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Tingley’s problem for a Banach space of Lipschitz

functions on the closed unit interval

By

Daisuke Hirota∗ and Takeshi Miura∗∗

Abstract

We prove that every surjective isometry on the unit sphere of Lip(I) of all Lipschitz

continuous functions on the closed unit interval I is extended to a surjective real linear isometry

on Lip(I) with the norm ∥f∥σ = |f(0)|+ ∥f ′∥L∞ .

§ 1. Introduction and main results

Let E and F be Banach spaces whose unit spheres are SE and SF , respectively.

In 1987, Tingley [32] asks whether each surjective isometry ∆: SE → SF is extended

to a surjective, real linear isometry from E onto F . Since then, many mathematicians

have given affirmative answers to the Tingley’s problem for particular Banach spaces.

There is a huge list of the research of the problem, here we show only some of them.

Tingley’s problem is treated for function spaces in [4, 15, 17, 18, 33, 34], and for operator

spaces in [7, 8, 9, 10, 11, 12, 22, 23, 24, 29, 30, 31]. Besides the Tingley’s problem, the

Mazur–Ulam property for Banach spaces has been studying actively; a Banach space E

has the Mazur–Ulam property if F is any Banach space, every surjective isometry from

SE onto SF admits a unique extension to a surjective real linear isometry from E onto

F . See, for example, [1, 5, 14, 21, 26, 27].

Let Lip(I) be the complex linear space of all Lipschitz continuous complex valued

functions on the closed unit interval I = [0, 1]. For each Banach space E, we denote by
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SE the unit sphere of E. We define ∥f∥σ for f ∈ Lip(I) by

∥f∥σ = |f(0)|+ ∥f ′∥L∞ ,

where ∥·∥L∞ denotes the essential supremum norm on I. It is well known that each f ∈
Lip(I) has essentially bounded derivative f ′ almost everywhere. Hence, f ′ belongs to

L∞(I), the commutative Banach algebra of all essentially bounded measurable functions

on I with the essential supremum norm ∥ · ∥L∞ . Consequently, ∥ · ∥σ is a well defined

norm on Lip(I). The purpose of this paper is to prove that every surjective isometry

on SLip(I) admits a surjective real linear extension to Lip(I), which gives a solution to

Tingley’s problem for Lip(I). The followings are the main results of this paper.

Theorem 1.1. Let ∆: SLip(I) → SLip(I) be a surjective isometry with ∥ · ∥σ.
Then ∆ is extended to a surjective, real linear isometry on Lip(I).

Corollary 1.2. For each surjective isometry ∆1 : Lip(I) → Lip(I) with ∥ · ∥σ,
there exist a constant α of modulus 1, h0 ∈ SL∞(I) and a real algebra automorphism Ψ

on L∞(I) such that

∆1(f)(t) = ∆1(0)(t) + αf(0) +

∫ t

0

h0Ψ(f ′) dm (t ∈ I, f ∈ Lip(I)), or

∆1(f)(t) = ∆1(0)(t) + αf(0) +

∫ t

0

h0Ψ(f ′) dm (t ∈ I, f ∈ Lip(I)),

where m denotes the Lebesgue measure on I.

Remark 1. We should note that Theorem 1.1 is deduced from [34, Theorem 3.5].

In fact, Lip(I) equipped with ∥ · ∥σ is identified with the ℓ1-sum of R2 and C(X,R2) for

some compact Hausdorff space X. Here, C(X,R2) is the Banach space of all continuous

R2 valued maps on X with the supremum norm. In this paper, we will give a different

proof from that of [34] of Tingley’s problem for Lip(I).

Koshimizu [16, Theorem 1.2] gave the characterization of surjective complex linear

isometries on Lip(I) with ∥ · ∥σ. We will characterize surjective isometries on Lip(I) in

Corollary 1.2.

§ 2. Preliminaries and auxiliary lemmas

We denote by T the unit circle in the complex number field C. Let M be the

maximal ideal space of L∞(I): Then M is a compact Hausdorff space so that the

Gelfand transform, defined by ĥ(η) = η(h) for h ∈ L∞(I) and η ∈ M, is a continuous

function from M to C. Let C(X) be the commutative Banach algebra of all continuous

---
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complex valued functions on a compact Hausdorff space X with the supremum norm

∥ · ∥∞ on X. The Gelfand–Naimark theorem states that the Gelfand transformation

Γ: L∞(I) → C(M), defined by Γ(h) = ĥ for h ∈ L∞(I), is an isometric isomorphism.

Thus, ∥h∥L∞ = supη∈M |ĥ(η)| = ∥ĥ∥∞ for h ∈ L∞(I). We define

(2.1) f̃(η, z) = f(0) + f̂ ′(η)z

for f ∈ Lip(I) and (η, z) ∈ M× T. Then the function f̃ is continuous on M× T with

the product topology. We set

B = {f̃ ∈ C(M× T) : f ∈ Lip(I)}.

Then B is a normed linear subspace of C(M× T) equipped with the supremum norm

∥ · ∥∞ on M× T.
We define a mapping U : (Lip(I), ∥ · ∥σ) → (B, ∥ · ∥∞) by U(f) = f̃ for f ∈ Lip(I).

We see that U is a surjective complex linear map from Lip(I) onto B. In addition,

∥U(f)∥∞ = ∥f∥σ holds for all f ∈ Lip(I): In fact, for each f ∈ Lip(I), there exist

z0, z1 ∈ T and η0 ∈ M such that f(0) = |f(0)|z0 and f̂ ′(η0) = ∥f̂ ′∥∞z1. Then

|U(f)(η0, z0z1)| = |f(0) + f̂ ′(η0)z0z1| = |(|f(0)|+ ∥f̂ ′∥∞)z0|

= |f(0)|+ ∥f̂ ′∥∞ = |f(0)|+ ∥f ′∥L∞ = ∥f∥σ.

We thus obtain ∥f∥σ ≤ ∥U(f)∥∞. For each (η, z) ∈ M× T, we have

|U(f)(η, z)| = |f(0) + f̂ ′(η)z| ≤ |f(0)|+ |f̂ ′(η)| ≤ |f(0)|+ ∥f̂ ′∥∞ = ∥f∥σ,

which yields ∥U(f)∥∞ ≤ ∥f∥σ. Consequently,

∥f̃∥∞ = ∥U(f)∥∞ = ∥f∥σ (f ∈ Lip(I)).

Therefore, the map U is a surjective complex linear isometry from (Lip(I), ∥ · ∥σ) onto
(B, ∥ · ∥∞). In particular, U(SLip(I)) ⊂ SB . Since U

−1 has the same property as U , we

obtain U−1(SB) ⊂ SLip(I), and hence, U(SLip(I)) = SB .

For each f ∈ Lip(I), we observe that f is absolutely continuous on I. Thus, the

following identity holds:

(2.2) f(t)− f(0) =

∫ t

0

f ′ dm (t ∈ I),

where m denotes the Lebesgue measure on I (see, for example, [25, Theorem 7.20]).

Having in mind {ĥ : h ∈ L∞(I)} = C(M), for each u ∈ C(M) there exists a unique

h ∈ L∞(I) such that u = ĥ. We define I(u) by

I(u)(t) =
∫ t

0

h dm (t ∈ I).
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We observe that I(u) is a Lipschitz function on I with

I(u)(0) = 0 and I(u)′ = h a.e.

In particular, we obtain

(2.3) Î(u)′ = u.

Here, we note that I(u) ∈ SLip(I) for u ∈ SC(M): In fact,

∥I(u)∥σ = |I(u)(0)|+ ∥I(u)′∥L∞ = ∥Î(u)′∥∞ = ∥u∥∞ = 1,

which yields I(u) ∈ SLip(I). Hence, I(SC(M)) ⊂ SLip(I).

Let ∆: (SLip(I), ∥ · ∥σ) → (SLip(I), ∥ · ∥σ) be a surjective isometry. We define T =

U∆U−1; we see that T is a well defined surjective isometry from (SB , ∥ · ∥∞) onto itself,

since U is a surjective complex linear isometry from (Lip(I), ∥ · ∥σ) onto (B, ∥ · ∥∞) with

U(SLip(I)) = SB .

SLip(I)
∆−−−−→ SLip(I)

U

y yU
SB −−−−→

T
SB

The identity TU = U∆ implies that

(2.4) T (f̃) = ∆̃(f) (f ∈ SLip(I)).

For each λ ∈ T and x ∈ M× T, we define

λVx = {f̃ ∈ SB : f̃(x) = λ},

which plays an important role in our arguments. In the rest of this paper, we denote

1I and 1M by the constant functions taking the value only 1 defined on I and M,

respectively.

Lemma 2.1. If λ1Vx1
⊂ λ2Vx2

for some (λ1, x1), (λ2, x2) ∈ T× (M× T), then
(λ1, x1) = (λ2, x2).

Proof. We first note that 1̃I is a constant function on M × T by (2.1). Then

λ11̃I ∈ λ1Vx1
⊂ λ2Vx2

, which yields λ1 = λ11̃I(x1) = λ11̃I(x2) = λ2. This implies

λ1 = λ2.

Setting xj = (ηj , zj) for j = 1, 2, we first prove η1 = η2. Suppose, on the contrary,

that η1 ̸= η2. There exists u ∈ SC(M) such that u(η1) = 1 and u(η2) = 0. We set

f = I(λ1z1u) ∈ SLip(I), and then f̃(η1, z1) = λ1 and f̃(η2, z2) = 0 by (2.3). This-
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shows that f̃ ∈ λ1Vx1
\ λ2Vx2

, which contradicts the assumption that λ1Vx1
⊂ λ2Vx2

.

Consequently, we have η1 = η2.

