isomorphism.

In this paper we study Jordan x-isomorphisms, surjective linear isometries and
order isomorphisms from C'(X1,.A;) onto C(Xa, As).

In the classical period three results stand out, namely the theorems of Banach and
Stone, Gelfand and Kolmogorov, and Kaplansky.

Theorem 1.2 (Banach and Stone [1, 16]).  Let X; and X2 be compact Haus-
dorff spaces. Let T : C(X1) — C(X3) be a map. Then T is a surjective linear isometry
if and only if there is a homeomorphism ¢ : Xo — X1 and a continuous function
u € C(X3) with |u| =1 such that

Tf(y) =u)(f(e(y)), felC(X1), ye X

Remark.  Banach proved in [1] that if 7" is a surjective linear isometry from
Cr(X1) onto Cr(X2), where Cr(X,) is the space of all real-valued continuous func-
tions on a compact metric space X;, then T is a weighted composition operator. In
the case when X; are compact Hausdorff spaces, Stone proved that every surjective
linear isometry between Cr(X)) is also a weighted composition operator in [16]. The
statement of Theorem 1.2 is considered as the modern version of Banach’s and Stone’s
contributions and is called the Banach-Stone theorem.

Theorem 1.3 (Kaplansky [10]).  Let X7 and X2 be compact Hausdorff spaces.
Let T : C(X1) — C(X2) be a map. Then T is an order isomorphism if and only if there

is a homeomorphism ¢ : Xo — X1 and a positive invertible element u € C(Xz) such
that

Tf(y) =u)(f(e(y), felC(X1), ye X

Theorem 1.4 (Gelfand and Kolmogorov [4]).  Let X; and X5 be compact Haus-
dorff spaces. Let T : C(X1) — C(X2) be a map. Then T is an algebra isomorphism if
and only if there is a homeomorphism ¢ : Xo — X1 such that

Tf(y) = flely), feC(X1), ye X
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These imply that a compact Hausdorff space X is determined by the metric struc-
ture, the order structure and the algebraic structure respectively. How about the case
of the vector-valued maps? Jerison in [7] obtained the first vector-valued version of the
Banach-Stone Theorem: Suppose that FE is a strictly convex Banach space. Let T be
a surjective linear isometry from C(X1, E) onto C(Xs2, E). Then there is a homeomor-
phism ¢ : X5 — X; and a continuous map U with the strong operator topology from
Xy into the space of surjective linear isometries on F, where U, : £ — E is a surjective
linear isometry for any y € Xs, such that

TFE(y) =Uy(F(e(y)), FeC(Xy,E), yeXo.

Cambern, in [2], defined the Banach-Stone property. A Banach space E is said to have
the Banach-Stone property if every surjective linear isometry 7" : C'(X1, F) — C(Xq, E)
admits a homeomorphism ¢ : X5 — X; and a strongly continuous family {V, },ex, of
surjective linear isometries on E such that

TF(y)=V,(F(e(y), FeC(Xy,E), ye X

Later many results of surjective linear isometries are exhibited including in [3, 5, 6, 11].
They studied Banach spaces which have the Banach-Stone property. In particular, in
[5], the authors studied unital surjective linear isometries between the injective tensor
product of a uniform algebra and a unital factor C'*-algebra. A unital C*-algebra A is
called a factor if its center is trivial. As a corollary of their main theorems, they show
that unital factor C*-algebras have the Banach-Stone property as the following:

Theorem 1.5 (Corollary 5 in [5]).  Let A; be a unital factor C*-algebra for i =
1,2. Then a bijective linear map T : C(X1, A1) — C(X2,As) is a surjective linear
isometry if and only if there exists a homeomorphism ¢ : Xo — X1, a strongly continu-

ous family {V,}yex, of Jordan x-isomorphisms from A; onto Az and a unitary element
U € C(X2, Az) such that

TF(y) =U(y)Vy(F(e(y)))
for any F € C(X1, A1) and y € Xs.

The authors studied hermitian operators on the injective tensor product of a uni-
form algebra and a unital factor C*-algebra. They applied the notion of hermitian
operators and the technique, which was introduced by Lumer in [12, 13], to characterize
surjective linear isometries on the spaces.

