RIMS Kôkyûroku Bessatsu **B93** (2023), 133–141

Isometries, Jordan *-isomorphisms and order isomorphisms on spaces of a unital C*-algebra-valued continuous maps

By

Shiho O^{1*}

Abstract

This article presents a survey of the paper [14] with applications. In this paper, we study Jordan *-isomorphisms, surjective linear isometries and order isomorphisms on the spaces of continuous maps taking values in unital C^* -algebras.

§1. Introduction

Let X be a compact Hausdorff space and $(\mathcal{A}, \|\cdot\|_{\mathcal{A}})$ a unital C^* -algebra. We denote the unit of \mathcal{A} by $1_{\mathcal{A}}$. In this paper, every C^* -algebra is assumed to be unital. An element a in a C^* -algebra is positive if a is self-adjoint and the spectrum $\sigma(a) \subset \{r \in \mathbb{R} \mid r \geq 0\}$. We denote by \mathcal{A}^+ the collection of positive elements in \mathcal{A} . We denote the set of all pure states on \mathcal{A} by $PS(\mathcal{A})$. For any $\rho \in PS(\mathcal{A})$, there exists an irreducible representation $\pi_{\rho} : \mathcal{A} \to B(H_{\rho})$, where $B(H_{\rho})$ is the Banach space of all bounded linear operators on a Hilbert space H_{ρ} . We denote $C(X, \mathcal{A})$ by the space of all \mathcal{A} -valued continuous maps on X with the supremum norm $\|\cdot\|_{\infty}$, that is, $\|F\|_{\infty} = \sup\{\|F(x)\|_{\mathcal{A}} : x \in X\}$. When $\mathcal{A} = \mathbb{C}$, we denote $C(X, \mathbb{C})$ by C(X). For any $F \in C(X, \mathcal{A})$, we define $F^* \in C(X, \mathcal{A})$ by $F^*(x) = [F(x)]^*$ for any $x \in X$. Then $C(X, \mathcal{A})$ is a unital C^* -algebra. The unit of $C(X, \mathcal{A})$ is a constant map $1 : X \to \mathcal{A}$ which satisfies $1(x) = 1_{\mathcal{A}}$ for any $x \in X$.

Throughout the paper let X_1 , X_2 be compact Hausdorff spaces and \mathcal{A}_1 , \mathcal{A}_2 be unital C^* -algebras.

Received March 10, 2022. Revised November 8, 2022.

²⁰²⁰ Mathematics Subject Classification(s): 46E40, 47C10, 46B04

Key Words: Banach-Stone property, C^* -algebra, vector-valued continuous map.

Supported by JSPS KAKENHI Grant Numbers JP21K13804 $\,$

^{*}Niigata University, Niigata 950-2181, Japan.

e-mail: shiho-oi@math.sc.niigata-u.ac.jp

Shiho Oi

Definition 1.1. Let $T : \mathcal{A}_1 \to \mathcal{A}_2$ be a bijective linear map.

- If the map T satisfies that $||Ta Tb||_{\mathcal{A}_2} = ||a b||_{\mathcal{A}_1}$ for any $a, b \in \mathcal{A}_1$, T is called an isometry.
- If both T and T^{-1} preserve the order structure, i.e., $a \in \mathcal{A}_1^+$ if and only if $Ta \in \mathcal{A}_2^+$, then T is called an order isomorphism.
- If the map T holds $T(a^*) = (Ta)^*$ and $T(a^2) = (Ta)^2$ for any $a \in \mathcal{A}_1$, then T is called a Jordan *-isomorphism.

In this paper we study Jordan *-isomorphisms, surjective linear isometries and order isomorphisms from $C(X_1, A_1)$ onto $C(X_2, A_2)$.

In the classical period three results stand out, namely the theorems of Banach and Stone, Gelfand and Kolmogorov, and Kaplansky.