Finally, we shall prove z1 = z2. By (2.3), we see that g = I(λ1z1 1M) satisfies

g̃ ∈ SB and g̃(η1, z1) = λ1. We thus obtain g̃ ∈ λ1Vx1 ⊂ λ2Vx2 , and hence λ2 =

g̃(η2, z2) = λ1z1z2 by the choice of g. This implies z1 = z2, since λ1 = λ2. We have

proven that (λ1, x1) = (λ2, x2).

We denote by FB the set of all maximal convex subsets of SB . Let ext(B∗
1) be

the set of all extreme points of the closed unit ball B∗
1 of the dual space of B. It is

proved in [15, Lemma 3.1] that for each F ∈ FB there exists ξ ∈ ext(B∗
1) such that

F = ξ−1(1) ∩ SB , where ξ
−1(1) = {f̃ ∈ B : ξ(f̃) = 1}. Let Ch(B) be the Choquet

boundary for B, that is, Ch(B) is the set of all x ∈ M×T such that the point evaluation

δx : B → C at x is in ext(B∗
1). By the Arens–Kelley theorem (cf. [13, Corollary 2.3.6]),

we see that ext(B∗
1) = {λδx ∈ B∗

1 : λ ∈ T, x ∈ Ch(B)}.

Lemma 2.2. For each x0 = (η0, z0) ∈ M× T, the Dirac measure concentrated

at x0 is unique representing measure for δx0
.

Proof. Fix an arbitrary open set O in M with η0 ∈ O. By Urysohn’s lemma, we

can find u ∈ SC(M) such that u(η0) = 1 and u = 0 on M\ O. Take any representing

measure σ for δx0 , that is, σ is a regular Borel measure on M× T satisfying δx0(g̃) =∫
M×T g̃ dσ for all g̃ ∈ B and ∥σ∥ = 1, where ∥σ∥ is the total variation of σ. Having

in mind that the operator norm ∥δx0∥ of δx0 satisfies ∥δx0∥ = 1 = δx0(1̃I), we observe

that σ is a positive measure (see, for example, [2, p.81]). Setting f = I(u) ∈ SLip(I), we

obtain f̃(η, z) = u(η)z for (η, z) ∈ M×T by (2.1) and (2.3). Since u = 0 on M\O, we

get

1 = |z0| = |δx0(f̃)| =
∣∣∣∣∫

M×T
f̃ dσ

∣∣∣∣ ≤ ∣∣∣∣∫
O×T

f̃ dσ

∣∣∣∣+
∣∣∣∣∣
∫
(M×T)\(O×T)

f̃ dσ

∣∣∣∣∣
≤

∫
O×T

|f̃ | dσ ≤ ∥f̃∥∞σ(O × T) = σ(O × T) ≤ ∥σ∥ = 1.

Consequently, σ(O × T) = 1 for all open sets O in M with η0 ∈ O, and therefore, we

observe that σ({η0} × T) = 1 by the regularity of σ. We thus obtain

z0 = δx0
(f̃) =

∫
{η0}×T

f̃ dσ =

∫
{η0}×T

u(η)z δσ =

∫
{η0}×T

z δσ.

We derive from σ({η0}×T) = 1 that
∫
{η0}×T(z0−z) dσ = 0. Setting Z = {η0}×(T\{z0}),

we obtain
∫
Z
(1−z0z) dσ = −z0

∫
Z
(z−z0) dσ = 0, which yields

∫
Z
Re(1−z0z) dσ = 0. As

Re(1− z0z) > 0 on Z, we conclude σ(Z) = 0, and thus σ({η0}×{z0}) = 1. This proves

that any representing measure for δx0
is the Dirac measure concentrated at x0.

□ 

□ 
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Lemma 2.3. For each x0 = (η0, z0) ∈ M × T, we have x0 ∈ Ch(B), that is,

Ch(B) = M× T.

Proof. We shall prove that δx0 belongs to ext(B∗
1). Suppose that δx0 = (ξ1+ξ2)/2

for ξ1, ξ2 ∈ B∗
1 . For j = 1, 2, there exists a representing measure σj for ξj by the Hahn–

Banach theorem and the Riesz representation theorem (see, for example, [25, Theorems

5.16 and 2.14]). Since ξ1(1̃I) + ξ2(1̃I) = 2δx0
(1̃I) = 2 with |ξj(1̃I)| ≤ 1, we have

ξj(1̃I) = 1 = ∥ξj∥ for j = 1, 2. Applying the same argument in [2, p.81] to σj , we see

that σj is a positive measure. We put σ = (σ1+σ2)/2, and then σ is a positive measure.

First, we prove that σ is a representing measure for δx0
. Because σj is a representing

measure for ξj , we get∫
M×T

f̃dσ =

∫
M×T

f̃d(
σ1 + σ2

2
) =

ξ1(f̃) + ξ2(f̃)

2
= δx0

(f̃) (f̃ ∈ B).

Entering f̃ = 1̃I into the above equality, we have σ(M× T) =
∫
M×T 1̃Idσ = 1, which

shows that ∥σ∥ = 1 = ∥δx0∥. Therefore, σ is a representing measure for δx0 . By

Lemma 2.2, σ = (σ1 + σ2)/2 is the Dirac measure, τx0
, concentrated at x0.

We note that σj is a positive measure with j = 1, 2. For each Borel set D with

x0 /∈ D, we obtain (σ1(D) + σ2(D))/2 = σ(D) = 0, and thus, σj(D) = 0. Having

in mind that ∥σj∥ = ∥ξj∥ = 1, we conclude that σj = τx0
for j = 1, 2. Hence,

ξj(f̃) =
∫
M×T f̃dσj = f̃(x0) = δx0

(f̃) for any f̃ ∈ B, which implies that ξ1 = δx0
= ξ2.

This proves δx0
∈ ext(B∗

1), which yields x0 ∈ Ch(B).

We now characterize the set of all maximal convex subsets FB of SB . The following

result is proved by Hatori, Oi and Shindo Togashi in [15] for uniform algebras. The proof

below of the next proposition is quite similar to that of [15, Lemma 3.2].

Proposition 2.4. Let F be a subset of SB. Then F ∈ FB if and only if there

exist λ ∈ T and x ∈ M× T such that F = λVx.

Proof. Suppose that F is a maximal convex subset of SB . By [15, Lemma 3.1],

F = ξ−1(1) ∩ SB for some ξ ∈ ext(B∗
1) = {λδx ∈ B∗

1 : λ ∈ T, x ∈ M× T}, where we

have used Lemma 2.3. There exist λ ∈ T and x ∈ M× T such that ξ = λδx. Now we

can write

F = (λδx)
−1(1) ∩ SB = {f̃ ∈ SB : λf̃(x) = 1} = λVx.

We thus obtain F = λVx with λ ∈ T and x ∈ M× T.
Conversely, suppose that F = λVx for some λ ∈ T and x ∈ M×T. It is routine to

check that F is a convex subset of SB . Using Zorn’s lemma, we can prove that there

exists a maximal convex subset K of SB with F ⊂ K. By the above paragraph, we see

□ 
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that K = µVy for some µ ∈ T and y ∈ M× T. Then λVx = F ⊂ K = µVy. Lemma 2.1

shows that (λ, x) = (µ, y), which implies that F = K. Consequently, F is a maximal

convex subset of SB .

Tanaka [28, Lemma 3.5] proved that every surjective isometry between the unit

spheres of two Banach spaces preserves maximal convex subsets of the spheres (see also

[3, Lemma 5.1]). By these results, we can prove the following lemma.

Lemma 2.5. There exist maps α : T×(M×T) → T and ϕ : T×(M×T) → M×T
such that

(2.5) T (λVx) = α(λ, x)Vϕ(λ,x)

for all (λ, x) ∈ T× (M× T).

Proof. For each (λ, x) ∈ T × (M × T), λVx is a maximal convex subset of SB

by Proposition 2.4. By [28, Lemma 3.5], surjective isometry T : SB → SB preserves

maximal convex subsets of SB , that is, there exists (µ, y) ∈ T × (M × T) such that

T (λVx) = µVy. If, in addition, T (λVx) = µ′Vy′ for some (µ′, y′) ∈ T × (M× T), then
we obtain (µ, y) = (µ′, y′) by Lemma 2.1. Therefore, if we define α(λ, x) = µ and

ϕ(λ, x) = y, then α : T× (M× T) → T and ϕ : T× (M× T) → M× T are well defined

maps with T (λVx) = α(λ, x)Vϕ(λ,x).

Lemma 2.6. The maps α and ϕ from Lemma 2.5 are both surjective maps sat-

isfying

α(−λ, x) = −α(λ, x) and ϕ(−λ, x) = ϕ(λ, x)

for all (λ, x) ∈ T× (M× T).

Proof. Take any (λ, x) ∈ T× (M× T), and then λVx is a maximal convex subset

of SB by Proposition 2.4. We get T (−λVx) = −T (λVx), which was proved by Mori

[20, Proposition 2.3] in a general setting. Lemma 2.5 shows that α(−λ, x)Vϕ(−λ,x) =

T (−λVx) = −T (λVx) = −α(λ, x)Vϕ(λ,x). Applying Lemma 2.1, we obtain α(−λ, x) =
−α(λ, x) and ϕ(−λ, x) = ϕ(λ, x).

There exist well defined maps β : T× (M×T) → T and ψ : T× (M×T) → M×T
such that

T−1(µVy) = β(µ, y)Vψ(µ,y) ((µ, y) ∈ T× (M× T)),

since T−1 has the same property as T . For each (µ, y) ∈ T × (M × T), we have, by

(2.5),

µVy = T (T−1(µVy)) = T (β(µ, y)Vψ(µ,y)) = α(β(µ, y), ψ(µ, y))Vϕ(β(µ,y),ψ(µ,y)).

