Tingley's problem for a Banach space of Lipschitz functions on the closed unit interval

By

Daisuke HIROTA* and Takeshi MIURA**

Abstract

We prove that every surjective isometry on the unit sphere of $\operatorname{Lip}(I)$ of all Lipschitz continuous functions on the closed unit interval I is extended to a surjective real linear isometry on $\operatorname{Lip}(I)$ with the norm $\|f\|_{\sigma} = |f(0)| + \|f'\|_{L^{\infty}}$.

§1. Introduction and main results

Let E and F be Banach spaces whose unit spheres are S_E and S_F , respectively. In 1987, Tingley [32] asks whether each surjective isometry $\Delta: S_E \to S_F$ is extended to a surjective, real linear isometry from E onto F. Since then, many mathematicians have given affirmative answers to the Tingley's problem for particular Banach spaces. There is a huge list of the research of the problem, here we show only some of them. Tingley's problem is treated for function spaces in [4, 15, 17, 18, 33, 34], and for operator spaces in [7, 8, 9, 10, 11, 12, 22, 23, 24, 29, 30, 31]. Besides the Tingley's problem, the Mazur–Ulam property for Banach spaces has been studying actively; a Banach space Ehas the Mazur–Ulam property if F is any Banach space, every surjective isometry from S_E onto S_F admits a unique extension to a surjective real linear isometry from E onto F. See, for example, [1, 5, 14, 21, 26, 27].

Let $\operatorname{Lip}(I)$ be the complex linear space of all Lipschitz continuous complex valued functions on the closed unit interval I = [0, 1]. For each Banach space E, we denote by

Received March 26, 2022. Revised November 7, 2022.

²⁰²⁰ Mathematics Subject Classification(s): 46B04, 46B20, 46J10.

Key Words: Lipschitz function, maximal convex set, isometry, Tingley's problem.

The second author is supported by JSPS KAKENHI Grant Number 20K03650.

^{*}Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan. e-mail: hirota@m.sc.niigata-u.ac.jp

^{**}Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan. e-mail: miura@math.sc.niigata-u.ac.jp

D. HIROTA AND T. MIURA

 S_E the unit sphere of E. We define $||f||_{\sigma}$ for $f \in \operatorname{Lip}(I)$ by

$$||f||_{\sigma} = |f(0)| + ||f'||_{L^{\infty}},$$

where $\|\cdot\|_{L^{\infty}}$ denotes the essential supremum norm on I. It is well known that each $f \in \text{Lip}(I)$ has essentially bounded derivative f' almost everywhere. Hence, f' belongs to $L^{\infty}(I)$, the commutative Banach algebra of all essentially bounded measurable functions on I with the essential supremum norm $\|\cdot\|_{L^{\infty}}$. Consequently, $\|\cdot\|_{\sigma}$ is a well defined norm on Lip(I). The purpose of this paper is to prove that every surjective isometry on $S_{\text{Lip}(I)}$ admits a surjective real linear extension to Lip(I), which gives a solution to Tingley's problem for Lip(I). The followings are the main results of this paper.

Theorem 1.1. Let $\Delta: S_{\text{Lip}(I)} \to S_{\text{Lip}(I)}$ be a surjective isometry with $\|\cdot\|_{\sigma}$. Then Δ is extended to a surjective, real linear isometry on Lip(I).

Corollary 1.2. For each surjective isometry Δ_1 : $\operatorname{Lip}(I) \to \operatorname{Lip}(I)$ with $\|\cdot\|_{\sigma}$, there exist a constant α of modulus 1, $h_0 \in S_{L^{\infty}(I)}$ and a real algebra automorphism Ψ on $L^{\infty}(I)$ such that

$$\Delta_{1}(f)(t) = \Delta_{1}(0)(t) + \alpha f(0) + \int_{0}^{t} h_{0} \Psi(f') \, dm \qquad (t \in I, \, f \in \operatorname{Lip}(I)), \quad otherwise$$

$$\Delta_{1}(f)(t) = \Delta_{1}(0)(t) + \alpha \overline{f(0)} + \int_{0}^{t} h_{0} \Psi(f') \, dm \qquad (t \in I, \, f \in \operatorname{Lip}(I)),$$

where m denotes the Lebesgue measure on I.

Remark 1. We should note that Theorem 1.1 is deduced from [34, Theorem 3.5]. In fact, $\operatorname{Lip}(I)$ equipped with $\|\cdot\|_{\sigma}$ is identified with the ℓ^1 -sum of \mathbb{R}^2 and $C(X, \mathbb{R}^2)$ for some compact Hausdorff space X. Here, $C(X, \mathbb{R}^2)$ is the Banach space of all continuous \mathbb{R}^2 valued maps on X with the supremum norm. In this paper, we will give a different proof from that of [34] of Tingley's problem for $\operatorname{Lip}(I)$.

Koshimizu [16, Theorem 1.2] gave the characterization of surjective complex linear isometries on $\operatorname{Lip}(I)$ with $\|\cdot\|_{\sigma}$. We will characterize surjective isometries on $\operatorname{Lip}(I)$ in Corollary 1.2.

§ 2. Preliminaries and auxiliary lemmas

We denote by \mathbb{T} the unit circle in the complex number field \mathbb{C} . Let \mathcal{M} be the maximal ideal space of $L^{\infty}(I)$: Then \mathcal{M} is a compact Hausdorff space so that the Gelfand transform, defined by $\hat{h}(\eta) = \eta(h)$ for $h \in L^{\infty}(I)$ and $\eta \in \mathcal{M}$, is a continuous function from \mathcal{M} to \mathbb{C} . Let C(X) be the commutative Banach algebra of all continuous

complex valued functions on a compact Hausdorff space X with the supremum norm $\|\cdot\|_{\infty}$ on X. The Gelfand–Naimark theorem states that the Gelfand transformation $\Gamma: L^{\infty}(I) \to C(\mathcal{M})$, defined by $\Gamma(h) = \hat{h}$ for $h \in L^{\infty}(I)$, is an isometric isomorphism. Thus, $\|h\|_{L^{\infty}} = \sup_{\eta \in \mathcal{M}} |\hat{h}(\eta)| = \|\hat{h}\|_{\infty}$ for $h \in L^{\infty}(I)$. We define

(2.1)
$$\widetilde{f}(\eta, z) = f(0) + \widehat{f'}(\eta) z$$

for $f \in \operatorname{Lip}(I)$ and $(\eta, z) \in \mathcal{M} \times \mathbb{T}$. Then the function \tilde{f} is continuous on $\mathcal{M} \times \mathbb{T}$ with the product topology. We set

$$B = \{ f \in C(\mathcal{M} \times \mathbb{T}) : f \in \operatorname{Lip}(I) \}.$$

Then B is a normed linear subspace of $C(\mathcal{M} \times \mathbb{T})$ equipped with the supremum norm $\|\cdot\|_{\infty}$ on $\mathcal{M} \times \mathbb{T}$.

We define a mapping $U: (\operatorname{Lip}(I), \|\cdot\|_{\sigma}) \to (B, \|\cdot\|_{\infty})$ by $U(f) = \tilde{f}$ for $f \in \operatorname{Lip}(I)$. We see that U is a surjective complex linear map from $\operatorname{Lip}(I)$ onto B. In addition, $\|U(f)\|_{\infty} = \|f\|_{\sigma}$ holds for all $f \in \operatorname{Lip}(I)$: In fact, for each $f \in \operatorname{Lip}(I)$, there exist $z_0, z_1 \in \mathbb{T}$ and $\eta_0 \in \mathcal{M}$ such that $f(0) = |f(0)|z_0$ and $\hat{f}'(\eta_0) = \|\hat{f}'\|_{\infty} z_1$. Then

$$|U(f)(\eta_0, z_0\overline{z_1})| = |f(0) + \widehat{f'}(\eta_0)z_0\overline{z_1}| = |(|f(0)| + \|\widehat{f'}\|_{\infty})z_0|$$

= $|f(0)| + \|\widehat{f'}\|_{\infty} = |f(0)| + \|f'\|_{L^{\infty}} = \|f\|_{\sigma}.$

We thus obtain $||f||_{\sigma} \leq ||U(f)||_{\infty}$. For each $(\eta, z) \in \mathcal{M} \times \mathbb{T}$, we have

$$|U(f)(\eta, z)| = |f(0) + \widehat{f'}(\eta)z| \le |f(0)| + |\widehat{f'}(\eta)| \le |f(0)| + \|\widehat{f'}\|_{\infty} = \|f\|_{\sigma},$$

which yields $||U(f)||_{\infty} \leq ||f||_{\sigma}$. Consequently,

$$\|\widetilde{f}\|_{\infty} = \|U(f)\|_{\infty} = \|f\|_{\sigma} \qquad (f \in \operatorname{Lip}(I)).$$

Therefore, the map U is a surjective complex linear isometry from $(\text{Lip}(I), \|\cdot\|_{\sigma})$ onto $(B, \|\cdot\|_{\infty})$. In particular, $U(S_{\text{Lip}(I)}) \subset S_B$. Since U^{-1} has the same property as U, we obtain $U^{-1}(S_B) \subset S_{\text{Lip}(I)}$, and hence, $U(S_{\text{Lip}(I)}) = S_B$.

For each $f \in \text{Lip}(I)$, we observe that f is absolutely continuous on I. Thus, the following identity holds:

(2.2)
$$f(t) - f(0) = \int_0^t f' \, dm \qquad (t \in I),$$

where *m* denotes the Lebesgue measure on *I* (see, for example, [25, Theorem 7.20]). Having in mind $\{\hat{h} : h \in L^{\infty}(I)\} = C(\mathcal{M})$, for each $u \in C(\mathcal{M})$ there exists a unique $h \in L^{\infty}(I)$ such that $u = \hat{h}$. We define $\mathcal{I}(u)$ by

$$\mathcal{I}(u)(t) = \int_0^t h \, dm \qquad (t \in I).$$

We observe that $\mathcal{I}(u)$ is a Lipschitz function on I with

$$\mathcal{I}(u)(0) = 0$$
 and $\mathcal{I}(u)' = h$ a.e.

In particular, we obtain

(2.3)
$$\widehat{\mathcal{I}(u)'} = u$$

Here, we note that $\mathcal{I}(u) \in S_{\operatorname{Lip}(I)}$ for $u \in S_{C(\mathcal{M})}$: In fact,

$$\|\mathcal{I}(u)\|_{\sigma} = |\mathcal{I}(u)(0)| + \|\mathcal{I}(u)'\|_{L^{\infty}} = \|\widehat{\mathcal{I}(u)'}\|_{\infty} = \|u\|_{\infty} = 1,$$

which yields $\mathcal{I}(u) \in S_{\operatorname{Lip}(I)}$. Hence, $\mathcal{I}(S_{C(\mathcal{M})}) \subset S_{\operatorname{Lip}(I)}$.

Let $\Delta: (S_{\operatorname{Lip}(I)}, \|\cdot\|_{\sigma}) \to (S_{\operatorname{Lip}(I)}, \|\cdot\|_{\sigma})$ be a surjective isometry. We define $T = U\Delta U^{-1}$; we see that T is a well defined surjective isometry from $(S_B, \|\cdot\|_{\infty})$ onto itself, since U is a surjective complex linear isometry from $(\operatorname{Lip}(I), \|\cdot\|_{\sigma})$ onto $(B, \|\cdot\|_{\infty})$ with $U(S_{\operatorname{Lip}(I)}) = S_B$.

The identity $TU = U\Delta$ implies that

(2.4) $T(\widetilde{f}) = \widetilde{\Delta(f)} \qquad (f \in S_{\operatorname{Lip}(I)}).$

For each $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$, we define

$$\lambda V_x = \{ \widetilde{f} \in S_B : \widetilde{f}(x) = \lambda \},\$$

which plays an important role in our arguments. In the rest of this paper, we denote $\mathbf{1}_{I}$ and $\mathbf{1}_{\mathcal{M}}$ by the constant functions taking the value only 1 defined on I and \mathcal{M} , respectively.

Lemma 2.1. If $\lambda_1 V_{x_1} \subset \lambda_2 V_{x_2}$ for some $(\lambda_1, x_1), (\lambda_2, x_2) \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T})$, then $(\lambda_1, x_1) = (\lambda_2, x_2)$.

Proof. We first note that $\widetilde{\mathbf{1}}_I$ is a constant function on $\mathcal{M} \times \mathbb{T}$ by (2.1). Then $\lambda_1 \widetilde{\mathbf{1}}_I \in \lambda_1 V_{x_1} \subset \lambda_2 V_{x_2}$, which yields $\lambda_1 = \lambda_1 \widetilde{\mathbf{1}}_I(x_1) = \lambda_1 \widetilde{\mathbf{1}}_I(x_2) = \lambda_2$. This implies $\lambda_1 = \lambda_2$.

Setting $x_j = (\eta_j, z_j)$ for j = 1, 2, we first prove $\eta_1 = \eta_2$. Suppose, on the contrary, that $\eta_1 \neq \eta_2$. There exists $u \in S_{C(\mathcal{M})}$ such that $u(\eta_1) = 1$ and $u(\eta_2) = 0$. We set $f = \mathcal{I}(\lambda_1 \overline{z_1} u) \in S_{\text{Lip}(I)}$, and then $\tilde{f}(\eta_1, z_1) = \lambda_1$ and $\tilde{f}(\eta_2, z_2) = 0$ by (2.3). This

shows that $\tilde{f} \in \lambda_1 V_{x_1} \setminus \lambda_2 V_{x_2}$, which contradicts the assumption that $\lambda_1 V_{x_1} \subset \lambda_2 V_{x_2}$. Consequently, we have $\eta_1 = \eta_2$.

Finally, we shall prove $z_1 = z_2$. By (2.3), we see that $g = \mathcal{I}(\lambda_1 \overline{z_1} \mathbf{1}_{\mathcal{M}})$ satisfies $\tilde{g} \in S_B$ and $\tilde{g}(\eta_1, z_1) = \lambda_1$. We thus obtain $\tilde{g} \in \lambda_1 V_{x_1} \subset \lambda_2 V_{x_2}$, and hence $\lambda_2 = \tilde{g}(\eta_2, z_2) = \lambda_1 \overline{z_1} z_2$ by the choice of g. This implies $z_1 = z_2$, since $\lambda_1 = \lambda_2$. We have proven that $(\lambda_1, x_1) = (\lambda_2, x_2)$.

