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Tingley’s problem for a Banach space of Lipschitz
functions on the closed unit interval

By

Daisuke HIROTA* and Takeshi MIURA**

Abstract

We prove that every surjective isometry on the unit sphere of Lip(I) of all Lipschitz
continuous functions on the closed unit interval I is extended to a surjective real linear isometry
on Lip(1) with the norm ||f]lx = |£(O)] + |f'llz-=.

§ 1. Introduction and main results

Let E and F' be Banach spaces whose unit spheres are Sg and Sg, respectively.
In 1987, Tingley [32] asks whether each surjective isometry A: S — S is extended
to a surjective, real linear isometry from E onto F. Since then, many mathematicians
have given affirmative answers to the Tingley’s problem for particular Banach spaces.
There is a huge list of the research of the problem, here we show only some of them.
Tingley’s problem is treated for function spaces in [4, 15, 17, 18, 33, 34|, and for operator
spaces in [7, 8,9, 10, 11, 12, 22, 23, 24, 29, 30, 31]. Besides the Tingley’s problem, the
Mazur—Ulam property for Banach spaces has been studying actively; a Banach space F
has the Mazur—Ulam property if F' is any Banach space, every surjective isometry from
SE onto Sp admits a unique extension to a surjective real linear isometry from F onto
F'. See, for example, [1, 5, 14, 21, 26, 27].

Let Lip(Z) be the complex linear space of all Lipschitz continuous complex valued
functions on the closed unit interval I = [0, 1]. For each Banach space F, we denote by
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Sg the unit sphere of E. We define ||f||, for f € Lip(I) by

1o = 1£O)] + 11f |z

where || - || L~ denotes the essential supremum norm on I. It is well known that each f €
Lip(I) has essentially bounded derivative f’ almost everywhere. Hence, f’ belongs to
L°°(I), the commutative Banach algebra of all essentially bounded measurable functions
on I with the essential supremum norm || - [[p. Consequently, || - ||, is a well defined
norm on Lip(I). The purpose of this paper is to prove that every surjective isometry
on Stip(r) admits a surjective real linear extension to Lip([), which gives a solution to
Tingley’s problem for Lip(/). The followings are the main results of this paper.

Theorem 1.1.  Let A: Syipry — Swuipr) be a surjective isometry with || - ||5.

Then A is extended to a surjective, real linear isometry on Lip(I).

Corollary 1.2.  For each surjective isometry Aq: Lip(I) — Lip(1) with || - |5,
there exist a constant o of modulus 1, hg € Spee (1) and a real algebra automorphism ¥
on L*°(I) such that

AL(F)(E) = A(0)(8) + af(0) + / hoU(fydm  (tel, feLip(D), or

t
Bi(A)(0) = MO@) +aFO) + [ hoW(fYdm (e . f € Lip(D)),
0
where m denotes the Lebesgue measure on 1.

Remark 1. We should note that Theorem 1.1 is deduced from [34, Theorem 3.5].
In fact, Lip(I) equipped with || - ||, is identified with the ¢/!-sum of R? and C'(X,R?) for
some compact Hausdorff space X. Here, C(X,R?) is the Banach space of all continuous
R? valued maps on X with the supremum norm. In this paper, we will give a different
proof from that of [34] of Tingley’s problem for Lip(I).

Koshimizu [16, Theorem 1.2] gave the characterization of surjective complex linear
isometries on Lip(/) with || - ||o. We will characterize surjective isometries on Lip(/) in
Corollary 1.2.

§ 2. Preliminaries and auxiliary lemmas

We denote by T the unit circle in the complex number field C. Let M be the
maximal ideal space of L>°(I): Then M is a compact Hausdorff space so that the
Gelfand transform, defined by ﬁ(n) =n(h) for h € L>°(I) and n € M, is a continuous
function from M to C. Let C(X) be the commutative Banach algebra of all continuous
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complex valued functions on a compact Hausdorff space X with the supremum norm
| - [J[oo on X. The Gelfand—Naimark theorem states that the Gelfand transformation
T': L°°(I) — C(M), defined by T'(h) = h for h € L>(I), is an isometric isomorphism.
Thus, ||A]| = = sup,eaq [h(1)] = [7]|oo for b € L(I). We define

(2.1) fn.2) = f0) + f'(m)z
for f € Lip(I) and (1,z) € M x T. Then the function f is continuous on M x T with
the product topology. We set

B={feCMxT): feLip()}.

Then B is a normed linear subspace of C'(M x T) equipped with the supremum norm
|- |loo on M x T.

We define a mapping U: (Lip(1), || - |lo) = (B, || - |lsc) by U(f) = f for f € Lip(I).
We see that U is a surjective complex linear map from Lip(I) onto B. In addition,
NU(f)loo = ||fllo holds for all f € Lip(I): In fact, for each f € Lip(I), there exist
20,21 € T and 1y € M such that f(0) =|f(0)|zo and f’(no) = Hf’Hoozl. Then

U (£) (o, 2071)| = [ £(0) + f"(m0)2071] = (£ (0)] + [| ]| o) 20]
= £+ [ Flloo = 1£O)] + £l = I £
We thus obtain || f|ls < ||[U(f)|lee. For each (n,z) € M x T, we have
() 2)] = 1£0) + )2l < [FO) + 7@ < [FO)] + [ Flloe = I £llo
which yields |U(f)|lss < ||fllo- Consequently,
oo = 1Tl = Ifls  (f € Lip(1)).

Therefore, the map U is a surjective complex linear isometry from (Lip(Z), || - ||,) onto
(B, - [loo)- In particular, U(Spipry) C Sp. Since U~ has the same property as U, we
obtain U~1(Sg) C Stip(r), and hence, U(SLip(1)) = SB-

For each f € Lip(I), we observe that f is absolutely continuous on I. Thus, the
following identity holds:

(2:2) f@—f@%jéfﬂm (te ),

where m denotes the Lebesgue measure on I (see, for example, [25, Theorem 7.20]).
Having in mind {h : h € L=(I)} = C(M), for each u € C(M) there exists a unique
h € L>(I) such that u = h. We define Z(u) by

T(u)(t) = /Oth,dm (te.
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We observe that Z(u) is a Lipschitz function on I with
Z(u)(0) =0 and Z(u)'=h ae.

In particular, we obtain

(2.3) Z(u)" = u.

Here, we note that Z(u) € Syipr) for u € Sg(ay: In fact,

IZ()lly = |Z() (0)] + ()| £ = | T () [loo = lulloo = 1.

which yields Z(u) € Spip(r). Hence, Z(Sc(amy) C Swip(r)-

Let A: (Sripn), || - lo) = (Suip(r), || - lo) be a surjective isometry. We define T' =
UAU™!; we see that T is a well defined surjective isometry from (S, || - ||« ) onto itself,
since U is a surjective complex linear isometry from (Lip([), ||+ [|») onto (B, || -||ec) with
U(Svip(n) = Sp-

SLip(r) —— Stip(r)

| v
Sg T> Sg

The identity TU = UA implies that

—_~—

(2.4) T(f) = A)  (f € Suipn)-

For each A € T and x € M x T, we define

AV, ={feSp:flx) =M},

which plays an important role in our arguments. In the rest of this paper, we denote
1; and 1,4 by the constant functions taking the value only 1 defined on I and M,
respectively.

Lemma 2.1.  If \{V,, C A2V, for some (A1, 21), (A2, 22) € T x (M x T), then
(A1, 1) = (A2, 22).