□ 

□ 
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We derive from Lemma 2.1 that µ = α(β(µ, y), ψ(µ, y)) and y = ϕ(β(µ, y), ψ(µ, y)).

These prove that both α and ϕ are surjective.

By definition, ϕ(λ, x) ∈ M × T for each (λ, x) ∈ T × (M × T). There exist

ϕ1(λ, x) ∈ M and ϕ2(λ, x) ∈ T such that

ϕ(λ, x) = (ϕ1(λ, x), ϕ2(λ, x)).

We shall regard ϕ1 and ϕ2 as maps defined on T× (M× T) to M and T, respectively.
By Lemma 2.6, both ϕ1 and ϕ2 are surjective maps with

(2.6) ϕj(−λ, x) = ϕj(λ, x) ((λ, x) ∈ T× (M× T), j = 1, 2).

Lemma 2.7. Let λj ∈ T and (ηj , zj) ∈ M × T for j = 1, 2. If η1 ̸= η2, then

there exist f̃j ∈ SB such that f̃j ∈ λjV(ηj ,zj) for j = 1, 2 and ∥f̃1 − f̃2∥∞ = 1.

Proof. Take j ∈ {1, 2} and open sets Oj in M with ηj ∈ Oj and O1 ∩ O2 =

∅. By Urysohn’s lemma, there exists uj ∈ SC(M) such that uj(ηj) = 1 and uj = 0

on M \ Oj . Let fj = I(λjzjuj), and then we see that f̃j(η, z) = λjzj uj(η)z for

all (η, z) ∈ M × T by (2.1) and (2.3). It follows from f̃j ∈ λjV(ηj ,zj) for j = 1, 2

that 1 = |f̃1(η1, z1) − f̃2(η1, z1)| ≤ ∥f̃1 − f̃2∥∞. Hence, it is enough to prove that

∥f̃1 − f̃2∥∞ ≤ 1. We shall prove |f̃1(η, z)− f̃2(η, z)| ≤ 1 for all (η, z) ∈ M× T. Fix an

arbitrary (η, z) ∈ M× T. If η ∈ O1, then u2(η) = 0, since O1 ∩O2 = ∅, and thus

|f̃1(η, z)− f̃2(η, z)| = |λ1z1u1(η)− λ2z2u2(η)| ≤ |u1(η)|+ |u2(η)| ≤ 1.

If η ∈ M \ O1, then |f̃1(η, z) − f̃2(η, z)| ≤ 1 by the choice of u1. We conclude that

|f̃1(η, z)− f̃2(η, z)| ≤ 1 for all (η, z) ∈ M× T, which yields ∥f̃1 − f̃2∥∞ ≤ 1.

Lemma 2.8. If λ ∈ T and x ∈ M× T, then ϕ1(λ, x) = ϕ1(1, x); we shall write

ϕ1(λ, x) = ϕ1(x) for simplicity.

Proof. Take any λ ∈ T and x ∈ M × T. Then T (Vx) = α(1, x)Vϕ(1,x) and

T (λVx) = α(λ, x)Vϕ(λ,x) by (2.5). Suppose, on the contrary, that ϕ1(λ, x) ̸= ϕ1(1, x).

There exist f̃1 ∈ α(1, x)Vϕ(1,x) = T (Vx) and f̃2 ∈ α(λ, x)Vϕ(λ,x) = T (λVx) such that

∥f̃1− f̃2∥∞ = 1 by Lemma 2.7. We infer from the choice of f̃1 and f̃2 that T−1(f̃1) ∈ Vx

and T−1(f̃2) ∈ λVx, which implies that T−1(f̃1)(x) = 1 and T−1(f̃2)(x) = λ. If Reλ ≤
0, then |1− λ| ≥

√
2, and thus

√
2 ≤ |1− λ| = |T−1(f̃1)(x)− T−1(f̃2)(x)|

≤ ∥T−1(f̃1)− T−1(f̃2)∥∞ = ∥f̃1 − f̃2∥∞ = 1,

□ 

□ 
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where we have used that T is an isometry on SB . We arrive at a contradiction,

which shows ϕ1(λ, x) = ϕ1(1, x), provided that Reλ ≤ 0. Now we consider the

case when Reλ > 0. Then ϕ1(−λ, x) = ϕ1(1, x), since Re(−λ) < 0. By (2.6),

ϕ1(λ, x) = ϕ1(−λ, x) = ϕ1(1, x), even if Reλ > 0.

Lemma 2.9. For each λ1, λ2 ∈ T and x ∈ M×T, the following inequality holds:

(2.7) |λ1 − λ2| ≤ |1− α(λ1, x)α(λ2, x)|.

Proof. Fix λ1, λ2 ∈ T and x ∈ M× T. We set fj = α(λj , x)1I ∈ SLip(I) for each

j ∈ {1, 2}. We see that f̃j ∈ α(λj , x)Vϕ(λj ,x) = T (λjVx) by (2.5). Then T−1(f̃j) ∈ λjVx,

and hence T−1(f̃j)(x) = λj . We obtain

|λ1 − λ2| = |T−1(f̃1)(x)− T−1(f̃2)(x)| ≤ ∥T−1(f̃1)− T−1(f̃2)∥∞ = ∥f̃1 − f̃2∥∞
= |α(λ1, x)− α(λ2, x)| ∥1̃I∥∞ = |1− α(λ1, x)α(λ2, x)|.

Thus, |λ1 − λ2| ≤ |1− α(λ1, x)α(λ2, x)| holds for all λ1, λ2 ∈ T and x ∈ M× T.

Lemma 2.10. For each x ∈ M × T, there exists ε0(x) ∈ {±1} such that

α(λ, x) = λε0(x)α(1, x) for all λ ∈ T; for simplicity, we shall write α(1, x) = α(x).

Proof. Let λ ∈ T \ {±1} and x ∈ M× T. Taking λ1 = 1 and λ2 = ±λ in (2.7),

we obtain

|1− λ| ≤ |1− α(1, x)α(λ, x)| and |1 + λ| ≤ |1 + α(1, x)α(λ, x)|,

where we have used Lemma 2.6. Since α(1, x)α(λ, x) ∈ T, we conclude that

α(1, x)α(λ, x) ∈ {λ, λ}.

If we consider the case when λ = i, then we have α(1, x)α(i, x) ∈ {±i}. This implies

that α(i, x) = iε0(x)α(1, x) for some ε0(x) ∈ {±1}. Entering λ1 = i and λ2 = λ into

(2.7) to get

|i− λ| ≤ |1− α(i, x)α(λ, x)| = |1 + iε0(x)α(1, x)α(λ, x)| = |i− ε0(x)α(1, x)α(λ, x)|,

and thus |i−λ| ≤ |i−ε0(x)α(1, x)α(λ, x)|. Because α(−λ, x) = −α(λ, x) by Lemma 2.6,

we get |i+λ| ≤ |i+ ε0(x)α(1, x)α(λ, x)|. These inequalities imply ε0(x)α(1, x)α(λ, x) ∈
{λ,−λ}, since ε0(x)α(1, x)α(λ, x) ∈ T. Then

α(1, x)α(λ, x) ∈ {λ, λ} ∩ {ε0(x)λ,−ε0(x)λ}.

We have two possible cases to consider. If ε0(x) = 1, then we obtain α(1, x)α(λ, x) ∈
{λ, λ} ∩ {λ,−λ}. Since λ ̸= ±1, we conclude that α(1, x)α(λ, x) = λ, and hence

□ 

□ 
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α(λ, x) = λε0(x)α(1, x). If ε0(x) = −1, then α(1, x)α(λ, x) ∈ {λ, λ} ∩ {−λ, λ}, which
yields α(1, x)α(λ, x) = λ. Thus, α(λ, x) = λε0(x)α(1, x). These identities are valid

even for λ = ±1. By the liberty of the choice of λ ∈ T, we conclude that α(λ, x) =

λε0(x)α(1, x) for all λ ∈ T and x ∈ M× T.

By Lemmas 2.8 and 2.10, we can rewrite (2.5) as

(2.8) T (λVx) = λε0(x)α(x)V(ϕ1(x),ϕ2(λ,x))

for all λ ∈ T and x ∈ M× T.

Definition 1. Let λVx and µVy be maximal convex subsets of SB , where λ, µ ∈
T and x, y ∈ M × T. We denote by dH(λVx, µVy) the Hausdorff distance of λVx and

µVy, that is,

(2.9) dH(λVx, µVy) = max

{
sup
f̃∈λVx

d(f̃ , µVy), sup
g̃∈µVy

d(λVx, g̃)

}
,

where d(f̃ , µVy) = inf h̃∈µVy
∥f̃ − h̃∥∞ and d(λVx, g̃) = inf h̃∈λVx

∥h̃− g̃∥∞.

Since T is a surjective isometry on SB , we obtain

d(T (f̃), T (µVy)) = inf
h̃∈T (µVy)

∥T (f̃)− h̃∥∞ = inf
T−1(h̃)∈µVy

∥f̃ − T−1(h̃)∥∞ = d(f̃ , µVy)

for every f̃ ∈ λVx. Hence, supT (f̃)∈T (λVx)
d(T (f̃), T (µVy)) = supf̃∈λVx

d(f̃ , µVy). By

the same reasoning, we get supT (g̃)∈T (µVy) d(T (λVx), T (g̃)) = supg̃∈µVy
d(λVx, g̃), and

thus

(2.10) dH(T (λVx), T (µVy)) = dH(λVx, µVy) (λ, µ ∈ T, x, y ∈ M× T).

Remark 2. Let λ ∈ T and (η, z) ∈ M×T. For each f̃ ∈ λV(η,z), we observe that

λf(0) ∈ [0, 1] and f̂ ′(η)λz = ∥f̂ ′∥∞.