Theorem 1.2 (Banach and Stone [1, 16]). Let X_1 and X_2 be compact Hausdorff spaces. Let $T : C(X_1) \to C(X_2)$ be a map. Then T is a surjective linear isometry if and only if there is a homeomorphism $\varphi : X_2 \to X_1$ and a continuous function $u \in C(X_2)$ with |u| = 1 such that

$$Tf(y) = u(y)(f(\varphi(y))), \quad f \in C(X_1), \quad y \in X_2.$$

Remark. Banach proved in [1] that if T is a surjective linear isometry from $C_{\mathbb{R}}(X_1)$ onto $C_{\mathbb{R}}(X_2)$, where $C_{\mathbb{R}}(X_j)$ is the space of all real-valued continuous functions on a compact metric space X_j , then T is a weighted composition operator. In the case when X_j are compact Hausdorff spaces, Stone proved that every surjective linear isometry between $C_{\mathbb{R}}(X_j)$ is also a weighted composition operator in [16]. The statement of Theorem 1.2 is considered as the modern version of Banach's and Stone's contributions and is called the Banach-Stone theorem.

Theorem 1.3 (Kaplansky [10]). Let X_1 and X_2 be compact Hausdorff spaces. Let $T: C(X_1) \to C(X_2)$ be a map. Then T is an order isomorphism if and only if there is a homeomorphism $\varphi: X_2 \to X_1$ and a positive invertible element $u \in C(X_2)$ such that

$$Tf(y) = u(y)(f(\varphi(y))), \quad f \in C(X_1), \quad y \in X_2.$$

Theorem 1.4 (Gelfand and Kolmogorov [4]). Let X_1 and X_2 be compact Hausdorff spaces. Let $T : C(X_1) \to C(X_2)$ be a map. Then T is an algebra isomorphism if and only if there is a homeomorphism $\varphi : X_2 \to X_1$ such that

$$Tf(y) = f(\varphi(y)), \quad f \in C(X_1), \quad y \in X_2.$$

These imply that a compact Hausdorff space X is determined by the metric structure, the order structure and the algebraic structure respectively. How about the case of the vector-valued maps? Jerison in [7] obtained the first vector-valued version of the Banach-Stone Theorem: Suppose that E is a strictly convex Banach space. Let T be a surjective linear isometry from $C(X_1, E)$ onto $C(X_2, E)$. Then there is a homeomorphism $\varphi : X_2 \to X_1$ and a continuous map U with the strong operator topology from X_2 into the space of surjective linear isometries on E, where $U_y : E \to E$ is a surjective linear isometry for any $y \in X_2$, such that

$$TF(y) = U_y(F(\varphi(y))), \quad F \in C(X_1, E), \quad y \in X_2.$$

Cambern, in [2], defined the Banach-Stone property. A Banach space E is said to have the Banach-Stone property if every surjective linear isometry $T: C(X_1, E) \to C(X_2, E)$ admits a homeomorphism $\varphi: X_2 \to X_1$ and a strongly continuous family $\{V_y\}_{y \in X_2}$ of surjective linear isometries on E such that

$$TF(y) = V_y(F(\varphi(y))), \quad F \in C(X_1, E), \quad y \in X_2.$$

Later many results of surjective linear isometries are exhibited including in [3, 5, 6, 11]. They studied Banach spaces which have the Banach-Stone property. In particular, in [5], the authors studied unital surjective linear isometries between the injective tensor product of a uniform algebra and a unital factor C^* -algebra. A unital C^* -algebra \mathcal{A} is called a factor if its center is trivial. As a corollary of their main theorems, they show that unital factor C^* -algebras have the Banach-Stone property as the following:

Theorem 1.5 (Corollary 5 in [5]). Let \mathcal{A}_i be a unital factor C^* -algebra for i = 1, 2. Then a bijective linear map $T : C(X_1, \mathcal{A}_1) \to C(X_2, \mathcal{A}_2)$ is a surjective linear isometry if and only if there exists a homeomorphism $\varphi : X_2 \to X_1$, a strongly continuous family $\{V_y\}_{y \in X_2}$ of Jordan *-isomorphisms from \mathcal{A}_1 onto \mathcal{A}_2 and a unitary element $U \in C(X_2, \mathcal{A}_2)$ such that

$$TF(y) = U(y)V_y(F(\varphi(y)))$$

for any $F \in C(X_1, \mathcal{A}_1)$ and $y \in X_2$.

