Tingley's problem for a Banach space of Lipschitz functions on the closed unit interval

By
Daisuke Hirota* and Takeshi Miura**

Abstract

We prove that every surjective isometry on the unit sphere of $\operatorname{Lip}(I)$ of all Lipschitz continuous functions on the closed unit interval I is extended to a surjective real linear isometry on $\operatorname{Lip}(I)$ with the norm $\|f\|_{\sigma}=|f(0)|+\left\|f^{\prime}\right\|_{L^{\infty}}$.

§ 1. Introduction and main results

Let E and F be Banach spaces whose unit spheres are S_{E} and S_{F}, respectively. In 1987, Tingley [32] asks whether each surjective isometry $\Delta: S_{E} \rightarrow S_{F}$ is extended to a surjective, real linear isometry from E onto F. Since then, many mathematicians have given affirmative answers to the Tingley's problem for particular Banach spaces. There is a huge list of the research of the problem, here we show only some of them. Tingley's problem is treated for function spaces in $[4,15,17,18,33,34]$, and for operator spaces in $[7,8,9,10,11,12,22,23,24,29,30,31]$. Besides the Tingley's problem, the Mazur-Ulam property for Banach spaces has been studying actively; a Banach space E has the Mazur-Ulam property if F is any Banach space, every surjective isometry from S_{E} onto S_{F} admits a unique extension to a surjective real linear isometry from E onto F. See, for example, $[1,5,14,21,26,27]$.

Let $\operatorname{Lip}(I)$ be the complex linear space of all Lipschitz continuous complex valued functions on the closed unit interval $I=[0,1]$. For each Banach space E, we denote by

[^0]S_{E} the unit sphere of E. We define $\|f\|_{\sigma}$ for $f \in \operatorname{Lip}(I)$ by
$$
\|f\|_{\sigma}=|f(0)|+\left\|f^{\prime}\right\|_{L^{\infty}},
$$
where $\|\cdot\|_{L^{\infty}}$ denotes the essential supremum norm on I. It is well known that each $f \in$ $\operatorname{Lip}(I)$ has essentially bounded derivative f^{\prime} almost everywhere. Hence, f^{\prime} belongs to $L^{\infty}(I)$, the commutative Banach algebra of all essentially bounded measurable functions on I with the essential supremum norm $\|\cdot\|_{L^{\infty}}$. Consequently, $\|\cdot\|_{\sigma}$ is a well defined norm on $\operatorname{Lip}(I)$. The purpose of this paper is to prove that every surjective isometry on $S_{\operatorname{Lip}(I)}$ admits a surjective real linear extension to $\operatorname{Lip}(I)$, which gives a solution to Tingley's problem for $\operatorname{Lip}(I)$. The followings are the main results of this paper.

Theorem 1.1. Let $\Delta: S_{\operatorname{Lip}(I)} \rightarrow S_{\operatorname{Lip}(I)}$ be a surjective isometry with $\|\cdot\|_{\sigma}$. Then Δ is extended to a surjective, real linear isometry on $\operatorname{Lip}(I)$.

Corollary 1.2. For each surjective isometry $\Delta_{1}: \operatorname{Lip}(I) \rightarrow \operatorname{Lip}(I)$ with $\|\cdot\|_{\sigma}$, there exist a constant α of modulus $1, h_{0} \in S_{L^{\infty}(I)}$ and a real algebra automorphism Ψ on $L^{\infty}(I)$ such that

$$
\begin{array}{ll}
\Delta_{1}(f)(t)=\Delta_{1}(0)(t)+\alpha f(0)+\int_{0}^{t} h_{0} \Psi\left(f^{\prime}\right) d m & (t \in I, f \in \operatorname{Lip}(I)), \quad \text { or } \\
\Delta_{1}(f)(t)=\Delta_{1}(0)(t)+\alpha \overline{f(0)}+\int_{0}^{t} h_{0} \Psi\left(f^{\prime}\right) d m & (t \in I, f \in \operatorname{Lip}(I)),
\end{array}
$$

where m denotes the Lebesgue measure on I.
Remark 1. We should note that Theorem 1.1 is deduced from [34, Theorem 3.5]. In fact, $\operatorname{Lip}(I)$ equipped with $\|\cdot\|_{\sigma}$ is identified with the ℓ^{1}-sum of \mathbb{R}^{2} and $C\left(X, \mathbb{R}^{2}\right)$ for some compact Hausdorff space X. Here, $C\left(X, \mathbb{R}^{2}\right)$ is the Banach space of all continuous \mathbb{R}^{2} valued maps on X with the supremum norm. In this paper, we will give a different proof from that of [34] of Tingley's problem for $\operatorname{Lip}(I)$.

Koshimizu [16, Theorem 1.2] gave the characterization of surjective complex linear isometries on $\operatorname{Lip}(I)$ with $\|\cdot\|_{\sigma}$. We will characterize surjective isometries on $\operatorname{Lip}(I)$ in Corollary 1.2.

§ 2. Preliminaries and auxiliary lemmas

We denote by \mathbb{T} the unit circle in the complex number field \mathbb{C}. Let \mathcal{M} be the maximal ideal space of $L^{\infty}(I)$: Then \mathcal{M} is a compact Hausdorff space so that the Gelfand transform, defined by $\widehat{h}(\eta)=\eta(h)$ for $h \in L^{\infty}(I)$ and $\eta \in \mathcal{M}$, is a continuous function from \mathcal{M} to \mathbb{C}. Let $C(X)$ be the commutative Banach algebra of all continuous
complex valued functions on a compact Hausdorff space X with the supremum norm $\|\cdot\|_{\infty}$ on X. The Gelfand-Naimark theorem states that the Gelfand transformation $\Gamma: L^{\infty}(I) \rightarrow C(\mathcal{M})$, defined by $\Gamma(h)=\widehat{h}$ for $h \in L^{\infty}(I)$, is an isometric isomorphism. Thus, $\|h\|_{L^{\infty}}=\sup _{\eta \in \mathcal{M}}|\widehat{h}(\eta)|=\|\widehat{h}\|_{\infty}$ for $h \in L^{\infty}(I)$. We define

$$
\begin{equation*}
\widetilde{f}(\eta, z)=f(0)+\widehat{f}^{\prime}(\eta) z \tag{2.1}
\end{equation*}
$$

for $f \in \operatorname{Lip}(I)$ and $(\eta, z) \in \mathcal{M} \times \mathbb{T}$. Then the function \tilde{f} is continuous on $\mathcal{M} \times \mathbb{T}$ with the product topology. We set

$$
B=\{\tilde{f} \in C(\mathcal{M} \times \mathbb{T}): f \in \operatorname{Lip}(I)\}
$$

Then B is a normed linear subspace of $C(\mathcal{M} \times \mathbb{T})$ equipped with the supremum norm $\|\cdot\|_{\infty}$ on $\mathcal{M} \times \mathbb{T}$.

We define a mapping $U:\left(\operatorname{Lip}(I),\|\cdot\|_{\sigma}\right) \rightarrow\left(B,\|\cdot\|_{\infty}\right)$ by $U(f)=\widetilde{f}$ for $f \in \operatorname{Lip}(I)$. We see that U is a surjective complex linear map from $\operatorname{Lip}(I)$ onto B. In addition, $\|U(f)\|_{\infty}=\|f\|_{\sigma}$ holds for all $f \in \operatorname{Lip}(I)$: In fact, for each $f \in \operatorname{Lip}(I)$, there exist $z_{0}, z_{1} \in \mathbb{T}$ and $\eta_{0} \in \mathcal{M}$ such that $f(0)=|f(0)| z_{0}$ and $\widehat{f^{\prime}}\left(\eta_{0}\right)=\left\|\widehat{f^{\prime}}\right\|_{\infty} z_{1}$. Then

$$
\begin{aligned}
\left|U(f)\left(\eta_{0}, z_{0} \overline{z_{1}}\right)\right| & =\left|f(0)+\widehat{f^{\prime}}\left(\eta_{0}\right) z_{0} \overline{z_{1}}\right|=\left|\left(|f(0)|+\left\|\widehat{f^{\prime}}\right\|_{\infty}\right) z_{0}\right| \\
& =|f(0)|+\left\|\widehat{f^{\prime}}\right\|_{\infty}=|f(0)|+\left\|f^{\prime}\right\|_{L^{\infty}}=\|f\|_{\sigma}
\end{aligned}
$$

We thus obtain $\|f\|_{\sigma} \leq\|U(f)\|_{\infty}$. For each $(\eta, z) \in \mathcal{M} \times \mathbb{T}$, we have

$$
|U(f)(\eta, z)|=\left|f(0)+\widehat{f^{\prime}}(\eta) z\right| \leq|f(0)|+\left|\widehat{f^{\prime}}(\eta)\right| \leq|f(0)|+\left\|\widehat{f^{\prime}}\right\|_{\infty}=\|f\|_{\sigma}
$$

which yields $\|U(f)\|_{\infty} \leq\|f\|_{\sigma}$. Consequently,

$$
\|\widetilde{f}\|_{\infty}=\|U(f)\|_{\infty}=\|f\|_{\sigma} \quad(f \in \operatorname{Lip}(I))
$$

Therefore, the map U is a surjective complex linear isometry from $\left(\operatorname{Lip}(I),\|\cdot\|_{\sigma}\right)$ onto $\left(B,\|\cdot\|_{\infty}\right)$. In particular, $U\left(S_{\operatorname{Lip}(I)}\right) \subset S_{B}$. Since U^{-1} has the same property as U, we obtain $U^{-1}\left(S_{B}\right) \subset S_{\operatorname{Lip}(I)}$, and hence, $U\left(S_{\operatorname{Lip}(I)}\right)=S_{B}$.