Proof. We first note that 1; is a constant function on M x T by (2.1). Then
M1; € MV, C AoV, which yields Ay = A17(z1) = A17(z2) = Ao. This implies
A1 = Ao.

Setting x; = (n;, 2;) for j = 1,2, we first prove n; = 12. Suppose, on the contrary,
that 11 # 1. There exists u € SC(M) such that u(n;) = 1 and u(n2) = 0. We set
f = Z(MZ1u) € Suipr), and then f(m,z1) = A and f(n2,22) = 0 by (2.3). This
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shows that f € MV, \ A2V, which contradicts the assumption that AV, C A\V,,.
Consequently, we have 1, = ns.

Finally, we shall prove z; = z9. By (2.3), we see that g = Z(A\1Z7 1) satisfies
g € Sp and g(m,z1) = A\. We thus obtain g € MV, C A\V,,, and hence Ay =
g(n2,22) = A1Z1z2 by the choice of g. This implies z; = 23, since \; = A\y. We have
proven that (A1, z1) = (A2, x2). O

We denote by Fp the set of all maximal convex subsets of Sp. Let ext(Bj) be
the set of all extreme points of the closed unit ball Bj of the dual space of B. It is
proved in [15, Lemma 3.1] that for each F' € Fp there exists £ € ext(B7) such that
F = ¢ (1) N Sp, where £71(1) = {f € B : &(f) = 1}. Let Ch(B) be the Choquet
boundary for B, that is, Ch(B) is the set of all z € M x T such that the point evaluation
dz: B — C at x is in ext(B7). By the Arens—Kelley theorem (cf. [13, Corollary 2.3.6]),
we see that ext(B]) = {\6, € Bf : A€ T, z € Ch(B)}.

Lemma 2.2.  For each xo = (1n9,20) € M X T, the Dirac measure concentrated

at xo is unique representing measure for O, .

Proof. Fix an arbitrary open set O in M with 79 € O. By Urysohn’s lemma, we
can find u € Sc(uq) such that u(ng) =1 and u = 0 on M \ O. Take any representing
measure o for d,,, that is, o is a regular Borel measure on M x T satisfying ¢,,(g) =
Jyuxp do for all g € B and |lo|| = 1, where ||o|| is the total variatioilvof o. Having
in mind that the operator norm ||0,,|| of 0, satisfies ||0,,]] = 1 = d4,(11), we observe
that o is a positive measure (see, for example, [2, p.81]). Setting f = Z(u) € Syip(1), we

obtain f(n, z) = u(n)z for (n,z) € M x T by (2.1) and (2.3). Since u =0 on M\ O, we

get
/ fda
OxT

< [ 1fldr < fleo(0 % T) =a(0 X T) < ol = 1.
OXT

< + fdo

1= Jz0] = [60 ()] = ]/M Fio

/(MXT)\(OXT)

Consequently, o(O x T) = 1 for all open sets O in M with ny € O, and therefore, we
observe that o({n} x T) = 1 by the regularity of . We thus obtain

20 = 0g(f) = / fdo = / u(n)zdo = / zdo.
{no}xT {no}xT {no}xT

We derive from o ({1} xT) = 1 that f{no}xT(zo—z) do = 0. Setting Z = {no} x(T\{20}),
we obtain [, (1—Zgz)do = =% [,(2—20) do = 0, which yields [, Re(1-%5z) do = 0. As
Re(1 —Zpz) > 0 on Z, we conclude o(Z) = 0, and thus o({no} x {z0}) = 1. This proves
that any representing measure for d,, is the Dirac measure concentrated at z. O
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Lemma 2.3.  For each o = (19, 20) € M x T, we have xy € Ch(B), that is,
Ch(B) = M x T.

Proof. We shall prove that ¢,,, belongs to ext(B7). Suppose that d,, = ({1 +&2)/2
for &1, € B}. For j = 1,2, there exists a representing measure o; for §; by the Hahn—
Banach theorem and the Riesz representation theorem (see, for example, [25, Theorems
516 and 2.14]). Since & (17) + &(17) = 26,,(17) = 2 with |£;(17)] < 1, we have
@(E) =1 = || for j =1,2. Applying the same argument in [2, p.81] to o;, we see
that o; is a positive measure. We put o = (01 +02)/2, and then ¢ is a positive measure.

First, we prove that o is a representing measure for d,,. Because o; is a representing

measure for §;, we get

/ijrf’do_: /MXde(O-1+O-2) _ 51(f)+€2(f) :6360(}’) (fe B)

2 2

Jrior Ldo = 1, which
shows that ||o|| = 1 = ||d4,||- Therefore, o is a representing measure for ¢,,. By

Entering f: 1; into the above equality, we have o(M x T) =

Lemma 2.2, ¢ = (01 4 02)/2 is the Dirac measure, 7,,, concentrated at z.
We note that o; is a positive measure with j = 1,2. For each Borel set D with
xzo ¢ D, we obtain (o1(D) + 02(D))/2 = o(D) = 0, and thus, 0;(D) = 0. Having

in mmd that HO']H = HEJH = 1, we conclude that o; = 7,, for j = 1,2. Hence,
§(F) = [t fdaj — f(wo) = 64, (f) for any f € B, which implies that & = &, = &.
ThlS proves d,, € ext(B7), which yields xg € Ch(B). O

We now characterize the set of all maximal convex subsets Fg of Sg. The following
result is proved by Hatori, Oi and Shindo Togashi in [15] for uniform algebras. The proof
below of the next proposition is quite similar to that of [15, Lemma 3.2].

Proposition 2.4.  Let F be a subset of Sg. Then F € Fp if and only if there
exist A\ € T and x € M x T such that F = A\V,..

Proof. Suppose that F' is a maximal convex subset of Sp. By [15, Lemma 3.1],
F =¢11)N Sp for some € € ext(B}) = {\6, € Bf : A € T,z € M x T}, where we
have used Lemma 2.3. There exist A € T and z € M x T such that £ = A\d,. Now we
can write
=(My) ' (1) N Sp ={f € Sp: Af(x) =1} = AV,
We thus obtain F = AV, with A € T and x € M x T.
Conversely, suppose that F' = AV, for some A € T and z € M x T. It is routine to

check that F' is a convex subset of Sp. Using Zorn’s lemma, we can prove that there
exists a maximal convex subset K of S with ' C K. By the above paragraph, we see
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that K = pV,, for some p € T and y € M x T. Then AV, = F C K = uV,. Lemma 2.1
shows that (\,z) = (u,y), which implies that F' = K. Consequently, F' is a maximal
convex subset of Sp. O

Tanaka [28, Lemma 3.5] proved that every surjective isometry between the unit
spheres of two Banach spaces preserves maximal convex subsets of the spheres (see also
[3, Lemma 5.1]). By these results, we can prove the following lemma.

Lemma 2.5.  There ezist maps a: TX(MXT) — T and ¢: TX(MXT) - MxT
such that

(2.5) T(AVz) = a(A,2)Ver )

for all (\,z) € T x (M xT).