The authors studied hermitian operators on the injective tensor product of a uniform algebra and a unital factor C^* -algebra. They applied the notion of hermitian operators and the technique, which was introduced by Lumer in [12, 13], to characterize surjective linear isometries on the spaces.

In this paper, we study surjective linear isometries by applying studies of Jordan *-isomorphisms. In Theorem 3.3 we prove that a primitive C^* -algebra \mathcal{A} has the Banach-Stone property. Since a primitive C^* -algebra is factor, Theorem 3.3 follows from Theorem 1.5. However the proof is quite different and simple. We do not need studying hermitian operators on $C(X, \mathcal{A})$.

§ 2. Jordan *-isomorphisms

We introduce the studies of Jordan *-isomorphisms on $C(X, \mathcal{A})$ in [14]. In addition, we will proceed to sketch the main ideas of the proof for completeness. We refer the reader to the paper [14] for more details.

In the proof, we consider the algebraic tensor product space. The algebraic tensor product space of C(X) and \mathcal{A} over \mathbb{C} is denoted by $C(X) \otimes \mathcal{A}$.

Theorem 2.1 (Theorem 2.4. in [14]). Let $J : C(X_1, A_1) \to C(X_2, A_2)$ be a Jordan *-isomorphism. Then there exist a continuous map $\varphi_{\rho} : X_2 \to X_1$ for every $\rho \in PS(A_2)$ and a Jordan *-homomorphism $V_y : A_1 \to A_2$ for each $y \in X_2$ such that

$$\pi_{\rho}(JF(y)) = \pi_{\rho}(V_y(F(\varphi_{\rho}(y))))$$

for all $F \in C(X_1, A_1)$ and all $y \in X_2$.

Outline of the proof of Theorem 2.1.

We sketch the outline of the proof of Theorem 2.1. We have

$$\operatorname{PS}(C(X_2, \mathcal{A}_2)) = \{ \rho \circ \delta_y | \rho \in \operatorname{PS}(\mathcal{A}_2), y \in X_2 \},\$$

where δ_y is a complex linear operator from $C(X_2, \mathcal{A}_2)$ into \mathcal{A}_2 such that $\delta_y(F) = F(y)$ for any $F \in C(X_2, \mathcal{A}_2)$. We denote the commutant of $\pi_{\rho\circ\delta_y}(C(X_2, \mathcal{A}_2))$ by $\pi_{\rho\circ\delta_y}(C(X_2, \mathcal{A}_2))'$. We denote the identity operator on $H_{\rho\circ\delta_y}$ by $I_{H_{\rho\circ\delta_y}}$. Since a space $\pi_{\rho\circ\delta_y}(C(X_2, \mathcal{A}_2))$ acts irreducibly on $H_{\rho\circ\delta_y}$, we get $\pi_{\rho\circ\delta_y}(C(X_2, \mathcal{A}_2))' = \mathbb{C}I_{H_{\rho\circ\delta_y}}$. Corollary 3.4 in [15] implies that $\pi_{\rho\circ\delta_y} \circ J : C(X_1, \mathcal{A}_1) \to B(H_{\rho\circ\delta_y})$ is either a *-homomorphism or an anti *-homomorphism. Thus we get for any $f \in C(X_1), \pi_{\rho\circ\delta_y} \circ J(f \otimes 1_{\mathcal{A}_1}) \in \mathbb{C}I_{H_{\rho\circ\delta_y}}$. We define $\lambda_f \in \mathbb{C}$ by