In this paper, we study surjective linear isometries by applying studies of Jor-
dan x-isomorphisms. In Theorem 3.3 we prove that a primitive C*-algebra A has the
Banach-Stone property. Since a primitive C*-algebra is factor, Theorem 3.3 follows
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from Theorem 1.5. However the proof is quite different and simple. We do not need
studying hermitian operators on C'(X, A).

§ 2. Jordan x-isomorphisms

We introduce the studies of Jordan -isomorphisms on C'(X,.A) in [14]. In addition,
we will proceed to sketch the main ideas of the proof for completeness. We refer the
reader to the paper [14] for more details.

In the proof, we consider the algebraic tensor product space. The algebraic tensor
product space of C'(X) and A over C is denoted by C(X) ® A.

Theorem 2.1 (Theorem 2.4. in [14]). Let J : C(X1, A1) — C(Xa, A2) be a

Jordan *-isomorphism. Then there exist a continuous map ¢, : Xo — Xy for every
p € PS(A2) and a Jordan x-homomorphism Vy, : Ay — Ay for each y € X5 such that

To(JEY)) = mp(Vy (F ()

forall F € C(X1, A1) and all y € X5.

Outline of the proof of Theorem 2.1.
We sketch the outline of the proof of Theorem 2.1. We have

PS(C(Xa, A2)) = {p 0 6,| p € PS(As),y € Xa},

where ¢, is a complex linear operator from C(Xs,As) into Ay such that §,(F) =
F(y) for any F' € C(X3,A2). We denote the commutant of 7,05, (C(X2,.42)) by
Tpos, (C(X2,A2))".  We denote the identity operator on H,.s, by IHpo5y. Since a
space Tpos, (C(X2, A2)) acts irreducibly on Hpes,, we get mpos, (C(X2,A2))" = Cly,,, -
Corollary 3.4 in [15] implies that 7,5, 0 J : C(X1, A1) — B(Hyes,) is either a *-
homomorphism or an anti *-homomorphism. Thus we get for any f € C(X1), 705, ©

J(f®1a,) € Cly,,, . We define Ay € C by
(21) 7Tpo5y o J(f® 1A1) = )\f ’ IHpoéy'

Since J*(p o 0,) € PS(C(X1,A1)), there exist ¢,, € PS(A;) and x € X; such that
J*(pody) = ¢py 0. We define p, : Xo — X1 by J*(pody,) = ¢py 00d,,()- Since
J(1) = 1, we get f(pp(y)) = Ay for any f € C(X;). Moreover (2.1) shows that
To(J(f @ 14,)(y) = f(e,(y))In,. Fix y € Yo. We define a Jordan *-homomorphism
Vy : .Al — .AQ by

Vy(a) = J(1®a)(y)
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for any a € A;. As p € PS(Ay), 7, is an irreducible representation of As. It follows
that

To(J(f @ a)(y)) = mp(J(f @ 1)(y))mp(J (1 ® a)(y))
= mp(Vy(f(#p(y))a)) = mp(Vy (f @ alpp(y))))-

Since C(X1) ® A; is dense in C(X;,.A;) and J is a bounded operator with || - ||, We
have 7m,(JF(y)) = m,(Vy(F(¢,(y)))) for all F € C(X;,.A;) and all y € Xo. O

Remark.  Since there is a Jordan *-isomorphism from C({a}, C?) onto C({x,y},C),
C({a},C?) and C({x,y},C) is isometric *-isomorphic. On the other hand, {a} is not
homeomorphic to {z,y} and C? is not *-isomorphic to C. We can not expect to get
that V,, is an isomorphism and ¢, is a homeomorphism.

Theorem 2.2 (Theorem 2.7. in [14]).  Assume that Ay and Az are primitive.
Then J : C(X;, A1) = C(X2, A2) is a Jordan x-isomorphism if and only if there exist
a homeomorphism ¢ from X onto X1 and a Jordan *-isomorphism V, : Ay — As for
each y € Xo so that the map y +— V, 1s continuous with respect to the strong operator

topology such that

(2.2) JF(y) =V, (F(e(y)))

for all F € C(X1, A1) and y € Xs.

Outline of the proof of Theorem 2.2. We omit the proof of the statement that
if J is of the form described as (2.2) in the statement then J is a Jordan *-isomorphism
from C(X1,.A;) onto C'(X2, Az).