In fact, f(0) + f̂ ′(η)z = λ by the definition of λV(η,z). Then

1 = λ{f(0) + f̂ ′(η)z} = |λ{f(0) + f̂ ′(η)z}| ≤ |λf(0)|+ |f̂ ′(η)λz| ≤ ∥f∥σ = 1,

and thus, |λf(0)+ f̂ ′(η)λz| = |λf(0)|+ |f̂ ′(η)λz|. This implies that λf(0) = tf̂ ′(η)λz for

some t ≥ 0, provided f̂ ′(η) ̸= 0. Since λ{f(0)+ f̂ ′(η)z} = 1, we have f̂ ′(η)λz = 1/(1+t)

and λf(0) = t/(1 + t) ∈ [0, 1]. If f̂ ′(η) = 0, then λf(0) = 1, and hence λf(0) ∈ [0, 1]

as well. In particular, λf(0) = |f(0)|. We infer from f̂ ′(η)λz = 1− λf(0) and ∥f̂ ′∥∞ =

1− |f(0)| that f̂ ′(η)λz = ∥f̂ ′∥∞.

□ 
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Lemma 2.11. For each η ∈ M, z ∈ T and k ∈ {±1}, the following equalities

hold:

(2.11) sup
f̃∈kV(η,k)

d(f̃ , kV(η,z)) = sup
g̃∈kV(η,z)

d(kV(η,k), g̃) = |1− kz|.

In particular, dH(kV(η,k), kV(η,z)) = |1− kz| for all η ∈ M, z ∈ T and k = ±1.

Proof. Fix an arbitrary f̃ ∈ kV(η,k) and g̃ ∈ kV(η,z), and then

(2.12) f(0) + f̂ ′(η)k = k and g(0) + ĝ′(η)z = k.

We notice that kf(0), kg(0) ∈ [0, 1], f̂ ′(η) = ∥f̂ ′∥∞ and ĝ′(η)kz = ∥ĝ′∥∞ by Remark 2.

We deduce from the choice of f̃ and g̃ that

|(1− kz)(kf(0)− 1)| ≤ |kf(0)− kg(0)|+ |kg(0)− 1− kz(kf(0)− 1)|
= |f(0)− g(0)|+ |z(g(0)− k)− (kf(0)− 1)|

= |f(0)− g(0)|+ |ĝ′(η)− f̂ ′(η)| by (2.12)

≤ |f(0)− g(0)|+ ∥f̂ ′ − ĝ′∥∞ = ∥f − g∥σ = ∥f̃ − g̃∥∞.

That is, |1− kz|(1− kf(0)) ≤ ∥f̃ − g̃∥∞. We also have |(1− kz)(kg(0)− 1)| ≤ ∥f̃ − g̃∥∞
by a similar calculation, and thus, |1 − kz|(1 − kg(0)) ≤ ∥f̃ − g̃∥∞. By the liberty of

the choice of f̃ ∈ kV(η,k) and g̃ ∈ kV(η,z), we obtain

|1− kz|(1− kf(0)) ≤ d(f̃ , kV(η,z)) and |1− kz|(1− kg(0)) ≤ d(kV(η,k), g̃).

Setting f1 = f(0) + I(kzf̂ ′) and g1 = g(0) + I(kzĝ′), we see that f̃1(η, z) = f(0) +

kf̂ ′(η) = k and g̃1(η, k) = g(0) + zĝ′(η) = k by (2.12), where we have used that

I(u)(0) = 0 for u ∈ C(M). Consequently, f̃1 ∈ kV(η,z) and g̃1 ∈ kV(η,k). By the choice

of f1, we have

∥f̃ − f̃1∥∞ = sup
(ζ,ν)∈M×T

|f̃(ζ, ν)− f̃1(ζ, ν)| = sup
(ζ,ν)∈M×T

|(1− kz)f̂ ′(ζ)ν|

= |1− kz| ∥f̂ ′∥∞ = |1− kz| f̂ ′(η) = |1− kz|(1− kf(0))

by (2.12). In the same way, we get

∥g̃1 − g̃∥∞ = sup
(ζ,ν)∈M×T

|(kz − 1)ĝ′(ζ)ν| = |kz − 1| ∥ĝ′∥∞ = |1− kz|(1− kg(0)),

which yields d(f̃ , kV(η,z)) = |1− kz|(1− kf(0)) and d(kV(η,k), g̃) = |1− kz|(1− kg(0)).

Having in mind that kf(0), kg(0) ∈ [0, 1], we conclude that supf̃∈kV(η,k)
d(f̃ , kV(η,z)) =

|1− kz| = supg̃∈kV(η,z)
d(kV(η,k), g̃). □ 
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Lemma 2.12. The identity ϕ1(η, z) = ϕ1(η, 1) holds for all η ∈ M and z ∈ T;
we shall write ϕ1(η, z) = ϕ1(η) for the sake of simplicity of notation.

Proof. Fix arbitrary k ∈ {±1}, η ∈ M and z ∈ T \ {±1}. We assume that

ϕ1(η, z) ̸= ϕ1(η, k). There exists uk ∈ SC(M) such that

uk(ϕ1(η, z)) = kα(η, z)ϕ2(k, (η, z)) and uk(ϕ1(η, k)) = −kα(η, k)ϕ2(k, (η, k)).

Setting gk = I(uk), we see that g̃k ∈ kα(η, z)Vϕ(k,(η,z)) ∩ (−kα(η, k))Vϕ(k,(η,k)), where
we have used ϕ1(λ, x) = ϕ1(x) by Lemma 2.8. For any f̃ ∈ kα(η, k)Vϕ(k,(η,k)), we obtain

2 = |kα(η, k) + kα(η, k)| = |f̃(ϕ(k, (η, k)))− g̃k(ϕ(k, (η, k)))| ≤ ∥f̃ − g̃k∥∞ ≤ 2,

which shows d(kα(η, k)Vϕ(k,(η,k)), g̃k) = 2. Combining (2.8), (2.9), (2.10) and (2.11), we

get

2 ≤ sup
g̃∈kα(η,z)Vϕ(k,(η,z))

d(kα(η, k)Vϕ(k,(η,k)), g̃)

≤ dH(kα(η, k)Vϕ(k,(η,k)), kα(η, z)Vϕ(k,(η,z))) = dH(T (kV(η,k)), T (kV(η,z)))

= dH(kV(η,k), kV(η,z)) = |1− kz|,

which implies z = −k. This contradicts z ̸= ±1, and thus ϕ1(η, z) = ϕ1(η, k) for z ̸= ±1.

Entering z = i and k = ±1 into the last equality, we get ϕ1(η, 1) = ϕ1(η, i) = ϕ1(η,−1).

Therefore, we conclude ϕ1(η, z) = ϕ1(η, 1) for all η ∈ M and z ∈ T.

Lemma 2.13. The following inequalities hold for all λ, µ ∈ T and x ∈ M× T;

(2.13) |λε0(x)ϕ2(λ, x)ϕ2(µ, x)− µε0(x)| ≤ |λ− µ|,
and |λε0(x)ϕ2(λ, x)ϕ2(µ, x) + µε0(x)| ≤ |λ+ µ|.

Proof. Take any λ, µ ∈ T and x ∈ M × T. For each f̃ ∈ λVx and g̃ ∈ µVx,

we obtain |λ − µ| = |f̃(x) − g̃(x)| ≤ ∥f̃ − g̃∥∞, which yields |λ − µ| ≤ d(f̃ , µVx). Set

f0 = λµf , and then we see that f̃0 ∈ µVx with ∥f̃ − f̃0∥∞ = ∥(1 − λµ)f̃∥∞ = |λ − µ|.
This implies d(f̃ , µVx) = |λ−µ|. By the same argument, we see that d(λVx, g̃) = |λ−µ|.
Consequently, dH(λVx, µVx) = |λ− µ| by (2.9).

Let us define f1 = α(λ, x)ϕ2(λ, x)I(1M), and then we see that f̃1 ∈ α(λ, x)Vϕ(λ,x) =

T (λVx) by (2.3) and (2.5). Set g̃1 = T (g̃) for each g̃ ∈ µVx. Then g̃1 ∈ T (µVx) =

α(µ, x)Vϕ(µ,x). By the definition of the set νVy, we have f̂ ′1(ϕ1(x))ϕ2(λ, x) = λε0(x)α(x)

and g1(0) + ĝ′1(ϕ1(x))ϕ2(µ, x) = µε0(x)α(x), where we have used (2.8). We deduce from

α(x), ϕ2(λ, x), ϕ2(µ, x) ∈ T that

|λε0(x)ϕ2(λ, x)− µε0(x)ϕ2(µ, x)| ≤ |f̂ ′1(ϕ1(x))− ĝ′1(ϕ1(x))|+ |g1(0)|

≤ |f1(0)− g1(0)|+ ∥f̂ ′1 − ĝ′1∥∞ = ∥f1 − g1∥σ = ∥f̃1 − g̃1∥∞,

□ 
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which shows |λε0(x)ϕ2(λ, x) − µε0(x)ϕ2(µ, x)| ≤ d(f̃1, T (µVx)). We infer from (2.9) and

(2.10) that

|λε0(x)ϕ2(λ, x)− µε0(x)ϕ2(µ, x)| ≤ sup
T (f̃)∈T (λVx)

d(T (f̃), T (µVx))

≤ dH(T (λVx), T (µVx)) = dH(λVx, µVx) = |λ− µ|.

Thus, |λε0(x)ϕ2(λ, x)ϕ2(µ, x) − µε0(x)| ≤ |λ − µ|. Noting that ϕ2(−µ, x) = ϕ2(µ, x) by

(2.6), we obtain |λε0(x)ϕ2(λ, x)ϕ2(µ, x) + µε0(x)| ≤ |λ+ µ|.