(2.1)
$$\pi_{\rho \circ \delta_y} \circ J(f \otimes 1_{\mathcal{A}_1}) = \lambda_f \cdot I_{H_{\rho \circ \delta_y}}.$$

Since $J^*(\rho \circ \delta_y) \in \mathrm{PS}(C(X_1, \mathcal{A}_1))$, there exist $\phi_{\rho,y} \in \mathrm{PS}(\mathcal{A}_1)$ and $x \in X_1$ such that $J^*(\rho \circ \delta_y) = \phi_{\rho,y} \circ \delta_x$. We define $\varphi_{\rho} : X_2 \to X_1$ by $J^*(\rho \circ \delta_y) = \phi_{\rho,y} \circ \delta_{\varphi_{\rho}(y)}$. Since J(1) = 1, we get $f(\varphi_{\rho}(y)) = \lambda_f$ for any $f \in C(X_1)$. Moreover (2.1) shows that $\pi_{\rho}(J(f \otimes 1_{\mathcal{A}_1})(y)) = f(\varphi_{\rho}(y))I_{H_{\rho}}$. Fix $y \in Y_2$. We define a Jordan *-homomorphism $V_y : \mathcal{A}_1 \to \mathcal{A}_2$ by

$$V_y(a) = J(1 \otimes a)(y)$$

for any $a \in \mathcal{A}_1$. As $\rho \in PS(\mathcal{A}_2)$, π_{ρ} is an irreducible representation of \mathcal{A}_2 . It follows that

$$\pi_{\rho}(J(f \otimes a)(y)) = \pi_{\rho}(J(f \otimes 1)(y))\pi_{\rho}(J(1 \otimes a)(y))$$
$$= \pi_{\rho}(V_{y}(f(\varphi_{\rho}(y))a)) = \pi_{\rho}(V_{y}(f \otimes a(\varphi_{\rho}(y)))).$$

Since $C(X_1) \otimes \mathcal{A}_1$ is dense in $C(X_1, \mathcal{A}_1)$ and J is a bounded operator with $\|\cdot\|_{\infty}$, we have $\pi_{\rho}(JF(y)) = \pi_{\rho}(V_y(F(\varphi_{\rho}(y))))$ for all $F \in C(X_1, \mathcal{A}_1)$ and all $y \in X_2$. \Box

Remark. Since there is a Jordan *-isomorphism from $C(\{a\}, \mathbb{C}^2)$ onto $C(\{x, y\}, \mathbb{C})$, $C(\{a\}, \mathbb{C}^2)$ and $C(\{x, y\}, \mathbb{C})$ is isometric *-isomorphic. On the other hand, $\{a\}$ is not homeomorphic to $\{x, y\}$ and \mathbb{C}^2 is not *-isomorphic to \mathbb{C} . We can not expect to get that V_y is an isomorphism and φ_{ρ} is a homeomorphism.

Theorem 2.2 (Theorem 2.7. in [14]). Assume that \mathcal{A}_1 and \mathcal{A}_2 are primitive. Then $J : C(X_1, \mathcal{A}_1) \to C(X_2, \mathcal{A}_2)$ is a Jordan *-isomorphism if and only if there exist a homeomorphism φ from X_2 onto X_1 and a Jordan *-isomorphism $V_y : \mathcal{A}_1 \to \mathcal{A}_2$ for each $y \in X_2$ so that the map $y \mapsto V_y$ is continuous with respect to the strong operator topology such that

(2.2)
$$JF(y) = V_y(F(\varphi(y)))$$

for all $F \in C(X_1, A_1)$ and $y \in X_2$.

Outline of the proof of Theorem 2.2. We omit the proof of the statement that if J is of the form described as (2.2) in the statement then J is a Jordan *-isomorphism from $C(X_1, \mathcal{A}_1)$ onto $C(X_2, \mathcal{A}_2)$.