Proof. For each (\,z) € T x (M x T), AV, is a maximal convex subset of Sp
by Proposition 2.4. By [28, Lemma 3.5], surjective isometry T': Sp — Sp preserves
maximal convex subsets of Sp, that is, there exists (u,y) € T x (M x T) such that
T(AVy) = uV,. If, in addition, T'(AV,) = p'V, for some (¢/,y") € T x (M x T), then
we obtain (u,y) = (¢/,y’) by Lemma 2.1. Therefore, if we define a(\,z) = p and
p(\z)=y,then a: TXx (M xT) - T and ¢: T x (M x T) - M x T are well defined

maps with T(AV,) = a(\, 2)Vya 2)- O
Lemma 2.6.  The maps o and ¢ from Lemma 2.5 are both surjective maps sat-
isfying

a(=\z) = —a(Ax) and (A x) = oA\ z)
for all (\,z) € T x (M x T).

Proof. Take any (A, z) € T x (M x T), and then AV, is a maximal convex subset
of S by Proposition 2.4. We get T(—A\V,) = —T(A\V,), which was proved by Mori
20, Proposition 2.3] in a general setting. Lemma 2.5 shows that a(—\,2)Vy_x . =
T(=AVy) = =T(A\Vy) = —a(\, 2)Vy(r 2. Applying Lemma 2.1, we obtain a(-\,z) =
—a(A, z) and (=, x) = ¢(\, x).

There exist well defined maps f: T X (M xT) - Tand ¢p: TXx (M xT) - MxT
such that

T HuVy) = B ) V(g ((y) € T X (M x T)),

since T~! has the same property as T. For each (u,y) € T x (M x T), we have, by
(2.5),

1y =T(T (V) = T(B(1 ¥) Vipurgy) = (B> ) ¥ (s ¥)) Vi (811,10 0 (s0)) -
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We derive from Lemma 2.1 that p = a(B(p,y),¥ (1, y)) and y = ¢(B(1,y), ¥ (1, y))-
These prove that both o and ¢ are surjective. Ol

By definition, ¢(A\,x) € M x T for each (A\,z) € T x (M x T). There exist
o1 (A, ) € M and ¢2(\, x) € T such that

Qb()‘: m) = (¢1(>‘7 x)a ¢2(/\7 :E))

We shall regard ¢, and ¢o as maps defined on T x (M x T) to M and T, respectively.
By Lemma 2.6, both ¢1 and ¢5 are surjective maps with

(2.6) di(=Az) = ¢j(\, ) (AMx)eTx (MxT), j=1,2).

Lemma 2.7.  Let \; € T and (n;,z;) € M x T for j =1,2. If ;1 # na, then
there exist f; € Sp such that f; € AV, ..y for j=1,2 and || f1 — f2l = 1.

Proof. Take j € {1,2} and open sets O; in M with n; € O; and O; N Oy =
0. By Urysohn’s lemma, there exists u; € Sc(a) such that u;(n;) = 1 and u; = 0
on M\ O;. Let f; = Z(\;Z;u;), and then we see that J?j(n,z) = \;Zju;(n)z for
all (n,z) € M x T by (2.1) and (2.3). It follows from ]?j € AW,z for j = 1,2
that 1 = ]fl(m,zl) — ﬁ(nl,zl)] < Hfl — ngoo Hence, it is enough to prove that
11 — falloe < 1. We shall prove |f1(n,2) — fa(n,2)] < 1 for all (1,2) € M x T. Fix an
arbitrary (n,z) € M x T. If n € Oy, then us(n) = 0, since O1 N Oy = B, and thus

[f1(n. 2) = fa(n, 2)| = [MZTur(n) — NeZ2ua(n)] < Jut(n)] + |uz(n)] < 1.

If n € M\ Oy, then |f1(n,z) — f2(n,2)] < 1 by the choice of u;. We conclude that
|f1(n,2) — fa(n,z)| <1 for all (n,2z) € M x T, which yields || f1 — fallco < 1. O

Lemma 2.8. IfAeT andx € M x T, then ¢p1(\,x) = ¢p1(1,x); we shall write
b1\, 1) = ¢1(x) for simplicity.

Proof. Take any A € T and z € M x T. Then T(V,) = a(l,2)V4a,,) and
T(AVz) = a(X,x)Vyr 0 by (2.5). Suppose, on the contrary, that ¢1(\,x) # ¢1(1, ).
There exist f; € a(l,z)Vya,z) = T(Vz) and fa € a(A, 2)Vyna) = T(AV,) such that
If1 — f2lloc = 1 by Lemma 2.7. We infer from the choice of f1 and f, that T-1(f;) € V,
and T=1(f5) € A\V,, which implies that T=1(f;)(z) = 1 and T-1(f3)(z) = A. If Re A <

0, then |1 — \| > V2, and thus

V2 <1 = = [T (f)(@) = T (fo) (@)
<IT7H(A) =T (f)lloo = 11 = folloo = 1,
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where we have used that T is an isometry on Sp. We arrive at a contradiction,
which shows ¢1(\,z) = ¢1(1,x), provided that ReA < 0. Now we consider the
case when ReA > 0. Then ¢1(—\,x) = ¢1(1,x), since Re(—\) < 0. By (2.6),
d1 (N, x) = d1(—=A,x) = p1(1, ), even if Re A > 0. O

Lemma 2.9.  For each A\, 2 € T and x € M XT, the following inequality holds:

(27) |)\1 — )\2’ S ‘1 — a()\l,x)a()\z,xﬂ.

Proof. Fix A;,A\2 € Tand x € M x T. We set f; = a(\;, )11 € Spip(r) for each
j€{1,2}. Wesee that f; € a(Aj, )V, ) = T(A;Vz) by (2.5). Then T71(f;) € AV,
and hence T71(f;)(x) = \;. We obtain

A= do| = [T (f)(@) = T ()@)] < IT7(f) =T (f2)lloo = 1+ = falloo
= [a(A\1,2) — a2, 2)| 11l = |1 = a(Ar, z)a(Ae, 2)].

Thus, |A1 — A2] < |1 — a(A1, z)a(Ng, z)| holds for all A\;, Ay € T and 2z € M x T. O
Lemma 2.10.  For each x € M x T, there exists eo(x) € {£1} such that
al\, z) = A0@a(1,2) for all X € T; for simplicity, we shall write a(1,2) = a(x).

Proof. Let A € T\ {£1} and x € M x T. Taking \y = 1 and Ay = £\ in (2.7),
we obtain

’1_)‘| < ’1_04(173:)0'/()"1')‘ and ’1+)‘| < ]1+a(1,:v)a()\,a:)\,
where we have used Lemma 2.6. Since a(1,x)a(A, x) € T, we conclude that

a(l,z)a(X z) € {\ A}

If we consider the case when A = i, then we have «o(1,z)a(i,z) € {£i}. This implies
that a(i,z) = ieg(x)a(l, x) for some go(x) € {£1}. Entering \; = i and A2 = X into
(2.7) to get

li — Al < |1 —a(i,z)a(X,z)| = |1 +ico(x)a(l, x)a(N, z)| = |i —eo(z)a(l, x)a(A, x)|,

and thus i —A| < |i—eg(x)a(l, z)a(A, z)|. Because a(—\, z) = —a(A, ) by Lemma 2.6,
we get |i + A < |i+eo(x)a(l, z)a(A, z)|. These inequalities imply eo(x)a(l, z)a(A, ) €
{\, =}, since eg(z)a (1, 2)a(N, z) € T. Then

a(l,z)a(\, z) € {\ A} N {eo(z)\, —co(x)A}.

