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Isometries, Jordan ∗-isomorphisms and order

isomorphisms on spaces of a unital C∗-algebra-valued

continuous maps

By

Shiho Oi∗

Abstract

This article presents a survey of the paper [14] with applications. In this paper, we study

Jordan ∗-isomorphisms, surjective linear isometries and order isomorphisms on the spaces of

continuous maps taking values in unital C∗-algebras.

§ 1. Introduction

Let X be a compact Hausdorff space and (A, ‖·‖A) a unital C∗-algebra. We denote

the unit of A by 1A. In this paper, every C∗-algebra is assumed to be unital. An element

a in a C∗-algebra is positive if a is self-adjoint and the spectrum σ(a) ⊂ {r ∈ R |r ≥ 0}.
We denote by A+ the collection of positive elements in A. We denote the set of all pure

states on A by PS(A). For any ρ ∈ PS(A), there exists an irreducible representation

πρ : A → B(Hρ), where B(Hρ) is the Banach space of all bounded linear operators on

a Hilbert space Hρ. We denote C(X,A) by the space of all A-valued continuous maps

on X with the supremum norm ‖ · ‖∞, that is, ‖F‖∞ = sup{‖F (x)‖A : x ∈ X}. When

A = C, we denote C(X,C) by C(X). For any F ∈ C(X,A), we define F ∗ ∈ C(X,A)

by F ∗(x) = [F (x)]∗ for any x ∈ X. Then C(X,A) is a unital C∗-algebra. The unit of

C(X,A) is a constant map 1 : X → A which satisfies 1(x) = 1A for any x ∈ X.

Throughout the paper let X1, X2 be compact Hausdorff spaces and A1, A2 be

unital C∗-algebras.
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Definition 1.1. Let T : A1 → A2 be a bijective linear map.

� If the map T satisfies that ‖Ta− Tb‖A2
= ‖a− b‖A1

for any a, b ∈ A1, T is called

an isometry.

� If both T and T−1 preserve the order structure, i.e., a ∈ A+
1 if and only if Ta ∈ A+

2 ,

then T is called an order isomorphism.

� If the map T holds T (a∗) = (Ta)∗ and T (a2) = (Ta)2 for any a ∈ A1, then T is

called a Jordan ∗-isomorphism.

In this paper we study Jordan ∗-isomorphisms, surjective linear isometries and

order isomorphisms from C(X1,A1) onto C(X2,A2).

In the classical period three results stand out, namely the theorems of Banach and

Stone, Gelfand and Kolmogorov, and Kaplansky.

Theorem 1.2 (Banach and Stone [1, 16]). Let X1 and X2 be compact Haus-

dorff spaces. Let T : C(X1) → C(X2) be a map. Then T is a surjective linear isometry

if and only if there is a homeomorphism φ : X2 → X1 and a continuous function

u ∈ C(X2) with |u| = 1 such that

Tf(y) = u(y)(f(φ(y))), f ∈ C(X1), y ∈ X2.

Remark. Banach proved in [1] that if T is a surjective linear isometry from

CR(X1) onto CR(X2), where CR(Xj) is the space of all real-valued continuous func-

tions on a compact metric space Xj , then T is a weighted composition operator. In

the case when Xj are compact Hausdorff spaces, Stone proved that every surjective

linear isometry between CR(Xj) is also a weighted composition operator in [16]. The

statement of Theorem 1.2 is considered as the modern version of Banach’s and Stone’s

contributions and is called the Banach-Stone theorem.

Theorem 1.3 (Kaplansky [10]). Let X1 and X2 be compact Hausdorff spaces.

Let T : C(X1) → C(X2) be a map. Then T is an order isomorphism if and only if there

is a homeomorphism φ : X2 → X1 and a positive invertible element u ∈ C(X2) such

that

Tf(y) = u(y)(f(φ(y))), f ∈ C(X1), y ∈ X2.