We denote by \mathcal{F}_B the set of all maximal convex subsets of S_B . Let $\operatorname{ext}(B_1^*)$ be the set of all extreme points of the closed unit ball B_1^* of the dual space of B. It is proved in [15, Lemma 3.1] that for each $F \in \mathcal{F}_B$ there exists $\xi \in \operatorname{ext}(B_1^*)$ such that $F = \xi^{-1}(1) \cap S_B$, where $\xi^{-1}(1) = \{\tilde{f} \in B : \xi(\tilde{f}) = 1\}$. Let $\operatorname{Ch}(B)$ be the Choquet boundary for B, that is, $\operatorname{Ch}(B)$ is the set of all $x \in \mathcal{M} \times \mathbb{T}$ such that the point evaluation $\delta_x : B \to \mathbb{C}$ at x is in $\operatorname{ext}(B_1^*)$. By the Arens-Kelley theorem (cf. [13, Corollary 2.3.6]), we see that $\operatorname{ext}(B_1^*) = \{\lambda \delta_x \in B_1^* : \lambda \in \mathbb{T}, x \in \operatorname{Ch}(B)\}$.

Lemma 2.2. For each $x_0 = (\eta_0, z_0) \in \mathcal{M} \times \mathbb{T}$, the Dirac measure concentrated at x_0 is unique representing measure for δ_{x_0} .

Proof. Fix an arbitrary open set O in \mathcal{M} with $\eta_0 \in O$. By Urysohn's lemma, we can find $u \in S_{C(\mathcal{M})}$ such that $u(\eta_0) = 1$ and u = 0 on $\mathcal{M} \setminus O$. Take any representing measure σ for δ_{x_0} , that is, σ is a regular Borel measure on $\mathcal{M} \times \mathbb{T}$ satisfying $\delta_{x_0}(\tilde{g}) = \int_{\mathcal{M} \times \mathbb{T}} \tilde{g} \, d\sigma$ for all $\tilde{g} \in B$ and $\|\sigma\| = 1$, where $\|\sigma\|$ is the total variation of σ . Having in mind that the operator norm $\|\delta_{x_0}\|$ of δ_{x_0} satisfies $\|\delta_{x_0}\| = 1 = \delta_{x_0}(\widetilde{\mathbf{1}}_I)$, we observe that σ is a positive measure (see, for example, [2, p.81]). Setting $f = \mathcal{I}(u) \in S_{\text{Lip}(I)}$, we obtain $\tilde{f}(\eta, z) = u(\eta)z$ for $(\eta, z) \in \mathcal{M} \times \mathbb{T}$ by (2.1) and (2.3). Since u = 0 on $\mathcal{M} \setminus O$, we get

$$1 = |z_0| = |\delta_{x_0}(\widetilde{f})| = \left| \int_{\mathcal{M} \times \mathbb{T}} \widetilde{f} \, d\sigma \right| \le \left| \int_{O \times \mathbb{T}} \widetilde{f} \, d\sigma \right| + \left| \int_{(\mathcal{M} \times \mathbb{T}) \setminus (O \times \mathbb{T})} \widetilde{f} \, d\sigma \right|$$
$$\le \int_{O \times \mathbb{T}} |\widetilde{f}| \, d\sigma \le \|\widetilde{f}\|_{\infty} \sigma(O \times \mathbb{T}) = \sigma(O \times \mathbb{T}) \le \|\sigma\| = 1.$$

Consequently, $\sigma(O \times \mathbb{T}) = 1$ for all open sets O in \mathcal{M} with $\eta_0 \in O$, and therefore, we observe that $\sigma(\{\eta_0\} \times \mathbb{T}) = 1$ by the regularity of σ . We thus obtain

$$z_0 = \delta_{x_0}(\widetilde{f}) = \int_{\{\eta_0\}\times\mathbb{T}} \widetilde{f} \, d\sigma = \int_{\{\eta_0\}\times\mathbb{T}} u(\eta) z \, \delta\sigma = \int_{\{\eta_0\}\times\mathbb{T}} z \, \delta\sigma.$$

We derive from $\sigma(\{\eta_0\} \times \mathbb{T}) = 1$ that $\int_{\{\eta_0\} \times \mathbb{T}} (z_0 - z) \, d\sigma = 0$. Setting $Z = \{\eta_0\} \times (\mathbb{T} \setminus \{z_0\})$, we obtain $\int_Z (1 - \overline{z_0}z) \, d\sigma = -\overline{z_0} \int_Z (z - z_0) \, d\sigma = 0$, which yields $\int_Z \operatorname{Re}(1 - \overline{z_0}z) \, d\sigma = 0$. As $\operatorname{Re}(1 - \overline{z_0}z) > 0$ on Z, we conclude $\sigma(Z) = 0$, and thus $\sigma(\{\eta_0\} \times \{z_0\}) = 1$. This proves that any representing measure for δ_{x_0} is the Dirac measure concentrated at x_0 . \Box **Lemma 2.3.** For each $x_0 = (\eta_0, z_0) \in \mathcal{M} \times \mathbb{T}$, we have $x_0 \in Ch(B)$, that is, $Ch(B) = \mathcal{M} \times \mathbb{T}$.

Proof. We shall prove that δ_{x_0} belongs to $\operatorname{ext}(B_1^*)$. Suppose that $\delta_{x_0} = (\xi_1 + \xi_2)/2$ for $\xi_1, \xi_2 \in B_1^*$. For j = 1, 2, there exists a representing measure σ_j for ξ_j by the Hahn– Banach theorem and the Riesz representation theorem (see, for example, [25, Theorems 5.16 and 2.14]). Since $\xi_1(\widetilde{\mathbf{1}}_I) + \xi_2(\widetilde{\mathbf{1}}_I) = 2\delta_{x_0}(\widetilde{\mathbf{1}}_I) = 2$ with $|\xi_j(\widetilde{\mathbf{1}}_I)| \leq 1$, we have $\xi_j(\widetilde{\mathbf{1}}_I) = 1 = ||\xi_j||$ for j = 1, 2. Applying the same argument in [2, p.81] to σ_j , we see that σ_j is a positive measure. We put $\sigma = (\sigma_1 + \sigma_2)/2$, and then σ is a positive measure.

First, we prove that σ is a representing measure for δ_{x_0} . Because σ_j is a representing measure for ξ_j , we get

$$\int_{\mathcal{M}\times\mathbb{T}} \widetilde{f}d\sigma = \int_{\mathcal{M}\times\mathbb{T}} \widetilde{f}d(\frac{\sigma_1 + \sigma_2}{2}) = \frac{\xi_1(\widetilde{f}) + \xi_2(\widetilde{f})}{2} = \delta_{x_0}(\widetilde{f}) \quad (\widetilde{f}\in B)$$

Entering $\widetilde{f} = \widetilde{\mathbf{1}_I}$ into the above equality, we have $\sigma(\mathcal{M} \times \mathbb{T}) = \int_{\mathcal{M} \times \mathbb{T}} \widetilde{\mathbf{1}_I} d\sigma = 1$, which shows that $\|\sigma\| = 1 = \|\delta_{x_0}\|$. Therefore, σ is a representing measure for δ_{x_0} . By Lemma 2.2, $\sigma = (\sigma_1 + \sigma_2)/2$ is the Dirac measure, τ_{x_0} , concentrated at x_0 .

We note that σ_j is a positive measure with j = 1, 2. For each Borel set D with $x_0 \notin D$, we obtain $(\sigma_1(D) + \sigma_2(D))/2 = \sigma(D) = 0$, and thus, $\sigma_j(D) = 0$. Having in mind that $\|\sigma_j\| = \|\xi_j\| = 1$, we conclude that $\sigma_j = \tau_{x_0}$ for j = 1, 2. Hence, $\xi_j(\tilde{f}) = \int_{\mathcal{M}\times\mathbb{T}} \tilde{f} d\sigma_j = \tilde{f}(x_0) = \delta_{x_0}(\tilde{f})$ for any $\tilde{f} \in B$, which implies that $\xi_1 = \delta_{x_0} = \xi_2$. This proves $\delta_{x_0} \in \operatorname{ext}(B_1^*)$, which yields $x_0 \in \operatorname{Ch}(B)$.

We now characterize the set of all maximal convex subsets \mathcal{F}_B of S_B . The following result is proved by Hatori, Oi and Shindo Togashi in [15] for uniform algebras. The proof below of the next proposition is quite similar to that of [15, Lemma 3.2].

Proposition 2.4. Let F be a subset of S_B . Then $F \in \mathcal{F}_B$ if and only if there exist $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$ such that $F = \lambda V_x$.

Proof. Suppose that F is a maximal convex subset of S_B . By [15, Lemma 3.1], $F = \xi^{-1}(1) \cap S_B$ for some $\xi \in \text{ext}(B_1^*) = \{\lambda \delta_x \in B_1^* : \lambda \in \mathbb{T}, x \in \mathcal{M} \times \mathbb{T}\}$, where we have used Lemma 2.3. There exist $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$ such that $\xi = \lambda \delta_x$. Now we can write

$$F = (\lambda \delta_x)^{-1}(1) \cap S_B = \{ \tilde{f} \in S_B : \lambda \tilde{f}(x) = 1 \} = \overline{\lambda} V_x.$$

We thus obtain $F = \overline{\lambda} V_x$ with $\overline{\lambda} \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$.

Conversely, suppose that $F = \lambda V_x$ for some $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. It is routine to check that F is a convex subset of S_B . Using Zorn's lemma, we can prove that there exists a maximal convex subset K of S_B with $F \subset K$. By the above paragraph, we see

that $K = \mu V_y$ for some $\mu \in \mathbb{T}$ and $y \in \mathcal{M} \times \mathbb{T}$. Then $\lambda V_x = F \subset K = \mu V_y$. Lemma 2.1 shows that $(\lambda, x) = (\mu, y)$, which implies that F = K. Consequently, F is a maximal convex subset of S_B .

Tanaka [28, Lemma 3.5] proved that every surjective isometry between the unit spheres of two Banach spaces preserves maximal convex subsets of the spheres (see also [3, Lemma 5.1]). By these results, we can prove the following lemma.

Lemma 2.5. There exist maps $\alpha \colon \mathbb{T} \times (\mathcal{M} \times \mathbb{T}) \to \mathbb{T}$ and $\phi \colon \mathbb{T} \times (\mathcal{M} \times \mathbb{T}) \to \mathcal{M} \times \mathbb{T}$ such that

(2.5)
$$T(\lambda V_x) = \alpha(\lambda, x) V_{\phi(\lambda, x)}$$

for all $(\lambda, x) \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T})$.

Proof. For each $(\lambda, x) \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T})$, λV_x is a maximal convex subset of S_B by Proposition 2.4. By [28, Lemma 3.5], surjective isometry $T: S_B \to S_B$ preserves maximal convex subsets of S_B , that is, there exists $(\mu, y) \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T})$ such that $T(\lambda V_x) = \mu V_y$. If, in addition, $T(\lambda V_x) = \mu' V_{y'}$ for some $(\mu', y') \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T})$, then we obtain $(\mu, y) = (\mu', y')$ by Lemma 2.1. Therefore, if we define $\alpha(\lambda, x) = \mu$ and $\phi(\lambda, x) = y$, then $\alpha: \mathbb{T} \times (\mathcal{M} \times \mathbb{T}) \to \mathbb{T}$ and $\phi: \mathbb{T} \times (\mathcal{M} \times \mathbb{T}) \to \mathcal{M} \times \mathbb{T}$ are well defined maps with $T(\lambda V_x) = \alpha(\lambda, x) V_{\phi(\lambda, x)}$.

Lemma 2.6. The maps α and ϕ from Lemma 2.5 are both surjective maps satisfying

 $\alpha(-\lambda,x) = -\alpha(\lambda,x) \quad and \quad \phi(-\lambda,x) = \phi(\lambda,x)$

for all $(\lambda, x) \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T})$.

Proof. Take any $(\lambda, x) \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T})$, and then λV_x is a maximal convex subset of S_B by Proposition 2.4. We get $T(-\lambda V_x) = -T(\lambda V_x)$, which was proved by Mori [20, Proposition 2.3] in a general setting. Lemma 2.5 shows that $\alpha(-\lambda, x)V_{\phi(-\lambda, x)} =$ $T(-\lambda V_x) = -T(\lambda V_x) = -\alpha(\lambda, x)V_{\phi(\lambda, x)}$. Applying Lemma 2.1, we obtain $\alpha(-\lambda, x) =$ $-\alpha(\lambda, x)$ and $\phi(-\lambda, x) = \phi(\lambda, x)$.

There exist well defined maps $\beta \colon \mathbb{T} \times (\mathcal{M} \times \mathbb{T}) \to \mathbb{T}$ and $\psi \colon \mathbb{T} \times (\mathcal{M} \times \mathbb{T}) \to \mathcal{M} \times \mathbb{T}$ such that

$$T^{-1}(\mu V_y) = \beta(\mu, y) V_{\psi(\mu, y)} \qquad ((\mu, y) \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T})),$$

since T^{-1} has the same property as T. For each $(\mu, y) \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T})$, we have, by (2.5),

$$\mu V_y = T(T^{-1}(\mu V_y)) = T(\beta(\mu, y) V_{\psi(\mu, y)}) = \alpha(\beta(\mu, y), \psi(\mu, y)) V_{\phi(\beta(\mu, y), \psi(\mu, y))}.$$

We derive from Lemma 2.1 that $\mu = \alpha(\beta(\mu, y), \psi(\mu, y))$ and $y = \phi(\beta(\mu, y), \psi(\mu, y))$. These prove that both α and ϕ are surjective.

By definition, $\phi(\lambda, x) \in \mathcal{M} \times \mathbb{T}$ for each $(\lambda, x) \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T})$. There exist $\phi_1(\lambda, x) \in \mathcal{M}$ and $\phi_2(\lambda, x) \in \mathbb{T}$ such that

$$\phi(\lambda, x) = (\phi_1(\lambda, x), \phi_2(\lambda, x)).$$

We shall regard ϕ_1 and ϕ_2 as maps defined on $\mathbb{T} \times (\mathcal{M} \times \mathbb{T})$ to \mathcal{M} and \mathbb{T} , respectively. By Lemma 2.6, both ϕ_1 and ϕ_2 are surjective maps with

(2.6)
$$\phi_j(-\lambda, x) = \phi_j(\lambda, x) \qquad ((\lambda, x) \in \mathbb{T} \times (\mathcal{M} \times \mathbb{T}), \ j = 1, 2).$$

Lemma 2.7. Let $\lambda_j \in \mathbb{T}$ and $(\eta_j, z_j) \in \mathcal{M} \times \mathbb{T}$ for j = 1, 2. If $\eta_1 \neq \eta_2$, then there exist $\tilde{f}_j \in S_B$ such that $\tilde{f}_j \in \lambda_j V_{(\eta_j, z_j)}$ for j = 1, 2 and $\|\tilde{f}_1 - \tilde{f}_2\|_{\infty} = 1$.