We have two possible cases to consider. If eo(z) = 1, then we obtain «(1,z)a(\, z) €
{A A} N {A, =X}, Since A # =£1, we conclude that «(1,z)a(),z) = A, and hence
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al\,z) = Xo@a(1,z). If gg(x) = —1, then a(l,z)a(X, z) € {\, X} N {=X, A}, which
yields a(1,z)a(X,z) = X. Thus, a(\,z) = A°@a(1,z). These identities are valid
even for A = +1. By the liberty of the choice of A € T, we conclude that a(\, x) =
Ao@)q(1,2) for all A € T and z € M x T. O

By Lemmas 2.8 and 2.10, we can rewrite (2.5) as
(2.8) T(AVy) = A a(@)Vig, ()65 (0,2))
forall A\ € T and v € M x T.

Definition 1.  Let AV, and pV,, be maximal convex subsets of S, where A, i €
T and z,y € M x T. We denote by du(AV,, V) the Hausdorff distance of AV, and

1Vy, that is,

(2.9) dp(AVy, pV,) = max{ sup d(f, uVy), sup d(AV,,9) ¢,
fexv, gepVy
where d(f, uVy) = infy_ . | f = Dlloo and d(AVz, §) = inff sy 12— lloc.
Since T is a surjective isometry on Sp, we obtain

AT TWV) = il T ~hllo= il f =T )l = d(]. V)

for every f € AV,. Hence, SUD (e (\V2) d(T(f),T(uVy)) = SUD7c,y, d(f, uVy). By
the same reasoning, we get supr g er(uv,) AT (AVz), T(9)) = supge,y, d(AVa, g), and
thus

(2.10) dua(T(A\Vy), T(1Vy)) = dg(AVy, uVy) MpeT,z,ye MxT).
Remark 2.  Let A € T and (n,z) € M x T. For each fe AV(y,z), we observe that
Af(0)€[0,1] and  f/(m)Az = | [-
In fact, f(0) + f'(n)z = A by the definition of AV, .). Then
L=X{f(0) + F'(m)=} = MF0) + F'(m)z}] < [AFO) + | (A2l < [ fllo =1,

and thus, [Xf(0)+ f'(n)xz| = [Af(0)|+|f(n)Xz|. This implies that Af(0) = ¢f’(n)Az for
some ¢ > 0, provided f'(n) # 0. Since M{f(0)+ f'(n)z} = 1, we have f'(n)Az = 1/(1+t)
and Af(0) = t/(1+1¢) € [0,1]. If f'() = 0, then XfﬁO) = 1, and hence Af(0) € [0,1]

as well. In particular, Af(0) = |£(0)|. We infer from f’(n)Az =1 — Af(0) and Hf’Hoo =
1 —[f(0)] that f'(n)Az = [|f']|cc-
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Lemma 2.11.  For eachn € M, z € T and k € {1}, the following equalities
hold:

(2.11) Csup d(f kV) = sup d(kVip).9) = |1 — k.
kaIV(nyk) gek‘/(n,z)

In particular, dg(kVi, k), kViy2)) = |1 — k2| for alln e M, z € T and k = £1.

Proof. Fix an arbitrary j?E kViy k) and g € kV,, .y, and then
(2.12) FO)+ Pk =k and  g(0) + ()= = k.

We notice that kf(0), kg(0) € [0,1], f(n) = || F|le and ¢'(n)kz = ||¢/||sc by Remark 2.
We deduce from the choice of f and g that

(1= kz)(kf(0) = 1) < |kf(0) — kg(0)| + [kg(0) — 1 — kz(kf(0) — 1)]
= [£(0) = g(0)] + [2(g(0) — k) — (kf(0) — 1)|
=1£(0) = g(0) + 1g'(n) — F'(n)| by (2.12)
<1£0) = gO)| + 1F = gllsc = I = gllo = I1f = Floo-

That is, |1 — k2|(1 = kf(0)) < ||f — Gllee. We also have |(1—kz)(kg(0) = 1)] < ||f = Glloo
by a similar calculation, and thus, |1 — kz|(1 — kg(0)) < ||f — gllco- By the liberty of
the choice of f € kV, 1) and g € kV/,, .y, we obtain

11— kz[(1 = kf(0)) < d(f, kV(y.) and |1 —kz|(1 - kg(0)) < d(kV(y ), )-

Setting f1 = f(0) —i—I(k:Ef’) and g1 = g(0) + Z(kzg'), we sce that fi(n,z) = f(0) +
k}:’(n) = k and gi(n, k) = g(0) + zg'(n) = k by (2.12), where we have used that
Z(u)(0) = 0 for u € C(M). Consequently, f; € kViy,»y and g1 € kV(;, 1). By the choice
of f1, we have

If = filo= sup [f(Cv) =AY = sup  [(1—k2)F (vl
(Cv)EMXT (¢,V)EMXT
= |1 — k2| | f'lloc = |1 — k2| f'(n) = |1 — kz|(1 — k£(0))

by (2.12). In the same way, we get

Ig1 =Gl = sup  [(kz = 1)g'(Q)v| = |kz — 1] ¢/ [l = |1 — kz|(1 — kg(0)),
(C,v)EMXT

which yields d(f, kVin,z) = |1 —kz|(1 = kf(0)) and d(kV(y 1y, 9) = [1 — kz|(1 — kg(0)

).
Having in mind that kf(0), kg(0) € [0, 1], we conclude that SUD ey, ) d(f, kVi.2)) =
11— kz| = supgery,, ., Ad(kV(y0), 9)- U
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Lemma 2.12.  The identity ¢1(n,z) = ¢1(n, 1) holds for allm € M and z € T;
we shall write ¢1(n, z) = ¢1(n) for the sake of simplicity of notation.

Proof. Fix arbitrary k € {£1}, n € M and z € T\ {£1}. We assume that
¢1(n, z) # ¢1(n, k). There exists up € Sc(aq) such that

Uk:(¢1(”7> Z)) = ko‘(”b Z)¢2(k> (7]7 Z)) and uk(¢1 (77, k)) = _ka(n, k)¢2(k’ (777 k))

Setting gr = Z(ux), we see that gr € ka(n, 2) Vi, (m,2)) N (—ka(n, k) Vi, (,k)), where
we have used ¢1 (A, z) = ¢1(z) by Lemma 2.8. For any f € ka(n, k) Vi, (y,k)), We obtain

2 = [ka(n, k) + ka(n, k)| = |f(6(k, (n,%))) = gi(d(k, (0, k)] < || f = Gilloo < 2,
which shows d(ka(n, )V, (5,k)), 9k) = 2. Combining (2.8), (2.9), (2.10) and (2.11), we
get

2 < sup d(ka(n, k)v¢’(k7(n,k))’§)
geka(n,2)Vyk,(n,2))

< dp(ka(n, k) Ve, (1)) ka0, 2) Vg, n,2))) = da(T(EViyxy), T(EViy 2))
= dH(va(n,k)a kvv(n,z)) = |1 - ]{JZ’,

which implies z = —k. This contradicts z # +1, and thus ¢ (1, z) = ¢1(n, k) for z # £1.
Entering z = i and & = %1 into the last equality, we get ¢1(n,1) = ¢1(n,7) = ¢1(n, —1).
Therefore, we conclude ¢1(n, 2) = ¢1(n, 1) for all n € M and z € T. O

Lemma 2.13.  The following inequalities hold for all A, € T and x € M x T;

(2.13) A Gy (N, 2) o, ) — p=@| < A — pl,
and [N Gy (N, 2o, ) + p* | < A+ pl.