For each $f \in \operatorname{Lip}(I)$, we observe that f is absolutely continuous on I. Thus, the following identity holds:

$$
\begin{equation*}
f(t)-f(0)=\int_{0}^{t} f^{\prime} d m \quad(t \in I) \tag{2.2}
\end{equation*}
$$

where m denotes the Lebesgue measure on I (see, for example, [25, Theorem 7.20]). Having in mind $\left\{\widehat{h}: h \in L^{\infty}(I)\right\}=C(\mathcal{M})$, for each $u \in C(\mathcal{M})$ there exists a unique $h \in L^{\infty}(I)$ such that $u=\widehat{h}$. We define $\mathcal{I}(u)$ by

$$
\mathcal{I}(u)(t)=\int_{0}^{t} h d m \quad(t \in I)
$$

We observe that $\mathcal{I}(u)$ is a Lipschitz function on I with

$$
\mathcal{I}(u)(0)=0 \quad \text { and } \quad \mathcal{I}(u)^{\prime}=h \quad \text { a.e. }
$$

In particular, we obtain

$$
\begin{equation*}
\widehat{\mathcal{I}(u)^{\prime}}=u \tag{2.3}
\end{equation*}
$$

Here, we note that $\mathcal{I}(u) \in S_{\operatorname{Lip}(I)}$ for $u \in S_{C(\mathcal{M})}$: In fact,

$$
\|\mathcal{I}(u)\|_{\sigma}=|\mathcal{I}(u)(0)|+\left\|\mathcal{I}(u)^{\prime}\right\|_{L^{\infty}}=\left\|\widehat{\mathcal{I}(u)^{\prime}}\right\|_{\infty}=\|u\|_{\infty}=1
$$

which yields $\mathcal{I}(u) \in S_{\operatorname{Lip}(I)}$. Hence, $\mathcal{I}\left(S_{C(\mathcal{M})}\right) \subset S_{\operatorname{Lip}(I)}$.
Let $\Delta:\left(S_{\operatorname{Lip}(I)},\|\cdot\|_{\sigma}\right) \rightarrow\left(S_{\operatorname{Lip}(I)},\|\cdot\|_{\sigma}\right)$ be a surjective isometry. We define $T=$ $U \Delta U^{-1}$; we see that T is a well defined surjective isometry from ($S_{B},\|\cdot\|_{\infty}$) onto itself, since U is a surjective complex linear isometry from $\left(\operatorname{Lip}(I),\|\cdot\|_{\sigma}\right)$ onto $\left(B,\|\cdot\|_{\infty}\right)$ with $U\left(S_{\mathrm{Lip}(I)}\right)=S_{B}$.

The identity $T U=U \Delta$ implies that

$$
\begin{equation*}
T(\widetilde{f})=\widetilde{\Delta(f)} \quad\left(f \in S_{\operatorname{Lip}(I)}\right) \tag{2.4}
\end{equation*}
$$

For each $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$, we define

$$
\lambda V_{x}=\left\{\tilde{f} \in S_{B}: \widetilde{f}(x)=\lambda\right\},
$$

which plays an important role in our arguments. In the rest of this paper, we denote $\mathbf{1}_{I}$ and $\mathbf{1}_{\mathcal{M}}$ by the constant functions taking the value only 1 defined on I and \mathcal{M}, respectively.

Lemma 2.1. If $\lambda_{1} V_{x_{1}} \subset \lambda_{2} V_{x_{2}}$ for some $\left(\lambda_{1}, x_{1}\right),\left(\lambda_{2}, x_{2}\right) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T})$, then $\left(\lambda_{1}, x_{1}\right)=\left(\lambda_{2}, x_{2}\right)$.

Proof. We first note that $\widetilde{\mathbf{1}_{I}}$ is a constant function on $\mathcal{M} \times \mathbb{T}$ by (2.1). Then $\lambda_{1} \widetilde{\mathbf{1}_{I}} \in \lambda_{1} V_{x_{1}} \subset \lambda_{2} V_{x_{2}}$, which yields $\lambda_{1}=\lambda_{1} \widetilde{\mathbf{1}_{I}}\left(x_{1}\right)=\lambda_{1} \widetilde{\mathbf{1}_{I}}\left(x_{2}\right)=\lambda_{2}$. This implies $\lambda_{1}=\lambda_{2}$.

Setting $x_{j}=\left(\eta_{j}, z_{j}\right)$ for $j=1,2$, we first prove $\eta_{1}=\eta_{2}$. Suppose, on the contrary, that $\eta_{1} \neq \eta_{2}$. There exists $u \in S_{C(\mathcal{M})}$ such that $u\left(\eta_{1}\right)=1$ and $u\left(\eta_{2}\right)=0$. We set $f=\mathcal{I}\left(\lambda_{1} \overline{z_{1}} u\right) \in S_{\operatorname{Lip}(I)}$, and then $\widetilde{f}\left(\eta_{1}, z_{1}\right)=\lambda_{1}$ and $\widetilde{f}\left(\eta_{2}, z_{2}\right)=0$ by (2.3). This
shows that $\tilde{f} \in \lambda_{1} V_{x_{1}} \backslash \lambda_{2} V_{x_{2}}$, which contradicts the assumption that $\lambda_{1} V_{x_{1}} \subset \lambda_{2} V_{x_{2}}$. Consequently, we have $\eta_{1}=\eta_{2}$.

Finally, we shall prove $z_{1}=z_{2}$. By (2.3), we see that $g=\mathcal{I}\left(\lambda_{1} \overline{z_{1}} \mathbf{1}_{\mathcal{M}}\right)$ satisfies $\widetilde{g} \in S_{B}$ and $\widetilde{g}\left(\eta_{1}, z_{1}\right)=\lambda_{1}$. We thus obtain $\widetilde{g} \in \lambda_{1} V_{x_{1}} \subset \lambda_{2} V_{x_{2}}$, and hence $\lambda_{2}=$ $\widetilde{g}\left(\eta_{2}, z_{2}\right)=\lambda_{1} \overline{z_{1}} z_{2}$ by the choice of g. This implies $z_{1}=z_{2}$, since $\lambda_{1}=\lambda_{2}$. We have proven that $\left(\lambda_{1}, x_{1}\right)=\left(\lambda_{2}, x_{2}\right)$.

We denote by \mathcal{F}_{B} the set of all maximal convex subsets of S_{B}. Let $\operatorname{ext}\left(B_{1}^{*}\right)$ be the set of all extreme points of the closed unit ball B_{1}^{*} of the dual space of B. It is proved in [15, Lemma 3.1] that for each $F \in \mathcal{F}_{B}$ there exists $\xi \in \operatorname{ext}\left(B_{1}^{*}\right)$ such that $F=\xi^{-1}(1) \cap S_{B}$, where $\xi^{-1}(1)=\{\widetilde{f} \in B: \xi(\widetilde{f})=1\}$. Let $\operatorname{Ch}(B)$ be the Choquet boundary for B, that is, $\operatorname{Ch}(B)$ is the set of all $x \in \mathcal{M} \times \mathbb{T}$ such that the point evaluation $\delta_{x}: B \rightarrow \mathbb{C}$ at x is in $\operatorname{ext}\left(B_{1}^{*}\right)$. By the Arens-Kelley theorem (cf. [13, Corollary 2.3.6]), we see that $\operatorname{ext}\left(B_{1}^{*}\right)=\left\{\lambda \delta_{x} \in B_{1}^{*}: \lambda \in \mathbb{T}, x \in \operatorname{Ch}(B)\right\}$.

Lemma 2.2. For each $x_{0}=\left(\eta_{0}, z_{0}\right) \in \mathcal{M} \times \mathbb{T}$, the Dirac measure concentrated at x_{0} is unique representing measure for $\delta_{x_{0}}$.

Proof. Fix an arbitrary open set O in \mathcal{M} with $\eta_{0} \in O$. By Urysohn's lemma, we can find $u \in S_{C(\mathcal{M})}$ such that $u\left(\eta_{0}\right)=1$ and $u=0$ on $\mathcal{M} \backslash O$. Take any representing measure σ for $\delta_{x_{0}}$, that is, σ is a regular Borel measure on $\mathcal{M} \times \mathbb{T}$ satisfying $\delta_{x_{0}}(\widetilde{g})=$ $\int_{\mathcal{M} \times \mathbb{T}} \widetilde{g} d \sigma$ for all $\widetilde{g} \in B$ and $\|\sigma\|=1$, where $\|\sigma\|$ is the total variation of σ. Having in mind that the operator norm $\left\|\delta_{x_{0}}\right\|$ of $\delta_{x_{0}}$ satisfies $\left\|\delta_{x_{0}}\right\|=1=\delta_{x_{0}}\left(\widetilde{\mathbf{1}_{I}}\right)$, we observe that σ is a positive measure (see, for example, [2, p.81]). Setting $f=\mathcal{I}(u) \in S_{\operatorname{Lip}(I)}$, we obtain $\widetilde{f}(\eta, z)=u(\eta) z$ for $(\eta, z) \in \mathcal{M} \times \mathbb{T}$ by (2.1) and (2.3). Since $u=0$ on $\mathcal{M} \backslash O$, we get

$$
\begin{aligned}
1 & =\left|z_{0}\right|=\left|\delta_{x_{0}}(\widetilde{f})\right|=\left|\int_{\mathcal{M} \times \mathbb{T}} \tilde{f} d \sigma\right| \leq\left|\int_{O \times \mathbb{T}} \widetilde{f} d \sigma\right|+\left|\int_{(\mathcal{M} \times \mathbb{T}) \backslash(O \times \mathbb{T})} \tilde{f} d \sigma\right| \\
& \leq \int_{O \times \mathbb{T}}|\widetilde{f}| d \sigma \leq\|\widetilde{f}\|_{\infty} \sigma(O \times \mathbb{T})=\sigma(O \times \mathbb{T}) \leq\|\sigma\|=1
\end{aligned}
$$

Consequently, $\sigma(O \times \mathbb{T})=1$ for all open sets O in \mathcal{M} with $\eta_{0} \in O$, and therefore, we observe that $\sigma\left(\left\{\eta_{0}\right\} \times \mathbb{T}\right)=1$ by the regularity of σ. We thus obtain

$$
z_{0}=\delta_{x_{0}}(\widetilde{f})=\int_{\left\{\eta_{0}\right\} \times \mathbb{T}} \tilde{f} d \sigma=\int_{\left\{\eta_{0}\right\} \times \mathbb{T}} u(\eta) z \delta \sigma=\int_{\left\{\eta_{0}\right\} \times \mathbb{T}} z \delta \sigma .
$$

We derive from $\sigma\left(\left\{\eta_{0}\right\} \times \mathbb{T}\right)=1$ that $\int_{\left\{\eta_{0}\right\} \times \mathbb{T}}\left(z_{0}-z\right) d \sigma=0$. Setting $Z=\left\{\eta_{0}\right\} \times\left(\mathbb{T} \backslash\left\{z_{0}\right\}\right)$, we obtain $\int_{Z}\left(1-\overline{z_{0}} z\right) d \sigma=-\overline{z_{0}} \int_{Z}\left(z-z_{0}\right) d \sigma=0$, which yields $\int_{Z} \operatorname{Re}\left(1-\overline{z_{0}} z\right) d \sigma=0$. As $\operatorname{Re}\left(1-\overline{z_{0}} z\right)>0$ on Z, we conclude $\sigma(Z)=0$, and thus $\sigma\left(\left\{\eta_{0}\right\} \times\left\{z_{0}\right\}\right)=1$. This proves that any representing measure for $\delta_{x_{0}}$ is the Dirac measure concentrated at x_{0}.