Theorem 1.4 (Gelfand and Kolmogorov [4]). Let X1 and X2 be compact Haus-

dorff spaces. Let T : C(X1) → C(X2) be a map. Then T is an algebra isomorphism if

and only if there is a homeomorphism φ : X2 → X1 such that

Tf(y) = f(φ(y)), f ∈ C(X1), y ∈ X2.
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These imply that a compact Hausdorff space X is determined by the metric struc-

ture, the order structure and the algebraic structure respectively. How about the case

of the vector-valued maps? Jerison in [7] obtained the first vector-valued version of the

Banach-Stone Theorem: Suppose that E is a strictly convex Banach space. Let T be

a surjective linear isometry from C(X1, E) onto C(X2, E). Then there is a homeomor-

phism φ : X2 → X1 and a continuous map U with the strong operator topology from

X2 into the space of surjective linear isometries on E, where Uy : E → E is a surjective

linear isometry for any y ∈ X2, such that

TF (y) = Uy(F (φ(y))), F ∈ C(X1, E), y ∈ X2.

Cambern, in [2], defined the Banach-Stone property. A Banach space E is said to have

the Banach-Stone property if every surjective linear isometry T : C(X1, E) → C(X2, E)

admits a homeomorphism φ : X2 → X1 and a strongly continuous family {Vy}y∈X2
of

surjective linear isometries on E such that

TF (y) = Vy(F (φ(y))), F ∈ C(X1, E), y ∈ X2.

Later many results of surjective linear isometries are exhibited including in [3, 5, 6, 11].

They studied Banach spaces which have the Banach-Stone property. In particular, in

[5], the authors studied unital surjective linear isometries between the injective tensor

product of a uniform algebra and a unital factor C∗-algebra. A unital C∗-algebra A is

called a factor if its center is trivial. As a corollary of their main theorems, they show

that unital factor C∗-algebras have the Banach-Stone property as the following:

Theorem 1.5 (Corollary 5 in [5]). Let Ai be a unital factor C∗-algebra for i =

1, 2. Then a bijective linear map T : C(X1,A1) → C(X2,A2) is a surjective linear

isometry if and only if there exists a homeomorphism φ : X2 → X1, a strongly continu-

ous family {Vy}y∈X2
of Jordan ∗-isomorphisms from A1 onto A2 and a unitary element

U ∈ C(X2,A2) such that

TF (y) = U(y)Vy(F (φ(y)))

for any F ∈ C(X1,A1) and y ∈ X2.

The authors studied hermitian operators on the injective tensor product of a uni-

form algebra and a unital factor C∗-algebra. They applied the notion of hermitian

operators and the technique, which was introduced by Lumer in [12, 13], to characterize

surjective linear isometries on the spaces.

In this paper, we study surjective linear isometries by applying studies of Jor-

dan ∗-isomorphisms. In Theorem 3.3 we prove that a primitive C∗-algebra A has the

Banach-Stone property. Since a primitive C∗-algebra is factor, Theorem 3.3 follows
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from Theorem 1.5. However the proof is quite different and simple. We do not need

studying hermitian operators on C(X,A).

§ 2. Jordan ∗-isomorphisms

We introduce the studies of Jordan ∗-isomorphisms on C(X,A) in [14]. In addition,

we will proceed to sketch the main ideas of the proof for completeness. We refer the

reader to the paper [14] for more details.

In the proof, we consider the algebraic tensor product space. The algebraic tensor

product space of C(X) and A over C is denoted by C(X)⊗A.

Theorem 2.1 (Theorem 2.4. in [14]). Let J : C(X1,A1) → C(X2,A2) be a

Jordan ∗-isomorphism. Then there exist a continuous map φρ : X2 → X1 for every

ρ ∈ PS(A2) and a Jordan ∗-homomorphism Vy : A1 → A2 for each y ∈ X2 such that

πρ(JF (y)) = πρ(Vy(F (φρ(y))))

for all F ∈ C(X1,A1) and all y ∈ X2.

Outline of the proof of Theorem 2.1.

We sketch the outline of the proof of Theorem 2.1. We have

PS(C(X2,A2)) = {ρ ◦ δy| ρ ∈ PS(A2), y ∈ X2},

where δy is a complex linear operator from C(X2,A2) into A2 such that δy(F ) =

F (y) for any F ∈ C(X2,A2). We denote the commutant of πρ◦δy (C(X2,A2)) by

πρ◦δy (C(X2,A2))
′. We denote the identity operator on Hρ◦δy by IHρ◦δy

. Since a

space πρ◦δy (C(X2,A2)) acts irreducibly on Hρ◦δy , we get πρ◦δy (C(X2,A2))
′ = CIHρ◦δy

.