Proof. Take any \,u € T and z € M x T. For each fv € AV, and g € uV,,
we obtain |A — u| = [f(z) — §(@)| < ||f — §lls, Which yields |A — p| < d(f, uVy). Set
fo = Auf, and then we see that fo € uV, with |[f — folleo = [[(1 = A) flloe = |A — pl-
This implies d(f, #1V,) = |A— p|. By the same argument, we see that d(AV,,§) = |A— pl.
Consequently, dg(AVy, uVy) = [A — u| by (2.9).

Let us define f; = a(), z)¢2(\, 2)Z(1r4), and then we see that f1 € a(), T)Vyrz) =
T(AV,) by (2.3) and (2.5). Set g1 = T(g) for each g € uV,. Then g1 € T(uV,) =
a(t, )Vi(u,z)- By the definition of the set vV, we have f{(qbl (2))pa(\, ) = Ao ()
and ¢g1(0) + gA'l(gbl ()2 (1, ©) = p=° @ a(z), where we have used (2.8). We deduce from
a(z), p2(\, ), pa(p, ) € T that

A @ G (N z) — 1@ g ()| < [ f1(61(2)) — g4 (61(2)] + |91 (0)]
<1£10) = g1 ()| + 1f{ = dillo = 1 — 01lle = I = Gilloos
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which shows [A0@) gy (X, z) — 122 @ dy (1, )| < d(f1, T(11Vy)). We infer from (2.9) and
(2.10) that

A0 go(N,2) — p o, 2)| < sup (T (f), T(uVz))
T(FET(\WVa)

< da(TAV2), T(uVa)) = da(AVa, V) = |A = pl.

Thus, [A0) ga (A, 2)¢a (1, ) — p=®)| < |\ — p|. Noting that ¢o(—p,2) = ¢a(u, x) by
(2.6), we obtain [A0®) gy (N, z)pa(p, ) + pfo@ | < X+ pl. O

Lemma 2.14.  For each v € M x T, there exists e1(x) € {£1} such that
o\, ) = Neo@ 1@ gy (1, 2) for all X € T.

Proof. Fix arbitrary z € M x T and A € T \ {£1}. We obtain
X gy (N, 2)pa(l,2) £ 1| < (AL 1]
by (2.13) with g = 1, which implies A\*0(®) @5 (X, 2) (1, x) € {\, A}. Hence,

d2(A, x)pa(l, ) € {/\1*50(33)’ )\*1780(32)}'

In particular, ¢2(i,x)p2(1,x) € {xeo(z)}, and thus ¢o(i,z) = e1(x)eo(x)p2(1, x) for
some ¢1(z) € {£1}. Entering p = ¢ into (2.13) to get

A =il = A g2 (A, )i, 2) — eo(@)i] = XD ha (N, 2)er (2)¢a(L, 2) — .

By the same reasoning, we have |\ + i| > |[A°®) @y (X, x)e1(2)¢p2(1, ) + i|. Then we
derive from these two inequalities that A%°(®) o (X, z)ey(z)2(1,2) € {\,—\}. Thus,
e1(2)pa (N, )2 (1, ) € {A17=0(@) _\~1=20(®)} Now we obtain

Ga(% 2)0a(1.) € A0 A0} 1 oy (@)X, ey (@)A1 ),

Note that \ # £1. If £;(z) = 1, then we get go(\, z)po(1,z) = A1=50() and if e, (z) =
—1, then ¢o(\, )da(1,z) = A=17%0(=) These imply that ¢o(\, z)pa(1,z) = A1 (#)==0(@)
for A € T\ {£1}. The last identity is valid even for A € {£1} by (2.6). Therefore, we
conclude that ¢o(\, ) = A0@)=1(@) ¢, (1, 2) for all A € T. O

We shall write ¢o(1,2) = ¢o(x) for x € M x T. Let A € T and x € M x T. By
(2.8), T(f)(¢1(x), pa(\, x)) = Ao@a(x) = a(N, ) for f € Stip(r) with f € AV,. Noting

~ —~—

that T'(f) = A(f) by (2.4), we infer from Lemma 2.12 that

(2.14) A)(0) + A (¢1(m)p2(A, 7) = (A, 2)
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forall A € T,z = (n,2) € MxT and f € Syipr) with ]?G AV,. If we apply Lemma 2.14,
then we can rewrite the last equality as

(2.15) A(F)(O) + A(f) (1(m)A* D=1 @ gy () = A0 a(z)

for AeT,z=(n,2) € M xTand f € Spipr) satisfying fe AV,.

Lemma 2.15.  Suppose that A(X\g1;)(0) = 0 for some A\g € T. Then A(/)\()Td)’ =
0 on M for the identity function id on I.

Proof. Fix arbitrary n € M and z € T, and we set x = (n,z). We note Nol; €
AoV, and then equality (2.15) shows that A(AoL7) (1(n))Ag =™ da () = a(z). We set
e(n) = A(Nol1)'(¢1(n)) for the sake of simplicity of notation. Then we can rewrite the

above equality as

(2.16) e(mA = () = afz).

Since A\oid € A\o2V(y, ), we get, by (2.15),

A(Aoid)(0) + A(Aoid) (¢1(1)) (Ao2) ™~ 6o () = (Aoz)™ P a().
Combining (2.16) with the last equality, we obtain

A(oid)(0) + AD i) (61 (7)) (M2) D=1 @ gy () = (Ag2)*De(n) Ay P a(2),

which leads to

Ao id)(0) = (o2)*@ {e(m)z"®) = A1) (91(m) | (h02) ™D (a).

Note that |e(n)] = 1 by (2. 16) Taking the modulus of the above equality, we get
IA(Xoid)(0)] = [252(*) —e(n) A ()\0 1d) (¢1(n))]- Since z € T is arbitrary, the last equality
holds for z = +1,i. Then we have A(/\o id)’(¢1(n)) = 0. Having in mind that n € M is
arbitrarily fixed, we obtain A(/)\()Td)’ = 0 on M, where we have used ¢1(M) = M by

Lemmas 2.6, 2.8 and 2.12. O

Lemma 2.16.  For each A\ € T, the value A(A1;)(0) is nonzero.

Proof. Suppose, on the contrary, that A(Ap1;)(0) = 0 for some A\g € T. Then
A(/)\OTd)’ = 0 on M by Lemma 2.15. We define a function fo € Syip) by fo =
Ao(2id +1id?)/4. We shall prove that fé(no) = Xp for some 1y € M. Let R(id) be
the essential range of id € Lip([), that is, R(id) is the set of all { € C for which
{t € I :|id(t) — {| < €} has positive measure for all ¢ > 0. By definition, we see that
R(id) = id(I) = I. For the spectrum o (id) of id, we observe that R(id) = o(id) = id(M)
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(see, for example, [6, Lemma 2.63]). Thus, there exists ny € M such that 1?1(770) =1,
which yields f](no) = Ao(2 + 2id(10))/4 = Ao as is claimed. Fix an arbitrary z € T,
and then we see that \oid € A02V(no,2) With A(/)\()Td)’ = 0 on M. Applying (2.14) to
f = Aoid, we have A(\pid)(0) = a(Aoz, (1o, 2)). Having in mind that z € T is arbitrary,
we may enter z = £1 into the last equality. Then we get

(217) a()\Oa(UO;l)) = O‘(_)‘Oa(’r]()v_l))'