Lemma 2.3. For each $x_{0}=\left(\eta_{0}, z_{0}\right) \in \mathcal{M} \times \mathbb{T}$, we have $x_{0} \in \operatorname{Ch}(B)$, that is, $\operatorname{Ch}(B)=\mathcal{M} \times \mathbb{T}$.

Proof. We shall prove that $\delta_{x_{0}}$ belongs to $\operatorname{ext}\left(B_{1}^{*}\right)$. Suppose that $\delta_{x_{0}}=\left(\xi_{1}+\xi_{2}\right) / 2$ for $\xi_{1}, \xi_{2} \in B_{1}^{*}$. For $j=1,2$, there exists a representing measure σ_{j} for ξ_{j} by the HahnBanach theorem and the Riesz representation theorem (see, for example, [25, Theorems 5.16 and 2.14]). Since $\xi_{1}\left(\widetilde{\mathbf{1}_{I}}\right)+\xi_{2}\left(\widetilde{\mathbf{1}_{I}}\right)=2 \delta_{x_{0}}\left(\widetilde{\mathbf{1}_{I}}\right)=2$ with $\left|\xi_{j}\left(\widetilde{\mathbf{1}_{I}}\right)\right| \leq 1$, we have $\xi_{j}\left(\widetilde{\mathbf{1}_{I}}\right)=1=\left\|\xi_{j}\right\|$ for $j=1,2$. Applying the same argument in [2, p.81] to σ_{j}, we see that σ_{j} is a positive measure. We put $\sigma=\left(\sigma_{1}+\sigma_{2}\right) / 2$, and then σ is a positive measure.

First, we prove that σ is a representing measure for $\delta_{x_{0}}$. Because σ_{j} is a representing measure for ξ_{j}, we get

$$
\int_{\mathcal{M} \times \mathbb{T}} \tilde{f} d \sigma=\int_{\mathcal{M} \times \mathbb{T}} \tilde{f} d\left(\frac{\sigma_{1}+\sigma_{2}}{2}\right)=\frac{\xi_{1}(\tilde{f})+\xi_{2}(\tilde{f})}{2}=\delta_{x_{0}}(\tilde{f}) \quad(\tilde{f} \in B) .
$$

Entering $\widetilde{f}=\widetilde{\mathbf{1}_{I}}$ into the above equality, we have $\sigma(\mathcal{M} \times \mathbb{T})=\int_{\mathcal{M} \times \mathbb{T}} \widetilde{\mathbf{1}_{I}} d \sigma=1$, which shows that $\|\sigma\|=1=\left\|\delta_{x_{0}}\right\|$. Therefore, σ is a representing measure for $\delta_{x_{0}}$. By Lemma 2.2, $\sigma=\left(\sigma_{1}+\sigma_{2}\right) / 2$ is the Dirac measure, $\tau_{x_{0}}$, concentrated at x_{0}.

We note that σ_{j} is a positive measure with $j=1,2$. For each Borel set D with $x_{0} \notin D$, we obtain $\left(\sigma_{1}(D)+\sigma_{2}(D)\right) / 2=\sigma(D)=0$, and thus, $\sigma_{j}(D)=0$. Having in mind that $\left\|\sigma_{j}\right\|=\left\|\xi_{j}\right\|=1$, we conclude that $\sigma_{j}=\tau_{x_{0}}$ for $j=1,2$. Hence, $\xi_{j}(\widetilde{f})=\int_{\mathcal{M} \times \mathbb{T}} \widetilde{f} d \sigma_{j}=\widetilde{f}\left(x_{0}\right)=\delta_{x_{0}}(\widetilde{f})$ for any $\widetilde{f} \in B$, which implies that $\xi_{1}=\delta_{x_{0}}=\xi_{2}$. This proves $\delta_{x_{0}} \in \operatorname{ext}\left(B_{1}^{*}\right)$, which yields $x_{0} \in \operatorname{Ch}(B)$.

We now characterize the set of all maximal convex subsets \mathcal{F}_{B} of S_{B}. The following result is proved by Hatori, Oi and Shindo Togashi in [15] for uniform algebras. The proof below of the next proposition is quite similar to that of [15, Lemma 3.2].

Proposition 2.4. Let F be a subset of S_{B}. Then $F \in \mathcal{F}_{B}$ if and only if there exist $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$ such that $F=\lambda V_{x}$.

Proof. Suppose that F is a maximal convex subset of S_{B}. By [15, Lemma 3.1], $F=\xi^{-1}(1) \cap S_{B}$ for some $\xi \in \operatorname{ext}\left(B_{1}^{*}\right)=\left\{\lambda \delta_{x} \in B_{1}^{*}: \lambda \in \mathbb{T}, x \in \mathcal{M} \times \mathbb{T}\right\}$, where we have used Lemma 2.3. There exist $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$ such that $\xi=\lambda \delta_{x}$. Now we can write

$$
F=\left(\lambda \delta_{x}\right)^{-1}(1) \cap S_{B}=\left\{\tilde{f} \in S_{B}: \lambda \tilde{f}(x)=1\right\}=\bar{\lambda} V_{x}
$$

We thus obtain $F=\bar{\lambda} V_{x}$ with $\bar{\lambda} \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$.
Conversely, suppose that $F=\lambda V_{x}$ for some $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. It is routine to check that F is a convex subset of S_{B}. Using Zorn's lemma, we can prove that there exists a maximal convex subset K of S_{B} with $F \subset K$. By the above paragraph, we see
that $K=\mu V_{y}$ for some $\mu \in \mathbb{T}$ and $y \in \mathcal{M} \times \mathbb{T}$. Then $\lambda V_{x}=F \subset K=\mu V_{y}$. Lemma 2.1 shows that $(\lambda, x)=(\mu, y)$, which implies that $F=K$. Consequently, F is a maximal convex subset of S_{B}.

Tanaka [28, Lemma 3.5] proved that every surjective isometry between the unit spheres of two Banach spaces preserves maximal convex subsets of the spheres (see also [3, Lemma 5.1]). By these results, we can prove the following lemma.

Lemma 2.5. \quad There exist maps $\alpha: \mathbb{T} \times(\mathcal{M} \times \mathbb{T}) \rightarrow \mathbb{T}$ and $\phi: \mathbb{T} \times(\mathcal{M} \times \mathbb{T}) \rightarrow \mathcal{M} \times \mathbb{T}$ such that

$$
\begin{equation*}
T\left(\lambda V_{x}\right)=\alpha(\lambda, x) V_{\phi(\lambda, x)} \tag{2.5}
\end{equation*}
$$

for all $(\lambda, x) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T})$.
Proof. For each $(\lambda, x) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T}), \lambda V_{x}$ is a maximal convex subset of S_{B} by Proposition 2.4. By [28, Lemma 3.5], surjective isometry $T: S_{B} \rightarrow S_{B}$ preserves maximal convex subsets of S_{B}, that is, there exists $(\mu, y) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T})$ such that $T\left(\lambda V_{x}\right)=\mu V_{y}$. If, in addition, $T\left(\lambda V_{x}\right)=\mu^{\prime} V_{y^{\prime}}$ for some $\left(\mu^{\prime}, y^{\prime}\right) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T})$, then we obtain $(\mu, y)=\left(\mu^{\prime}, y^{\prime}\right)$ by Lemma 2.1. Therefore, if we define $\alpha(\lambda, x)=\mu$ and $\phi(\lambda, x)=y$, then $\alpha: \mathbb{T} \times(\mathcal{M} \times \mathbb{T}) \rightarrow \mathbb{T}$ and $\phi: \mathbb{T} \times(\mathcal{M} \times \mathbb{T}) \rightarrow \mathcal{M} \times \mathbb{T}$ are well defined maps with $T\left(\lambda V_{x}\right)=\alpha(\lambda, x) V_{\phi(\lambda, x)}$.

Lemma 2.6. \quad The maps α and ϕ from Lemma 2.5 are both surjective maps satisfying

$$
\alpha(-\lambda, x)=-\alpha(\lambda, x) \quad \text { and } \quad \phi(-\lambda, x)=\phi(\lambda, x)
$$

for all $(\lambda, x) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T})$.
Proof. Take any $(\lambda, x) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T})$, and then λV_{x} is a maximal convex subset of S_{B} by Proposition 2.4. We get $T\left(-\lambda V_{x}\right)=-T\left(\lambda V_{x}\right)$, which was proved by Mori [20, Proposition 2.3] in a general setting. Lemma 2.5 shows that $\alpha(-\lambda, x) V_{\phi(-\lambda, x)}=$ $T\left(-\lambda V_{x}\right)=-T\left(\lambda V_{x}\right)=-\alpha(\lambda, x) V_{\phi(\lambda, x)}$. Applying Lemma 2.1, we obtain $\alpha(-\lambda, x)=$ $-\alpha(\lambda, x)$ and $\phi(-\lambda, x)=\phi(\lambda, x)$.