We only mention that if J : C'(X;1, A1) — C(X3,A2) is a Jordan *- isomorphism,
then J has the form as (2.2) with the desired properties for ¢ and V. Since A is
a primitive C*-algebra, there is a p € PS(A3) such that 7, is faithful. We define
¢ : X9 = Xy by ¢ = ¢,. By Theorem 2.1, we have

JF(y) =V, (F(e(v)))-

We prove that ¢ is a homeomorphism. Let y1,y2 € X5 such that ¢(y1) = ¢(y2). Since
Aj is a primitive C*- algebra, there exist a continuous map ¢ : X; — X5 and a Jordan
*-homomorphism S, : Ay — A; for each x € X; such that J~'F(z) = S,(F(¢(x))),
for all ' € C(X3,.A2). This implies that for all ' € C(X;,.41), we have F(z) =
Sz (V) Fe((x)))). As C(X1, A1) separates the points of Xy, we get p(v(z)) =
for any 2 € X;. Applying a similar argument, we get F(y) = V;, (S, (F(¥(¢(y)))))
for all F' € C(X2,As) and ¢ (¢(y)) = y for any y € X5. As X; and X, are compact
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Hausdorff spaces and ¢ is a continuous map, ¢ is a homeomorphism. By ¢! = 1),
we get Sy 0 Vy = I, and V,, 0 S,y = I4,, where I 4, is the identity operator on
A; for i = 1,2. Thus V, is a bijection and Vj, is a Jordan *-isomorphism such that
Vy_l = Se(y)-

Let {ya} C X2 be a net with yx — yo. For any a € Ay, ||V, (a) — V,,(a)]|a, =
1J(1®a)(yn) — J(1®a)(yo)|la, = 0 as J(1®a) € C(Xg, Az). This implies that the
map y +— V,, is continuous with respect to the strong operator topology. U

§ 3. Applications of Theorems 2.1 and 2.2

§3.1. Surjective linear isometries

Kadison in 1951 obtained the following characterization for surjective complex lin-
ear isometries between unital C*-algebras.

Theorem 3.1 (Kadison [8]).  Let A; be a unital C*-algebra for i = 1,2. Then
T : A1 — Ay is a surjective linear isometry if and only if there is a unitary element
u € Ay and a Jordan x-isomorphism J : Ay — As such that

T(a) =ud(a), acA.
Applying Theorem 3.1, we obtain the following theorems.

Theorem 3.2. LetT:C(X1, A1) = C(Xa, As) be a surjective linear isometry.
Then there exist a unitary element U € C(X2, A2), a continuous map ¢, : Xo — X3
for every p € PS(Az) and a Jordan x-homomorphism V, : Ay — As for each y € Xo
such that

T, (TF(y)) = 7, (U(y)Vy (F(0,(y))))
for all p € PS(Ag), F € C(X1, A1) and y € Xo.

Proof. By theorem 3.1, there is a unitary element U € C(X5, A3) and a Jordan
s-isomorphism J : C(X;1,A4;) — C(Xs, A2) such that T(F) = UJ(F) for any F €
C(X1,A1). By Theorem 2.1, there exist a continuous map ¢, : Xo — X; for every
p € PS(Ay) and a Jordan *-homomorphism V,, : A3 — Ay for each y € X5 such that

mo(JE(y)) = mp(Vy (F(ep(¥))))

for all ¥ € C(X;,A;) and all y € X,. Since 7, : Ay — B(H,) is an irreducible
representation for any p € PS(As), we have

mo(TE(y)) = m,(U(y)J (F)(y)) = 7o (U ()7, (J (F) (1))
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for any F' € C(X1, A1), y € Xos. O

In particular when A; and As are primitive C*-algebras, we have the following
characterization.

Theorem 3.3.  Assume that Ay and As are primitive. Then T : C(X1, A1) —
C(Xa, A2) is a surjective linear isometry if and only if there exist a unitary element
U € C(Xsq, A2), a homeomorphism ¢ from Xs onto Xy and a Jordan x-isomorphism
Vy : Ar — Ay for each y € X5 so that the map y — V,, is continuous with respect to the
strong operator topology such that

(3.1) TF(y) =U(y)V,(F(e(y)))

for all F € C(X1, A1) and y € Xs.