Proof. Take $j \in \{1,2\}$ and open sets O_j in \mathcal{M} with $\eta_j \in O_j$ and $O_1 \cap O_2 = \emptyset$. By Urysohn's lemma, there exists $u_j \in S_{C(\mathcal{M})}$ such that $u_j(\eta_j) = 1$ and $u_j = 0$ on $\mathcal{M} \setminus O_j$. Let $f_j = \mathcal{I}(\lambda_j \overline{z_j} u_j)$, and then we see that $\widetilde{f}_j(\eta, z) = \lambda_j \overline{z_j} u_j(\eta) z$ for all $(\eta, z) \in \mathcal{M} \times \mathbb{T}$ by (2.1) and (2.3). It follows from $\widetilde{f}_j \in \lambda_j V_{(\eta_j, z_j)}$ for j = 1, 2 that $1 = |\widetilde{f}_1(\eta_1, z_1) - \widetilde{f}_2(\eta_1, z_1)| \leq ||\widetilde{f}_1 - \widetilde{f}_2||_{\infty}$. Hence, it is enough to prove that $||\widetilde{f}_1 - \widetilde{f}_2||_{\infty} \leq 1$. We shall prove $|\widetilde{f}_1(\eta, z) - \widetilde{f}_2(\eta, z)| \leq 1$ for all $(\eta, z) \in \mathcal{M} \times \mathbb{T}$. Fix an arbitrary $(\eta, z) \in \mathcal{M} \times \mathbb{T}$. If $\eta \in O_1$, then $u_2(\eta) = 0$, since $O_1 \cap O_2 = \emptyset$, and thus

$$|\tilde{f}_1(\eta, z) - \tilde{f}_2(\eta, z)| = |\lambda_1 \overline{z_1} u_1(\eta) - \lambda_2 \overline{z_2} u_2(\eta)| \le |u_1(\eta)| + |u_2(\eta)| \le 1.$$

If $\eta \in \mathcal{M} \setminus O_1$, then $|\tilde{f}_1(\eta, z) - \tilde{f}_2(\eta, z)| \leq 1$ by the choice of u_1 . We conclude that $|\tilde{f}_1(\eta, z) - \tilde{f}_2(\eta, z)| \leq 1$ for all $(\eta, z) \in \mathcal{M} \times \mathbb{T}$, which yields $\|\tilde{f}_1 - \tilde{f}_2\|_{\infty} \leq 1$.

Lemma 2.8. If $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$, then $\phi_1(\lambda, x) = \phi_1(1, x)$; we shall write $\phi_1(\lambda, x) = \phi_1(x)$ for simplicity.

Proof. Take any $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. Then $T(V_x) = \alpha(1, x)V_{\phi(1,x)}$ and $T(\lambda V_x) = \alpha(\lambda, x)V_{\phi(\lambda,x)}$ by (2.5). Suppose, on the contrary, that $\phi_1(\lambda, x) \neq \phi_1(1, x)$. There exist $\tilde{f}_1 \in \alpha(1, x)V_{\phi(1,x)} = T(V_x)$ and $\tilde{f}_2 \in \alpha(\lambda, x)V_{\phi(\lambda,x)} = T(\lambda V_x)$ such that $\|\tilde{f}_1 - \tilde{f}_2\|_{\infty} = 1$ by Lemma 2.7. We infer from the choice of \tilde{f}_1 and \tilde{f}_2 that $T^{-1}(\tilde{f}_1) \in V_x$ and $T^{-1}(\tilde{f}_2) \in \lambda V_x$, which implies that $T^{-1}(\tilde{f}_1)(x) = 1$ and $T^{-1}(\tilde{f}_2)(x) = \lambda$. If $\operatorname{Re} \lambda \leq 0$, then $|1 - \lambda| \geq \sqrt{2}$, and thus

$$\begin{split} \sqrt{2} &\leq |1 - \lambda| = |T^{-1}(\widetilde{f}_1)(x) - T^{-1}(\widetilde{f}_2)(x)| \\ &\leq \|T^{-1}(\widetilde{f}_1) - T^{-1}(\widetilde{f}_2)\|_{\infty} = \|\widetilde{f}_1 - \widetilde{f}_2\|_{\infty} = 1, \end{split}$$

where we have used that T is an isometry on S_B . We arrive at a contradiction, which shows $\phi_1(\lambda, x) = \phi_1(1, x)$, provided that $\operatorname{Re} \lambda \leq 0$. Now we consider the case when $\operatorname{Re} \lambda > 0$. Then $\phi_1(-\lambda, x) = \phi_1(1, x)$, since $\operatorname{Re}(-\lambda) < 0$. By (2.6), $\phi_1(\lambda, x) = \phi_1(-\lambda, x) = \phi_1(1, x)$, even if $\operatorname{Re} \lambda > 0$.

Lemma 2.9. For each $\lambda_1, \lambda_2 \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$, the following inequality holds:

(2.7)
$$|\lambda_1 - \lambda_2| \le |1 - \overline{\alpha(\lambda_1, x)}\alpha(\lambda_2, x)|.$$

Proof. Fix $\lambda_1, \lambda_2 \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. We set $f_j = \alpha(\lambda_j, x) \mathbf{1}_I \in S_{\text{Lip}(I)}$ for each $j \in \{1, 2\}$. We see that $\tilde{f}_j \in \alpha(\lambda_j, x) V_{\phi(\lambda_j, x)} = T(\lambda_j V_x)$ by (2.5). Then $T^{-1}(\tilde{f}_j) \in \lambda_j V_x$, and hence $T^{-1}(\tilde{f}_j)(x) = \lambda_j$. We obtain

$$\begin{aligned} |\lambda_1 - \lambda_2| &= |T^{-1}(\widetilde{f}_1)(x) - T^{-1}(\widetilde{f}_2)(x)| \le ||T^{-1}(\widetilde{f}_1) - T^{-1}(\widetilde{f}_2)||_{\infty} = ||\widetilde{f}_1 - \widetilde{f}_2||_{\infty} \\ &= |\alpha(\lambda_1, x) - \alpha(\lambda_2, x)| \, ||\widetilde{\mathbf{1}_I}||_{\infty} = |1 - \overline{\alpha(\lambda_1, x)}\alpha(\lambda_2, x)|. \end{aligned}$$

Thus, $|\lambda_1 - \lambda_2| \le |1 - \overline{\alpha(\lambda_1, x)}\alpha(\lambda_2, x)|$ holds for all $\lambda_1, \lambda_2 \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. \Box

Lemma 2.10. For each $x \in \mathcal{M} \times \mathbb{T}$, there exists $\varepsilon_0(x) \in \{\pm 1\}$ such that $\alpha(\lambda, x) = \lambda^{\varepsilon_0(x)} \alpha(1, x)$ for all $\lambda \in \mathbb{T}$; for simplicity, we shall write $\alpha(1, x) = \alpha(x)$.

Proof. Let $\lambda \in \mathbb{T} \setminus \{\pm 1\}$ and $x \in \mathcal{M} \times \mathbb{T}$. Taking $\lambda_1 = 1$ and $\lambda_2 = \pm \lambda$ in (2.7), we obtain

$$|1 - \lambda| \le |1 - \overline{\alpha(1, x)}\alpha(\lambda, x)|$$
 and $|1 + \lambda| \le |1 + \overline{\alpha(1, x)}\alpha(\lambda, x)|$,

where we have used Lemma 2.6. Since $\alpha(1, x)\alpha(\lambda, x) \in \mathbb{T}$, we conclude that

$$\overline{\alpha(1,x)}\alpha(\lambda,x)\in\{\lambda,\overline{\lambda}\}.$$

If we consider the case when $\lambda = i$, then we have $\alpha(1, x)\alpha(i, x) \in \{\pm i\}$. This implies that $\alpha(i, x) = i\varepsilon_0(x)\alpha(1, x)$ for some $\varepsilon_0(x) \in \{\pm 1\}$. Entering $\lambda_1 = i$ and $\lambda_2 = \lambda$ into (2.7) to get

$$|i - \lambda| \le |1 - \overline{\alpha(i, x)}\alpha(\lambda, x)| = |1 + i\varepsilon_0(x)\overline{\alpha(1, x)}\alpha(\lambda, x)| = |i - \varepsilon_0(x)\overline{\alpha(1, x)}\alpha(\lambda, x)|,$$

and thus $|i-\lambda| \leq |i-\varepsilon_0(x)\alpha(1,x)\alpha(\lambda,x)|$. Because $\alpha(-\lambda,x) = -\alpha(\lambda,x)$ by Lemma 2.6, we get $|i+\lambda| \leq |i+\varepsilon_0(x)\overline{\alpha(1,x)}\alpha(\lambda,x)|$. These inequalities imply $\varepsilon_0(x)\overline{\alpha(1,x)}\alpha(\lambda,x) \in \{\lambda, -\overline{\lambda}\}$, since $\varepsilon_0(x)\overline{\alpha(1,x)}\alpha(\lambda,x) \in \mathbb{T}$. Then

$$\overline{\alpha(1,x)}\alpha(\lambda,x) \in \{\lambda,\overline{\lambda}\} \cap \{\varepsilon_0(x)\lambda, -\varepsilon_0(x)\overline{\lambda}\}.$$

We have two possible cases to consider. If $\varepsilon_0(x) = 1$, then we obtain $\alpha(1, x)\alpha(\lambda, x) \in \{\lambda, \overline{\lambda}\} \cap \{\lambda, -\overline{\lambda}\}$. Since $\lambda \neq \pm 1$, we conclude that $\overline{\alpha(1, x)}\alpha(\lambda, x) = \lambda$, and hence

 $\begin{array}{l} \alpha(\lambda,x) = \lambda^{\varepsilon_0(x)} \alpha(1,x). \text{ If } \varepsilon_0(x) = -1, \text{ then } \overline{\alpha(1,x)} \alpha(\lambda,x) \in \{\lambda,\overline{\lambda}\} \cap \{-\lambda,\overline{\lambda}\}, \text{ which} \\ \text{ yields } \overline{\alpha(1,x)} \alpha(\lambda,x) = \overline{\lambda}. \text{ Thus, } \alpha(\lambda,x) = \lambda^{\varepsilon_0(x)} \alpha(1,x). \text{ These identities are valid} \\ \text{ even for } \lambda = \pm 1. \text{ By the liberty of the choice of } \lambda \in \mathbb{T}, \text{ we conclude that } \alpha(\lambda,x) = \lambda^{\varepsilon_0(x)} \alpha(1,x) \text{ for all } \lambda \in \mathbb{T} \text{ and } x \in \mathcal{M} \times \mathbb{T}. \end{array}$

By Lemmas 2.8 and 2.10, we can rewrite (2.5) as

(2.8)
$$T(\lambda V_x) = \lambda^{\varepsilon_0(x)} \alpha(x) V_{(\phi_1(x), \phi_2(\lambda, x))}$$

for all $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$.

Definition 1. Let λV_x and μV_y be maximal convex subsets of S_B , where $\lambda, \mu \in \mathbb{T}$ and $x, y \in \mathcal{M} \times \mathbb{T}$. We denote by $d_H(\lambda V_x, \mu V_y)$ the Hausdorff distance of λV_x and μV_y , that is,

(2.9)
$$d_H(\lambda V_x, \mu V_y) = \max\left\{\sup_{\widetilde{f} \in \lambda V_x} d(\widetilde{f}, \mu V_y), \sup_{\widetilde{g} \in \mu V_y} d(\lambda V_x, \widetilde{g})\right\}$$

where $d(\tilde{f}, \mu V_y) = \inf_{\tilde{h} \in \mu V_y} \|\tilde{f} - \tilde{h}\|_{\infty}$ and $d(\lambda V_x, \tilde{g}) = \inf_{\tilde{h} \in \lambda V_x} \|\tilde{h} - \tilde{g}\|_{\infty}$. Since T is a surjective isometry on S_B , we obtain

$$d(T(\widetilde{f}), T(\mu V_y)) = \inf_{\widetilde{h} \in T(\mu V_y)} \|T(\widetilde{f}) - \widetilde{h}\|_{\infty} = \inf_{T^{-1}(\widetilde{h}) \in \mu V_y} \|\widetilde{f} - T^{-1}(\widetilde{h})\|_{\infty} = d(\widetilde{f}, \mu V_y)$$

for every $\tilde{f} \in \lambda V_x$. Hence, $\sup_{T(\tilde{f})\in T(\lambda V_x)} d(T(\tilde{f}), T(\mu V_y)) = \sup_{\tilde{f}\in\lambda V_x} d(\tilde{f}, \mu V_y)$. By the same reasoning, we get $\sup_{T(\tilde{g})\in T(\mu V_y)} d(T(\lambda V_x), T(\tilde{g})) = \sup_{\tilde{g}\in\mu V_y} d(\lambda V_x, \tilde{g})$, and thus

(2.10)
$$d_H(T(\lambda V_x), T(\mu V_y)) = d_H(\lambda V_x, \mu V_y) \qquad (\lambda, \mu \in \mathbb{T}, x, y \in \mathcal{M} \times \mathbb{T}).$$

Remark 2. Let $\lambda \in \mathbb{T}$ and $(\eta, z) \in \mathcal{M} \times \mathbb{T}$. For each $\tilde{f} \in \lambda V_{(\eta, z)}$, we observe that

$$\overline{\lambda}f(0) \in [0,1]$$
 and $\widehat{f}'(\eta)\overline{\lambda}z = \|\widehat{f}'\|_{\infty}$.

In fact, $f(0) + \hat{f}'(\eta)z = \lambda$ by the definition of $\lambda V_{(\eta,z)}$. Then

$$1 = \overline{\lambda}\{f(0) + \widehat{f'}(\eta)z\} = |\overline{\lambda}\{f(0) + \widehat{f'}(\eta)z\}| \le |\overline{\lambda}f(0)| + |\widehat{f'}(\eta)\overline{\lambda}z| \le ||f||_{\sigma} = 1,$$

and thus, $|\overline{\lambda}f(0) + \widehat{f'}(\eta)\overline{\lambda}z| = |\overline{\lambda}f(0)| + |\widehat{f'}(\eta)\overline{\lambda}z|$. This implies that $\overline{\lambda}f(0) = t\widehat{f'}(\eta)\overline{\lambda}z$ for some $t \ge 0$, provided $\widehat{f'}(\eta) \ne 0$. Since $\overline{\lambda}\{f(0) + \widehat{f'}(\eta)z\} = 1$, we have $\widehat{f'}(\eta)\overline{\lambda}z = 1/(1+t)$ and $\overline{\lambda}f(0) = t/(1+t) \in [0,1]$. If $\widehat{f'}(\eta) = 0$, then $\overline{\lambda}f(0) = 1$, and hence $\overline{\lambda}f(0) \in [0,1]$ as well. In particular, $\overline{\lambda}f(0) = |f(0)|$. We infer from $\widehat{f'}(\eta)\overline{\lambda}z = 1 - \overline{\lambda}f(0)$ and $\|\widehat{f'}\|_{\infty} = 1 - |f(0)|$ that $\widehat{f'}(\eta)\overline{\lambda}z = \|\widehat{f'}\|_{\infty}$.