Lemma 2.14. For each x ∈ M × T, there exists ε1(x) ∈ {±1} such that

ϕ2(λ, x) = λε0(x)−ε1(x)ϕ2(1, x) for all λ ∈ T.

Proof. Fix arbitrary x ∈ M× T and λ ∈ T \ {±1}. We obtain

|λε0(x)ϕ2(λ, x)ϕ2(1, x)± 1| ≤ |λ± 1|

by (2.13) with µ = 1, which implies λε0(x)ϕ2(λ, x)ϕ2(1, x) ∈ {λ, λ}. Hence,

ϕ2(λ, x)ϕ2(1, x) ∈ {λ1−ε0(x), λ−1−ε0(x)}.

In particular, ϕ2(i, x)ϕ2(1, x) ∈ {±ε0(x)}, and thus ϕ2(i, x) = ε1(x)ε0(x)ϕ2(1, x) for

some ε1(x) ∈ {±1}. Entering µ = i into (2.13) to get

|λ− i| ≥ |λε0(x)ϕ2(λ, x)ϕ2(i, x)− ε0(x)i| = |λε0(x)ϕ2(λ, x)ε1(x)ϕ2(1, x)− i|.

By the same reasoning, we have |λ + i| ≥ |λε0(x)ϕ2(λ, x)ε1(x)ϕ2(1, x) + i|. Then we

derive from these two inequalities that λε0(x)ϕ2(λ, x)ε1(x)ϕ2(1, x) ∈ {λ,−λ}. Thus,

ε1(x)ϕ2(λ, x)ϕ2(1, x) ∈ {λ1−ε0(x),−λ−1−ε0(x)}. Now we obtain

ϕ2(λ, x)ϕ2(1, x) ∈ {λ1−ε0(x), λ−1−ε0(x)} ∩ {ε1(x)λ1−ε0(x),−ε1(x)λ−1−ε0(x)}.

Note that λ ̸= ±1. If ε1(x) = 1, then we get ϕ2(λ, x)ϕ2(1, x) = λ1−ε0(x), and if ε1(x) =

−1, then ϕ2(λ, x)ϕ2(1, x) = λ−1−ε0(x). These imply that ϕ2(λ, x)ϕ2(1, x) = λε1(x)−ε0(x)

for λ ∈ T \ {±1}. The last identity is valid even for λ ∈ {±1} by (2.6). Therefore, we

conclude that ϕ2(λ, x) = λε0(x)−ε1(x)ϕ2(1, x) for all λ ∈ T.

We shall write ϕ2(1, x) = ϕ2(x) for x ∈ M × T. Let λ ∈ T and x ∈ M × T. By

(2.8), T (f̃)(ϕ1(x), ϕ2(λ, x)) = λε0(x)α(x) = α(λ, x) for f ∈ SLip(I) with f̃ ∈ λVx. Noting

that T (f̃) = ∆̃(f) by (2.4), we infer from Lemma 2.12 that

(2.14) ∆(f)(0) + ∆̂(f)′(ϕ1(η))ϕ2(λ, x) = α(λ, x)

□ 

□ 
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for all λ ∈ T, x = (η, z) ∈ M×T and f ∈ SLip(I) with f̃ ∈ λVx. If we apply Lemma 2.14,

then we can rewrite the last equality as

(2.15) ∆(f)(0) + ∆̂(f)′(ϕ1(η))λ
ε0(x)−ε1(x)ϕ2(x) = λε0(x)α(x)

for λ ∈ T, x = (η, z) ∈ M× T and f ∈ SLip(I) satisfying f̃ ∈ λVx.

Lemma 2.15. Suppose that ∆(λ01I)(0) = 0 for some λ0 ∈ T. Then ̂∆(λ0 id)′ =

0 on M for the identity function id on I.

Proof. Fix arbitrary η ∈ M and z ∈ T, and we set x = (η, z). We note λ01̃I ∈
λ0Vx, and then equality (2.15) shows that ̂∆(λ01I)′(ϕ1(η))λ

−ε1(x)
0 ϕ2(x) = α(x). We set

e(η) = ̂∆(λ01I)′(ϕ1(η)) for the sake of simplicity of notation. Then we can rewrite the

above equality as

(2.16) e(η)λ
−ε1(x)
0 ϕ2(x) = α(x).

Since λ0 id ∈ λ0zV(η,z), we get, by (2.15),

∆(λ0 id)(0) + ̂∆(λ0 id)′(ϕ1(η))(λ0z)
ε0(x)−ε1(x)ϕ2(x) = (λ0z)

ε0(x)α(x).

Combining (2.16) with the last equality, we obtain

∆(λ0 id)(0) + ̂∆(λ0 id)′(ϕ1(η))(λ0z)
ε0(x)−ε1(x)ϕ2(x) = (λ0z)

ε0(x)e(η)λ
−ε1(x)
0 ϕ2(x),

which leads to

∆(λ0 id)(0) = (λ0z)
ε0(x)

{
e(η)zε1(x) − ̂∆(λ0 id)′(ϕ1(η))

}
(λ0z)

−ε1(x)ϕ2(x).

Note that |e(η)| = 1 by (2.16). Taking the modulus of the above equality, we get

|∆(λ0 id)(0)| = |zε1(x)−e(η) ̂∆(λ0 id)′(ϕ1(η))|. Since z ∈ T is arbitrary, the last equality

holds for z = ±1, i. Then we have ̂∆(λ0 id)′(ϕ1(η)) = 0. Having in mind that η ∈ M is

arbitrarily fixed, we obtain ̂∆(λ0 id)′ = 0 on M, where we have used ϕ1(M) = M by

Lemmas 2.6, 2.8 and 2.12.

Lemma 2.16. For each λ ∈ T, the value ∆(λ1I)(0) is nonzero.

Proof. Suppose, on the contrary, that ∆(λ01I)(0) = 0 for some λ0 ∈ T. Then
̂∆(λ0 id)′ = 0 on M by Lemma 2.15. We define a function f0 ∈ SLip(I) by f0 =

λ0(2 id+ id2)/4. We shall prove that f̂ ′0(η0) = λ0 for some η0 ∈ M. Let R(id) be

the essential range of id ∈ Lip(I), that is, R(id) is the set of all ζ ∈ C for which

{t ∈ I : | id(t) − ζ| < ϵ} has positive measure for all ϵ > 0. By definition, we see that

R(id) = id(I) = I. For the spectrum σ(id) of id, we observe thatR(id) = σ(id) = îd(M)

□ 
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(see, for example, [6, Lemma 2.63]). Thus, there exists η0 ∈ M such that îd(η0) = 1,

which yields f̂ ′0(η0) = λ0(2 + 2îd(η0))/4 = λ0 as is claimed. Fix an arbitrary z ∈ T,
and then we see that λ0 ĩd ∈ λ0zV(η0,z) with ̂∆(λ0 id)′ = 0 on M. Applying (2.14) to

f = λ0 id, we have ∆(λ0 id)(0) = α(λ0z, (η0, z)). Having in mind that z ∈ T is arbitrary,

we may enter z = ±1 into the last equality. Then we get

(2.17) α(λ0, (η0, 1)) = α(−λ0, (η0,−1)).

Note also that f̃0 ∈ λ0zV(η0,z), and thus

∆(f0)(0) + ∆̂(f0)′(ϕ1(η0))ϕ2(λ0z, (η0, z)) = α(λ0z, (η0, z))

by (2.14). Since ∆(λ0 id)(0) = α(λ0z, (η0, z)), we can rewrite the above equality as

(2.18) ∆(f0)(0) + ∆̂(f0)′(ϕ1(η0))ϕ2(λ0z, (η0, z)) = ∆(λ0 id)(0),

which yields |∆(λ0 id)(0)−∆(f0)(0)| = |∆̂(f0)′(ϕ1(η0))| ≤ ∥∆̂(f0)′∥∞. We thus obtain

2∥∆̂(f0)′∥∞ ≥ |∆(λ0 id)(0)−∆(f0)(0)|+ ∥∆̂(f0)′∥∞

= |∆(λ0 id)(0)−∆(f0)(0)|+ ∥ ̂∆(λ0 id)′ − ∆̂(f0)′∥∞

= ∥∆(λ0 id)−∆(f0)∥σ = ∥λ0 id−f0∥σ =
1

2
∥1̂I − îd∥∞ =

1

2
.

Hence, we have ∥∆̂(f0)′∥∞ ≥ 1/4, which implies |∆(f0)(0)| ≤ 3/4, since ∥∆(f0)∥σ = 1.

It follows from (2.18) that

1 = |α(λ0z, (η0, z))| = |∆(λ0 id)(0)| = |∆(f0)(0) + ∆̂(f0)′(ϕ1(η0))ϕ2(λ0z, (η0, z))|.

Since |∆(f0)(0)| ≤ 3/4, we see that ∆̂(f0)′(ϕ1(η0)) ̸= 0. By the liberty of the choice of

z ∈ T, we deduce from (2.18) that ϕ2(λ0z, (η0, z)) is invariant with respect to z ∈ T.
Entering z = ±1 into ϕ2(λ0z, (η0, z)), we get

(2.19) ϕ2(λ0, (η0, 1)) = ϕ2(−λ0, (η0,−1)).

Set f1 = λ0(2 + id2)/4 ∈ SLip(I), and then we have f̃1 ∈ λ0V(η0,1), because îd(η0) = 1.

We deduce from (2.14) that

(2.20) ∆(f1)(0) + ∆̂(f1)′(ϕ1(η0))ϕ2(λ0, (η0, 1)) = α(λ0, (η0, 1)).

Combining (2.17) and (2.19) with (2.20), we have

∆(f1)(0) + ∆̂(f1)′(ϕ1(η0))ϕ2(−λ0, (η0,−1)) = α(−λ0, (η0,−1)).