Note also that ]70 € AozV(yp,2), and thus

—

A(f0)(0) + A(fo) (¢1(n0))P2(Aoz, (10, 2)) = a(Xoz, (10, 2))

by (2.14). Since A(Xgid)(0) = a(Aoz, (10, 2)), we can rewrite the above equality as

(2.18) A(f0)(0) + A(fo) (é1(n0))d2(Moz, (10, 2)) = A(Aeid)(0),

L — —

which yields [A(Agid)(0) — A(f0)(0)] = |A(fo) (d1(n0))] < |A(fo) ||co- We thus obtain

2 A(fo) lloe > 1A 1d)(0) — A(f0)(0)] + [|A(fo)[loo

—_—

= 1800 id)(0) = Alfo) (0)] + [ AT ) — ATV 1
= A1) ~ AGo)lo = Ioid ~folly = 51T ~ il = 3

Hence, we have Hm’ﬂoo > 1/4, which implies |A(fo)(0)] < 3/4, since ||A(fo)|lo = 1.
It follows from (2.18) that

—

1 = |a(Xoz, (M0, 2))] = [A(Xoid)(0)| = [A(f0)(0) + A(fo) (¢1(n0))P2( Aoz, (10, 2))]-

Since |A(fp)(0)| < 3/4, we see that m’(¢1(no)) # 0. By the liberty of the choice of
z € T, we deduce from (2.18) that ¢2(Noz, (10, 2)) is invariant with respect to z € T.
Entering z = 1 into ¢2(Aoz, (M0, 2)), we get

(2.19) $2(Aos (M0, 1)) = d2(—Ao, (70, —1)).

Set f1 = A\o(2 +id?)/4 € Stip(1), and then we have fi € AoVino,1), because ﬁ(no) = 1.
We deduce from (2.14) that

—

(2.20) A(f1)(0) + A(f1) (¢1(10))P2( Ao, (M0, 1)) = (Ao, (10,1))-

Combining (2.17) and (2.19) with (2.20), we have

A(F1)(0) + A1) (é1(10))d2(— Ao, (10, 1)) = &= Ao, (0, ~1))-

—_—

Here, we recall that T(]?l) = A(f1) by (2.4). Then the above equality with (2.5) and
(2.14) implies that T(fl) S Ot(—)\o,(770,—1))‘/4)(_/\0,("0,_1)) = T(—)\OV(,,O,_D), which
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shows fl € (—A0)Vino,~1)- Consequently, fl € (—=20)Vino,~1) M Ao V(ne,1), and therefore,
we obtain

£1(0) = Fi(mo) = =0 = —{/1(0) + F{(m0)}.
This leads to f1(0) = —f1(0), which yields f1(0) = 0. On the other hand, f;(0)

Ao(2 4 1d*(0))/4 = X\o/2 # 0. This is a contradiction. We conclude that A(A1;)(0) # 0
for all A € T. 0
Lemma 2.17.  The values a(x) and eo(x) are both independent from the variable

x € M x T; we shall write a(x) = a and eo(z) = €.

Proof. Take any A € T and z = (n,2) € M x T. According to (2.14), applied to
f = Al;, we have

1= X0@a(z)] = [AAL)(0) + ALY (61 (0)ds (A, )]

< [AAL) ()] + [AAL) (@1 ()] < [[AALL) o = 1.

The above inequalities show that

— —

[AALL)(0) + AALL) (01(n))p2(A, 2)| = 1 = [AALL)(0)] + |AALL) (61(n))]-

Note that A(A1;)(0) # 0 by Lemma 2.16. By the above equality, there exists t > 0
such that A(A1;) (¢1(n))p2(N, ) = tA(A1;)(0). We thus obtain

L —

[tAAL7)(0)| = |A(ALL) (¢1(n))] = 1 — |A(A11)(0)],

which yields (1 + ¢)]A(A17)(0)] = 1. Consequently,

A0@a(z) = ANL)(0) + AL (é1(n)d2(A,2) = (1 +HAAL)(0) = %

by (2.14). Then a(x) = A(17)(0)/|A(17)(0)| is independent from = € M x T. Letting
A = i in the above equality, we get ico(x)a(z) = A(il)(0)/|A(i17)(0)|. Thus, ¢ is
constant on M x T. O

By Lemma 2.17, we can rewrite (2.15) as
(2:21) A(N)(0) + Af) ()X~ P ga(w) = X*a
forall \ € T, z = (1,2) € M x T and f € Spip(p) with f € AV,

Lemma 2.18. Letne M, A€ T and f € Syipr) be such that f’(n) = A. Then
A(f) satisfies A(f)(0) =0 and

—

(2.22) A(f) (¢1(n)P2(Az, (1, 2)) = (Az)~ax
for all z € T.
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Proof. Fix an arbitrary z € T. By the choice of f, we have f € A2V, By
(2.21) with ¢a(Az, (1, 2)) = (A2)S0~=1(12) gy (n, 2), we obtain

(2.23) A(F)(0) + AFY (1 () d2(Az, (1, 2)) = (A2)™ar.

We observe that HA( )||oo # 0; for if HA( )||cc = 0, then we would have A(f)(0) =
(Az)fo« for all z € T, which is impossible. Equality (2.23) shows that

1= A(F)0) + A (61(n)d2(Az, (0, 2))]
< |AHO)] + [AF (1)) < Ao =1,
and hence, |A(f) (p1(n))| = ||A( )'||oc # 0. Then there exists s > 0 such that

(2.24) A(£)(0) = sA(F) (¢1 () d2(Az, (1, 2)).

It follows from (2.23) that

—

(L4 s)A(f) (91(n)P2(Az, (0, 2)) = (A2)*

which yields (1 + s)HA( )|loo = 1, or equivalently, SHA( Voo =1— HA( )'||oo- These
equalities show that

A (&1(m) 2 (A2, (0, 2)) = [IA(S) [l oo (A2)00r.

We deduce from the last equality with (2.24) that A(f)(0) = SHA( ) |oo(A2)0 =
(1= [|A(f) [lo0) (A2)a, that is,

A()(©0) = (1= [[A(f) lo)(A2) 0

By the liberty of the choice of z € T, we get 1 — HA( ) [loo = 0 = A(f)(0). Thus, by
(2.23), (f) (p1(n))p2(Az, (0, 2)) = (Az)%°a for all z € T. O

Lemma 2.19. For each \,z € T and n € M,
P2 (N, (1, 2)) = X075 Mo (1, (1, 1)) 25 (M),

where 1(n) = e1(n, 1).

Proof. Fix arbitrary A,z € T and n € M. Setting u = Az and v = plr € Scm),
we see that Z(v) € Spip(r) satisfies Z(v)'(n) = p by (2.3). We may apply (2.22) to
f=2Zv), and we get A(Z(v)) (p1(n))p2(1z,(n, z)) = (uz)*°a. Therefore, we obtain

— —

A(Z()) (d1(n)¢2(nz, (0, 2)) = pa- 270 = A(Z(v) (d1(n)) P2k, (1, 1))z
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Then A(Z(v))'(¢1(n)) # 0, and hence ¢a(uz, (1, ) = ¢a(u, (9,1))2°. This implies
¢2()‘7 (777 Z)) = ¢2(>‘27 (777 1))260

Applying Lemmas 2.14 and 2.17 to the last equality, we now get

2(A, (1,2)) = d2(A7, (0, 1))2% = (A2)* " Wa(1, (1, 1)) 2%
= X0t (1, (n,1))252 ).