There exist well defined maps $\beta: \mathbb{T} \times(\mathcal{M} \times \mathbb{T}) \rightarrow \mathbb{T}$ and $\psi: \mathbb{T} \times(\mathcal{M} \times \mathbb{T}) \rightarrow \mathcal{M} \times \mathbb{T}$ such that

$$
T^{-1}\left(\mu V_{y}\right)=\beta(\mu, y) V_{\psi(\mu, y)} \quad((\mu, y) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T}))
$$

since T^{-1} has the same property as T. For each $(\mu, y) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T})$, we have, by (2.5),

$$
\mu V_{y}=T\left(T^{-1}\left(\mu V_{y}\right)\right)=T\left(\beta(\mu, y) V_{\psi(\mu, y)}\right)=\alpha(\beta(\mu, y), \psi(\mu, y)) V_{\phi(\beta(\mu, y), \psi(\mu, y))}
$$

We derive from Lemma 2.1 that $\mu=\alpha(\beta(\mu, y), \psi(\mu, y))$ and $y=\phi(\beta(\mu, y), \psi(\mu, y))$. These prove that both α and ϕ are surjective.

By definition, $\phi(\lambda, x) \in \mathcal{M} \times \mathbb{T}$ for each $(\lambda, x) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T})$. There exist $\phi_{1}(\lambda, x) \in \mathcal{M}$ and $\phi_{2}(\lambda, x) \in \mathbb{T}$ such that

$$
\phi(\lambda, x)=\left(\phi_{1}(\lambda, x), \phi_{2}(\lambda, x)\right) .
$$

We shall regard ϕ_{1} and ϕ_{2} as maps defined on $\mathbb{T} \times(\mathcal{M} \times \mathbb{T})$ to \mathcal{M} and \mathbb{T}, respectively. By Lemma 2.6, both ϕ_{1} and ϕ_{2} are surjective maps with

$$
\begin{equation*}
\phi_{j}(-\lambda, x)=\phi_{j}(\lambda, x) \quad((\lambda, x) \in \mathbb{T} \times(\mathcal{M} \times \mathbb{T}), j=1,2) \tag{2.6}
\end{equation*}
$$

Lemma 2.7. Let $\lambda_{j} \in \mathbb{T}$ and $\left(\eta_{j}, z_{j}\right) \in \mathcal{M} \times \mathbb{T}$ for $j=1$, 2. If $\eta_{1} \neq \eta_{2}$, then there exist $\widetilde{f}_{j} \in S_{B}$ such that $\widetilde{f}_{j} \in \lambda_{j} V_{\left(\eta_{j}, z_{j}\right)}$ for $j=1,2$ and $\left\|\widetilde{f}_{1}-\widetilde{f}_{2}\right\|_{\infty}=1$.

Proof. Take $j \in\{1,2\}$ and open sets O_{j} in \mathcal{M} with $\eta_{j} \in O_{j}$ and $O_{1} \cap O_{2}=$ \emptyset. By Urysohn's lemma, there exists $u_{j} \in S_{C(\mathcal{M})}$ such that $u_{j}\left(\eta_{j}\right)=1$ and $u_{j}=0$ on $\mathcal{M} \backslash O_{j}$. Let $f_{j}=\mathcal{I}\left(\lambda_{j} \overline{z_{j}} u_{j}\right)$, and then we see that $\widetilde{f}_{j}(\eta, z)=\lambda_{j} \overline{z_{j}} u_{j}(\eta) z$ for all $(\eta, z) \in \mathcal{M} \times \mathbb{T}$ by (2.1) and (2.3). It follows from $\widetilde{f}_{j} \in \lambda_{j} V_{\left(\eta_{j}, z_{j}\right)}$ for $j=1,2$ that $1=\left|\widetilde{f}_{1}\left(\eta_{1}, z_{1}\right)-\widetilde{f}_{2}\left(\eta_{1}, z_{1}\right)\right| \leq\left\|\widetilde{f}_{1}-\widetilde{f}_{2}\right\|_{\infty}$. Hence, it is enough to prove that $\left\|\widetilde{f}_{1}-\widetilde{f}_{2}\right\|_{\infty} \leq 1$. We shall prove $\left|\widetilde{f}_{1}(\eta, z)-\widetilde{f}_{2}(\eta, z)\right| \leq 1$ for all $(\eta, z) \in \mathcal{M} \times \mathbb{T}$. Fix an arbitrary $(\eta, z) \in \mathcal{M} \times \mathbb{T}$. If $\eta \in O_{1}$, then $u_{2}(\eta)=0$, since $O_{1} \cap O_{2}=\emptyset$, and thus

$$
\left|\widetilde{f}_{1}(\eta, z)-\widetilde{f}_{2}(\eta, z)\right|=\left|\lambda_{1} \overline{z_{1}} u_{1}(\eta)-\lambda_{2} \overline{z_{2}} u_{2}(\eta)\right| \leq\left|u_{1}(\eta)\right|+\left|u_{2}(\eta)\right| \leq 1
$$

If $\eta \in \mathcal{M} \backslash O_{1}$, then $\left|\widetilde{f}_{1}(\eta, z)-\tilde{f}_{2}(\eta, z)\right| \leq 1$ by the choice of u_{1}. We conclude that $\left|\widetilde{f}_{1}(\eta, z)-\widetilde{f}_{2}(\eta, z)\right| \leq 1$ for all $(\eta, z) \in \mathcal{M} \times \mathbb{T}$, which yields $\left\|\widetilde{f}_{1}-\widetilde{f}_{2}\right\|_{\infty} \leq 1$.

Lemma 2.8. If $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$, then $\phi_{1}(\lambda, x)=\phi_{1}(1, x)$; we shall write $\phi_{1}(\lambda, x)=\phi_{1}(x)$ for simplicity.

Proof. Take any $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. Then $T\left(V_{x}\right)=\alpha(1, x) V_{\phi(1, x)}$ and $T\left(\lambda V_{x}\right)=\alpha(\lambda, x) V_{\phi(\lambda, x)}$ by (2.5). Suppose, on the contrary, that $\phi_{1}(\lambda, x) \neq \phi_{1}(1, x)$. There exist $\widetilde{f}_{1} \in \alpha(1, x) V_{\phi(1, x)}=T\left(V_{x}\right)$ and $\widetilde{f}_{2} \in \alpha(\lambda, x) V_{\phi(\lambda, x)}=T\left(\lambda V_{x}\right)$ such that $\left\|\widetilde{f}_{1}-\widetilde{f}_{2}\right\|_{\infty}=1$ by Lemma 2.7. We infer from the choice of \widetilde{f}_{1} and \widetilde{f}_{2} that $T^{-1}\left(\widetilde{f}_{1}\right) \in V_{x}$ and $T^{-1}\left(\widetilde{f_{2}}\right) \in \lambda V_{x}$, which implies that $T^{-1}\left(\widetilde{f}_{1}\right)(x)=1$ and $T^{-1}\left(\widetilde{f}_{2}\right)(x)=\lambda$. If $\operatorname{Re} \lambda \leq$ 0 , then $|1-\lambda| \geq \sqrt{2}$, and thus

$$
\begin{aligned}
\sqrt{2} & \leq|1-\lambda|=\left|T^{-1}\left(\widetilde{f}_{1}\right)(x)-T^{-1}\left(\widetilde{f}_{2}\right)(x)\right| \\
& \leq\left\|T^{-1}\left(\widetilde{f}_{1}\right)-T^{-1}\left(\widetilde{f}_{2}\right)\right\|_{\infty}=\left\|\widetilde{f}_{1}-\widetilde{f}_{2}\right\|_{\infty}=1
\end{aligned}
$$

where we have used that T is an isometry on S_{B}. We arrive at a contradiction, which shows $\phi_{1}(\lambda, x)=\phi_{1}(1, x)$, provided that $\operatorname{Re} \lambda \leq 0$. Now we consider the case when $\operatorname{Re} \lambda>0$. Then $\phi_{1}(-\lambda, x)=\phi_{1}(1, x)$, since $\operatorname{Re}(-\lambda)<0$. By (2.6), $\phi_{1}(\lambda, x)=\phi_{1}(-\lambda, x)=\phi_{1}(1, x)$, even if $\operatorname{Re} \lambda>0$.

Lemma 2.9. For each $\lambda_{1}, \lambda_{2} \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$, the following inequality holds:

$$
\begin{equation*}
\left|\lambda_{1}-\lambda_{2}\right| \leq\left|1-\overline{\alpha\left(\lambda_{1}, x\right)} \alpha\left(\lambda_{2}, x\right)\right| . \tag{2.7}
\end{equation*}
$$

Proof. Fix $\lambda_{1}, \lambda_{2} \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. We set $f_{j}=\alpha\left(\lambda_{j}, x\right) \mathbf{1}_{I} \in S_{\operatorname{Lip}(I)}$ for each $j \in\{1,2\}$. We see that $\widetilde{f}_{j} \in \alpha\left(\lambda_{j}, x\right) V_{\phi\left(\lambda_{j}, x\right)}=T\left(\lambda_{j} V_{x}\right)$ by (2.5). Then $T^{-1}\left(\widetilde{f}_{j}\right) \in \lambda_{j} V_{x}$, and hence $T^{-1}\left(\widetilde{f}_{j}\right)(x)=\lambda_{j}$. We obtain

$$
\begin{aligned}
\left|\lambda_{1}-\lambda_{2}\right| & =\left|T^{-1}\left(\tilde{f}_{1}\right)(x)-T^{-1}\left(\tilde{f}_{2}\right)(x)\right| \leq\left\|T^{-1}\left(\tilde{f}_{1}\right)-T^{-1}\left(\tilde{f}_{2}\right)\right\|_{\infty}=\left\|\tilde{f}_{1}-\tilde{f}_{2}\right\|_{\infty} \\
& =\left|\alpha\left(\lambda_{1}, x\right)-\alpha\left(\lambda_{2}, x\right)\right|\left\|\widetilde{\mathbf{1}_{I}}\right\|_{\infty}=\left|1-\overline{\alpha\left(\lambda_{1}, x\right)} \alpha\left(\lambda_{2}, x\right)\right| .
\end{aligned}
$$

Thus, $\left|\lambda_{1}-\lambda_{2}\right| \leq\left|1-\overline{\alpha\left(\lambda_{1}, x\right)} \alpha\left(\lambda_{2}, x\right)\right|$ holds for all $\lambda_{1}, \lambda_{2} \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$.
Lemma 2.10. For each $x \in \mathcal{M} \times \mathbb{T}$, there exists $\varepsilon_{0}(x) \in\{ \pm 1\}$ such that $\alpha(\lambda, x)=\lambda^{\varepsilon_{0}(x)} \alpha(1, x)$ for all $\lambda \in \mathbb{T}$; for simplicity, we shall write $\alpha(1, x)=\alpha(x)$.