Corollary 3.4 in [15] implies that πρ◦δy ◦ J : C(X1,A1) → B(Hρ◦δy ) is either a ∗-
homomorphism or an anti ∗-homomorphism. Thus we get for any f ∈ C(X1), πρ◦δy ◦
J(f ⊗ 1A1

) ∈ CIHρ◦δy
. We define λf ∈ C by

(2.1) πρ◦δy ◦ J(f ⊗ 1A1
) = λf · IHρ◦δy

.

Since J∗(ρ ◦ δy) ∈ PS(C(X1,A1)), there exist ϕρ,y ∈ PS(A1) and x ∈ X1 such that

J∗(ρ ◦ δy) = ϕρ,y ◦ δx. We define φρ : X2 → X1 by J∗(ρ ◦ δy) = ϕρ,y ◦ δφρ(y). Since

J(1) = 1, we get f(φρ(y)) = λf for any f ∈ C(X1). Moreover (2.1) shows that

πρ(J(f ⊗ 1A1
)(y)) = f(φρ(y))IHρ

. Fix y ∈ Y2. We define a Jordan ∗-homomorphism

Vy : A1 → A2 by

Vy(a) = J(1⊗ a)(y)
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for any a ∈ A1. As ρ ∈ PS(A2), πρ is an irreducible representation of A2. It follows

that

πρ(J(f ⊗ a)(y)) = πρ(J(f ⊗ 1)(y))πρ(J(1⊗ a)(y))

= πρ(Vy(f(φρ(y))a)) = πρ(Vy(f ⊗ a(φρ(y)))).

Since C(X1) ⊗ A1 is dense in C(X1,A1) and J is a bounded operator with ‖ · ‖∞, we

have πρ(JF (y)) = πρ(Vy(F (φρ(y)))) for all F ∈ C(X1,A1) and all y ∈ X2.

Remark. Since there is a Jordan ∗-isomorphism from C({a},C2) onto C({x, y},C),
C({a},C2) and C({x, y},C) is isometric ∗-isomorphic. On the other hand, {a} is not

homeomorphic to {x, y} and C2 is not ∗-isomorphic to C. We can not expect to get

that Vy is an isomorphism and φρ is a homeomorphism.

Theorem 2.2 (Theorem 2.7. in [14]). Assume that A1 and A2 are primitive.

Then J : C(X1,A1) → C(X2,A2) is a Jordan ∗-isomorphism if and only if there exist

a homeomorphism φ from X2 onto X1 and a Jordan ∗-isomorphism Vy : A1 → A2 for

each y ∈ X2 so that the map y 7→ Vy is continuous with respect to the strong operator

topology such that

(2.2) JF (y) = Vy(F (φ(y)))

for all F ∈ C(X1,A1) and y ∈ X2.

Outline of the proof of Theorem 2.2. We omit the proof of the statement that

if J is of the form described as (2.2) in the statement then J is a Jordan ∗-isomorphism

from C(X1,A1) onto C(X2,A2).

We only mention that if J : C(X1,A1) → C(X2,A2) is a Jordan ∗- isomorphism,

then J has the form as (2.2) with the desired properties for φ and Vy. Since A2 is

a primitive C∗-algebra, there is a ρ ∈ PS(A2) such that πρ is faithful. We define

φ : X2 → X1 by φ = φρ. By Theorem 2.1, we have

JF (y) = Vy(F (φ(y))).

We prove that φ is a homeomorphism. Let y1, y2 ∈ X2 such that φ(y1) = φ(y2). Since

A1 is a primitive C∗- algebra, there exist a continuous map ψ : X1 → X2 and a Jordan

∗-homomorphism Sx : A2 → A1 for each x ∈ X1 such that J−1F (x) = Sx(F (ψ(x))),

for all F ∈ C(X2,A2). This implies that for all F ∈ C(X1,A1), we have F (x) =

Sx(Vψ(x)F (φ(ψ(x)))). As C(X1,A1) separates the points of X1, we get φ(ψ(x)) = x

for any x ∈ X1. Applying a similar argument, we get F (y) = Vy(Sφ(y)(F (ψ(φ(y)))))

for all F ∈ C(X2,A2) and ψ(φ(y)) = y for any y ∈ X2. As X1 and X2 are compact

□ 
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Hausdorff spaces and φ is a continuous map, φ is a homeomorphism. By φ−1 = ψ,

we get Sφ(y) ◦ Vy = IA1 and Vy ◦ Sφ(y) = IA2 , where IAi is the identity operator on

Ai for i = 1, 2. Thus Vy is a bijection and Vy is a Jordan ∗-isomorphism such that

V −1
y = Sφ(y).