Here, we recall that T (f̃1) = ∆̃(f1) by (2.4). Then the above equality with (2.5) and

(2.14) implies that T (f̃1) ∈ α(−λ0, (η0,−1))Vϕ(−λ0,(η0,−1)) = T (−λ0V(η0,−1)), which
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shows f̃1 ∈ (−λ0)V(η0,−1). Consequently, f̃1 ∈ (−λ0)V(η0,−1) ∩ λ0V(η0,1), and therefore,

we obtain

f1(0)− f̂ ′1(η0) = −λ0 = −{f1(0) + f̂ ′1(η0)}.

This leads to f1(0) = −f1(0), which yields f1(0) = 0. On the other hand, f1(0) =

λ0(2 + id2(0))/4 = λ0/2 ̸= 0. This is a contradiction. We conclude that ∆(λ1I)(0) ̸= 0

for all λ ∈ T.

Lemma 2.17. The values α(x) and ε0(x) are both independent from the variable

x ∈ M× T; we shall write α(x) = α and ε0(x) = ε0.

Proof. Take any λ ∈ T and x = (η, z) ∈ M× T. According to (2.14), applied to

f = λ1I , we have

1 = |λε0(x)α(x)| = |∆(λ1I)(0) + ∆̂(λ1I)′(ϕ1(η))ϕ2(λ, x)|

≤ |∆(λ1I)(0)|+ |∆̂(λ1I)′(ϕ1(η))| ≤ ∥∆(λ1I)∥σ = 1.

The above inequalities show that

|∆(λ1I)(0) + ∆̂(λ1I)′(ϕ1(η))ϕ2(λ, x)| = 1 = |∆(λ1I)(0)|+ |∆̂(λ1I)′(ϕ1(η))|.

Note that ∆(λ1I)(0) ̸= 0 by Lemma 2.16. By the above equality, there exists t ≥ 0

such that ∆̂(λ1I)′(ϕ1(η))ϕ2(λ, x) = t∆(λ1I)(0). We thus obtain

|t∆(λ1I)(0)| = |∆̂(λ1I)′(ϕ1(η))| = 1− |∆(λ1I)(0)|,

which yields (1 + t)|∆(λ1I)(0)| = 1. Consequently,

λε0(x)α(x) = ∆(λ1I)(0) + ∆̂(λ1I)′(ϕ1(η))ϕ2(λ, x) = (1 + t)∆(λ1I)(0) =
∆(λ1I)(0)

|∆(λ1I)(0)|

by (2.14). Then α(x) = ∆(1I)(0)/|∆(1I)(0)| is independent from x ∈ M× T. Letting

λ = i in the above equality, we get iε0(x)α(x) = ∆(i1I)(0)/|∆(i1I)(0)|. Thus, ε0 is

constant on M× T.

By Lemma 2.17, we can rewrite (2.15) as

(2.21) ∆(f)(0) + ∆̂(f)′(ϕ1(η))λ
ε0−ε1(x)ϕ2(x) = λε0α

for all λ ∈ T, x = (η, z) ∈ M× T and f ∈ SLip(I) with f̃ ∈ λVx.

Lemma 2.18. Let η ∈ M, λ ∈ T and f ∈ SLip(I) be such that f̂ ′(η) = λ. Then

∆(f) satisfies ∆(f)(0) = 0 and

(2.22) ∆̂(f)′(ϕ1(η))ϕ2(λz, (η, z)) = (λz)ε0α

for all z ∈ T.

□ 

□ 
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Proof. Fix an arbitrary z ∈ T. By the choice of f , we have f̃ ∈ λzV(η,z). By

(2.21) with ϕ2(λz, (η, z)) = (λz)ε0−ε1(η,z)ϕ2(η, z), we obtain

(2.23) ∆(f)(0) + ∆̂(f)′(ϕ1(η))ϕ2(λz, (η, z)) = (λz)ε0α.

We observe that ∥∆̂(f)′∥∞ ̸= 0; for if ∥∆̂(f)′∥∞ = 0, then we would have ∆(f)(0) =

(λz)ε0α for all z ∈ T, which is impossible. Equality (2.23) shows that

1 = |∆(f)(0) + ∆̂(f)′(ϕ1(η))ϕ2(λz, (η, z))|

≤ |∆(f)(0)|+ |∆̂(f)′(ϕ1(η))| ≤ ∥∆(f)∥σ = 1,

and hence, |∆̂(f)′(ϕ1(η))| = ∥∆̂(f)′∥∞ ̸= 0. Then there exists s ≥ 0 such that

(2.24) ∆(f)(0) = s∆̂(f)′(ϕ1(η))ϕ2(λz, (η, z)).

It follows from (2.23) that

(1 + s)∆̂(f)′(ϕ1(η))ϕ2(λz, (η, z)) = (λz)ε0α,

which yields (1 + s)∥∆̂(f)′∥∞ = 1, or equivalently, s∥∆̂(f)′∥∞ = 1− ∥∆̂(f)′∥∞. These

equalities show that

∆̂(f)′(ϕ1(η))ϕ2(λz, (η, z)) = ∥∆̂(f)′∥∞(λz)ε0α.

We deduce from the last equality with (2.24) that ∆(f)(0) = s∥∆̂(f)′∥∞(λz)ε0α =

(1− ∥∆̂(f)′∥∞)(λz)ε0α, that is,

∆(f)(0) = (1− ∥∆̂(f)′∥∞)(λz)ε0α.

By the liberty of the choice of z ∈ T, we get 1 − ∥∆̂(f)′∥∞ = 0 = ∆(f)(0). Thus, by

(2.23), ∆̂(f)′(ϕ1(η))ϕ2(λz, (η, z)) = (λz)ε0α for all z ∈ T.

Lemma 2.19. For each λ, z ∈ T and η ∈ M,

ϕ2(λ, (η, z)) = λε0−ε1(η)ϕ2(1, (η, 1))z
ε1(η),

where ε1(η) = ε1(η, 1).

Proof. Fix arbitrary λ, z ∈ T and η ∈ M. Setting µ = λz and v = µ1M ∈ SC(M),

we see that I(v) ∈ SLip(I) satisfies Î(v)′(η) = µ by (2.3). We may apply (2.22) to

f = I(v), and we get ̂∆(I(v))′(ϕ1(η))ϕ2(µz, (η, z)) = (µz)ε0α. Therefore, we obtain

̂∆(I(v))′(ϕ1(η))ϕ2(µz, (η, z)) = µε0α · zε0 = ∆̂(I(v)′(ϕ1(η))ϕ2(µ, (η, 1))zε0 .

□ 
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Then ̂∆(I(v))′(ϕ1(η)) ̸= 0, and hence ϕ2(µz, (η, z)) = ϕ2(µ, (η, 1))z
ε0 . This implies

ϕ2(λ, (η, z)) = ϕ2(λz, (η, 1))z
ε0 .

Applying Lemmas 2.14 and 2.17 to the last equality, we now get

ϕ2(λ, (η, z)) = ϕ2(λz, (η, 1))z
ε0 = (λz)ε0−ε1(η)ϕ2(1, (η, 1))z

ε0

= λε0−ε1(η)ϕ2(1, (η, 1))z
ε1(η).

Consequently, ϕ2(λ, (η, z)) = λε0−ε1(η)ϕ2(1, (η, 1))z
ε1(η).

We shall write ϕ2(1, (η, 1)) = ϕ2(η) for simplicity. According to Lemma 2.19, we

can write

(2.25) ϕ2(λ, (η, z)) = λε0−ε1(η)ϕ2(η)z
ε1(η)

for all λ ∈ T and (η, z) ∈ M × T. Combining (2.21) and (2.25), with ϕ2(λ, x) =

λε0−ε1(x)ϕ2(x), we obtain

(2.26) ∆(f)(0) + ∆̂(f)′(ϕ1(η))λ
ε0−ε1(η)ϕ2(η)z

ε1(η) = λε0α

for all λ ∈ T, (η, z) ∈ M× T and f ∈ SLip(I) with f̃ ∈ λV(η,z).

Lemma 2.20. Let λ ∈ T, (η, z) ∈ M × T and f ∈ SLip(I) be such that f̃ ∈
λV(η,z). Then

∆(f)(0) = |∆(f)(0)|λε0α and ∆̂(f)′(ϕ1(η)) = ∥∆̂(f)′∥∞λε1(η)αϕ2(η)z−ε1(η).

In particular,

(2.27) |∆(f)(0)|+ |∆̂(f)′(ϕ1(η))| = |f(0)|+ |f̂ ′(η)|

for all f ∈ SLip(I) with f̃ ∈ λV(η,z).

Proof. By assumption, (2.26) holds. Taking the modulus of (2.26) to get

1 ≤ |∆(f)(0)|+ |∆̂(f)′(ϕ1(η))λ
ε0−ε1(η)ϕ2(η)z

ε1(η)|(2.28)

≤ |∆(f)(0)|+ ∥∆̂(f)′∥∞ = ∥∆(f)∥σ = 1.

We derive from the last inequalities that |∆̂(f)′(ϕ1(η))| = ∥∆̂(f)′∥∞.

If ∆(f)(0) = 0, then the identity ∆(f)(0) = |∆(f)(0)|λε0α is obvious; in addition,

∥∆̂(f)′∥∞ = ∥∆(f)∥σ = 1, and hence ∆̂(f)′(ϕ1(η)) = ∥∆̂(f)′∥∞λε1(η)αϕ2(η)z−ε1(η)

by (2.26). We next consider the case when ∆(f)(0) ̸= 0. There exists s ≥ 0 such

□ 
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that ∆̂(f)′(ϕ1(η))λ
ε0−ε1(η)ϕ2(η)z

ε1(η) = s∆(f)(0) by (2.28). Entering the last equality

into (2.26) to get (1 + s)∆(f)(0) = λε0α. We thus obtain (1 + s)|∆(f)(0)| = 1, and

consequently, ∆(f)(0) = |∆(f)(0)|λε0α holds even if ∆(f)(0) ̸= 0. Having in mind that

|∆(f)(0)|+ ∥∆̂(f)′∥∞ = 1, we infer from (2.26) that

∥∆̂(f)′∥∞λε0α = (1− |∆(f)(0)|)λε0α = λε0α−∆(f)(0)

= ∆̂(f)′(ϕ1(η))λ
ε0−ε1(η)ϕ2(η)z

ε1(η).