We only mention that if $J : C(X_1, \mathcal{A}_1) \to C(X_2, \mathcal{A}_2)$ is a Jordan *- isomorphism, then J has the form as (2.2) with the desired properties for φ and V_y . Since \mathcal{A}_2 is a primitive C^* -algebra, there is a $\rho \in PS(\mathcal{A}_2)$ such that π_{ρ} is faithful. We define $\varphi : X_2 \to X_1$ by $\varphi = \varphi_{\rho}$. By Theorem 2.1, we have

$$JF(y) = V_y(F(\varphi(y))).$$

We prove that φ is a homeomorphism. Let $y_1, y_2 \in X_2$ such that $\varphi(y_1) = \varphi(y_2)$. Since \mathcal{A}_1 is a primitive C^* - algebra, there exist a continuous map $\psi: X_1 \to X_2$ and a Jordan *-homomorphism $S_x: \mathcal{A}_2 \to \mathcal{A}_1$ for each $x \in X_1$ such that $J^{-1}F(x) = S_x(F(\psi(x)))$, for all $F \in C(X_2, \mathcal{A}_2)$. This implies that for all $F \in C(X_1, \mathcal{A}_1)$, we have $F(x) = S_x(V_{\psi(x)}F(\varphi(\psi(x))))$. As $C(X_1, \mathcal{A}_1)$ separates the points of X_1 , we get $\varphi(\psi(x)) = x$ for any $x \in X_1$. Applying a similar argument, we get $F(y) = V_y(S_{\varphi(y)}(F(\psi(\varphi(y)))))$ for all $F \in C(X_2, \mathcal{A}_2)$ and $\psi(\varphi(y)) = y$ for any $y \in X_2$. As X_1 and X_2 are compact

Shiho Oi

Hausdorff spaces and φ is a continuous map, φ is a homeomorphism. By $\varphi^{-1} = \psi$, we get $S_{\varphi(y)} \circ V_y = I_{\mathcal{A}_1}$ and $V_y \circ S_{\varphi(y)} = I_{\mathcal{A}_2}$, where $I_{\mathcal{A}_i}$ is the identity operator on \mathcal{A}_i for i = 1, 2. Thus V_y is a bijection and V_y is a Jordan *-isomorphism such that $V_y^{-1} = S_{\varphi(y)}$.

Let $\{y_{\lambda}\} \subset X_2$ be a net with $y_{\lambda} \to y_0$. For any $a \in \mathcal{A}_1$, $\|V_{y_{\lambda}}(a) - V_{y_0}(a)\|_{\mathcal{A}_2} = \|J(1 \otimes a)(y_{\lambda}) - J(1 \otimes a)(y_0)\|_{\mathcal{A}_2} \to 0$ as $J(1 \otimes a) \in C(X_2, \mathcal{A}_2)$. This implies that the map $y \mapsto V_y$ is continuous with respect to the strong operator topology. \Box

§ 3. Applications of Theorems 2.1 and 2.2

§ 3.1. Surjective linear isometries

Kadison in 1951 obtained the following characterization for surjective complex linear isometries between unital C^* -algebras.

Theorem 3.1 (Kadison [8]). Let \mathcal{A}_i be a unital C^* -algebra for i = 1, 2. Then $T : \mathcal{A}_1 \to \mathcal{A}_2$ is a surjective linear isometry if and only if there is a unitary element $u \in \mathcal{A}_2$ and a Jordan *-isomorphism $J : \mathcal{A}_1 \to \mathcal{A}_2$ such that

$$T(a) = uJ(a), \quad a \in \mathcal{A}_1.$$

Applying Theorem 3.1, we obtain the following theorems.