Proof. Let $\lambda \in \mathbb{T} \backslash\{ \pm 1\}$ and $x \in \mathcal{M} \times \mathbb{T}$. Taking $\lambda_{1}=1$ and $\lambda_{2}= \pm \lambda$ in (2.7), we obtain

$$
|1-\lambda| \leq|1-\overline{\alpha(1, x)} \alpha(\lambda, x)| \quad \text { and } \quad|1+\lambda| \leq|1+\overline{\alpha(1, x)} \alpha(\lambda, x)|,
$$

where we have used Lemma 2.6. Since $\overline{\alpha(1, x)} \alpha(\lambda, x) \in \mathbb{T}$, we conclude that

$$
\overline{\alpha(1, x)} \alpha(\lambda, x) \in\{\lambda, \bar{\lambda}\} .
$$

If we consider the case when $\lambda=i$, then we have $\overline{\alpha(1, x)} \alpha(i, x) \in\{ \pm i\}$. This implies that $\alpha(i, x)=i \varepsilon_{0}(x) \alpha(1, x)$ for some $\varepsilon_{0}(x) \in\{ \pm 1\}$. Entering $\lambda_{1}=i$ and $\lambda_{2}=\lambda$ into (2.7) to get

$$
|i-\lambda| \leq|1-\overline{\alpha(i, x)} \alpha(\lambda, x)|=\left|1+i \varepsilon_{0}(x) \overline{\alpha(1, x)} \alpha(\lambda, x)\right|=\left|i-\varepsilon_{0}(x) \overline{\alpha(1, x)} \alpha(\lambda, x)\right|,
$$

and thus $|i-\lambda| \leq\left|i-\varepsilon_{0}(x) \overline{\alpha(1, x)} \alpha(\lambda, x)\right|$. Because $\alpha(-\lambda, x)=-\alpha(\lambda, x)$ by Lemma 2.6, we get $|i+\lambda| \leq\left|i+\varepsilon_{0}(x) \overline{\alpha(1, x)} \alpha(\lambda, x)\right|$. These inequalities imply $\varepsilon_{0}(x) \overline{\alpha(1, x)} \alpha(\lambda, x) \in$ $\{\lambda,-\bar{\lambda}\}$, since $\varepsilon_{0}(x) \overline{\alpha(1, x)} \alpha(\lambda, x) \in \mathbb{T}$. Then

$$
\overline{\alpha(1, x)} \alpha(\lambda, x) \in\{\lambda, \bar{\lambda}\} \cap\left\{\varepsilon_{0}(x) \lambda,-\varepsilon_{0}(x) \bar{\lambda}\right\} .
$$

We have two possible cases to consider. If $\varepsilon_{0}(x)=1$, then we obtain $\overline{\alpha(1, x)} \alpha(\lambda, x) \in$ $\{\lambda, \bar{\lambda}\} \cap\{\lambda,-\bar{\lambda}\}$. Since $\lambda \neq \pm 1$, we conclude that $\overline{\alpha(1, x)} \alpha(\lambda, x)=\lambda$, and hence
$\alpha(\lambda, x)=\lambda^{\varepsilon_{0}(x)} \alpha(1, x)$. If $\varepsilon_{0}(x)=-1$, then $\overline{\alpha(1, x)} \alpha(\lambda, x) \in\{\lambda, \bar{\lambda}\} \cap\{-\lambda, \bar{\lambda}\}$, which yields $\overline{\alpha(1, x)} \alpha(\lambda, x)=\bar{\lambda}$. Thus, $\alpha(\lambda, x)=\lambda^{\varepsilon_{0}(x)} \alpha(1, x)$. These identities are valid even for $\lambda= \pm 1$. By the liberty of the choice of $\lambda \in \mathbb{T}$, we conclude that $\alpha(\lambda, x)=$ $\lambda^{\varepsilon_{0}(x)} \alpha(1, x)$ for all $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$.

By Lemmas 2.8 and 2.10, we can rewrite (2.5) as

$$
\begin{equation*}
T\left(\lambda V_{x}\right)=\lambda^{\varepsilon_{0}(x)} \alpha(x) V_{\left(\phi_{1}(x), \phi_{2}(\lambda, x)\right)} \tag{2.8}
\end{equation*}
$$

for all $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$.
Definition 1. Let λV_{x} and μV_{y} be maximal convex subsets of S_{B}, where $\lambda, \mu \in$ \mathbb{T} and $x, y \in \mathcal{M} \times \mathbb{T}$. We denote by $d_{H}\left(\lambda V_{x}, \mu V_{y}\right)$ the Hausdorff distance of λV_{x} and μV_{y}, that is,

$$
\begin{equation*}
d_{H}\left(\lambda V_{x}, \mu V_{y}\right)=\max \left\{\sup _{\tilde{f} \in \lambda V_{x}} d\left(\tilde{f}, \mu V_{y}\right), \sup _{\tilde{g} \in \mu V_{y}} d\left(\lambda V_{x}, \widetilde{g}\right)\right\} \tag{2.9}
\end{equation*}
$$

where $d\left(\widetilde{f}, \mu V_{y}\right)=\inf _{\widetilde{h} \in \mu V_{y}}\|\widetilde{f}-\widetilde{h}\|_{\infty}$ and $d\left(\lambda V_{x}, \widetilde{g}\right)=\inf _{\widetilde{h} \in \lambda V_{x}}\|\widetilde{h}-\widetilde{g}\|_{\infty}$.
Since T is a surjective isometry on S_{B}, we obtain

$$
d\left(T(\widetilde{f}), T\left(\mu V_{y}\right)\right)=\inf _{\tilde{h} \in T\left(\mu V_{y}\right)}\|T(\tilde{f})-\widetilde{h}\|_{\infty}=\inf _{T^{-1}(\widetilde{h}) \in \mu V_{y}}\left\|\tilde{f}-T^{-1}(\widetilde{h})\right\|_{\infty}=d\left(\tilde{f}, \mu V_{y}\right)
$$

for every $\tilde{f} \in \lambda V_{x}$. Hence, $\sup _{T(\widetilde{f}) \in T\left(\lambda V_{x}\right)} d\left(T(\widetilde{f}), T\left(\mu V_{y}\right)\right)=\sup _{\widetilde{f} \in \lambda V_{x}} d\left(\widetilde{f}, \mu V_{y}\right)$. By the same reasoning, we get $\sup _{T(\widetilde{g}) \in T\left(\mu V_{y}\right)} d\left(T\left(\lambda V_{x}\right), T(\widetilde{g})\right)=\sup _{\tilde{g} \in \mu V_{y}} d\left(\lambda V_{x}, \widetilde{g}\right)$, and thus

$$
\begin{equation*}
d_{H}\left(T\left(\lambda V_{x}\right), T\left(\mu V_{y}\right)\right)=d_{H}\left(\lambda V_{x}, \mu V_{y}\right) \quad(\lambda, \mu \in \mathbb{T}, x, y \in \mathcal{M} \times \mathbb{T}) \tag{2.10}
\end{equation*}
$$

Remark 2. Let $\lambda \in \mathbb{T}$ and $(\eta, z) \in \mathcal{M} \times \mathbb{T}$. For each $\tilde{f} \in \lambda V_{(\eta, z)}$, we observe that

$$
\bar{\lambda} f(0) \in[0,1] \quad \text { and } \quad \widehat{f^{\prime}}(\eta) \bar{\lambda} z=\left\|\widehat{f^{\prime}}\right\|_{\infty}
$$

In fact, $f(0)+\widehat{f^{\prime}}(\eta) z=\lambda$ by the definition of $\lambda V_{(\eta, z)}$. Then

$$
1=\bar{\lambda}\left\{f(0)+\widehat{f^{\prime}}(\eta) z\right\}=\left|\bar{\lambda}\left\{f(0)+\widehat{f^{\prime}}(\eta) z\right\}\right| \leq|\bar{\lambda} f(0)|+\left|\widehat{f^{\prime}}(\eta) \bar{\lambda} z\right| \leq\|f\|_{\sigma}=1
$$

and thus, $\left|\bar{\lambda} f(0)+\widehat{f^{\prime}}(\eta) \bar{\lambda} z\right|=|\bar{\lambda} f(0)|+\left|\widehat{f^{\prime}}(\eta) \bar{\lambda} z\right|$. This implies that $\bar{\lambda} f(0)=t \hat{f}^{\prime}(\eta) \bar{\lambda} z$ for some $t \geq 0$, provided $\widehat{f^{\prime}}(\eta) \neq 0$. Since $\bar{\lambda}\left\{f(0)+\widehat{f^{\prime}}(\eta) z\right\}=1$, we have $\widehat{f^{\prime}}(\eta) \bar{\lambda} z=1 /(1+t)$ and $\bar{\lambda} f(0)=t /(1+t) \in[0,1]$. If $\widehat{f^{\prime}}(\eta)=0$, then $\bar{\lambda} f(0)=1$, and hence $\bar{\lambda} f(0) \in[0,1]$ as well. In particular, $\bar{\lambda} f(0)=|f(0)|$. We infer from $\widehat{f^{\prime}}(\eta) \bar{\lambda} z=1-\bar{\lambda} f(0)$ and $\left\|\widehat{f^{\prime}}\right\|_{\infty}=$ $1-|f(0)|$ that $\widehat{f^{\prime}}(\eta) \bar{\lambda} z=\left\|\widehat{f^{\prime}}\right\|_{\infty}$.