This shows that ∆̂(f)′(ϕ1(η)) = ∥∆̂(f)′∥∞λε1(η)αϕ2(η)z−ε1(η). Since f̃ ∈ λV(η,z), we

get

1 = |λ| = |f(0) + f̂ ′(η)z| ≤ |f(0)|+ |f̂ ′(η)| ≤ ∥f∥σ = 1,

and hence |∆(f)(0)|+ |∆̂(f)′(ϕ1(η))| = 1 = |f(0)|+ |f̂ ′(η)|.

For each λ ∈ T and η ∈ M, we define λPη by

λPη = {u ∈ SC(M) : u(η) = λ}.

Lemma 2.21. Let η0 ∈ M and f ∈ SLip(I). We set λ = f̂ ′(η0)/|f̂ ′(η0)| if

f̂ ′(η0) ̸= 0, and λ = 1 if f̂ ′(η0) = 0. For each t ∈ R with 0 < t < 1, there exists

ut ∈ Pη0 such that

|tf(0)|λ+ tf̂ ′ +
{
1− |tf(0)| − |tf̂ ′(η0)|

}
λut ∈ λPη0 .

Proof. Note first that 1−|tf(0)|−|tf̂ ′(η0)| > 0, since |tf(0)|+ |tf̂ ′(η0)| ≤ ∥tf∥σ <
1. We set r = 1− |tf(0)| − |tf̂ ′(η0)|,

G0 =
{
η ∈ M : |tf̂ ′(η)− tf̂ ′(η0)| ≥

r

4

}
,

and Gm =
{
η ∈ M :

r

2m+2
≤ |tf̂ ′(η)− tf̂ ′(η0)| ≤

r

2m+1

}
for eachm ∈ N. We see that Gn is a closed subset of M with η0 ̸∈ Gn for all n ∈ N∪{0}.
For each n ∈ N ∪ {0}, there exists vn ∈ Pη0 such that

(2.29) vn = 0 on Gn

by Urysohn’s lemma. Setting ut = v0
∑∞
n=1 vn/2

n, we see that ut converges in C(M),

since ∥vn∥∞ = 1 for all n ∈ N. We observe that

1 = ut(η0) ≤ ∥ut∥∞ ≤ ∥v0∥∞
∞∑
n=1

∥vn∥∞
2n

= 1,

and hence ut ∈ Pη0 . Here, we define

wt = |tf(0)|λ+ tf̂ ′ + rλut ∈ C(M).

□ 
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We shall prove that wt ∈ λPη0 . Since ut(η0) = 1 and tf̂ ′(η0) = |tf̂ ′(η0)|λ, we have

wt(η0) = |tf(0)|λ+ tf̂ ′(η0) +
{
1− |tf(0)| − |tf̂ ′(η0)|

}
λ = λ.

Fix an arbitrary η ∈ M. To prove that |wt(η)| ≤ 1, we shall consider three cases. First,

we consider the case when η ∈ G0. Then v0(η) = 0 by (2.29), and hence ut(η) = 0 by

definition. We thus obtain |wt(η)| ≤ ||tf(0)|λ+ tf̂ ′(η)| ≤ ∥tf∥σ < 1, and consequently,

|wt(η)| < 1 if η ∈ G0.

We next consider the case when η ∈ ∪∞
n=1Gn, and then η ∈ Gm for somem ∈ N. By

the choice of Gm, we get |tf̂ ′(η)−tf̂ ′(η0)| ≤ r/2m+1. Thus, |tf̂ ′(η)| ≤ |tf̂ ′(η0)|+r/2m+1.

We derive from (2.29) that |rλut(η)| ≤ r|v0(η)|
∑
n̸=m |vn(η)|/2n ≤ r(1 − 2−m). Since

|tf(0)|+ |t̂f ′(η0)| = 1− r, we obtain

|wt(η)| ≤ |tf(0)|+ |tf̂ ′(η)|+ |rλut(η)| ≤ |tf(0)|+ |tf̂ ′(η0)|+
r

2m+1
+ r

(
1− 1

2m

)
= (1− r)− r

2m+1
+ r = 1− r

2m+1
< 1.

Hence, |wt(η)| < 1 for η ∈ ∪∞
n=1Gn.

Finally we consider the case when η ̸∈ ∪∞
n=0Gn. Then f̂ ′(η) = f̂ ′(η0), and hence

|wt(η)| ≤ |tf(0)|+ |tf̂ ′(η0)|+ r = 1. We thus conclude that |wt(η)| ≤ 1 for all η ∈ M,

and consequently, wt ∈ λPη0 .

§ 3. Proof of Main results

Proof of Theorem 1.1. Fix arbitrary f ∈ SLip(I) and η ∈ M. Set ζ = ϕ1(η)

and λ = f̂ ′(η)/|f̂ ′(η)| if f̂ ′(η) ̸= 0, and λ = 1 if f̂ ′(η) = 0. Thus, f̂ ′(η) = |f̂ ′(η)|λ. For

each t ∈ R with 0 < t < 1, we define r = 1 − |tf(0)| − |tf̂ ′(η)|, and then r > 0. By

Lemma 2.21, there exists ut ∈ Pη such that wt = |tf(0)|λ+tf̂ ′+rλut ∈ λPη. We obtain

∥wt − f̂ ′∥∞ = ∥|tf(0)|λ+ (t− 1)f̂ ′ + rλut∥∞
≤ |tf(0)|+ (1− t)∥f̂ ′∥∞ + 1− |tf(0)| − |tf̂ ′(η)|

= (1− t)∥f̂ ′∥∞ + 1− |tf̂ ′(η)|.

Since wt ∈ λPη, we see that Î(wt)′(η) = wt(η) = λ, that is, Ĩ(wt) ∈ λV(η,1). Then

∆(I(wt))(0) = 0 and ̂∆(I(wt))′(ζ) = ̂∆(I(wt))′(ϕ1(η)) = λε1(η)αϕ2(η) by Lemma 2.20.

□ 
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We get

1− |∆̂(f)′(ζ)| = |λε1(η)αϕ2(η)| − |∆̂(f)′(ζ)| ≤ |λε1(η)αϕ2(η)− ∆̂(f)′(ζ)|

= | ̂∆(I(wt))′(ζ)− ∆̂(f)′(ζ)| ≤ ∥ ̂∆(I(wt))′ − ∆̂(f)′∥∞
= ∥∆(I(wt))−∆(f)∥σ − |∆(f)(0)|

= ∥I(wt)− f∥σ − |∆(f)(0)| = |f(0)|+ ∥wt − f̂ ′∥∞ − |∆(f)(0)|

≤ |f(0)|+ (1− t)∥f̂ ′∥∞ + 1− |tf̂ ′(η)| − |∆(f)(0)|,

where we have used that ∆(I(wt))(0) = 0 = I(wt)(0) and ∆ is an isometry. Letting

t↗ 1 in the above inequalities, we have

(3.1) 1− |∆̂(f)′(ζ)| ≤ |λε1(η)αϕ2(η)− ∆̂(f)′(ζ)| ≤ |f(0)|+ 1− |f̂ ′(η)| − |∆(f)(0)|.

In particular, we obtain |∆(f)(0)| − |∆̂(f)′(ζ)| ≤ |f(0)| − |f̂ ′(η)|, that is,

(3.2) |∆(f)(0)| − |∆̂(f)′(ϕ1(η))| ≤ |f(0)| − |f̂ ′(η)|.

Let η0 ∈ M be such that |f̂ ′(η0)| = ∥f̂ ′∥∞. There exist µ, z ∈ T such that f(0) = |f(0)|µ
and f̂ ′(η0) = |f̂ ′(η0)|z = ∥f̂ ′∥∞z. Thus,

f(0) + f̂ ′(η0)zµ = (|f(0)|+ ∥f̂ ′∥∞)µ = ∥f∥σµ = µ,

and hence f̃ ∈ µV(η0,zµ). Equality (2.27) shows that

(3.3) |∆(f)(0)|+ |∆̂(f)′(ϕ1(η0))| = |f(0)|+ |f̂ ′(η0)|.

Note that |∆(f)(0)| − |∆̂(f)′(ϕ1(η0))| ≤ |f(0)| − |f̂ ′(η0)| holds by (3.2). If we add the

last inequality to (3.3), we get |∆(f)(0)| ≤ |f(0)|. We may apply the above arguments

to ∆−1, then we obtain |∆−1(g)(0)| ≤ |g(0)| for all g ∈ SLip(I). Entering g = ∆(f) into

the last inequality to get |f(0)| ≤ |∆(f)(0)|, and thus

|∆(f)(0)| = |f(0)|.