Theorem 3.2. Let $T : C(X_1, \mathcal{A}_1) \to C(X_2, \mathcal{A}_2)$ be a surjective linear isometry. Then there exist a unitary element $U \in C(X_2, \mathcal{A}_2)$, a continuous map $\varphi_{\rho} : X_2 \to X_1$ for every $\rho \in PS(\mathcal{A}_2)$ and a Jordan *-homomorphism $V_y : \mathcal{A}_1 \to \mathcal{A}_2$ for each $y \in X_2$ such that

$$\pi_{\rho}(TF(y)) = \pi_{\rho}(U(y)V_y(F(\varphi_{\rho}(y))))$$

for all $\rho \in PS(\mathcal{A}_2)$, $F \in C(X_1, \mathcal{A}_1)$ and $y \in X_2$.

Proof. By theorem 3.1, there is a unitary element $U \in C(X_2, \mathcal{A}_2)$ and a Jordan *-isomorphism $J : C(X_1, \mathcal{A}_1) \to C(X_2, \mathcal{A}_2)$ such that T(F) = UJ(F) for any $F \in C(X_1, \mathcal{A}_1)$. By Theorem 2.1, there exist a continuous map $\varphi_{\rho} : X_2 \to X_1$ for every $\rho \in PS(\mathcal{A}_2)$ and a Jordan *-homomorphism $V_y : \mathcal{A}_1 \to \mathcal{A}_2$ for each $y \in X_2$ such that

$$\pi_{\rho}(JF(y)) = \pi_{\rho}(V_y(F(\varphi_{\rho}(y))))$$

for all $F \in C(X_1, \mathcal{A}_1)$ and all $y \in X_2$. Since $\pi_{\rho} : \mathcal{A}_2 \to B(H_{\rho})$ is an irreducible representation for any $\rho \in PS(\mathcal{A}_2)$, we have

$$\pi_{\rho}(TF(y)) = \pi_{\rho}(U(y)J(F)(y)) = \pi_{\rho}(U(y))\pi_{\rho}(J(F)(y))$$

= $\pi_{\rho}(U(y))\pi_{\rho}(V_y(F(\varphi_{\rho}(y)))) = \pi_{\rho}(U(y)V_y(F(\varphi_{\rho}(y))))$

138

ISOMETRIES, JORDAN *-ISOMORPHISMS AND ORDER ISOMORPHISMS ON $C(X, \mathcal{A})$ 139

for any $F \in C(X_1, \mathcal{A}_1), y \in X_2$.

In particular when \mathcal{A}_1 and \mathcal{A}_2 are primitive C^* -algebras, we have the following characterization.

Theorem 3.3. Assume that \mathcal{A}_1 and \mathcal{A}_2 are primitive. Then $T : C(X_1, \mathcal{A}_1) \to C(X_2, \mathcal{A}_2)$ is a surjective linear isometry if and only if there exist a unitary element $U \in C(X_2, \mathcal{A}_2)$, a homeomorphism φ from X_2 onto X_1 and a Jordan *-isomorphism $V_y : \mathcal{A}_1 \to \mathcal{A}_2$ for each $y \in X_2$ so that the map $y \mapsto V_y$ is continuous with respect to the strong operator topology such that

(3.1)
$$TF(y) = U(y)V_y(F(\varphi(y)))$$

for all $F \in C(X_1, \mathcal{A}_1)$ and $y \in X_2$.

Proof. Firstly suppose that T is of the form described as (3.1). Then by Theorem 2.2, the map $F \mapsto V(F(\varphi(\cdot)))$ from $C(X_1, \mathcal{A}_1)$ onto $C(X_2, \mathcal{A}_2)$ is a Jordan * isomorphism. Thus Theorem 3.1 implies that T is a surjective linear isometry. Now the converse statement is clear by Theorem 3.1 and Theorem 2.2.

Remark 3.4. Let \mathcal{A} be a unital C^* -algebra. If \mathcal{A} is primitive then it is factor. But the converse is not true. Theorem 3.3 is a corollary of Theorem 1.5. Thus, this result was already obtained but our proof is much simpler than that presented in [5].