Lemma 2.11. For each $\eta \in \mathcal{M}, z \in \mathbb{T}$ and $k \in\{ \pm 1\}$, the following equalities hold:

$$
\begin{equation*}
\sup _{\tilde{f} \in k V_{(\eta, k)}} d\left(\tilde{f}, k V_{(\eta, z)}\right)=\sup _{\tilde{g} \in k V_{(\eta, z)}} d\left(k V_{(\eta, k)}, \widetilde{g}\right)=|1-k z| . \tag{2.11}
\end{equation*}
$$

In particular, $d_{H}\left(k V_{(\eta, k)}, k V_{(\eta, z)}\right)=|1-k z|$ for all $\eta \in \mathcal{M}, z \in \mathbb{T}$ and $k= \pm 1$.
Proof. Fix an arbitrary $\tilde{f} \in k V_{(\eta, k)}$ and $\widetilde{g} \in k V_{(\eta, z)}$, and then

$$
\begin{equation*}
f(0)+\widehat{f^{\prime}}(\eta) k=k \quad \text { and } \quad g(0)+\widehat{g^{\prime}}(\eta) z=k \tag{2.12}
\end{equation*}
$$

We notice that $k f(0), k g(0) \in[0,1], \widehat{f^{\prime}}(\eta)=\left\|\widehat{f^{\prime}}\right\|_{\infty}$ and $\widehat{g^{\prime}}(\eta) k z=\left\|\widehat{g^{\prime}}\right\|_{\infty}$ by Remark 2 . We deduce from the choice of \widetilde{f} and \widetilde{g} that

$$
\begin{align*}
|(1-k z)(k f(0)-1)| & \leq|k f(0)-k g(0)|+|k g(0)-1-k z(k f(0)-1)| \\
& =|f(0)-g(0)|+|\bar{z}(g(0)-k)-(k f(0)-1)| \\
& =|f(0)-g(0)|+\left|\widehat{g^{\prime}}(\eta)-\widehat{f^{\prime}}(\eta)\right| \tag{2.12}\\
& \leq|f(0)-g(0)|+\left\|\widehat{f^{\prime}}-\widehat{g^{\prime}}\right\|_{\infty}=\|f-g\|_{\sigma}=\|\widetilde{f}-\widetilde{g}\|_{\infty} .
\end{align*}
$$

That is, $|1-k z|(1-k f(0)) \leq\|\tilde{f}-\widetilde{g}\|_{\infty}$. We also have $|(1-k \bar{z})(k g(0)-1)| \leq\|\widetilde{f}-\widetilde{g}\|_{\infty}$ by a similar calculation, and thus, $|1-k z|(1-k g(0)) \leq\|\widetilde{f}-\widetilde{g}\|_{\infty}$. By the liberty of the choice of $\tilde{f} \in k V_{(\eta, k)}$ and $\widetilde{g} \in k V_{(\eta, z)}$, we obtain

$$
|1-k z|(1-k f(0)) \leq d\left(\widetilde{f}, k V_{(\eta, z)}\right) \quad \text { and } \quad|1-k z|(1-k g(0)) \leq d\left(k V_{(\eta, k)}, \widetilde{g}\right)
$$

Setting $f_{1}=f(0)+\mathcal{I}\left(k \bar{z} \widehat{f^{\prime}}\right)$ and $g_{1}=g(0)+\mathcal{I}\left(k z \widehat{g^{\prime}}\right)$, we see that $\widetilde{f}_{1}(\eta, z)=f(0)+$ $k \widehat{f^{\prime}}(\eta)=k$ and $\widetilde{g_{1}}(\eta, k)=g(0)+z \widehat{g^{\prime}}(\eta)=k$ by (2.12), where we have used that $\mathcal{I}(u)(0)=0$ for $u \in C(\mathcal{M})$. Consequently, $\widetilde{f}_{1} \in k V_{(\eta, z)}$ and $\widetilde{g_{1}} \in k V_{(\eta, k)}$. By the choice of f_{1}, we have

$$
\begin{aligned}
\left\|\widetilde{f}-\widetilde{f}_{1}\right\|_{\infty} & =\sup _{(\zeta, \nu) \in \mathcal{M} \times \mathbb{T}}\left|\widetilde{f}(\zeta, \nu)-\widetilde{f}_{1}(\zeta, \nu)\right|=\sup _{(\zeta, \nu) \in \mathcal{M} \times \mathbb{T}}\left|(1-k \bar{z}) \widehat{f^{\prime}}(\zeta) \nu\right| \\
& =|1-k \bar{z}|\left\|\widehat{f}^{\prime}\right\|_{\infty}=|1-k z| \widehat{f}^{\prime}(\eta)=|1-k z|(1-k f(0))
\end{aligned}
$$

by (2.12). In the same way, we get

$$
\left\|\widetilde{g_{1}}-\widetilde{g}\right\|_{\infty}=\sup _{(\zeta, \nu) \in \mathcal{M} \times \mathbb{T}}\left|(k z-1) \widehat{g^{\prime}}(\zeta) \nu\right|=|k z-1|\left\|\widehat{g^{\prime}}\right\|_{\infty}=|1-k z|(1-k g(0)),
$$

which yields $d\left(\tilde{f}, k V_{(\eta, z)}\right)=|1-k z|(1-k f(0))$ and $d\left(k V_{(\eta, k)}, \widetilde{g}\right)=|1-k z|(1-k g(0))$. Having in mind that $k f(0), k g(0) \in[0,1]$, we conclude that $\sup _{\tilde{f} \in k V_{(\eta, k)}} d\left(\widetilde{f}, k V_{(\eta, z)}\right)=$ $|1-k z|=\sup _{\tilde{g} \in k V_{(\eta, z)}} d\left(k V_{(\eta, k)}, \widetilde{g}\right)$.

Lemma 2.12. The identity $\phi_{1}(\eta, z)=\phi_{1}(\eta, 1)$ holds for all $\eta \in \mathcal{M}$ and $z \in \mathbb{T}$; we shall write $\phi_{1}(\eta, z)=\phi_{1}(\eta)$ for the sake of simplicity of notation.

Proof. Fix arbitrary $k \in\{ \pm 1\}, \eta \in \mathcal{M}$ and $z \in \mathbb{T} \backslash\{ \pm 1\}$. We assume that $\phi_{1}(\eta, z) \neq \phi_{1}(\eta, k)$. There exists $u_{k} \in S_{C(\mathcal{M})}$ such that

$$
u_{k}\left(\phi_{1}(\eta, z)\right)=k \alpha(\eta, z) \overline{\phi_{2}(k,(\eta, z))} \quad \text { and } \quad u_{k}\left(\phi_{1}(\eta, k)\right)=-k \alpha(\eta, k) \overline{\phi_{2}(k,(\eta, k))} .
$$

Setting $g_{k}=\mathcal{I}\left(u_{k}\right)$, we see that $\widetilde{g_{k}} \in k \alpha(\eta, z) V_{\phi(k,(\eta, z))} \cap(-k \alpha(\eta, k)) V_{\phi(k,(\eta, k))}$, where we have used $\phi_{1}(\lambda, x)=\phi_{1}(x)$ by Lemma 2.8. For any $\tilde{f} \in k \alpha(\eta, k) V_{\phi(k,(\eta, k))}$, we obtain

$$
2=|k \alpha(\eta, k)+k \alpha(\eta, k)|=\left|\widetilde{f}(\phi(k,(\eta, k)))-\widetilde{g_{k}}(\phi(k,(\eta, k)))\right| \leq\left\|\widetilde{f}-\widetilde{g_{k}}\right\|_{\infty} \leq 2
$$

which shows $d\left(k \alpha(\eta, k) V_{\phi(k,(\eta, k))}, \widetilde{g_{k}}\right)=2$. Combining (2.8), (2.9), (2.10) and (2.11), we get

$$
\begin{aligned}
2 & \leq \sup _{\tilde{g} \in k \alpha(\eta, z) V_{\phi(k,(\eta, z))}} d\left(k \alpha(\eta, k) V_{\phi(k,(\eta, k))}, \widetilde{g}\right) \\
& \leq d_{H}\left(k \alpha(\eta, k) V_{\phi(k,(\eta, k))}, k \alpha(\eta, z) V_{\phi(k,(\eta, z))}\right)=d_{H}\left(T\left(k V_{(\eta, k)}\right), T\left(k V_{(\eta, z)}\right)\right) \\
& =d_{H}\left(k V_{(\eta, k)}, k V_{(\eta, z)}\right)=|1-k z|
\end{aligned}
$$

which implies $z=-k$. This contradicts $z \neq \pm 1$, and thus $\phi_{1}(\eta, z)=\phi_{1}(\eta, k)$ for $z \neq \pm 1$. Entering $z=i$ and $k= \pm 1$ into the last equality, we get $\phi_{1}(\eta, 1)=\phi_{1}(\eta, i)=\phi_{1}(\eta,-1)$. Therefore, we conclude $\phi_{1}(\eta, z)=\phi_{1}(\eta, 1)$ for all $\eta \in \mathcal{M}$ and $z \in \mathbb{T}$.

Lemma 2.13. The following inequalities hold for all $\lambda, \mu \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$;

$$
\begin{align*}
&\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)} \phi_{2}(\mu, x)-\mu^{\varepsilon_{0}(x)}\right| \leq|\lambda-\mu|, \tag{2.13}\\
& \text { and } \quad\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)} \phi_{2}(\mu, x)+\mu^{\varepsilon_{0}(x)}\right| \leq|\lambda+\mu| .
\end{align*}
$$

Proof. Take any $\lambda, \mu \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. For each $\tilde{f} \in \lambda V_{x}$ and $\widetilde{g} \in \mu V_{x}$, we obtain $|\lambda-\mu|=|\widetilde{f}(x)-\widetilde{g}(x)| \leq\|\widetilde{f}-\widetilde{g}\|_{\infty}$, which yields $|\lambda-\mu| \leq d\left(\widetilde{f}, \mu V_{x}\right)$. Set $f_{0}=\bar{\lambda} \mu f$, and then we see that $\widetilde{f}_{0} \in \mu V_{x}$ with $\left\|\widetilde{f}-\widetilde{f}_{0}\right\|_{\infty}=\|(1-\bar{\lambda} \mu) \widetilde{f}\|_{\infty}=|\lambda-\mu|$. This implies $d\left(\widetilde{f}, \mu V_{x}\right)=|\lambda-\mu|$. By the same argument, we see that $d\left(\lambda V_{x}, \widetilde{g}\right)=|\lambda-\mu|$. Consequently, $d_{H}\left(\lambda V_{x}, \mu V_{x}\right)=|\lambda-\mu|$ by (2.9).