It follows from (3.2) that |f̂ ′(η)| ≤ |∆̂(f)′(ϕ1(η))|. Having in mind that f̃ ∈ µV(η0,zµ)
and f(0) = |f(0)|µ, we derive from Lemma 2.20 that

(3.4) ∆(f)(0) = |∆(f)(0)|µε0α = |f(0)|µε0α = [f(0)]ε0α,

where [ν]ε0 = ν if ε0 = 1 and [ν]ε0 = ν if ε0 = −1 for ν ∈ C.
Now we shall prove that ϕ1 is injective. Suppose that ϕ1(η1) = ϕ1(η2) for η1, η2 ∈

M. Set f1 = I(1M), and thus f̂ ′1(ηj) = 1 for j = 1, 2 by (2.3). Equalities (2.22) and

(2.25) show that ∆̂(f1)′(ϕ1(ηj))ϕ2(ηj) = α for j = 1, 2. Since ϕ1(η1) = ϕ1(η2), we have
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ϕ2(η1) = ϕ2(η2). Applying Lemmas 2.12, 2.17 and 2.19 to (2.8) with λ = 1, we obtain

T (V(1,(η,1))) = αV(ϕ1(η),ϕ2(η)). Therefore, we get T (V(1,(η1,1))) = T (V(1,(η2,1))), and

consequently, V(1,(η1,1)) = V(1,(η2,1)). Lemma 2.1 shows that η1 = η2, which proves that

ϕ1 is injective. Now, we may apply the arguments in the last paragraph to ∆−1 and ϕ−1
1 ,

and then we obtain |∆̂(f)′(ζ)| ≤ | ̂(∆−1(∆(f)))′(ϕ−1
1 (ζ))|, which shows |∆̂(f)′(ϕ1(η))| ≤

|f̂ ′(η)|. We thus conclude that |∆̂(f)′(ζ)| = |∆̂(f)′(ϕ1(η))| = |f̂ ′(η)|. By inequalities

(3.1) and |∆(f)(0)| = |f(0)|, we obtain

|λε1(η)αϕ2(η)− ∆̂(f)′(ζ)|+ |∆̂(f)′(ζ)| = 1.

The above equality implies that ∆̂(f)′(ζ) = sλε1(η)αϕ2(η) for some s ≥ 0. Then s =

|sλε1(z)αϕ2(η)| = |∆̂(f)′(ζ)| = |f̂ ′(η)|, which shows ∆̂(f)′(ζ) = |f̂ ′(η)|λε1(η)αϕ2(η) =

[f̂ ′(η)]ε1(η)αϕ2(η), where we have used f̂ ′(η) = |f̂ ′(η)|λ. Thus,

(3.5) ∆̂(f)′(ϕ1(η)) = αϕ2(η) [f̂ ′(η)]
ε1(η)

for all f ∈ SLip(I) and η ∈ M.

We now define ∆0 : Lip(I) → Lip(I) by

∆0(g) =

∥g∥σ∆
(

g

∥g∥σ

)
if g ∈ Lip(I) \ {0},

0 if g = 0.

By the definition of ∆0 with (3.4) and (3.5), we observe that

(3.6) ∆0(g)(0) = α[g(0)]ε0 and ∆̂0(g)′(ϕ1(η)) = αϕ2(η)[ĝ′(η)]
ε1(η)

for all g ∈ Lip(I) and η ∈ M. We thus obtain

∥∆0(g1)−∆0(g2)∥σ = |∆0(g1)(0)−∆0(g2)(0)|+ sup
η∈M

|∆̂0(g1)′(ϕ1(η))− ∆̂0(g2)′(ϕ1(η))|

= |g1(0)− g2(0)|+ sup
η∈M

|ĝ′1(η)− ĝ′2(η)| = ∥g1 − g2∥σ

for all g1, g2 ∈ Lip(I), where we have used ϕ1(M) = M. Hence ∆0 is an isometry on

Lip(I). We infer from (3.6) that ∆0 is real linear. We deduce that ∆0 is surjective,

since so is ∆. Therefore, ∆0 is a surjective, real linear isometry on Lip(I) that extends

∆ to Lip(I).

Proof of Corollary 1.2. Let ∆1 be a surjective isometry on Lip(I). By the

Mazur–Ulam theorem [19], ∆1 − ∆1(0) is a surjective, real linear isometry. Without

loss of generality, we may and do assume that ∆1 is a surjective real linear isometry.

□ 
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Since ∆−1
1 has the same property as ∆1, we see that ∆1 maps SLip(I) onto itself. Now

we may apply (3.4) and (3.5) to ∆1, and then we obtain

∆1(f)(0) = α[f(0)]ε0 and ∆̂1(f)′(ϕ1(η)) = αϕ2(η)[f̂ ′(η)]
ε1(η)

for all f ∈ Lip(I) and η ∈ M, where α ∈ T, ε0 ∈ {±1}, ϕ1 : M → M, ϕ2 : M → T and

ε1 : M → {±1} are from proof of Theorem 1.1. As we proved in the second paragraph

of Proof of Theorem 1.1, we know that ϕ1 is injective. By Lemma 2.6, ψ1 = ϕ−1
1 is well

defined, and then we have

(3.7) ∆̂1(f)′(η) = αϕ2(ψ1(η))[f̂ ′(ψ1(η))]
ε1(ψ1(η))

for f ∈ Lip(I) and η ∈ M. We shall prove that ψ1 and ϕ2 are both continuous. Let

{ηa} be a net in M converging to η ∈ M. By the continuity of ∆̂1(f)′, we see that

|∆̂1(f)′(ηa)| converges to |∆̂1(f)′(η)| for each f ∈ Lip(I). This implies that |f̂ ′(ψ1(ηa))|
converges to |f̂ ′(ψ1(η))| for every f ∈ Lip(I) by (3.7). Since the weak topology of M
induced by the family {|f̂ ′| : f ∈ Lip(I)} is Hausdorff, we observe that the identity map

fromM with the original topology ontoM with the weak topology is a homeomorphism.

Hence, ψ1(ηa) converges to ψ1(η) with respect to the original topology of M, and thus

ψ1 is continuous onM. Since ψ1 is a bijective continuous map on the compact Hausdorff

space M, it must be a homeomorphism. Let id be the identity function on I. Then we

have ∆̂1(id)′ = αϕ2 ◦ ψ1 by (3.7), which implies the continuity of ϕ2 on M. Moreover,

the identity ∆̂1(i id)′ = αϕ2 ◦ ψ1 i(ε1 ◦ψ1) shows that ε1 ◦ψ1 is continuous on M. Since

ψ1 is a homeomorphism, we have ε1 = (ε1 ◦ψ1)◦ψ−1
1 is continuous on M as well. Then

M1 = {η ∈ M : ε1(ψ1(η)) = 1} is a closed and open subset of M with ε1(ψ1(η)) = −1

for all η ∈ M \M1.

We define a map Φ: C(M) → C(M) by Φ(u)(η) = [u(ψ1(η))]
ε1(ψ1(η)) for u ∈ C(M)

and η ∈ M. We see that Φ is a well defined real linear map on C(M). For each

v0 ∈ C(M), we set u0(η) = [v0(ψ
−1
1 (η))]ε1(η) for η ∈ M. Then we have Φ(u0)(η) =

[u0(ψ1(η))]
ε1(ψ1(η)) = [v0(η)]

ε1(ψ1(η))ε1(ψ1(η)) = v0(η), which shows that Φ is surjective.

It is routine to check that Φ is an injective homomorphism, and consequently, Φ is a

real algebra automorphism on C(M). Let Γ be the Gelfand transformation from L∞(I)

onto C(M), that is, Γ(h) = ĥ for h ∈ L∞(I). We define a real algebra automorphism

Ψ = Γ−1 ◦ Φ ◦ Γ on L∞(I). For each f ∈ Lip(I) and η ∈ M, we obtain

[f̂ ′(ψ1(η))]
ε1(ψ1(η)) = Φ(f̂ ′)(η) = (Φ ◦ Γ)(f ′)(η) = (Γ ◦Ψ)(f ′)(η) = Γ(Ψ(f ′))(η).

By the continuity of ϕ2 and ψ1, we may set h0 = Γ−1(αϕ2 ◦ ψ1) ∈ L∞(I). We derive

from (3.7) that

∆̂1(f)′(η) = Γ(h0)(η)Γ(Ψ(f ′))(η) = Γ(h0Ψ(f ′))(η) = ̂h0Ψ(f ′)(η)
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for all η ∈ M. Therefore, we conclude ∆1(f)
′ = h0Ψ(f ′) for every f ∈ Lip(I). Accord-

ing to (2.2), we have

∆1(f)(t) = ∆1(f)(0) +

∫ t

0

∆1(f)
′ dm = α[f(0)]ε0 +

∫ t

0

h0Ψ(f ′) dm

for every t ∈ I and f ∈ Lip(I).

Acknowledgement

The authors would like to express our gratitude to the referee for his/her valuable

suggestions and comments which have improved the original manuscript.

The second author is supported by JSPS KAKENHI (Japan) Grant Number JP

20K03650.

References

[1] T. Banakh, Every 2-dimensional Banach space has the Mazur-Ulam property, Linear

Algebra Appl., 632 (2022), 268–280.

[2] A. Browder, Introduction to function algebras, W.A. Benjamin, Inc., New York-

Amsterdam, 1969.

[3] L. Cheng and Y. Dong, On a generalized Mazur-Ulam question: extension of isometries

between unit spheres of Banach spaces, J. Math. Anal. Appl., 377 (2011), 464–470.

[4] M. Cueto-Avellaneda, D. Hirota, T. Miura and A.M. Peralta, Exploring new

solutions to Tingley’s problem for function algebras, Quaest. Math., DOI:

10.2989/16073606.2022.2072787.

[5] M. Cueto-Avellaneda, A.M. Peralta, On the Mazur-Ulam property for the space of Hilbert-

space-valued continuous functions, J. Math. Anal. Appl., 479 (2019), 875–902.

[6] R.G. Douglas, Banach algebra techniques in operator theory. Second edition, Graduate

Texts in Mathematics 179, Springer-Verlag, New York, 1998.

[7] F.J. Fernández-Polo, J.J. Garcés, A.M. Peralta, I. Villanueva, Tingley’s problem for spaces

of trace class operators, Linear Algebra Appl., 529 (2017), 294–323.
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