Proof. Firstly suppose that T is of the form described as (3.1). Then by The-
orem 2.2, the map F' — V.(F(¢(:))) from C(X;,.4;) onto C(Xa, A2) is a Jordan =
isomorphism. Thus Theorem 3.1 implies that 7" is a surjective linear isometry. Now the
converse statement is clear by Theorem 3.1 and Theorem 2.2. U

Remark 3.4. Let A be a unital C*-algebra. If A is primitive then it is factor.
But the converse is not true. Theorem 3.3 is a corollary of Theorem 1.5. Thus, this
result was already obtained but our proof is much simpler than that presented in [5].

§3.2. Order isomorphisms

In [9], Kadison proved that every order isomorphism which carries the identity into
identity between unital C*-algebras is a Jordan x-isomorphism. We obtain the following
characterization of order isomorphisms between unital C'*-algebras as a corollary of the
theorem of Kadison. Although this is a well-known fact, we give a proof by applying

[9, Corollary 5] for completeness.

Theorem 3.5 (Kadison [9]).  Let A; be a unital C*-algebra for i = 1,2. Then
T : Ay — As is an order isomorphism if and only if there is a positive invertible element
u € Ay and a Jordan x-isomorphism J : Ay — Ao such that

T(a) =uJ(a)u, ac€ A

Proof. Let T : Ay — As be an order isomorphism. Then there is a positive
element a € A; with a # 0 such that T'(a) = 1 4,. Since a < ||a||1.4,, we get

La, = T(a) < [lal|T(1a,)-
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As ||a|| # 0, we get h“%ﬁ < T(14,). By the Gelfand representation applied to the C*-
algebra generated by T'(14,) and 14,, we get 0 ¢ o(T14,) and T'1 4, is an invertible
element. Hence we put u = (T'1 Al)%‘ Since w is also invertible and positive in Ay, we
define a map J : A1 — As by J(a) = u 1T (a)u™! for any a € A;. It is clear that J
is an order isomorphism which satisfies that J(14,) = 14,. By [9, Corollary 5], J is a
Jordan *-isomorphism. We conclude that T'(a) = uJ(a)u for all a € A;.

Conversely we assume that T'(a) = uJ(a)u for any a € A;, where J is a Jordan
x-isomorphism. Then 7' is a linear bijective map. Since J is an order isomorphism, for

any a € A;j there is b € Ay such that J(a*a) = b*b. Hence we obtain that
T(a"a) =uJ(a"a)u = ub*bu = (bu)*(bu) > 0.
In addition, 71(b) = J~Y(u=tbu~1) for any b € Ay. We have
T1%) = T uw o bu™) = T ((bu™ ) bu™) > 0
for all b € A;. Thus T is an order isomorphism. U

By applying Theorem 3.5 and similar arguments as in the case of surjective linear
isometries, we obtain the following theorems.

Theorem 3.6. LetT : C(X1, A1) = C(X2, A2) be an order isomorphism. Then
there exist a positive invertible element U € C(X2, As), a continuous map ¢, : Xo — X
for any p € PS(Az) and a Jordan x-homomorphism V,, : Ay — As for each y € Xo such
that

Tp(TF(y)) = mp(U(y)Vy (Flep(¥)))U(y))
for all p € PS(Az), F € C(X1, A1) and y € Xo.

Theorem 3.7.  Assume that Ay and As are primitive. Then T : C(X1, A1) —
C(Xa3,As) is an order isomorphism if and only if there exist a positive invertible element
U € C(Xs3, A3), a homeomorphism ¢ from Xy onto X1 and a Jordan *-isomorphism
Vy : A1 — Ay for each y € Xo where the map y — V,, is continuous with respect to the
strong operator topology such that

(3.2) TF(y) =U(y)Vy(F(e(y)))U(y)
forall F € C(X1, A1) and y € X,.

Remark 3.8. 'We obtain that for any unital C*-algebra A, Jordan *-isomorphisms,
surjective linear isomorphisms and order isomorphisms on C(X, .A) are represented by
weighted composition operators by using the irreducible representations on A. Moreover
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when A is a primitive C*-algebra, we obtain complete representations of these opera-
tors. These are one of the vector-valued versions of the classical theorems by Banach and
Stone, Gelfand and Kolmogorov, and Kaplansky. It is not clear to the author whether
complete representations of Jordan *-isomorphisms, surjective linear isomorphisms and

order isomorphisms on C(X, .A) are obtained for other classes of C*-algebras A.
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