Lemma 2.11. For each $\eta \in \mathcal{M}$, $z \in \mathbb{T}$ and $k \in \{\pm 1\}$, the following equalities hold:

(2.11)
$$\sup_{\widetilde{f}\in kV_{(\eta,k)}} d(\widetilde{f}, kV_{(\eta,z)}) = \sup_{\widetilde{g}\in kV_{(\eta,z)}} d(kV_{(\eta,k)}, \widetilde{g}) = |1-kz|.$$

In particular, $d_H(kV_{(\eta,k)}, kV_{(\eta,z)}) = |1 - kz|$ for all $\eta \in \mathcal{M}, z \in \mathbb{T}$ and $k = \pm 1$.

Proof. Fix an arbitrary $\widetilde{f} \in kV_{(\eta,k)}$ and $\widetilde{g} \in kV_{(\eta,z)}$, and then

(2.12)
$$f(0) + \hat{f'}(\eta)k = k \text{ and } g(0) + \hat{g'}(\eta)z = k.$$

We notice that $kf(0), kg(0) \in [0, 1], \ \widehat{f'}(\eta) = \|\widehat{f'}\|_{\infty}$ and $\widehat{g'}(\eta)kz = \|\widehat{g'}\|_{\infty}$ by Remark 2. We deduce from the choice of \widetilde{f} and \widetilde{g} that

$$\begin{aligned} |(1-kz)(kf(0)-1)| &\leq |kf(0)-kg(0)| + |kg(0)-1-kz(kf(0)-1)| \\ &= |f(0)-g(0)| + |\overline{z}(g(0)-k)-(kf(0)-1)| \\ &= |f(0)-g(0)| + |\widehat{g'}(\eta) - \widehat{f'}(\eta)| \\ &\leq |f(0)-g(0)| + \|\widehat{f'} - \widehat{g'}\|_{\infty} = \|f-g\|_{\sigma} = \|\widetilde{f} - \widetilde{g}\|_{\infty}. \end{aligned}$$

That is, $|1 - kz|(1 - kf(0)) \leq \|\widetilde{f} - \widetilde{g}\|_{\infty}$. We also have $|(1 - k\overline{z})(kg(0) - 1)| \leq \|\widetilde{f} - \widetilde{g}\|_{\infty}$ by a similar calculation, and thus, $|1 - kz|(1 - kg(0)) \leq \|\widetilde{f} - \widetilde{g}\|_{\infty}$. By the liberty of the choice of $\widetilde{f} \in kV_{(\eta,k)}$ and $\widetilde{g} \in kV_{(\eta,z)}$, we obtain

$$|1 - kz|(1 - kf(0)) \le d(\widetilde{f}, kV_{(\eta,z)})$$
 and $|1 - kz|(1 - kg(0)) \le d(kV_{(\eta,k)}, \widetilde{g}).$

Setting $f_1 = f(0) + \mathcal{I}(k\overline{z}\widehat{f'})$ and $g_1 = g(0) + \mathcal{I}(kz\widehat{g'})$, we see that $\widetilde{f}_1(\eta, z) = f(0) + k\widehat{f'}(\eta) = k$ and $\widetilde{g}_1(\eta, k) = g(0) + z\widehat{g'}(\eta) = k$ by (2.12), where we have used that $\mathcal{I}(u)(0) = 0$ for $u \in C(\mathcal{M})$. Consequently, $\widetilde{f}_1 \in kV_{(\eta,z)}$ and $\widetilde{g}_1 \in kV_{(\eta,k)}$. By the choice of f_1 , we have

$$\|\widetilde{f} - \widetilde{f}_1\|_{\infty} = \sup_{(\zeta,\nu)\in\mathcal{M}\times\mathbb{T}} |\widetilde{f}(\zeta,\nu) - \widetilde{f}_1(\zeta,\nu)| = \sup_{(\zeta,\nu)\in\mathcal{M}\times\mathbb{T}} |(1-k\overline{z})\widehat{f}'(\zeta)\nu|$$
$$= |1-k\overline{z}| \|\widehat{f}'\|_{\infty} = |1-kz| \widehat{f}'(\eta) = |1-kz|(1-kf(0))$$

by (2.12). In the same way, we get

$$\|\widetilde{g}_{1} - \widetilde{g}\|_{\infty} = \sup_{(\zeta,\nu)\in\mathcal{M}\times\mathbb{T}} |(kz-1)\widehat{g'}(\zeta)\nu| = |kz-1| \|\widehat{g'}\|_{\infty} = |1-kz|(1-kg(0)),$$

which yields $d(\tilde{f}, kV_{(\eta,z)}) = |1 - kz|(1 - kf(0))$ and $d(kV_{(\eta,k)}, \tilde{g}) = |1 - kz|(1 - kg(0))$. Having in mind that $kf(0), kg(0) \in [0, 1]$, we conclude that $\sup_{\tilde{f} \in kV_{(\eta,k)}} d(\tilde{f}, kV_{(\eta,z)}) = |1 - kz| = \sup_{\tilde{g} \in kV_{(\eta,z)}} d(kV_{(\eta,k)}, \tilde{g})$. **Lemma 2.12.** The identity $\phi_1(\eta, z) = \phi_1(\eta, 1)$ holds for all $\eta \in \mathcal{M}$ and $z \in \mathbb{T}$; we shall write $\phi_1(\eta, z) = \phi_1(\eta)$ for the sake of simplicity of notation.

Proof. Fix arbitrary $k \in \{\pm 1\}$, $\eta \in \mathcal{M}$ and $z \in \mathbb{T} \setminus \{\pm 1\}$. We assume that $\phi_1(\eta, z) \neq \phi_1(\eta, k)$. There exists $u_k \in S_{C(\mathcal{M})}$ such that

$$u_k(\phi_1(\eta, z)) = k\alpha(\eta, z)\overline{\phi_2(k, (\eta, z))}$$
 and $u_k(\phi_1(\eta, k)) = -k\alpha(\eta, k)\overline{\phi_2(k, (\eta, k))}.$

Setting $g_k = \mathcal{I}(u_k)$, we see that $\widetilde{g}_k \in k\alpha(\eta, z)V_{\phi(k,(\eta,z))} \cap (-k\alpha(\eta, k))V_{\phi(k,(\eta,k))}$, where we have used $\phi_1(\lambda, x) = \phi_1(x)$ by Lemma 2.8. For any $\widetilde{f} \in k\alpha(\eta, k)V_{\phi(k,(\eta,k))}$, we obtain

$$2 = |k\alpha(\eta, k) + k\alpha(\eta, k)| = |\widetilde{f}(\phi(k, (\eta, k))) - \widetilde{g}_k(\phi(k, (\eta, k)))| \le ||\widetilde{f} - \widetilde{g}_k||_{\infty} \le 2,$$

which shows $d(k\alpha(\eta, k)V_{\phi(k,(\eta,k))}, \tilde{g}_k) = 2$. Combining (2.8), (2.9), (2.10) and (2.11), we get

$$\begin{split} &2 \leq \sup_{\widetilde{g} \in k\alpha(\eta, z) V_{\phi(k,(\eta, z))}} d(k\alpha(\eta, k) V_{\phi(k,(\eta, k))}, \widetilde{g}) \\ &\leq d_H(k\alpha(\eta, k) V_{\phi(k,(\eta, k))}, k\alpha(\eta, z) V_{\phi(k,(\eta, z))}) = d_H(T(kV_{(\eta, k)}), T(kV_{(\eta, z)})) \\ &= d_H(kV_{(\eta, k)}, kV_{(\eta, z)}) = |1 - kz|, \end{split}$$

which implies z = -k. This contradicts $z \neq \pm 1$, and thus $\phi_1(\eta, z) = \phi_1(\eta, k)$ for $z \neq \pm 1$. Entering z = i and $k = \pm 1$ into the last equality, we get $\phi_1(\eta, 1) = \phi_1(\eta, i) = \phi_1(\eta, -1)$. Therefore, we conclude $\phi_1(\eta, z) = \phi_1(\eta, 1)$ for all $\eta \in \mathcal{M}$ and $z \in \mathbb{T}$.

Lemma 2.13. The following inequalities hold for all $\lambda, \mu \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$;

(2.13)
$$\begin{aligned} |\lambda^{\varepsilon_0(x)}\overline{\phi_2(\lambda,x)}\phi_2(\mu,x) - \mu^{\varepsilon_0(x)}| &\leq |\lambda - \mu|, \\ and \quad |\lambda^{\varepsilon_0(x)}\overline{\phi_2(\lambda,x)}\phi_2(\mu,x) + \mu^{\varepsilon_0(x)}| &\leq |\lambda + \mu|. \end{aligned}$$

Proof. Take any $\lambda, \mu \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. For each $\tilde{f} \in \lambda V_x$ and $\tilde{g} \in \mu V_x$, we obtain $|\lambda - \mu| = |\tilde{f}(x) - \tilde{g}(x)| \leq ||\tilde{f} - \tilde{g}||_{\infty}$, which yields $|\lambda - \mu| \leq d(\tilde{f}, \mu V_x)$. Set $f_0 = \overline{\lambda} \mu f$, and then we see that $\tilde{f}_0 \in \mu V_x$ with $||\tilde{f} - \tilde{f}_0||_{\infty} = ||(1 - \overline{\lambda} \mu)\tilde{f}||_{\infty} = |\lambda - \mu|$. This implies $d(\tilde{f}, \mu V_x) = |\lambda - \mu|$. By the same argument, we see that $d(\lambda V_x, \tilde{g}) = |\lambda - \mu|$. Consequently, $d_H(\lambda V_x, \mu V_x) = |\lambda - \mu|$ by (2.9).

Let us define $f_1 = \alpha(\lambda, x)\overline{\phi_2(\lambda, x)}\mathcal{I}(\mathbf{1}_{\mathcal{M}})$, and then we see that $\widetilde{f}_1 \in \alpha(\lambda, x)V_{\phi(\lambda, x)} = T(\lambda V_x)$ by (2.3) and (2.5). Set $\widetilde{g}_1 = T(\widetilde{g})$ for each $\widetilde{g} \in \mu V_x$. Then $\widetilde{g}_1 \in T(\mu V_x) = \alpha(\mu, x)V_{\phi(\mu, x)}$. By the definition of the set νV_y , we have $\widehat{f}'_1(\phi_1(x))\phi_2(\lambda, x) = \lambda^{\varepsilon_0(x)}\alpha(x)$ and $g_1(0) + \widehat{g}'_1(\phi_1(x))\phi_2(\mu, x) = \mu^{\varepsilon_0(x)}\alpha(x)$, where we have used (2.8). We deduce from $\alpha(x), \phi_2(\lambda, x), \phi_2(\mu, x) \in \mathbb{T}$ that

$$\begin{aligned} |\lambda^{\varepsilon_0(x)}\overline{\phi_2(\lambda,x)} - \mu^{\varepsilon_0(x)}\overline{\phi_2(\mu,x)}| &\leq |\widehat{f}_1'(\phi_1(x)) - \widehat{g}_1'(\phi_1(x))| + |g_1(0)| \\ &\leq |f_1(0) - g_1(0)| + \|\widehat{f}_1' - \widehat{g}_1'\|_{\infty} = \|f_1 - g_1\|_{\sigma} = \|\widetilde{f}_1 - \widetilde{g}_1\|_{\infty}, \end{aligned}$$

which shows $|\lambda^{\varepsilon_0(x)}\overline{\phi_2(\lambda,x)} - \mu^{\varepsilon_0(x)}\overline{\phi_2(\mu,x)}| \leq d(\widetilde{f}_1,T(\mu V_x))$. We infer from (2.9) and (2.10) that

$$\begin{aligned} |\lambda^{\varepsilon_0(x)}\overline{\phi_2(\lambda,x)} - \mu^{\varepsilon_0(x)}\overline{\phi_2(\mu,x)}| &\leq \sup_{T(\widetilde{f})\in T(\lambda V_x)} d(T(\widetilde{f}),T(\mu V_x)) \\ &\leq d_H(T(\lambda V_x),T(\mu V_x)) = d_H(\lambda V_x,\mu V_x) = |\lambda - \mu|. \end{aligned}$$

Thus, $|\lambda^{\varepsilon_0(x)}\overline{\phi_2(\lambda,x)}\phi_2(\mu,x) - \mu^{\varepsilon_0(x)}| \le |\lambda - \mu|$. Noting that $\phi_2(-\mu,x) = \phi_2(\mu,x)$ by (2.6), we obtain $|\lambda^{\varepsilon_0(x)}\overline{\phi_2(\lambda,x)}\phi_2(\mu,x) + \mu^{\varepsilon_0(x)}| \le |\lambda + \mu|$.

Lemma 2.14. For each $x \in \mathcal{M} \times \mathbb{T}$, there exists $\varepsilon_1(x) \in \{\pm 1\}$ such that $\phi_2(\lambda, x) = \lambda^{\varepsilon_0(x) - \varepsilon_1(x)} \phi_2(1, x)$ for all $\lambda \in \mathbb{T}$.

Proof. Fix arbitrary $x \in \mathcal{M} \times \mathbb{T}$ and $\lambda \in \mathbb{T} \setminus \{\pm 1\}$. We obtain

$$|\lambda^{\varepsilon_0(x)}\overline{\phi_2(\lambda,x)}\phi_2(1,x)\pm 1| \le |\lambda\pm 1|$$

by (2.13) with $\mu = 1$, which implies $\lambda^{\varepsilon_0(x)} \overline{\phi_2(\lambda, x)} \phi_2(1, x) \in \{\lambda, \overline{\lambda}\}$. Hence,

$$\overline{\phi_2(\lambda, x)}\phi_2(1, x) \in \{\lambda^{1-\varepsilon_0(x)}, \lambda^{-1-\varepsilon_0(x)}\}.$$

In particular, $\overline{\phi_2(i,x)}\phi_2(1,x) \in \{\pm \varepsilon_0(x)\}$, and thus $\phi_2(i,x) = \varepsilon_1(x)\varepsilon_0(x)\phi_2(1,x)$ for some $\varepsilon_1(x) \in \{\pm 1\}$. Entering $\mu = i$ into (2.13) to get

$$|\lambda - i| \ge |\lambda^{\varepsilon_0(x)} \overline{\phi_2(\lambda, x)} \phi_2(i, x) - \varepsilon_0(x)i| = |\lambda^{\varepsilon_0(x)} \overline{\phi_2(\lambda, x)} \varepsilon_1(x) \phi_2(1, x) - i|.$$

By the same reasoning, we have $|\lambda + i| \geq |\lambda^{\varepsilon_0(x)}\overline{\phi_2(\lambda,x)}\varepsilon_1(x)\phi_2(1,x) + i|$. Then we derive from these two inequalities that $\lambda^{\varepsilon_0(x)}\overline{\phi_2(\lambda,x)}\varepsilon_1(x)\phi_2(1,x) \in \{\lambda, -\overline{\lambda}\}$. Thus, $\varepsilon_1(x)\overline{\phi_2(\lambda,x)}\phi_2(1,x) \in \{\lambda^{1-\varepsilon_0(x)}, -\lambda^{-1-\varepsilon_0(x)}\}$. Now we obtain

$$\overline{\phi_2(\lambda,x)}\phi_2(1,x) \in \{\lambda^{1-\varepsilon_0(x)}, \lambda^{-1-\varepsilon_0(x)}\} \cap \{\varepsilon_1(x)\lambda^{1-\varepsilon_0(x)}, -\varepsilon_1(x)\lambda^{-1-\varepsilon_0(x)}\}.$$

Note that $\lambda \neq \pm 1$. If $\varepsilon_1(x) = 1$, then we get $\overline{\phi_2(\lambda, x)}\phi_2(1, x) = \lambda^{1-\varepsilon_0(x)}$, and if $\varepsilon_1(x) = -1$, then $\overline{\phi_2(\lambda, x)}\phi_2(1, x) = \lambda^{-1-\varepsilon_0(x)}$. These imply that $\overline{\phi_2(\lambda, x)}\phi_2(1, x) = \lambda^{\varepsilon_1(x)-\varepsilon_0(x)}$ for $\lambda \in \mathbb{T} \setminus \{\pm 1\}$. The last identity is valid even for $\lambda \in \{\pm 1\}$ by (2.6). Therefore, we conclude that $\phi_2(\lambda, x) = \lambda^{\varepsilon_0(x)-\varepsilon_1(x)}\phi_2(1, x)$ for all $\lambda \in \mathbb{T}$.