Conseaquently, ¢a(\, (7, 2)) = A0~ (1, (5, 1)) 2517, 0

We shall write ¢2(1, (n,1)) = ¢2(n) for simplicity. According to Lemma 2.19, we

can write

(2.25) B2 (N, (1, 2)) = A1) gy (37) 252 (1)

for all A € T and (n,2) € M x T. Combining (2.21) and (2.25), with ¢2(\,z) =
Af0—1(®) gy (), we obtain

(2.26) A(f)(0) + A(F) (¢1() AP~ My ()21 = Aq
for all A € T, (1,2) € M x T and f € Spip(ry with f € AV, ).

Lemma 2.20. Let A € T, (n,z2) € M x T and f € Syipr) be such that fe
AVin,z)- Then

AF)O) = AL a  and A ($1(7)) = D) loA™ P gy ()21 .

In particular,

(2.27) IAF) )] + [AF) (61 ()] = | £O)] + | (m)]

for all f € Stipry with f € AV, .-

Proof. By assumption, (2.26) holds. Taking the modulus of (2.26) to get

(2.28) 1< [A(F)O)] + AU (61 (n) A D gy () 251 (7|
< IADOI+ 1AFY oo = 1A 0 = 1.

We derive from the last inequalities that \A( ) (Pp1(n)| = HA( ) ] co-

If A(f)(0) =0, then the identity A(f)(0) = |A(f)(0 )])\5004 is obvious; in addition,
|A) oo = 1A)Ils = 1, and hence A(F) (61(n)) = [A(F) llocA P ada )z
by (2.26). We next consider the case when A(f)(0) # 0. There exists s > 0 such
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that A(f) (1 ()N~ My (1) 251 (M) = sA(£)(0) by (2.28). Entering the last equality
into (2.26) to get (1 + s)A(f)(0) = A*°a. We thus obtain (1 + s)|A(f)(0)| = 1, and
consequently, A(f)(0) = |A(f)(0)|A*°« holds even if A(f)(0) # 0. Having in mind that
IA(f)(0)] + HA/(f\)’HOO = 1, we infer from (2.26) that

JAGY X0 = (1= JA(F)(O))A0a = A a — A(F)(0)
= D) (¢ (m) A%~ D gy (3) 21 ),

This shows that A(f)(¢1(7)) = [IA(F) leeA= M aga(n) 251, Since f € AV,.), we
get

1= |\ = [£(0) + /()2 < [FO) +|F' ()] < fllo =1,
and hence |A(f)(0)] + |A(f) (¢1(n)] =1 = |£(0)| + | (n)]- O

For each A € T and n € M, we define AP, by
AP, ={u € Scm) : u(n) = A}

Lemma 2.21.  Let ng € M and f € Svip). We set A = J?/(no)/|J/c\’(770)| if
f'(no) # 0, and A = 1 if f'(ny) = 0. For each t € R with 0 < t < 1, there exists
uy € Py, such that

[EFOIA+ 7+ {1 = |t£(0)] = [£F/(no) } Aus € AP,.

Proof. Note first that 1—|t£(0)| — [t/ (no)| > 0, since [t£(0)|+|tf"(n0)| < |tflo <
1. Weset r=1—[tf(0)| — [tf"(no)],

Go = {neM:|tFn)—tf )l = 7}

-~ r
and G, {7) eEM: 2m+2 < [tf'(n) = tF'(no)| < 2m—|—1}

for each m € N. We see that G, is a closed subset of M with ng & G, for all n € NU{0}.
For each n € NU {0}, there exists v,, € P,, such that

(2.29) v, =0 onG,

by Urysohn’s lemma. Setting us = vg Y., v, /2", we see that u; converges in C(M),
since ||vy,||oo = 1 for all n € N. We observe that

v
L= (o) < lluelloo < lvolloc Z Ionlloe _

and hence u; € P,,. Here, we define

wy = |LFO)A + tf + rau, € C(M).
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We shall prove that w; € AP,,. Since u:(no) =1 and tf’(??g) = ]t]/”\’(no)|)\, we have

we(mo) = [tFO)A+ £ (n0) + {1 = L7 O)] = |1 (no) | A = A

Fix an arbitrary n € M. To prove that |w:(n)| < 1, we shall consider three cases. First,
we consider the case when nn € Gy. Then vo(n) = 0 by (2.29), and hence u(n) = 0 by
definition. We thus obtain |we(n)| < |[tf(0)|A +tf(n)] < ||tf]ls < 1, and consequently,
jwe(n)| < 1if n € Go.

We next consider the case when n € U2 G, and then n € G4, for some m € N. By
the choice of Gy, we get [t f/(n)—tf (no)| < r/2mFL. Thus, [tf'(n)] < [tf (no)|+r/2m+L.
We derive from (2.29) that [rAue(n)| < rlvo(n)| 32,4 [vn(n)]/2" < (1 —27™). Since
[t£(0)] + [t (10)] =1 — r, we obtain

)] < SO+ 670 + 1rhan )] < £+ 167 () + o+ (1 5 )

Hence, |wi(n)| < 1 for n € U2, G,.
Finally we consider the case when n ¢ U2 ,G,,. Then f’(n) = f'(no), and hence
lwe(n)| < [tf(0)] + |tf'(no)| +r = 1. We thus conclude that |w;(n)| < 1 for all n € M,

and consequently, wy € AP, . Ol

§ 3. Proof of Main results

Proof of Theorem 1.1. Fix arbitrary f € Spi,;) and n € M. Set ¢ = ¢1(n)

and A = f'(n)/1f'(n)| if f'(n) # 0, and A = 1if f'(n) = 0. Thus, f'(n) = [f'(n)|A. For
each t € R with 0 < ¢t < 1, we define r = 1 — |tf(0)| — |tf'(n)|, and then r > 0. By
Lemma 2.21, there exists u; € P, such that w; = [¢f(0)|A+tf'+rAus € AP,. We obtain

lwe — Flloo = [I[EFO)A+ (£ = 1) 7 + 1| oo
< JEFO)] + (1= )| loo + 1 = [E£(O)] — |£F/(n)]
— (=)o + 1= |t ().

— —_——

Since wy € AP,, we see that Z(w;)'(n) = wi(n) = A, that is, Z(w) € AV(;,1). Then

—

A(Z(w;))(0) = 0 and A(Z(w,))'(€) = AZ(wr)) (¢1(1)) = A Mgy (1) by Lemma 2.20.
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We get

1~ [A)(Q) = AP aga(m)| — [AL) (O] < NP ads() — A(F) (O]
= [AT(w)) () — AUY (O] < IAT(we)) — A(f) |
= [AEZ(w) = Af)llo — IALF)(O)]
= | Z(we) — fllo = IA)O)] = [FO)] + [[w; — Flloc — |A(F)(0)]
< 1O+ (L= )1 lloe + 1= [t ()] — AU O],

where we have used that A(Z(w;))(0) = 0 = Z(w;)(0) and A is an isometry. Letting
t /1 in the above inequalities, we have

(31) 1= AU (O] < N Dags(n) — A (O] < 1FO)] +1 = [F ()] — [A)O)].

In particular, we obtain |A(£)(0)| — |A(F)Y(O)] < |£(0)] — |F/(n)], that is,

(3.2) A O)] = |AF) (61(m)] < |£0)] = [F ()],

Let 1o € M be such that | /()| = || [loc. There exist 1, z € T such that f(0) = | f(0)|p
and f'(no) = [f'(no)|z = || f'||ccz. Thus,

FO)+ Fr(no)ze = (LFO) + 1 loo)it = [ fllonr =

and hence fe 1Vino zu)- Equality (2.27) shows that

(3.3) A O]+ A (61010)] = [FO)] + | F(m0)].