Let us define $f_{1}=\alpha(\lambda, x) \overline{\phi_{2}(\lambda, x)} \mathcal{I}\left(\mathbf{1}_{\mathcal{M}}\right)$, and then we see that $\tilde{f}_{1} \in \alpha(\lambda, x) V_{\phi(\lambda, x)}=$ $T\left(\lambda V_{x}\right)$ by (2.3) and (2.5). Set $\widetilde{g_{1}}=T(\widetilde{g})$ for each $\widetilde{g} \in \mu V_{x}$. Then $\widetilde{g_{1}} \in T\left(\mu V_{x}\right)=$ $\alpha(\mu, x) V_{\phi(\mu, x)}$. By the definition of the set νV_{y}, we have $\widehat{f}_{1}^{\prime}\left(\phi_{1}(x)\right) \phi_{2}(\lambda, x)=\lambda^{\varepsilon_{0}(x)} \alpha(x)$ and $g_{1}(0)+\widehat{g_{1}^{\prime}}\left(\phi_{1}(x)\right) \phi_{2}(\mu, x)=\mu^{\varepsilon_{0}(x)} \alpha(x)$, where we have used (2.8). We deduce from $\alpha(x), \phi_{2}(\lambda, x), \phi_{2}(\mu, x) \in \mathbb{T}$ that

$$
\begin{aligned}
&\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)}-\mu^{\varepsilon_{0}(x)} \overline{\phi_{2}(\mu, x)}\right| \leq\left|\widehat{f_{1}^{\prime}}\left(\phi_{1}(x)\right)-\widehat{g_{1}^{\prime}}\left(\phi_{1}(x)\right)\right|+\left|g_{1}(0)\right| \\
& \leq\left|f_{1}(0)-g_{1}(0)\right|+\left\|\widehat{f_{1}^{\prime}}-\widehat{g_{1}^{\prime}}\right\|_{\infty}=\left\|f_{1}-g_{1}\right\|_{\sigma}=\left\|\widetilde{f_{1}}-\widetilde{g_{1}}\right\|_{\infty}
\end{aligned}
$$

which shows $\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)}-\mu^{\varepsilon_{0}(x)} \overline{\phi_{2}(\mu, x)}\right| \leq d\left(\widetilde{f}_{1}, T\left(\mu V_{x}\right)\right)$. We infer from (2.9) and (2.10) that

$$
\begin{aligned}
\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)}-\mu^{\varepsilon_{0}(x)} \overline{\phi_{2}(\mu, x)}\right| & \leq \sup _{T(\widetilde{f}) \in T\left(\lambda V_{x}\right)} d\left(T(\widetilde{f}), T\left(\mu V_{x}\right)\right) \\
& \leq d_{H}\left(T\left(\lambda V_{x}\right), T\left(\mu V_{x}\right)\right)=d_{H}\left(\lambda V_{x}, \mu V_{x}\right)=|\lambda-\mu| .
\end{aligned}
$$

Thus, $\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)} \phi_{2}(\mu, x)-\mu^{\varepsilon_{0}(x)}\right| \leq|\lambda-\mu|$. Noting that $\phi_{2}(-\mu, x)=\phi_{2}(\mu, x)$ by (2.6), we obtain $\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)} \phi_{2}(\mu, x)+\mu^{\varepsilon_{0}(x)}\right| \leq|\lambda+\mu|$.

Lemma 2.14. For each $x \in \mathcal{M} \times \mathbb{T}$, there exists $\varepsilon_{1}(x) \in\{ \pm 1\}$ such that $\phi_{2}(\lambda, x)=\lambda^{\varepsilon_{0}(x)-\varepsilon_{1}(x)} \phi_{2}(1, x)$ for all $\lambda \in \mathbb{T}$.

Proof. Fix arbitrary $x \in \mathcal{M} \times \mathbb{T}$ and $\lambda \in \mathbb{T} \backslash\{ \pm 1\}$. We obtain

$$
\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)} \phi_{2}(1, x) \pm 1\right| \leq|\lambda \pm 1|
$$

by (2.13) with $\mu=1$, which implies $\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)} \phi_{2}(1, x) \in\{\lambda, \bar{\lambda}\}$. Hence,

$$
\overline{\phi_{2}(\lambda, x)} \phi_{2}(1, x) \in\left\{\lambda^{1-\varepsilon_{0}(x)}, \lambda^{-1-\varepsilon_{0}(x)}\right\} .
$$

In particular, $\overline{\phi_{2}(i, x)} \phi_{2}(1, x) \in\left\{ \pm \varepsilon_{0}(x)\right\}$, and thus $\phi_{2}(i, x)=\varepsilon_{1}(x) \varepsilon_{0}(x) \phi_{2}(1, x)$ for some $\varepsilon_{1}(x) \in\{ \pm 1\}$. Entering $\mu=i$ into (2.13) to get

$$
|\lambda-i| \geq\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)} \phi_{2}(i, x)-\varepsilon_{0}(x) i\right|=\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)} \varepsilon_{1}(x) \phi_{2}(1, x)-i\right| .
$$

By the same reasoning, we have $|\lambda+i| \geq\left|\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)} \varepsilon_{1}(x) \phi_{2}(1, x)+i\right|$. Then we derive from these two inequalities that $\lambda^{\varepsilon_{0}(x)} \overline{\phi_{2}(\lambda, x)} \varepsilon_{1}(x) \phi_{2}(1, x) \in\{\lambda,-\bar{\lambda}\}$. Thus, $\varepsilon_{1}(x) \overline{\phi_{2}(\lambda, x)} \phi_{2}(1, x) \in\left\{\lambda^{1-\varepsilon_{0}(x)},-\lambda^{-1-\varepsilon_{0}(x)}\right\}$. Now we obtain

$$
\overline{\phi_{2}(\lambda, x)} \phi_{2}(1, x) \in\left\{\lambda^{1-\varepsilon_{0}(x)}, \lambda^{-1-\varepsilon_{0}(x)}\right\} \cap\left\{\varepsilon_{1}(x) \lambda^{1-\varepsilon_{0}(x)},-\varepsilon_{1}(x) \lambda^{-1-\varepsilon_{0}(x)}\right\} .
$$

Note that $\lambda \neq \pm 1$. If $\varepsilon_{1}(x)=1$, then we get $\overline{\phi_{2}(\lambda, x)} \phi_{2}(1, x)=\lambda^{1-\varepsilon_{0}(x)}$, and if $\varepsilon_{1}(x)=$ -1 , then $\overline{\phi_{2}(\lambda, x)} \phi_{2}(1, x)=\lambda^{-1-\varepsilon_{0}(x)}$. These imply that $\overline{\phi_{2}(\lambda, x)} \phi_{2}(1, x)=\lambda^{\varepsilon_{1}(x)-\varepsilon_{0}(x)}$ for $\lambda \in \mathbb{T} \backslash\{ \pm 1\}$. The last identity is valid even for $\lambda \in\{ \pm 1\}$ by (2.6). Therefore, we conclude that $\phi_{2}(\lambda, x)=\lambda^{\varepsilon_{0}(x)-\varepsilon_{1}(x)} \phi_{2}(1, x)$ for all $\lambda \in \mathbb{T}$.

We shall write $\phi_{2}(1, x)=\phi_{2}(x)$ for $x \in \mathcal{M} \times \mathbb{T}$. Let $\lambda \in \mathbb{T}$ and $x \in \mathcal{M} \times \mathbb{T}$. By (2.8), $T(\widetilde{f})\left(\phi_{1}(x), \phi_{2}(\lambda, x)\right)=\lambda^{\varepsilon_{0}(x)} \alpha(x)=\alpha(\lambda, x)$ for $f \in S_{\operatorname{Lip}(I)}$ with $\widetilde{f} \in \lambda V_{x}$. Noting that $T(\widetilde{f})=\widetilde{\Delta(f)}$ by (2.4), we infer from Lemma 2.12 that

$$
\begin{equation*}
\Delta(f)(0)+\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda, x)=\alpha(\lambda, x) \tag{2.14}
\end{equation*}
$$

for all $\lambda \in \mathbb{T}, x=(\eta, z) \in \mathcal{M} \times \mathbb{T}$ and $f \in S_{\operatorname{Lip}(I)}$ with $\tilde{f} \in \lambda V_{x}$. If we apply Lemma 2.14, then we can rewrite the last equality as

$$
\begin{equation*}
\Delta(f)(0)+\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \lambda^{\varepsilon_{0}(x)-\varepsilon_{1}(x)} \phi_{2}(x)=\lambda^{\varepsilon_{0}(x)} \alpha(x) \tag{2.15}
\end{equation*}
$$

for $\lambda \in \mathbb{T}, x=(\eta, z) \in \mathcal{M} \times \mathbb{T}$ and $f \in S_{\operatorname{Lip}(I)}$ satisfying $\tilde{f} \in \lambda V_{x}$.
Lemma 2.15. Suppose that $\Delta\left(\lambda_{0} \mathbf{1}_{I}\right)(0)=0$ for some $\lambda_{0} \in \mathbb{T}$. Then $\Delta \widehat{\left(\lambda_{0} \mathrm{id}\right)^{\prime}}=$ 0 on \mathcal{M} for the identity function id on I.