We shall write $\phi_2(1,x) = \phi_2(x)$ for $x \in \mathcal{M} \times \mathbb{T}$. Let $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. By (2.8), $T(\widetilde{f})(\phi_1(x), \phi_2(\lambda, x)) = \lambda^{\varepsilon_0(x)}\alpha(x) = \alpha(\lambda, x)$ for $f \in S_{\text{Lip}(I)}$ with $\widetilde{f} \in \lambda V_x$. Noting that $T(\widetilde{f}) = \widetilde{\Delta(f)}$ by (2.4), we infer from Lemma 2.12 that

(2.14)
$$\Delta(f)(0) + \overline{\Delta}(f)'(\phi_1(\eta))\phi_2(\lambda, x) = \alpha(\lambda, x)$$

for all $\lambda \in \mathbb{T}$, $x = (\eta, z) \in \mathcal{M} \times \mathbb{T}$ and $f \in S_{\operatorname{Lip}(I)}$ with $\tilde{f} \in \lambda V_x$. If we apply Lemma 2.14, then we can rewrite the last equality as

(2.15)
$$\Delta(f)(0) + \widehat{\Delta(f)'}(\phi_1(\eta))\lambda^{\varepsilon_0(x) - \varepsilon_1(x)}\phi_2(x) = \lambda^{\varepsilon_0(x)}\alpha(x)$$

for $\lambda \in \mathbb{T}$, $x = (\eta, z) \in \mathcal{M} \times \mathbb{T}$ and $f \in S_{\operatorname{Lip}(I)}$ satisfying $\tilde{f} \in \lambda V_x$.

Lemma 2.15. Suppose that $\Delta(\lambda_0 \mathbf{1}_I)(0) = 0$ for some $\lambda_0 \in \mathbb{T}$. Then $\widehat{\Delta(\lambda_0 \operatorname{id})'} = 0$ on \mathcal{M} for the identity function id on I.

Proof. Fix arbitrary $\eta \in \mathcal{M}$ and $z \in \mathbb{T}$, and we set $x = (\eta, z)$. We note $\lambda_0 \widetilde{\mathbf{1}_I} \in \lambda_0 V_x$, and then equality (2.15) shows that $\Delta(\widehat{\lambda_0 \mathbf{1}_I})'(\phi_1(\eta))\lambda_0^{-\varepsilon_1(x)}\phi_2(x) = \alpha(x)$. We set $e(\eta) = \Delta(\widehat{\lambda_0 \mathbf{1}_I})'(\phi_1(\eta))$ for the sake of simplicity of notation. Then we can rewrite the above equality as

(2.16)
$$e(\eta)\lambda_0^{-\varepsilon_1(x)}\phi_2(x) = \alpha(x).$$

Since λ_0 id $\in \lambda_0 z V_{(\eta,z)}$, we get, by (2.15),

$$\Delta(\lambda_0 \operatorname{id})(0) + \widehat{\Delta(\lambda_0 \operatorname{id})}'(\phi_1(\eta))(\lambda_0 z)^{\varepsilon_0(x) - \varepsilon_1(x)}\phi_2(x) = (\lambda_0 z)^{\varepsilon_0(x)}\alpha(x).$$

Combining (2.16) with the last equality, we obtain

 $\Delta(\lambda_0 \operatorname{id})(0) + \widehat{\Delta(\lambda_0 \operatorname{id})}'(\phi_1(\eta))(\lambda_0 z)^{\varepsilon_0(x) - \varepsilon_1(x)}\phi_2(x) = (\lambda_0 z)^{\varepsilon_0(x)}e(\eta)\lambda_0^{-\varepsilon_1(x)}\phi_2(x),$

which leads to

$$\Delta(\lambda_0 \operatorname{id})(0) = (\lambda_0 z)^{\varepsilon_0(x)} \left\{ e(\eta) z^{\varepsilon_1(x)} - \widehat{\Delta(\lambda_0 \operatorname{id})'(\phi_1(\eta))} \right\} (\lambda_0 z)^{-\varepsilon_1(x)} \phi_2(x).$$

Note that $|e(\eta)| = 1$ by (2.16). Taking the modulus of the above equality, we get $|\Delta(\lambda_0 \operatorname{id})(0)| = |z^{\varepsilon_1(x)} - \overline{e(\eta)} \Delta(\lambda_0 \operatorname{id})'(\phi_1(\eta))|$. Since $z \in \mathbb{T}$ is arbitrary, the last equality holds for $z = \pm 1, i$. Then we have $\Delta(\lambda_0 \operatorname{id})'(\phi_1(\eta)) = 0$. Having in mind that $\eta \in \mathcal{M}$ is arbitrarily fixed, we obtain $\Delta(\lambda_0 \operatorname{id})' = 0$ on \mathcal{M} , where we have used $\phi_1(\mathcal{M}) = \mathcal{M}$ by Lemmas 2.6, 2.8 and 2.12.

Lemma 2.16. For each $\lambda \in \mathbb{T}$, the value $\Delta(\lambda \mathbf{1}_I)(0)$ is nonzero.

Proof. Suppose, on the contrary, that $\Delta(\lambda_0 \mathbf{1}_I)(0) = 0$ for some $\lambda_0 \in \mathbb{T}$. Then $\widehat{\Delta(\lambda_0 \operatorname{id})'} = 0$ on \mathcal{M} by Lemma 2.15. We define a function $f_0 \in S_{\operatorname{Lip}(I)}$ by $f_0 = \lambda_0(2\operatorname{id} + \operatorname{id}^2)/4$. We shall prove that $\widehat{f}'_0(\eta_0) = \lambda_0$ for some $\eta_0 \in \mathcal{M}$. Let $\mathcal{R}(\operatorname{id})$ be the essential range of $\operatorname{id} \in \operatorname{Lip}(I)$, that is, $\mathcal{R}(\operatorname{id})$ is the set of all $\zeta \in \mathbb{C}$ for which $\{t \in I : |\operatorname{id}(t) - \zeta| < \epsilon\}$ has positive measure for all $\epsilon > 0$. By definition, we see that $\mathcal{R}(\operatorname{id}) = \operatorname{id}(I) = I$. For the spectrum $\sigma(\operatorname{id})$ of id, we observe that $\mathcal{R}(\operatorname{id}) = \sigma(\operatorname{id}) = \operatorname{id}(\mathcal{M})$

(see, for example, [6, Lemma 2.63]). Thus, there exists $\eta_0 \in \mathcal{M}$ such that $\widehat{\mathrm{id}}(\eta_0) = 1$, which yields $\widehat{f}'_0(\eta_0) = \lambda_0(2 + 2\widehat{\mathrm{id}}(\eta_0))/4 = \lambda_0$ as is claimed. Fix an arbitrary $z \in \mathbb{T}$, and then we see that $\lambda_0 \widehat{\mathrm{id}} \in \lambda_0 z V_{(\eta_0, z)}$ with $\widehat{\Delta(\lambda_0 \mathrm{id})'} = 0$ on \mathcal{M} . Applying (2.14) to $f = \lambda_0 \mathrm{id}$, we have $\Delta(\lambda_0 \mathrm{id})(0) = \alpha(\lambda_0 z, (\eta_0, z))$. Having in mind that $z \in \mathbb{T}$ is arbitrary, we may enter $z = \pm 1$ into the last equality. Then we get

(2.17)
$$\alpha(\lambda_0, (\eta_0, 1)) = \alpha(-\lambda_0, (\eta_0, -1)).$$

Note also that $\tilde{f}_0 \in \lambda_0 z V_{(\eta_0, z)}$, and thus

$$\Delta(f_0)(0) + \widehat{\Delta(f_0)'}(\phi_1(\eta_0))\phi_2(\lambda_0 z, (\eta_0, z)) = \alpha(\lambda_0 z, (\eta_0, z))$$

by (2.14). Since $\Delta(\lambda_0 \operatorname{id})(0) = \alpha(\lambda_0 z, (\eta_0, z))$, we can rewrite the above equality as

(2.18)
$$\Delta(f_0)(0) + \widehat{\Delta(f_0)'}(\phi_1(\eta_0))\phi_2(\lambda_0 z, (\eta_0, z)) = \Delta(\lambda_0 \operatorname{id})(0),$$

which yields $|\Delta(\lambda_0 \operatorname{id})(0) - \Delta(f_0)(0)| = |\widehat{\Delta(f_0)'}(\phi_1(\eta_0))| \le ||\widehat{\Delta(f_0)'}||_{\infty}$. We thus obtain

$$2\|\widehat{\Delta(f_0)'}\|_{\infty} \ge |\Delta(\lambda_0 \operatorname{id})(0) - \Delta(f_0)(0)| + \|\widehat{\Delta(f_0)'}\|_{\infty}$$

= $|\Delta(\lambda_0 \operatorname{id})(0) - \Delta(f_0)(0)| + \|\widehat{\Delta(\lambda_0 \operatorname{id})'} - \widehat{\Delta(f_0)'}\|_{\infty}$
= $\|\Delta(\lambda_0 \operatorname{id}) - \Delta(f_0)\|_{\sigma} = \|\lambda_0 \operatorname{id} - f_0\|_{\sigma} = \frac{1}{2}\|\widehat{\mathbf{1}_I} - \operatorname{id}\|_{\infty} = \frac{1}{2}.$

Hence, we have $\|\widehat{\Delta(f_0)'}\|_{\infty} \ge 1/4$, which implies $|\Delta(f_0)(0)| \le 3/4$, since $\|\Delta(f_0)\|_{\sigma} = 1$. It follows from (2.18) that

$$1 = |\alpha(\lambda_0 z, (\eta_0, z))| = |\Delta(\lambda_0 \operatorname{id})(0)| = |\Delta(f_0)(0) + \widehat{\Delta(f_0)'}(\phi_1(\eta_0))\phi_2(\lambda_0 z, (\eta_0, z))|.$$

Since $|\Delta(f_0)(0)| \leq 3/4$, we see that $\widehat{\Delta(f_0)'}(\phi_1(\eta_0)) \neq 0$. By the liberty of the choice of $z \in \mathbb{T}$, we deduce from (2.18) that $\phi_2(\lambda_0 z, (\eta_0, z))$ is invariant with respect to $z \in \mathbb{T}$. Entering $z = \pm 1$ into $\phi_2(\lambda_0 z, (\eta_0, z))$, we get

(2.19)
$$\phi_2(\lambda_0, (\eta_0, 1)) = \phi_2(-\lambda_0, (\eta_0, -1)).$$

Set $f_1 = \lambda_0 (2 + \mathrm{id}^2)/4 \in S_{\mathrm{Lip}(I)}$, and then we have $\tilde{f}_1 \in \lambda_0 V_{(\eta_0,1)}$, because $\mathrm{id}(\eta_0) = 1$. We deduce from (2.14) that

(2.20)
$$\Delta(f_1)(0) + \widehat{\Delta(f_1)'}(\phi_1(\eta_0))\phi_2(\lambda_0, (\eta_0, 1)) = \alpha(\lambda_0, (\eta_0, 1)).$$

Combining (2.17) and (2.19) with (2.20), we have

$$\Delta(f_1)(0) + \widehat{\Delta(f_1)'}(\phi_1(\eta_0))\phi_2(-\lambda_0,(\eta_0,-1)) = \alpha(-\lambda_0,(\eta_0,-1)).$$

Here, we recall that $T(\tilde{f}_1) = \widetilde{\Delta(f_1)}$ by (2.4). Then the above equality with (2.5) and (2.14) implies that $T(\tilde{f}_1) \in \alpha(-\lambda_0, (\eta_0, -1))V_{\phi(-\lambda_0, (\eta_0, -1))} = T(-\lambda_0 V_{(\eta_0, -1)})$, which

D. HIROTA AND T. MIURA

shows $\tilde{f}_1 \in (-\lambda_0)V_{(\eta_0,-1)}$. Consequently, $\tilde{f}_1 \in (-\lambda_0)V_{(\eta_0,-1)} \cap \lambda_0 V_{(\eta_0,1)}$, and therefore, we obtain

$$f_1(0) - \hat{f}'_1(\eta_0) = -\lambda_0 = -\{f_1(0) + \hat{f}'_1(\eta_0)\}.$$

This leads to $f_1(0) = -f_1(0)$, which yields $f_1(0) = 0$. On the other hand, $f_1(0) = \lambda_0(2 + \mathrm{id}^2(0))/4 = \lambda_0/2 \neq 0$. This is a contradiction. We conclude that $\Delta(\lambda \mathbf{1}_I)(0) \neq 0$ for all $\lambda \in \mathbb{T}$.

Lemma 2.17. The values $\alpha(x)$ and $\varepsilon_0(x)$ are both independent from the variable $x \in \mathcal{M} \times \mathbb{T}$; we shall write $\alpha(x) = \alpha$ and $\varepsilon_0(x) = \varepsilon_0$.