Let {yλ} ⊂ X2 be a net with yλ → y0. For any a ∈ A1, ‖Vyλ(a) − Vy0(a)‖A2
=

‖J(1 ⊗ a)(yλ) − J(1 ⊗ a)(y0)‖A2
→ 0 as J(1 ⊗ a) ∈ C(X2,A2). This implies that the

map y 7→ Vy is continuous with respect to the strong operator topology.

§ 3. Applications of Theorems 2.1 and 2.2

§ 3.1. Surjective linear isometries

Kadison in 1951 obtained the following characterization for surjective complex lin-

ear isometries between unital C∗-algebras.

Theorem 3.1 (Kadison [8]). Let Ai be a unital C∗-algebra for i = 1, 2. Then

T : A1 → A2 is a surjective linear isometry if and only if there is a unitary element

u ∈ A2 and a Jordan ∗-isomorphism J : A1 → A2 such that

T (a) = uJ(a), a ∈ A1.

Applying Theorem 3.1, we obtain the following theorems.

Theorem 3.2. Let T : C(X1,A1) → C(X2,A2) be a surjective linear isometry.

Then there exist a unitary element U ∈ C(X2,A2), a continuous map φρ : X2 → X1

for every ρ ∈ PS(A2) and a Jordan ∗-homomorphism Vy : A1 → A2 for each y ∈ X2

such that

πρ(TF (y)) = πρ(U(y)Vy(F (φρ(y))))

for all ρ ∈ PS(A2), F ∈ C(X1,A1) and y ∈ X2.

Proof. By theorem 3.1, there is a unitary element U ∈ C(X2,A2) and a Jordan

∗-isomorphism J : C(X1,A1) → C(X2,A2) such that T (F ) = UJ(F ) for any F ∈
C(X1,A1). By Theorem 2.1, there exist a continuous map φρ : X2 → X1 for every

ρ ∈ PS(A2) and a Jordan ∗-homomorphism Vy : A1 → A2 for each y ∈ X2 such that

πρ(JF (y)) = πρ(Vy(F (φρ(y))))

for all F ∈ C(X1,A1) and all y ∈ X2. Since πρ : A2 → B(Hρ) is an irreducible

representation for any ρ ∈ PS(A2), we have

πρ(TF (y)) = πρ(U(y)J(F )(y)) = πρ(U(y))πρ(J(F )(y))

= πρ(U(y))πρ(Vy(F (φρ(y)))) = πρ(U(y)Vy(F (φρ(y))))

□ 
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for any F ∈ C(X1,A1), y ∈ X2.

In particular when A1 and A2 are primitive C∗-algebras, we have the following

characterization.

Theorem 3.3. Assume that A1 and A2 are primitive. Then T : C(X1,A1) →
C(X2,A2) is a surjective linear isometry if and only if there exist a unitary element

U ∈ C(X2,A2), a homeomorphism φ from X2 onto X1 and a Jordan ∗-isomorphism

Vy : A1 → A2 for each y ∈ X2 so that the map y 7→ Vy is continuous with respect to the

strong operator topology such that

(3.1) TF (y) = U(y)Vy(F (φ(y)))

for all F ∈ C(X1,A1) and y ∈ X2.

Proof. Firstly suppose that T is of the form described as (3.1). Then by The-

orem 2.2, the map F 7→ V·(F (φ(·))) from C(X1,A1) onto C(X2,A2) is a Jordan ∗
isomorphism. Thus Theorem 3.1 implies that T is a surjective linear isometry. Now the

converse statement is clear by Theorem 3.1 and Theorem 2.2.

Remark 3.4. Let A be a unital C∗-algebra. If A is primitive then it is factor.

But the converse is not true. Theorem 3.3 is a corollary of Theorem 1.5. Thus, this

result was already obtained but our proof is much simpler than that presented in [5].