§ 3.2. Order isomorphisms

In [9], Kadison proved that every order isomorphism which carries the identity into identity between unital C^* -algebras is a Jordan *-isomorphism. We obtain the following characterization of order isomorphisms between unital C^* -algebras as a corollary of the theorem of Kadison. Although this is a well-known fact, we give a proof by applying [9, Corollary 5] for completeness.

Theorem 3.5 (Kadison [9]). Let \mathcal{A}_i be a unital C^* -algebra for i = 1, 2. Then $T : \mathcal{A}_1 \to \mathcal{A}_2$ is an order isomorphism if and only if there is a positive invertible element $u \in \mathcal{A}_2$ and a Jordan *-isomorphism $J : \mathcal{A}_1 \to \mathcal{A}_2$ such that

$$T(a) = uJ(a)u, \quad a \in \mathcal{A}.$$

Proof. Let $T : \mathcal{A}_1 \to \mathcal{A}_2$ be an order isomorphism. Then there is a positive element $a \in \mathcal{A}_1$ with $a \neq 0$ such that $T(a) = 1_{\mathcal{A}_2}$. Since $a \leq ||a|| 1_{\mathcal{A}_1}$, we get

$$1_{\mathcal{A}_2} = T(a) \le ||a|| T(1_{\mathcal{A}_1}).$$

Shiho Oi

As $||a|| \neq 0$, we get $\frac{1_{\mathcal{A}_2}}{||a||} \leq T(1_{\mathcal{A}_1})$. By the Gelfand representation applied to the C^* algebra generated by $T(1_{\mathcal{A}_1})$ and $1_{\mathcal{A}_2}$, we get $0 \notin \sigma(T1_{\mathcal{A}_1})$ and $T1_{\mathcal{A}_1}$ is an invertible element. Hence we put $u = (T1_{\mathcal{A}_1})^{\frac{1}{2}}$. Since u is also invertible and positive in \mathcal{A}_2 , we define a map $J : \mathcal{A}_1 \to \mathcal{A}_2$ by $J(a) = u^{-1}T(a)u^{-1}$ for any $a \in \mathcal{A}_1$. It is clear that Jis an order isomorphism which satisfies that $J(1_{\mathcal{A}_1}) = 1_{\mathcal{A}_2}$. By [9, Corollary 5], J is a Jordan *-isomorphism. We conclude that T(a) = uJ(a)u for all $a \in \mathcal{A}_1$.

Conversely we assume that T(a) = uJ(a)u for any $a \in A_1$, where J is a Jordan *-isomorphism. Then T is a linear bijective map. Since J is an order isomorphism, for any $a \in A_1$ there is $b \in A_2$ such that $J(a^*a) = b^*b$. Hence we obtain that

$$T(a^*a) = uJ(a^*a)u = ub^*bu = (bu)^*(bu) \ge 0.$$

In addition, $T^{-1}(b) = J^{-1}(u^{-1}bu^{-1})$ for any $b \in \mathcal{A}_2$. We have

$$T^{-1}(b^*b) = J^{-1}(u^{-1}b^*bu^{-1}) = J^{-1}((bu^{-1})^*bu^{-1}) \ge 0$$

for all $b \in \mathcal{A}_2$. Thus T is an order isomorphism.

By applying Theorem 3.5 and similar arguments as in the case of surjective linear isometries, we obtain the following theorems.

Theorem 3.6. Let $T : C(X_1, A_1) \to C(X_2, A_2)$ be an order isomorphism. Then there exist a positive invertible element $U \in C(X_2, A_2)$, a continuous map $\varphi_{\rho} : X_2 \to X_1$ for any $\rho \in PS(A_2)$ and a Jordan *-homomorphism $V_y : A_1 \to A_2$ for each $y \in X_2$ such that

$$\pi_{\rho}(TF(y)) = \pi_{\rho}(U(y)V_y(F(\varphi_{\rho}(y)))U(y))$$

for all $\rho \in PS(\mathcal{A}_2)$, $F \in C(X_1, \mathcal{A}_1)$ and $y \in X_2$.