Proof. Take any $\lambda \in \mathbb{T}$ and $x = (\eta, z) \in \mathcal{M} \times \mathbb{T}$. According to (2.14), applied to $f = \lambda \mathbf{1}_I$, we have

$$1 = |\lambda^{\varepsilon_0(x)} \alpha(x)| = |\Delta(\lambda \mathbf{1}_I)(0) + \widehat{\Delta(\lambda \mathbf{1}_I)'}(\phi_1(\eta))\phi_2(\lambda, x)|$$

$$\leq |\Delta(\lambda \mathbf{1}_I)(0)| + |\widehat{\Delta(\lambda \mathbf{1}_I)'}(\phi_1(\eta))| \leq ||\Delta(\lambda \mathbf{1}_I)||_{\sigma} = 1.$$

The above inequalities show that

$$|\Delta(\lambda \mathbf{1}_I)(0) + \widehat{\Delta(\lambda \mathbf{1}_I)'}(\phi_1(\eta))\phi_2(\lambda, x)| = 1 = |\Delta(\lambda \mathbf{1}_I)(0)| + |\widehat{\Delta(\lambda \mathbf{1}_I)'}(\phi_1(\eta))|.$$

Note that $\Delta(\lambda \mathbf{1}_I)(0) \neq 0$ by Lemma 2.16. By the above equality, there exists $t \geq 0$ such that $\widehat{\Delta(\lambda \mathbf{1}_I)'}(\phi_1(\eta))\phi_2(\lambda, x) = t\Delta(\lambda \mathbf{1}_I)(0)$. We thus obtain

$$|t\Delta(\lambda \mathbf{1}_I)(0)| = |\Delta(\lambda \mathbf{1}_I)'(\phi_1(\eta))| = 1 - |\Delta(\lambda \mathbf{1}_I)(0)|,$$

which yields $(1+t)|\Delta(\lambda \mathbf{1}_I)(0)| = 1$. Consequently,

$$\lambda^{\varepsilon_0(x)}\alpha(x) = \Delta(\lambda \mathbf{1}_I)(0) + \widehat{\Delta(\lambda \mathbf{1}_I)}'(\phi_1(\eta))\phi_2(\lambda, x) = (1+t)\Delta(\lambda \mathbf{1}_I)(0) = \frac{\Delta(\lambda \mathbf{1}_I)(0)}{|\Delta(\lambda \mathbf{1}_I)(0)|}$$

by (2.14). Then $\alpha(x) = \Delta(\mathbf{1}_I)(0)/|\Delta(\mathbf{1}_I)(0)|$ is independent from $x \in \mathcal{M} \times \mathbb{T}$. Letting $\lambda = i$ in the above equality, we get $i\varepsilon_0(x)\alpha(x) = \Delta(i\mathbf{1}_I)(0)/|\Delta(i\mathbf{1}_I)(0)|$. Thus, ε_0 is constant on $\mathcal{M} \times \mathbb{T}$.

By Lemma 2.17, we can rewrite (2.15) as

(2.21)
$$\Delta(f)(0) + \widehat{\Delta(f)'}(\phi_1(\eta))\lambda^{\varepsilon_0 - \varepsilon_1(x)}\phi_2(x) = \lambda^{\varepsilon_0}\alpha$$

for all $\lambda \in \mathbb{T}$, $x = (\eta, z) \in \mathcal{M} \times \mathbb{T}$ and $f \in S_{\operatorname{Lip}(I)}$ with $\tilde{f} \in \lambda V_x$.

Lemma 2.18. Let $\eta \in \mathcal{M}$, $\lambda \in \mathbb{T}$ and $f \in S_{\text{Lip}(I)}$ be such that $\widehat{f'}(\eta) = \lambda$. Then $\Delta(f)$ satisfies $\Delta(f)(0) = 0$ and

(2.22)
$$\widehat{\Delta(f)'}(\phi_1(\eta))\phi_2(\lambda z, (\eta, z)) = (\lambda z)^{\varepsilon_0} \alpha$$

for all $z \in \mathbb{T}$.

Proof. Fix an arbitrary $z \in \mathbb{T}$. By the choice of f, we have $\tilde{f} \in \lambda z V_{(\eta,z)}$. By (2.21) with $\phi_2(\lambda z, (\eta, z)) = (\lambda z)^{\varepsilon_0 - \varepsilon_1(\eta, z)} \phi_2(\eta, z)$, we obtain

(2.23)
$$\Delta(f)(0) + \widehat{\Delta(f)'}(\phi_1(\eta))\phi_2(\lambda z, (\eta, z)) = (\lambda z)^{\varepsilon_0} \alpha.$$

We observe that $\|\widehat{\Delta(f)'}\|_{\infty} \neq 0$; for if $\|\widehat{\Delta(f)'}\|_{\infty} = 0$, then we would have $\Delta(f)(0) = (\lambda z)^{\varepsilon_0} \alpha$ for all $z \in \mathbb{T}$, which is impossible. Equality (2.23) shows that

$$1 = |\Delta(f)(0) + \widehat{\Delta(f)'}(\phi_1(\eta))\phi_2(\lambda z, (\eta, z))|$$

$$\leq |\Delta(f)(0)| + |\widehat{\Delta(f)'}(\phi_1(\eta))| \leq ||\Delta(f)||_{\sigma} = 1,$$

and hence, $|\widehat{\Delta(f)'}(\phi_1(\eta))| = \|\widehat{\Delta(f)'}\|_{\infty} \neq 0$. Then there exists $s \geq 0$ such that

(2.24)
$$\Delta(f)(0) = s\widehat{\Delta(f)'}(\phi_1(\eta))\phi_2(\lambda z, (\eta, z)).$$

It follows from (2.23) that

$$(1+s)\widehat{\Delta}(f)'(\phi_1(\eta))\phi_2(\lambda z,(\eta,z)) = (\lambda z)^{\varepsilon_0}\alpha,$$

which yields $(1+s)\|\widehat{\Delta(f)'}\|_{\infty} = 1$, or equivalently, $s\|\widehat{\Delta(f)'}\|_{\infty} = 1 - \|\widehat{\Delta(f)'}\|_{\infty}$. These equalities show that

$$\widehat{\Delta(f)'}(\phi_1(\eta))\phi_2(\lambda z, (\eta, z)) = \|\widehat{\Delta(f)'}\|_{\infty}(\lambda z)^{\varepsilon_0}\alpha.$$

We deduce from the last equality with (2.24) that $\Delta(f)(0) = s \|\widehat{\Delta(f)'}\|_{\infty} (\lambda z)^{\varepsilon_0} \alpha = (1 - \|\widehat{\Delta(f)'}\|_{\infty}) (\lambda z)^{\varepsilon_0} \alpha$, that is,

$$\Delta(f)(0) = (1 - \|\widehat{\Delta(f)'}\|_{\infty})(\lambda z)^{\varepsilon_0} \alpha.$$

By the liberty of the choice of $z \in \mathbb{T}$, we get $1 - \|\widehat{\Delta(f)'}\|_{\infty} = 0 = \Delta(f)(0)$. Thus, by (2.23), $\widehat{\Delta(f)'}(\phi_1(\eta))\phi_2(\lambda z, (\eta, z)) = (\lambda z)^{\varepsilon_0}\alpha$ for all $z \in \mathbb{T}$.

Lemma 2.19. For each $\lambda, z \in \mathbb{T}$ and $\eta \in \mathcal{M}$,

$$\phi_2(\lambda, (\eta, z)) = \lambda^{\varepsilon_0 - \varepsilon_1(\eta)} \phi_2(1, (\eta, 1)) z^{\varepsilon_1(\eta)},$$

where $\varepsilon_1(\eta) = \varepsilon_1(\eta, 1)$.

Proof. Fix arbitrary $\lambda, z \in \mathbb{T}$ and $\eta \in \mathcal{M}$. Setting $\mu = \lambda \overline{z}$ and $v = \mu \mathbf{1}_{\mathcal{M}} \in S_{C(\mathcal{M})}$, we see that $\mathcal{I}(v) \in S_{\operatorname{Lip}(I)}$ satisfies $\widehat{\mathcal{I}(v)'}(\eta) = \mu$ by (2.3). We may apply (2.22) to $f = \mathcal{I}(v)$, and we get $\Delta(\widehat{\mathcal{I}(v)})'(\phi_1(\eta))\phi_2(\mu z, (\eta, z)) = (\mu z)^{\varepsilon_0}\alpha$. Therefore, we obtain

$$\widehat{\Delta(\mathcal{I}(v))}'(\phi_1(\eta))\phi_2(\mu z,(\eta,z)) = \mu^{\varepsilon_0}\alpha \cdot z^{\varepsilon_0} = \widehat{\Delta(\mathcal{I}(v)'(\phi_1(\eta))\phi_2(\mu,(\eta,1))z^{\varepsilon_0})}$$

Then $\widehat{\Delta(\mathcal{I}(v))}'(\phi_1(\eta)) \neq 0$, and hence $\phi_2(\mu z, (\eta, z)) = \phi_2(\mu, (\eta, 1)) z^{\varepsilon_0}$. This implies

$$\phi_2(\lambda,(\eta,z)) = \phi_2(\lambda \overline{z},(\eta,1)) z^{\varepsilon_0}.$$

Applying Lemmas 2.14 and 2.17 to the last equality, we now get

$$\phi_2(\lambda, (\eta, z)) = \phi_2(\lambda \overline{z}, (\eta, 1)) z^{\varepsilon_0} = (\lambda \overline{z})^{\varepsilon_0 - \varepsilon_1(\eta)} \phi_2(1, (\eta, 1)) z^{\varepsilon_0}$$
$$= \lambda^{\varepsilon_0 - \varepsilon_1(\eta)} \phi_2(1, (\eta, 1)) z^{\varepsilon_1(\eta)}.$$

Consequently, $\phi_2(\lambda, (\eta, z)) = \lambda^{\varepsilon_0 - \varepsilon_1(\eta)} \phi_2(1, (\eta, 1)) z^{\varepsilon_1(\eta)}$.

We shall write $\phi_2(1,(\eta,1)) = \phi_2(\eta)$ for simplicity. According to Lemma 2.19, we can write

(2.25)
$$\phi_2(\lambda,(\eta,z)) = \lambda^{\varepsilon_0 - \varepsilon_1(\eta)} \phi_2(\eta) z^{\varepsilon_1(\eta)}$$

for all $\lambda \in \mathbb{T}$ and $(\eta, z) \in \mathcal{M} \times \mathbb{T}$. Combining (2.21) and (2.25), with $\phi_2(\lambda, x) = \lambda^{\varepsilon_0 - \varepsilon_1(x)} \phi_2(x)$, we obtain

(2.26)
$$\Delta(f)(0) + \widehat{\Delta(f)'}(\phi_1(\eta))\lambda^{\varepsilon_0 - \varepsilon_1(\eta)}\phi_2(\eta)z^{\varepsilon_1(\eta)} = \lambda^{\varepsilon_0}\alpha$$

for all $\lambda \in \mathbb{T}$, $(\eta, z) \in \mathcal{M} \times \mathbb{T}$ and $f \in S_{\operatorname{Lip}(I)}$ with $\tilde{f} \in \lambda V_{(\eta, z)}$.

Lemma 2.20. Let $\lambda \in \mathbb{T}$, $(\eta, z) \in \mathcal{M} \times \mathbb{T}$ and $f \in S_{\text{Lip}(I)}$ be such that $\tilde{f} \in \lambda V_{(\eta,z)}$. Then

$$\Delta(f)(0) = |\Delta(f)(0)|\lambda^{\varepsilon_0}\alpha \quad and \quad \widehat{\Delta(f)'}(\phi_1(\eta)) = \|\widehat{\Delta(f)'}\|_{\infty}\lambda^{\varepsilon_1(\eta)}\alpha\overline{\phi_2(\eta)}z^{-\varepsilon_1(\eta)}$$

In particular,

(2.27)
$$|\Delta(f)(0)| + |\widehat{\Delta}(\widehat{f'}(\phi_1(\eta))| = |f(0)| + |\widehat{f'}(\eta)|$$

for all $f \in S_{\text{Lip}(I)}$ with $\tilde{f} \in \lambda V_{(\eta,z)}$.

Proof. By assumption, (2.26) holds. Taking the modulus of (2.26) to get

(2.28)
$$1 \leq |\Delta(f)(0)| + |\widehat{\Delta(f)'}(\phi_1(\eta))\lambda^{\varepsilon_0 - \varepsilon_1(\eta)}\phi_2(\eta)z^{\varepsilon_1(\eta)}|$$
$$\leq |\Delta(f)(0)| + \|\widehat{\Delta(f)'}\|_{\infty} = \|\Delta(f)\|_{\sigma} = 1.$$

We derive from the last inequalities that $|\widehat{\Delta(f)'}(\phi_1(\eta))| = \|\widehat{\Delta(f)'}\|_{\infty}$.

If $\Delta(f)(0) = 0$, then the identity $\Delta(f)(0) = |\Delta(f)(0)|\lambda^{\varepsilon_0}\alpha$ is obvious; in addition, $\|\widehat{\Delta(f)'}\|_{\infty} = \|\Delta(f)\|_{\sigma} = 1$, and hence $\widehat{\Delta(f)'}(\phi_1(\eta)) = \|\widehat{\Delta(f)'}\|_{\infty}\lambda^{\varepsilon_1(\eta)}\alpha\overline{\phi_2(\eta)}z^{-\varepsilon_1(\eta)}$ by (2.26). We next consider the case when $\Delta(f)(0) \neq 0$. There exists $s \geq 0$ such

174

that $\widehat{\Delta(f)'}(\phi_1(\eta))\lambda^{\varepsilon_0-\varepsilon_1(\eta)}\phi_2(\eta)z^{\varepsilon_1(\eta)} = s\Delta(f)(0)$ by (2.28). Entering the last equality into (2.26) to get $(1+s)\Delta(f)(0) = \lambda^{\varepsilon_0}\alpha$. We thus obtain $(1+s)|\Delta(f)(0)| = 1$, and consequently, $\Delta(f)(0) = |\Delta(f)(0)|\lambda^{\varepsilon_0}\alpha$ holds even if $\Delta(f)(0) \neq 0$. Having in mind that $|\Delta(f)(0)| + \|\widehat{\Delta(f)'}\|_{\infty} = 1$, we infer from (2.26) that

$$\begin{split} \| \widetilde{\Delta}(f)' \|_{\infty} \lambda^{\varepsilon_0} \alpha &= (1 - |\Delta(f)(0)|) \lambda^{\varepsilon_0} \alpha = \lambda^{\varepsilon_0} \alpha - \Delta(f)(0) \\ &= \widehat{\Delta(f)'}(\phi_1(\eta)) \lambda^{\varepsilon_0 - \varepsilon_1(\eta)} \phi_2(\eta) z^{\varepsilon_1(\eta)}. \end{split}$$

This shows that $\widehat{\Delta(f)'}(\phi_1(\eta)) = \|\widehat{\Delta(f)'}\|_{\infty} \lambda^{\varepsilon_1(\eta)} \alpha \overline{\phi_2(\eta)} z^{-\varepsilon_1(\eta)}$. Since $\widetilde{f} \in \lambda V_{(\eta,z)}$, we get

$$1 = |\lambda| = |f(0) + \hat{f'}(\eta)z| \le |f(0)| + |\hat{f'}(\eta)| \le ||f||_{\sigma} = 1,$$

and hence $|\Delta(f)(0)| + |\Delta(f)'(\phi_1(\eta))| = 1 = |f(0)| + |\hat{f'}(\eta)|.$