§ 3.2. Order isomorphisms

In [9], Kadison proved that every order isomorphism which carries the identity into

identity between unital C∗-algebras is a Jordan ∗-isomorphism. We obtain the following

characterization of order isomorphisms between unital C∗-algebras as a corollary of the

theorem of Kadison. Although this is a well-known fact, we give a proof by applying

[9, Corollary 5] for completeness.

Theorem 3.5 (Kadison [9]). Let Ai be a unital C∗-algebra for i = 1, 2. Then

T : A1 → A2 is an order isomorphism if and only if there is a positive invertible element

u ∈ A2 and a Jordan ∗-isomorphism J : A1 → A2 such that

T (a) = uJ(a)u, a ∈ A.

Proof. Let T : A1 → A2 be an order isomorphism. Then there is a positive

element a ∈ A1 with a 6= 0 such that T (a) = 1A2
. Since a ≤ ‖a‖1A1

, we get

1A2
= T (a) ≤ ‖a‖T (1A1

).

□ 

□ 
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As ‖a‖ 6= 0, we get
1A2

∥a∥ ≤ T (1A1
). By the Gelfand representation applied to the C∗-

algebra generated by T (1A1) and 1A2 , we get 0 /∈ σ(T1A1) and T1A1 is an invertible

element. Hence we put u = (T1A1
)

1
2 . Since u is also invertible and positive in A2, we

define a map J : A1 → A2 by J(a) = u−1T (a)u−1 for any a ∈ A1. It is clear that J

is an order isomorphism which satisfies that J(1A1
) = 1A2

. By [9, Corollary 5], J is a

Jordan ∗-isomorphism. We conclude that T (a) = uJ(a)u for all a ∈ A1.

Conversely we assume that T (a) = uJ(a)u for any a ∈ A1, where J is a Jordan

∗-isomorphism. Then T is a linear bijective map. Since J is an order isomorphism, for

any a ∈ A1 there is b ∈ A2 such that J(a∗a) = b∗b. Hence we obtain that

T (a∗a) = uJ(a∗a)u = ub∗bu = (bu)∗(bu) ≥ 0.

In addition, T−1(b) = J−1(u−1bu−1) for any b ∈ A2. We have

T−1(b∗b) = J−1(u−1b∗bu−1) = J−1((bu−1)∗bu−1) ≥ 0

for all b ∈ A2. Thus T is an order isomorphism.

By applying Theorem 3.5 and similar arguments as in the case of surjective linear

isometries, we obtain the following theorems.

Theorem 3.6. Let T : C(X1,A1) → C(X2,A2) be an order isomorphism. Then

there exist a positive invertible element U ∈ C(X2,A2), a continuous map φρ : X2 → X1

for any ρ ∈ PS(A2) and a Jordan ∗-homomorphism Vy : A1 → A2 for each y ∈ X2 such

that

πρ(TF (y)) = πρ(U(y)Vy(F (φρ(y)))U(y))

for all ρ ∈ PS(A2), F ∈ C(X1,A1) and y ∈ X2.

Theorem 3.7. Assume that A1 and A2 are primitive. Then T : C(X1,A1) →
C(X2,A2) is an order isomorphism if and only if there exist a positive invertible element

U ∈ C(X2,A2), a homeomorphism φ from X2 onto X1 and a Jordan ∗-isomorphism

Vy : A1 → A2 for each y ∈ X2 where the map y 7→ Vy is continuous with respect to the

strong operator topology such that

(3.2) TF (y) = U(y)Vy(F (φ(y)))U(y)

for all F ∈ C(X1,A1) and y ∈ X2.

Remark 3.8. We obtain that for any unital C∗-algebraA, Jordan ∗-isomorphisms,

surjective linear isomorphisms and order isomorphisms on C(X,A) are represented by

weighted composition operators by using the irreducible representations on A. Moreover

□ 
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when A is a primitive C∗-algebra, we obtain complete representations of these opera-

tors. These are one of the vector-valued versions of the classical theorems by Banach and

Stone, Gelfand and Kolmogorov, and Kaplansky. It is not clear to the author whether

complete representations of Jordan ∗-isomorphisms, surjective linear isomorphisms and

order isomorphisms on C(X,A) are obtained for other classes of C∗-algebras A.
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