Theorem 3.7. Assume that \mathcal{A}_1 and \mathcal{A}_2 are primitive. Then $T : C(X_1, \mathcal{A}_1) \to C(X_2, \mathcal{A}_2)$ is an order isomorphism if and only if there exist a positive invertible element $U \in C(X_2, \mathcal{A}_2)$, a homeomorphism φ from X_2 onto X_1 and a Jordan *-isomorphism $V_y : \mathcal{A}_1 \to \mathcal{A}_2$ for each $y \in X_2$ where the map $y \mapsto V_y$ is continuous with respect to the strong operator topology such that

(3.2)
$$TF(y) = U(y)V_y(F(\varphi(y)))U(y)$$

for all $F \in C(X_1, \mathcal{A}_1)$ and $y \in X_2$.

Remark 3.8. We obtain that for any unital C^* -algebra \mathcal{A} , Jordan *-isomorphisms, surjective linear isomorphisms and order isomorphisms on $C(X, \mathcal{A})$ are represented by weighted composition operators by using the irreducible representations on \mathcal{A} . Moreover

when \mathcal{A} is a primitive C^* -algebra, we obtain complete representations of these operators. These are one of the vector-valued versions of the classical theorems by Banach and Stone, Gelfand and Kolmogorov, and Kaplansky. It is not clear to the author whether complete representations of Jordan *-isomorphisms, surjective linear isomorphisms and order isomorphisms on $C(X, \mathcal{A})$ are obtained for other classes of C^* -algebras \mathcal{A} .

Acknowledgement

The author expresses her gratitude to the reviewer for his/her constructive comments. This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. This work was supported by JSPS KAKENHI Grant Numbers JP21K13804.

References

- S. Banach, Théorie des Opérations Linéaires, Monograf. Mat. 1, Warszawa, 1932; reprint, Chelsea, New York, 1963.
- [2] M. Cambern, Reflexive spaces with the Banach-Stone property, Rev. Roumaine Math. Pures Appl., 23 (1978), no. 7, 1005–1010.
- [3] R. J. Fleming and J. E. Jamison, Hermitian operators on C(X, E) and the Banach-Stone Theorem, *Math. Z.*, 170 (1980) 77–84.
- [4] I. Gelfand and A. Kolmogoroff, On rings of continuous functions on topological spaces, Dokl. Akad. Nauk. SSSR (C. R. Acad. Sci. USSR), 22 (1939) 11–15.
- [5] O. Hatori, K. Kawamura and S. Oi, Hermitian operators and isometries on injective tensor products of uniform algebras and C*-algebras., J. Math. Anal. Appl., 472 (2019), no. 1, 827–841.
- [6] J.-S. Jeang and N.-C. Wong On the Banach-Stone problem, Studia Math., 155 (2003), 95–105.
- [7] M. Jerison, The space of bounded maps into a Banach space, Ann. of Math, 52(1950), 309–327.
- [8] R. V. Kadison, Isometries of operator algebras, Ann. of Math., 54 (1951), 325–338.
- [9] R. V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. (2), 56 (1952), 494–503.
- [10] I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc., 53 (1947) 617–623.
- [11] K. S. Lau, A representation theorem for isometries of C(X, E), Pacific J. Math, 60 (1975), 229–233.
- [12] G. Lumer, Isometries of Orlicz spaces, Bull. Amer. Math. Soc., 68 (1962) 28–30.
- [13] G. Lumer, On the isometries of reflexive Orlicz spaces, Ann. Inst. Fourier (Grenoble), 13 (1963) 99–109.
- [14] S. Oi, Jordan *-homomorphisms on the spaces of continuous maps taking values in C^{*}algebras, Studia Math., 269 (2023), no.1, 107–119.
- [15] E. Størmer, On the Jordan structure of C*-algebras, Trans. Amer. Math. Soc., 120 (1965), 438–447.
- [16] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375–481.