For each $\lambda \in \mathbb{T}$ and $\eta \in \mathcal{M}$, we define λP_{η} by

$$\lambda P_{\eta} = \{ u \in S_{C(\mathcal{M})} : u(\eta) = \lambda \}$$

Lemma 2.21. Let $\eta_0 \in \mathcal{M}$ and $f \in S_{\text{Lip}(I)}$. We set $\lambda = \hat{f'}(\eta_0)/|\hat{f'}(\eta_0)|$ if $\hat{f'}(\eta_0) \neq 0$, and $\lambda = 1$ if $\hat{f'}(\eta_0) = 0$. For each $t \in \mathbb{R}$ with 0 < t < 1, there exists $u_t \in P_{\eta_0}$ such that

$$|tf(0)|\lambda + t\widehat{f'} + \left\{1 - |tf(0)| - |t\widehat{f'}(\eta_0)|\right\}\lambda u_t \in \lambda P_{\eta_0}.$$

Proof. Note first that $1 - |tf(0)| - |t\hat{f}'(\eta_0)| > 0$, since $|tf(0)| + |t\hat{f}'(\eta_0)| \le ||tf||_{\sigma} < 1$. We set $r = 1 - |tf(0)| - |t\hat{f}'(\eta_0)|$,

$$G_0 = \left\{ \eta \in \mathcal{M} : |t\widehat{f'}(\eta) - t\widehat{f'}(\eta_0)| \ge \frac{r}{4} \right\},$$

and
$$G_m = \left\{ \eta \in \mathcal{M} : \frac{r}{2^{m+2}} \le |t\widehat{f'}(\eta) - t\widehat{f'}(\eta_0)| \le \frac{r}{2^{m+1}} \right\}$$

for each $m \in \mathbb{N}$. We see that G_n is a closed subset of \mathcal{M} with $\eta_0 \notin G_n$ for all $n \in \mathbb{N} \cup \{0\}$. For each $n \in \mathbb{N} \cup \{0\}$, there exists $v_n \in P_{\eta_0}$ such that

$$(2.29) v_n = 0 \text{on } G_n$$

by Urysohn's lemma. Setting $u_t = v_0 \sum_{n=1}^{\infty} v_n/2^n$, we see that u_t converges in $C(\mathcal{M})$, since $||v_n||_{\infty} = 1$ for all $n \in \mathbb{N}$. We observe that

$$1 = u_t(\eta_0) \le ||u_t||_{\infty} \le ||v_0||_{\infty} \sum_{n=1}^{\infty} \frac{||v_n||_{\infty}}{2^n} = 1,$$

and hence $u_t \in P_{\eta_0}$. Here, we define

$$w_t = |tf(0)|\lambda + t\widehat{f'} + r\lambda u_t \in C(\mathcal{M}).$$

D. HIROTA AND T. MIURA

We shall prove that $w_t \in \lambda P_{\eta_0}$. Since $u_t(\eta_0) = 1$ and $t\hat{f}'(\eta_0) = |t\hat{f}'(\eta_0)|\lambda$, we have

$$w_t(\eta_0) = |tf(0)|\lambda + t\widehat{f'}(\eta_0) + \left\{1 - |tf(0)| - |t\widehat{f'}(\eta_0)|\right\}\lambda = \lambda.$$

Fix an arbitrary $\eta \in \mathcal{M}$. To prove that $|w_t(\eta)| \leq 1$, we shall consider three cases. First, we consider the case when $\eta \in G_0$. Then $v_0(\eta) = 0$ by (2.29), and hence $u_t(\eta) = 0$ by definition. We thus obtain $|w_t(\eta)| \leq ||tf(0)|\lambda + t\hat{f'}(\eta)| \leq ||tf||_{\sigma} < 1$, and consequently, $|w_t(\eta)| < 1$ if $\eta \in G_0$.

We next consider the case when $\eta \in \bigcup_{n=1}^{\infty} G_n$, and then $\eta \in G_m$ for some $m \in \mathbb{N}$. By the choice of G_m , we get $|t\hat{f}'(\eta) - t\hat{f}'(\eta_0)| \leq r/2^{m+1}$. Thus, $|t\hat{f}'(\eta)| \leq |t\hat{f}'(\eta_0)| + r/2^{m+1}$. We derive from (2.29) that $|r\lambda u_t(\eta)| \leq r|v_0(\eta)| \sum_{n\neq m} |v_n(\eta)|/2^n \leq r(1-2^{-m})$. Since $|tf(0)| + |\hat{tf'}(\eta_0)| = 1 - r$, we obtain

$$\begin{split} |w_t(\eta)| &\leq |tf(0)| + |t\widehat{f'}(\eta)| + |r\lambda u_t(\eta)| \leq |tf(0)| + |t\widehat{f'}(\eta_0)| + \frac{r}{2^{m+1}} + r\left(1 - \frac{1}{2^m}\right) \\ &= (1 - r) - \frac{r}{2^{m+1}} + r = 1 - \frac{r}{2^{m+1}} < 1. \end{split}$$

Hence, $|w_t(\eta)| < 1$ for $\eta \in \bigcup_{n=1}^{\infty} G_n$.

Finally we consider the case when $\eta \notin \bigcup_{n=0}^{\infty} G_n$. Then $\widehat{f}'(\eta) = \widehat{f}'(\eta_0)$, and hence $|w_t(\eta)| \leq |tf(0)| + |t\widehat{f}'(\eta_0)| + r = 1$. We thus conclude that $|w_t(\eta)| \leq 1$ for all $\eta \in \mathcal{M}$, and consequently, $w_t \in \lambda P_{\eta_0}$.

§ 3. Proof of Main results

Proof of Theorem 1.1. Fix arbitrary $f \in S_{\text{Lip}(I)}$ and $\eta \in \mathcal{M}$. Set $\zeta = \phi_1(\eta)$ and $\lambda = \hat{f}'(\eta)/|\hat{f}'(\eta)|$ if $\hat{f}'(\eta) \neq 0$, and $\lambda = 1$ if $\hat{f}'(\eta) = 0$. Thus, $\hat{f}'(\eta) = |\hat{f}'(\eta)|\lambda$. For each $t \in \mathbb{R}$ with 0 < t < 1, we define $r = 1 - |tf(0)| - |t\hat{f}'(\eta)|$, and then r > 0. By Lemma 2.21, there exists $u_t \in P_\eta$ such that $w_t = |tf(0)|\lambda + t\hat{f}' + r\lambda u_t \in \lambda P_\eta$. We obtain

$$||w_t - \hat{f'}||_{\infty} = |||tf(0)|\lambda + (t-1)\hat{f'} + r\lambda u_t||_{\infty}$$

$$\leq |tf(0)| + (1-t)||\hat{f'}||_{\infty} + 1 - |tf(0)| - |t\hat{f'}(\eta)|$$

$$= (1-t)||\hat{f'}||_{\infty} + 1 - |t\hat{f'}(\eta)|.$$

Since $w_t \in \lambda P_{\eta}$, we see that $\widehat{\mathcal{I}(w_t)'}(\eta) = w_t(\eta) = \lambda$, that is, $\widetilde{\mathcal{I}(w_t)} \in \lambda V_{(\eta,1)}$. Then $\Delta(\mathcal{I}(w_t))(0) = 0$ and $\Delta(\widehat{\mathcal{I}(w_t)})'(\zeta) = \Delta(\widehat{\mathcal{I}(w_t)})'(\phi_1(\eta)) = \lambda^{\varepsilon_1(\eta)} \alpha \overline{\phi_2(\eta)}$ by Lemma 2.20.

We get

$$1 - |\widehat{\Delta(f)'}(\zeta)| = |\lambda^{\varepsilon_1(\eta)} \alpha \overline{\phi_2(\eta)}| - |\widehat{\Delta(f)'}(\zeta)| \le |\lambda^{\varepsilon_1(\eta)} \alpha \overline{\phi_2(\eta)} - \widehat{\Delta(f)'}(\zeta)|$$

= $|\Delta(\widehat{\mathcal{I}(w_t)})'(\zeta) - \widehat{\Delta(f)'}(\zeta)| \le ||\Delta(\widehat{\mathcal{I}(w_t)})' - \widehat{\Delta(f)'}||_{\infty}$
= $||\Delta(\mathcal{I}(w_t)) - \Delta(f)||_{\sigma} - |\Delta(f)(0)|$
= $||\mathcal{I}(w_t) - f||_{\sigma} - |\Delta(f)(0)| = |f(0)| + ||w_t - \widehat{f'}||_{\infty} - |\Delta(f)(0)|$
 $\le |f(0)| + (1 - t)||\widehat{f'}||_{\infty} + 1 - |t\widehat{f'}(\eta)| - |\Delta(f)(0)|,$

where we have used that $\Delta(\mathcal{I}(w_t))(0) = 0 = \mathcal{I}(w_t)(0)$ and Δ is an isometry. Letting $t \nearrow 1$ in the above inequalities, we have

$$(3.1) \quad 1 - |\widehat{\Delta(f)'}(\zeta)| \le |\lambda^{\varepsilon_1(\eta)} \alpha \overline{\phi_2(\eta)} - \widehat{\Delta(f)'}(\zeta)| \le |f(0)| + 1 - |\widehat{f'}(\eta)| - |\Delta(f)(0)|.$$

In particular, we obtain $|\Delta(f)(0)| - |\widehat{\Delta(f)'}(\zeta)| \le |f(0)| - |\widehat{f'}(\eta)|$, that is,

(3.2)
$$|\Delta(f)(0)| - |\widehat{\Delta(f)'}(\phi_1(\eta))| \le |f(0)| - |\widehat{f'}(\eta)|$$

Let $\eta_0 \in \mathcal{M}$ be such that $|\widehat{f'}(\eta_0)| = \|\widehat{f'}\|_{\infty}$. There exist $\mu, z \in \mathbb{T}$ such that $f(0) = |f(0)|\mu$ and $\widehat{f'}(\eta_0) = |\widehat{f'}(\eta_0)|z = \|\widehat{f'}\|_{\infty} z$. Thus,

$$f(0) + \hat{f}'(\eta_0)\overline{z}\mu = (|f(0)| + \|\hat{f}'\|_{\infty})\mu = \|f\|_{\sigma}\mu = \mu,$$

and hence $\tilde{f} \in \mu V_{(\eta_0, \overline{z}\mu)}$. Equality (2.27) shows that

(3.3)
$$|\Delta(f)(0)| + |\widehat{\Delta(f)'}(\phi_1(\eta_0))| = |f(0)| + |\widehat{f'}(\eta_0)|.$$

Note that $|\Delta(f)(0)| - |\widehat{\Delta(f)'}(\phi_1(\eta_0))| \leq |f(0)| - |\widehat{f'}(\eta_0)|$ holds by (3.2). If we add the last inequality to (3.3), we get $|\Delta(f)(0)| \leq |f(0)|$. We may apply the above arguments to Δ^{-1} , then we obtain $|\Delta^{-1}(g)(0)| \leq |g(0)|$ for all $g \in S_{\text{Lip}(I)}$. Entering $g = \Delta(f)$ into the last inequality to get $|f(0)| \leq |\Delta(f)(0)|$, and thus

$$|\Delta(f)(0)| = |f(0)|.$$

It follows from (3.2) that $|\widehat{f'}(\eta)| \leq |\widehat{\Delta(f)'}(\phi_1(\eta))|$. Having in mind that $\widetilde{f} \in \mu V_{(\eta_0, \overline{z}\mu)}$ and $f(0) = |f(0)|\mu$, we derive from Lemma 2.20 that

(3.4)
$$\Delta(f)(0) = |\Delta(f)(0)| \mu^{\varepsilon_0} \alpha = |f(0)| \mu^{\varepsilon_0} \alpha = [f(0)]^{\varepsilon_0} \alpha,$$

where $[\nu]^{\varepsilon_0} = \nu$ if $\varepsilon_0 = 1$ and $[\nu]^{\varepsilon_0} = \overline{\nu}$ if $\varepsilon_0 = -1$ for $\nu \in \mathbb{C}$.

Now we shall prove that ϕ_1 is injective. Suppose that $\phi_1(\eta_1) = \phi_1(\eta_2)$ for $\eta_1, \eta_2 \in \mathcal{M}$. Set $f_1 = \mathcal{I}(\mathbf{1}_{\mathcal{M}})$, and thus $\widehat{f}'_1(\eta_j) = 1$ for j = 1, 2 by (2.3). Equalities (2.22) and (2.25) show that $\widehat{\Delta(f_1)'}(\phi_1(\eta_j))\phi_2(\eta_j) = \alpha$ for j = 1, 2. Since $\phi_1(\eta_1) = \phi_1(\eta_2)$, we have

 $\phi_2(\eta_1) = \phi_2(\eta_2)$. Applying Lemmas 2.12, 2.17 and 2.19 to (2.8) with $\lambda = 1$, we obtain $T(V_{(1,(\eta,1))}) = \alpha V_{(\phi_1(\eta),\phi_2(\eta))}$. Therefore, we get $T(V_{(1,(\eta_1,1))}) = T(V_{(1,(\eta_2,1))})$, and consequently, $V_{(1,(\eta_1,1))} = V_{(1,(\eta_2,1))}$. Lemma 2.1 shows that $\eta_1 = \eta_2$, which proves that ϕ_1 is injective. Now, we may apply the arguments in the last paragraph to Δ^{-1} and ϕ_1^{-1} , and then we obtain $|\widehat{\Delta(f)'}(\zeta)| \leq |(\Delta^{-1}(\widehat{\Delta(f)}))'(\phi_1^{-1}(\zeta))|$, which shows $|\widehat{\Delta(f)'}(\phi_1(\eta))| \leq |\widehat{f'}(\eta)|$. We thus conclude that $|\widehat{\Delta(f)'}(\zeta)| = |\widehat{\Delta(f)'}(\phi_1(\eta))| = |\widehat{f'}(\eta)|$. By inequalities (3.1) and $|\Delta(f)(0)| = |f(0)|$, we obtain

$$|\lambda^{\varepsilon_1(\eta)}\alpha\overline{\phi_2(\eta)} - \widehat{\Delta(f)'}(\zeta)| + |\widehat{\Delta(f)'}(\zeta)| = 1.$$

The above equality implies that $\widehat{\Delta(f)'}(\zeta) = s\lambda^{\varepsilon_1(\eta)}\alpha\overline{\phi_2(\eta)}$ for some $s \ge 0$. Then $s = |s\lambda^{\varepsilon_1(z)}\alpha\overline{\phi_2(\eta)}| = |\widehat{\Delta(f)'}(\zeta)| = |\widehat{f'}(\eta)|$, which shows $\widehat{\Delta(f)'}(\zeta) = |\widehat{f'}(\eta)|\lambda^{\varepsilon_1(\eta)}\alpha\overline{\phi_2(\eta)} = [\widehat{f'}(\eta)]^{\varepsilon_1(\eta)}\alpha\overline{\phi_2(\eta)}$, where we have used $\widehat{f'}(\eta) = |\widehat{f'}(\eta)|\lambda$. Thus,

(3.5)
$$\widehat{\Delta(f)'}(\phi_1(\eta)) = \alpha \overline{\phi_2(\eta)} \, [\widehat{f'}(\eta)]^{\varepsilon_1(\eta)}$$

for all $f \in S_{\operatorname{Lip}(I)}$ and $\eta \in \mathcal{M}$.