Note that |A(/)(0)] — [A) (61 (10)] < F(0)] — ()] holds by (3.2). Tf we add the
last inequality to (3.3), we get |A(f)(0)] < |f(0)|. We may apply the above arguments
to A™!, then we obtain |[A~*(g)(0)| < |g(0)| for all g € Spip(r). Entering g = A(f) into
the last inequality to get | f(0)] < |A(f)(0)], and thus

A O)] = [£(0)]-

It follows from (3.2) that |]?’(77)| < |A/(f\)’(¢1 (n))|. Having in mind that f € 1V (no,z10)
and f(0) = |f(0)|u, we derive from Lemma 2.20 that

(3-4) A(F)0) = [A)O)pa = [f(0)[pTa = [f(0)] e,

where [V]** =vifeg=1and [v|*°* =V ifgg = —1 for v € C.

Now we shall prove that ¢, is injective. Suppose that ¢1(n1) = ¢1(n2) for n1,m2 €
M. Set f1 = I(lﬁ),\&md thus f{(nj) =1 for j = 1,2 by (2.3). Equalities (2.22) and
(2.25) show that A(f1) (¢1(n;))P2(n;) = a for j =1,2. Since ¢1(n1) = ¢1(n2), we have
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¢2(m) = ¢2(n2). Applying Lemmas 2.12, 2.17 and 2.19 to (2.8) with A = 1, we obtain
T(Va,m1)) = aVigi(n).ga(m)- Therefore, we get T(Via,i,1))) = T(Via,z,1))), and
consequently, Vi ;1)) = V(1,(5,1))- Lemma 2.1 shows that 7, = 72, which proves that
¢1 is injective. Now, we may apply the arguments in the last paragraph to A~! and d)l_l,
and then we obtain [A(f)(¢)] < [(A~T(A(f)))'(¢1"(€))], which shows |A(f) (¢1(n))] <
1F/(n)]. We thus conclude that |A(F)(O)] = |A(f) (61(n)] = |F'(n)|. By inequalities
(3.1) and |A(f)(0)| = |f(0)], we obtain

X Dagy(n) — AF) (O] + 1A ()] = 1.

The above equality implies that A/(f\)’ Q) = S)\El(n)()é(bg( ) for some s > 0. Then s =

39 am)] = [AGV(O) = 1), which shows AGTY(C) = |F(n)A Pagal) =
[F/(m)]* ™M aga (), where we have used f'(n) = |f'(n)|A. Thus,

(3.5) A (61(n) = ada(n) [F ()]

for all f € SLip(I) and n e M.
We now define Ay: Lip(/) — Lip(I) by

a2 118 () i o= Lm0y
0 if g=0.

By the definition of Ay with (3.4) and (3.5), we observe that

(3.6) Ao(9)(0) = alg(0)]** and  Aq(g)(é1(n)) = ada(n)[g ()]

for all g € Lip(I) and n € M. We thus obtain

o —

I80(91) = Bo(g2)ll- = [80(51)(0) = Bo(g2) O0) + sup Ao(g1)! (61(m) — Dolga) (1(n))]

= 191(0) — g2(0)[ + sup |g1(n) — g5(n)| = llg1 — 92ll»
nem

for all g1, g2 € Lip(J), where we have used ¢1(M) = M. Hence A is an isometry on
Lip(I). We infer from (3.6) that Ag is real linear. We deduce that A is surjective,
since so is A. Therefore, A is a surjective, real linear isometry on Lip(I) that extends
A to Lip(7). O

Proof of Corollary 1.2. Let A; be a surjective isometry on Lip(/). By the
Mazur—Ulam theorem [19], A; — A1(0) is a surjective, real linear isometry. Without
loss of generality, we may and do assume that A; is a surjective real linear isometry.
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Since Al_l has the same property as Aj, we see that A; maps Sy,(7) onto itself. Now
we may apply (3.4) and (3.5) to Ay, and then we obtain

—

A1 (£)(0) = alf(0)]° and Ay (f)(é1(n) = aga(m)[f(n)] ™

for all f € Lip(J) and n € M, where a € T, ¢ € {1}, ¢1: M — M, ¢po: M — T and
e1: M — {£1} are from proof of Theorem 1.1. As we proved in the second paragraph
of Proof of Theorem 1.1, we know that ¢; is injective. By Lemma 2.6, ¢; = gbl_l is well
defined, and then we have

—

(3.7) AL(f) () = ada(dr(m)LF (W1 ()] 1)

for f € Lip(I) and n € M. We shall prove that 1)1 and ¢, are both continuous. Let
{na} be a net in M converging to n € M. By the continuity of A/(?)’, we see that
|A/1(f\)’(77a)| converges to |A/1(7)’(17)| for each f € Lip(I). This implies that | f"(11 (1))
converges to |f’(¢1(17))| for every f € Lip(I) by (3.7). Since the weak topology of M
induced by the family {|J/”\’| : f € Lip(J)} is Hausdorff, we observe that the identity map
from M with the original topology onto M with the weak topology is a homeomorphism.
Hence, 11 (n,) converges to 1(n) with respect to the original topology of M, and thus
Y1 is continuous on M. Since 1) is a bijective continuous map on the compact Hausdorff
space M, it must be a homeomorphism. Let id be the identity function on I. Then we
have m' = apo 091 by (3.7), which implies the continuity of ¢ on M. Moreover,
the identity Al/(zﬁ)’ = aupy 0 1 (g1 01)y) shows that g1 04 is continuous on M. Since
Y1 is a homeomorphism, we have 1 = (g1 0¢1) 0t 1is continuous on M as well. Then
My ={neM:e(1p1(n)) =1} is a closed and open subset of M with e1(¢1(n)) = —1
for all n € M\ M;.

We define a map ®: C(M) — C(M) by ®(u)(n) = [u(1(n))]5 @) for u € C(M)
and n € M. We see that ® is a well defined real linear map on C(M). For each
vy € C(M), we set ug(n) = [vo(¢7 ()51 for n € M. Then we have ®(ug)(n) =
[uo (11 ()] 1 (M) = [yg(n)]r (PrmMen(®1(m) — 44 (), which shows that ® is surjective.
It is routine to check that ® is an injective homomorphism, and consequently, ® is a
real algebra automorphism on C'(M). Let I' be the Gelfand transformation from L>°(I)
onto C'(M), that is, I'(h) = R for h € L™ (I). We define a real algebra automorphism
U=T"todol on L>®(I). For each f € Lip() and n € M, we obtain

[P a0 = B(F) () = (@ o T)(f) () = (T 0 U)(f) () = T(W(f))(n).

By the continuity of ¢ and 11, we may set hg = I'"1(agps o)1) € L>°(I). We derive
from (3.7) that

— L —

A1(f) (n) =T (ho) (I (T(f))(n) = T(ho®(f"))(n) = ho®(f")(n)
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for all n € M. Therefore, we conclude Aq(f)" = hoW(f’) for every f € Lip(I). Accord-
ing to (2.2), we have

AL(F)(E) = A (F)(0) + / Ar(f) dm = o[ f(O)° + / hoW (') dm

for every t € I and f € Lip(]). O
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