We now define $\Delta_0 \colon \operatorname{Lip}(I) \to \operatorname{Lip}(I)$ by

$$\Delta_0(g) = \begin{cases} \|g\|_{\sigma} \Delta\left(\frac{g}{\|g\|_{\sigma}}\right) & \text{if } g \in \operatorname{Lip}(I) \setminus \{0\}, \\ 0 & \text{if } g = 0. \end{cases}$$

By the definition of Δ_0 with (3.4) and (3.5), we observe that

(3.6)
$$\Delta_0(g)(0) = \alpha[g(0)]^{\varepsilon_0} \quad \text{and} \quad \widehat{\Delta_0(g)'}(\phi_1(\eta)) = \alpha \overline{\phi_2(\eta)}[\widehat{g'}(\eta)]^{\varepsilon_1(\eta)}$$

for all $g \in \operatorname{Lip}(I)$ and $\eta \in \mathcal{M}$. We thus obtain

$$\begin{split} \|\Delta_0(g_1) - \Delta_0(g_2)\|_{\sigma} &= |\Delta_0(g_1)(0) - \Delta_0(g_2)(0)| + \sup_{\eta \in \mathcal{M}} |\widehat{\Delta_0(g_1)'}(\phi_1(\eta)) - \widehat{\Delta_0(g_2)'}(\phi_1(\eta))| \\ &= |g_1(0) - g_2(0)| + \sup_{\eta \in \mathcal{M}} |\widehat{g_1'}(\eta) - \widehat{g_2'}(\eta)| = \|g_1 - g_2\|_{\sigma} \end{split}$$

for all $g_1, g_2 \in \operatorname{Lip}(I)$, where we have used $\phi_1(\mathcal{M}) = \mathcal{M}$. Hence Δ_0 is an isometry on $\operatorname{Lip}(I)$. We infer from (3.6) that Δ_0 is real linear. We deduce that Δ_0 is surjective, since so is Δ . Therefore, Δ_0 is a surjective, real linear isometry on $\operatorname{Lip}(I)$ that extends Δ to $\operatorname{Lip}(I)$.

Proof of Corollary 1.2. Let Δ_1 be a surjective isometry on Lip(*I*). By the Mazur–Ulam theorem [19], $\Delta_1 - \Delta_1(0)$ is a surjective, real linear isometry. Without loss of generality, we may and do assume that Δ_1 is a surjective real linear isometry.

Since Δ_1^{-1} has the same property as Δ_1 , we see that Δ_1 maps $S_{\text{Lip}(I)}$ onto itself. Now we may apply (3.4) and (3.5) to Δ_1 , and then we obtain

$$\Delta_1(f)(0) = \alpha[f(0)]^{\varepsilon_0} \quad \text{and} \quad \widehat{\Delta_1(f)'}(\phi_1(\eta)) = \alpha \overline{\phi_2(\eta)}[\widehat{f'}(\eta)]^{\varepsilon_1(\eta)}$$

for all $f \in \operatorname{Lip}(I)$ and $\eta \in \mathcal{M}$, where $\alpha \in \mathbb{T}$, $\varepsilon_0 \in \{\pm 1\}$, $\phi_1 \colon \mathcal{M} \to \mathcal{M}$, $\phi_2 \colon \mathcal{M} \to \mathbb{T}$ and $\varepsilon_1 \colon \mathcal{M} \to \{\pm 1\}$ are from proof of Theorem 1.1. As we proved in the second paragraph of Proof of Theorem 1.1, we know that ϕ_1 is injective. By Lemma 2.6, $\psi_1 = \phi_1^{-1}$ is well defined, and then we have

(3.7)
$$\widehat{\Delta_1(f)'}(\eta) = \alpha \overline{\phi_2(\psi_1(\eta))} [\widehat{f'}(\psi_1(\eta))]^{\varepsilon_1(\psi_1(\eta))}$$

for $f \in \operatorname{Lip}(I)$ and $\eta \in \mathcal{M}$. We shall prove that ψ_1 and ϕ_2 are both continuous. Let $\{\eta_a\}$ be a net in \mathcal{M} converging to $\eta \in \mathcal{M}$. By the continuity of $\widehat{\Delta_1(f)'}$, we see that $|\widehat{\Delta_1(f)'}(\eta_a)|$ converges to $|\widehat{A_1(f)'}(\eta)|$ for each $f \in \operatorname{Lip}(I)$. This implies that $|\widehat{f'}(\psi_1(\eta_a))|$ converges to $|\widehat{f'}(\psi_1(\eta))|$ for every $f \in \operatorname{Lip}(I)$ by (3.7). Since the weak topology of \mathcal{M} induced by the family $\{|\widehat{f'}|: f \in \operatorname{Lip}(I)\}$ is Hausdorff, we observe that the identity map from \mathcal{M} with the original topology onto \mathcal{M} with the weak topology of \mathcal{M} , and thus ψ_1 is continuous on \mathcal{M} . Since $\psi_1(\eta)$ with respect to the original topology of \mathcal{M} , and thus ψ_1 is continuous on \mathcal{M} . Since ψ_1 is a bijective continuous map on the compact Hausdorff space \mathcal{M} , it must be a homeomorphism. Let id be the identity function on I. Then we have $\widehat{\Delta_1(id)'} = \alpha \overline{\phi_2 \circ \psi_1}$ by (3.7), which implies the continuity of ϕ_2 on \mathcal{M} . Moreover, the identity $\widehat{\Delta_1(id)'} = \alpha \overline{\phi_2 \circ \psi_1}$ is $(\varepsilon_1 \circ \psi_1) \circ \psi_1^{-1}$ is continuous on \mathcal{M} as well. Then $\mathcal{M}_1 = \{\eta \in \mathcal{M} : \varepsilon_1(\psi_1(\eta)) = 1\}$ is a closed and open subset of \mathcal{M} with $\varepsilon_1(\psi_1(\eta)) = -1$ for all $\eta \in \mathcal{M} \setminus \mathcal{M}_1$.

We define a map $\Phi: C(\mathcal{M}) \to C(\mathcal{M})$ by $\Phi(u)(\eta) = [u(\psi_1(\eta))]^{\varepsilon_1(\psi_1(\eta))}$ for $u \in C(\mathcal{M})$ and $\eta \in \mathcal{M}$. We see that Φ is a well defined real linear map on $C(\mathcal{M})$. For each $v_0 \in C(\mathcal{M})$, we set $u_0(\eta) = [v_0(\psi_1^{-1}(\eta))]^{\varepsilon_1(\eta)}$ for $\eta \in \mathcal{M}$. Then we have $\Phi(u_0)(\eta) = [u_0(\psi_1(\eta))]^{\varepsilon_1(\psi_1(\eta))} = [v_0(\eta)]^{\varepsilon_1(\psi_1(\eta))\varepsilon_1(\psi_1(\eta))} = v_0(\eta)$, which shows that Φ is surjective. It is routine to check that Φ is an injective homomorphism, and consequently, Φ is a real algebra automorphism on $C(\mathcal{M})$. Let Γ be the Gelfand transformation from $L^{\infty}(I)$ onto $C(\mathcal{M})$, that is, $\Gamma(h) = \hat{h}$ for $h \in L^{\infty}(I)$. We define a real algebra automorphism $\Psi = \Gamma^{-1} \circ \Phi \circ \Gamma$ on $L^{\infty}(I)$. For each $f \in \operatorname{Lip}(I)$ and $\eta \in \mathcal{M}$, we obtain

$$[\widehat{f'}(\psi_1(\eta))]^{\varepsilon_1(\psi_1(\eta))} = \Phi(\widehat{f'})(\eta) = (\Phi \circ \Gamma)(f')(\eta) = (\Gamma \circ \Psi)(f')(\eta) = \Gamma(\Psi(f'))(\eta).$$

By the continuity of ϕ_2 and ψ_1 , we may set $h_0 = \Gamma^{-1}(\alpha \overline{\phi_2 \circ \psi_1}) \in L^{\infty}(I)$. We derive from (3.7) that

$$\widehat{\Delta_1(f)'}(\eta) = \Gamma(h_0)(\eta)\Gamma(\Psi(f'))(\eta) = \Gamma(h_0\Psi(f'))(\eta) = h_0\widehat{\Psi(f')}(\eta)$$

for all $\eta \in \mathcal{M}$. Therefore, we conclude $\Delta_1(f)' = h_0 \Psi(f')$ for every $f \in \operatorname{Lip}(I)$. According to (2.2), we have

$$\Delta_1(f)(t) = \Delta_1(f)(0) + \int_0^t \Delta_1(f)' \, dm = \alpha [f(0)]^{\varepsilon_0} + \int_0^t h_0 \Psi(f') \, dm$$

for every $t \in I$ and $f \in \operatorname{Lip}(I)$.

Acknowledgement

The authors would like to express our gratitude to the referee for his/her valuable suggestions and comments which have improved the original manuscript.

The second author is supported by JSPS KAKENHI (Japan) Grant Number JP 20K03650.

References

- T. Banakh, Every 2-dimensional Banach space has the Mazur-Ulam property, *Linear Algebra Appl.*, 632 (2022), 268–280.
- [2] A. Browder, Introduction to function algebras, W.A. Benjamin, Inc., New York-Amsterdam, 1969.
- [3] L. Cheng and Y. Dong, On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., **377** (2011), 464–470.
- [4] M. Cueto-Avellaneda, D. Hirota, T. Miura and A.M. Peralta, Exploring new solutions to Tingley's problem for function algebras, *Quaest. Math.*, DOI: 10.2989/16073606.2022.2072787.
- [5] M. Cueto-Avellaneda, A.M. Peralta, On the Mazur-Ulam property for the space of Hilbertspace-valued continuous functions, J. Math. Anal. Appl., 479 (2019), 875–902.
- [6] R.G. Douglas, Banach algebra techniques in operator theory. Second edition, Graduate Texts in Mathematics 179, Springer-Verlag, New York, 1998.
- [7] F.J. Fernández-Polo, J.J. Garcés, A.M. Peralta, I. Villanueva, Tingley's problem for spaces of trace class operators, *Linear Algebra Appl.*, **529** (2017), 294–323.
- [8] F.J. Fernández-Polo, E. Jordá, A.M. Peralta, Tingley's problem for p-Schatten von Neumann classes, J. Spectr. Theory, 10 (2020), 809–841.
- [9] F.J. Fernández-Polo, A.M. Peralta, On the extension of isometries between the unit spheres of a C^* -algebra and B(H), Trans. Amer. Math. Soc. Ser. B, 5 (2018), 63–80.
- [10] F.J. Fernández-Polo, A.M. Peralta, On the extension of isometries between the unit spheres of von Neumann algebras, J. Math. Anal. Appl., 466 (2018), 127–143.
- [11] F.J. Fernández-Polo, A.M. Peralta, Low rank compact operators and Tingley's problem, Adv. Math., 338 (2018), 1–40.
- [12] F.J. Fernández-Polo, A.M. Peralta, Tingley's problem through the facial structure of an atomic JBW*-triple, J. Math. Anal. Appl., 455 (2017), 750–760.
- [13] R. Fleming and J. Jamison, Isometries on Banach spaces: function spaces, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 129, Boca Raton, 2003.

- [14] O. Hatori, The Mazur-Ulam property for uniform algebras, *Studia Math.*, **265** (2022), 227–239.
- [15] O. Hatori, S. Oi and R. Shindo Togashi, Tingley's problems on uniform algebras, J. Math. Anal. Appl., 503 (2021), 125346.
- [16] H. Koshimizu, Linear isometries on spaces of continuously differentiable and Lipschitz continuous functions, *Nihonkai Math. J.*, **22** (2011), 73–90.
- [17] C.W. Leung, C.K. Ng, N.C. Wong, Metric preserving bijections between positive spherical shells of non-commutative L^p-spaces, J. Operator Theory, 80 (2018), 429–452.
- [18] C.W. Leung, C.K. Ng, N.C. Wong, On a variant of Tingley's problem for some function spaces, J. Math. Anal. Appl., 496 (2021), 124800.
- [19] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.
- [20] M. Mori, Tingley's problem through the facial structure of operator algebras, J. Math. Anal. Appl., 466 (2018), 1281–1298.
- [21] M. Mori, N. Ozawa, Mankiewicz's theorem and the Mazur-Ulam property for C^{*}-algebras, Studia. Math., 250 (2020), 265–281.
- [22] A.M. Peralta, Extending surjective isometries defined on the unit sphere of $\ell_{\infty}(\Gamma)$, Rev. Mat. Complut., **32** (2019), 99–114.
- [23] A.M. Peralta, On the unit sphere of positive operators, Banach J. Math. Anal., 13 (2019), 91–112.
- [24] A.M. Peralta, R. Tanaka, A solution to Tingley's problem for isometries between the unit spheres of compact C^{*}-algebras and JB^{*}-triples, Sci. China Math., 62 (2019), 553–568.
- [25] W. Rudin, Real and complex analysis, Third Edition, McGraw-Hill Book. Co., New York, 1987.
- [26] D. Tan, X. Huang, R. Liu, Generalized-lush spaces and the Mazur-Ulam property, Studia. Math., 219 (2013), 139–153.
- [27] D. Tan, R. Liu, A note on the Mazur-Ulam property of almost-CL-spaces, J. Math. Anal. Appl., 405 (2013), 336–341.
- [28] R. Tanaka, A further property of spherical isometries, Bull. Aust. Math. Soc., 90 (2014), 304–310.
- [29] R. Tanaka, The solution of Tingley's problem for the operator norm unit sphere of complex $n \times n$ matrices, *Linear Algebra Appl.*, **494** (2016), 274–285.
- [30] R. Tanaka, Spherical isometries of finite dimensional C*-algebras, J. Math. Anal. Appl., 445 (2017), 337–341.
- [31] R. Tanaka, Tingley's problem on finite von Neumann algebras, J. Math. Anal. Appl., 451 (2017), 319–326.
- [32] D. Tingley, Isometries of the unit sphere, Geom. Dedicata, 22 (1987), 371–378.
- [33] R. Wang, Isometries of $C_0^{(n)}(X)$, Hokkaido Math. J., **25** (1996), 465–519.
- [34] R. Wang and A. Orihara, Isometries on the ℓ^1 -sum of $C_0(\Omega, E)$ type spaces, J. Math. Sci. Univ. Tokyo, **2** (1995), 131–154.