Proof. Fix arbitrary $\eta \in \mathcal{M}$ and $z \in \mathbb{T}$, and we set $x=(\eta, z)$. We note $\lambda_{0} \widetilde{\mathbf{1}_{I}} \in$ $\lambda_{0} V_{x}$, and then equality (2.15) shows that $\left.\widehat{\Delta\left(\lambda_{0} \mathbf{1}_{I}\right.}\right)^{\prime}\left(\phi_{1}(\eta)\right) \lambda_{0}^{-\varepsilon_{1}(x)} \phi_{2}(x)=\alpha(x)$. We set $e(\eta)=\Delta \widehat{\left(\lambda_{0} \mathbf{1}_{I}\right)^{\prime}}\left(\phi_{1}(\eta)\right)$ for the sake of simplicity of notation. Then we can rewrite the above equality as

$$
\begin{equation*}
e(\eta) \lambda_{0}^{-\varepsilon_{1}(x)} \phi_{2}(x)=\alpha(x) . \tag{2.16}
\end{equation*}
$$

Since λ_{0} id $\in \lambda_{0} z V_{(\eta, z)}$, we get, by (2.15),

$$
\Delta\left(\lambda_{0} \mathrm{id}\right)(0)+\widehat{\Delta\left(\lambda_{0} \mathrm{id}\right)^{\prime}}\left(\phi_{1}(\eta)\right)\left(\lambda_{0} z\right)^{\varepsilon_{0}(x)-\varepsilon_{1}(x)} \phi_{2}(x)=\left(\lambda_{0} z\right)^{\varepsilon_{0}(x)} \alpha(x)
$$

Combining (2.16) with the last equality, we obtain

$$
\left.\Delta\left(\lambda_{0} \mathrm{id}\right)(0)+\widehat{\Delta\left(\lambda_{0} \mathrm{id}\right.}\right)^{\prime}\left(\phi_{1}(\eta)\right)\left(\lambda_{0} z\right)^{\varepsilon_{0}(x)-\varepsilon_{1}(x)} \phi_{2}(x)=\left(\lambda_{0} z\right)^{\varepsilon_{0}(x)} e(\eta) \lambda_{0}^{-\varepsilon_{1}(x)} \phi_{2}(x)
$$

which leads to

$$
\left.\Delta\left(\lambda_{0} \mathrm{id}\right)(0)=\left(\lambda_{0} z\right)^{\varepsilon_{0}(x)}\left\{e(\eta) z^{\varepsilon_{1}(x)}-\widehat{\Delta\left(\lambda_{0} \mathrm{id}\right.}\right)^{\prime}\left(\phi_{1}(\eta)\right)\right\}\left(\lambda_{0} z\right)^{-\varepsilon_{1}(x)} \phi_{2}(x)
$$

Note that $|e(\eta)|=1$ by (2.16). Taking the modulus of the above equality, we get
 holds for $z= \pm 1, i$. Then we have $\left.\widehat{\Delta\left(\lambda_{0} \mathrm{id}\right)}\right)^{\prime}\left(\phi_{1}(\eta)\right)=0$. Having in mind that $\eta \in \mathcal{M}$ is arbitrarily fixed, we obtain $\widehat{\Delta\left(\lambda_{0} \mathrm{id}\right)^{\prime}}=0$ on \mathcal{M}, where we have used $\phi_{1}(\mathcal{M})=\mathcal{M}$ by Lemmas 2.6, 2.8 and 2.12.

Lemma 2.16. For each $\lambda \in \mathbb{T}$, the value $\Delta\left(\lambda \mathbf{1}_{I}\right)(0)$ is nonzero.

Proof. Suppose, on the contrary, that $\Delta\left(\lambda_{0} \mathbf{1}_{I}\right)(0)=0$ for some $\lambda_{0} \in \mathbb{T}$. Then $\widehat{\Delta\left(\lambda_{0} \mathrm{id}\right)^{\prime}}=0$ on \mathcal{M} by Lemma 2.15. We define a function $f_{0} \in S_{\mathrm{Lip}(I)}$ by $f_{0}=$ $\lambda_{0}\left(2 \mathrm{id}+\mathrm{id}^{2}\right) / 4$. We shall prove that $\widehat{f}_{0}^{\prime}\left(\eta_{0}\right)=\lambda_{0}$ for some $\eta_{0} \in \mathcal{M}$. Let $\mathcal{R}(\mathrm{id})$ be the essential range of id $\in \operatorname{Lip}(I)$, that is, $\mathcal{R}(\mathrm{id})$ is the set of all $\zeta \in \mathbb{C}$ for which $\{t \in I:|\operatorname{id}(t)-\zeta|<\epsilon\}$ has positive measure for all $\epsilon>0$. By definition, we see that $\mathcal{R}(\mathrm{id})=\operatorname{id}(I)=I$. For the spectrum $\sigma(\mathrm{id})$ of id, we observe that $\mathcal{R}(\mathrm{id})=\sigma(\mathrm{id})=\widehat{\mathrm{id}}(\mathcal{M})$
(see, for example, [6, Lemma 2.63]). Thus, there exists $\eta_{0} \in \mathcal{M}$ such that $\widehat{\mathrm{id}}\left(\eta_{0}\right)=1$, which yields $\widehat{f_{0}^{\prime}}\left(\eta_{0}\right)=\lambda_{0}\left(2+2 \widehat{\mathrm{id}}\left(\eta_{0}\right)\right) / 4=\lambda_{0}$ as is claimed. Fix an arbitrary $z \in \mathbb{T}$, and then we see that $\lambda_{0} \widetilde{\mathrm{id}} \in \lambda_{0} z V_{\left(\eta_{0}, z\right)}$ with $\widehat{\Delta\left(\lambda_{0} \mathrm{id}\right)^{\prime}}=0$ on \mathcal{M}. Applying (2.14) to $f=\lambda_{0}$ id, we have $\Delta\left(\lambda_{0} \operatorname{id}\right)(0)=\alpha\left(\lambda_{0} z,\left(\eta_{0}, z\right)\right)$. Having in mind that $z \in \mathbb{T}$ is arbitrary, we may enter $z= \pm 1$ into the last equality. Then we get

$$
\begin{equation*}
\alpha\left(\lambda_{0},\left(\eta_{0}, 1\right)\right)=\alpha\left(-\lambda_{0},\left(\eta_{0},-1\right)\right) \tag{2.17}
\end{equation*}
$$

Note also that $\widetilde{f}_{0} \in \lambda_{0} z V_{\left(\eta_{0}, z\right)}$, and thus

$$
\Delta\left(f_{0}\right)(0)+\widehat{\Delta\left(f_{0}\right)^{\prime}}\left(\phi_{1}\left(\eta_{0}\right)\right) \phi_{2}\left(\lambda_{0} z,\left(\eta_{0}, z\right)\right)=\alpha\left(\lambda_{0} z,\left(\eta_{0}, z\right)\right)
$$

by (2.14). Since $\Delta\left(\lambda_{0} \mathrm{id}\right)(0)=\alpha\left(\lambda_{0} z,\left(\eta_{0}, z\right)\right)$, we can rewrite the above equality as

$$
\begin{equation*}
\Delta\left(f_{0}\right)(0)+\widehat{\Delta\left(f_{0}\right)^{\prime}}\left(\phi_{1}\left(\eta_{0}\right)\right) \phi_{2}\left(\lambda_{0} z,\left(\eta_{0}, z\right)\right)=\Delta\left(\lambda_{0} \mathrm{id}\right)(0) \tag{2.18}
\end{equation*}
$$

which yields $\left|\Delta\left(\lambda_{0} \mathrm{id}\right)(0)-\Delta\left(f_{0}\right)(0)\right|=\left|\widehat{\Delta\left(f_{0}\right)^{\prime}}\left(\phi_{1}\left(\eta_{0}\right)\right)\right| \leq\left\|\widehat{\Delta\left(f_{0}\right)^{\prime}}\right\|_{\infty}$. We thus obtain

$$
\begin{aligned}
2\left\|\widehat{\Delta\left(f_{0}\right)^{\prime}}\right\|_{\infty} & \geq\left|\Delta\left(\lambda_{0} \mathrm{id}\right)(0)-\Delta\left(f_{0}\right)(0)\right|+\left\|\widehat{\Delta\left(f_{0}\right)^{\prime}}\right\|_{\infty} \\
& =\left|\Delta\left(\lambda_{0} \mathrm{id}\right)(0)-\Delta\left(f_{0}\right)(0)\right|+\left\|\widehat{\Delta\left(\lambda_{0} \mathrm{id}\right)^{\prime}}-\widehat{\Delta\left(f_{0}\right)^{\prime}}\right\|_{\infty} \\
& =\| \Delta\left(\lambda_{0} \text { id }\right)-\Delta\left(f_{0}\right)\left\|_{\sigma}=\right\| \lambda_{0} \mathrm{id}-f_{0}\left\|_{\sigma}=\frac{1}{2}\right\| \widehat{\mathbf{1}_{I}}-\widehat{\mathrm{id}} \|_{\infty}=\frac{1}{2} .
\end{aligned}
$$

Hence, we have $\left\|\widehat{\Delta\left(f_{0}\right)^{\prime}}\right\|_{\infty} \geq 1 / 4$, which implies $\left|\Delta\left(f_{0}\right)(0)\right| \leq 3 / 4$, since $\left\|\Delta\left(f_{0}\right)\right\|_{\sigma}=1$. It follows from (2.18) that

$$
1=\left|\alpha\left(\lambda_{0} z,\left(\eta_{0}, z\right)\right)\right|=\left|\Delta\left(\lambda_{0} \mathrm{id}\right)(0)\right|=\left|\Delta\left(f_{0}\right)(0)+\widehat{\Delta\left(f_{0}\right)^{\prime}}\left(\phi_{1}\left(\eta_{0}\right)\right) \phi_{2}\left(\lambda_{0} z,\left(\eta_{0}, z\right)\right)\right|
$$

Since $\left|\Delta\left(f_{0}\right)(0)\right| \leq 3 / 4$, we see that $\widehat{\Delta\left(f_{0}\right)^{\prime}}\left(\phi_{1}\left(\eta_{0}\right)\right) \neq 0$. By the liberty of the choice of $z \in \mathbb{T}$, we deduce from (2.18) that $\phi_{2}\left(\lambda_{0} z,\left(\eta_{0}, z\right)\right)$ is invariant with respect to $z \in \mathbb{T}$. Entering $z= \pm 1$ into $\phi_{2}\left(\lambda_{0} z,\left(\eta_{0}, z\right)\right)$, we get

$$
\begin{equation*}
\phi_{2}\left(\lambda_{0},\left(\eta_{0}, 1\right)\right)=\phi_{2}\left(-\lambda_{0},\left(\eta_{0},-1\right)\right) \tag{2.19}
\end{equation*}
$$

Set $f_{1}=\lambda_{0}\left(2+\mathrm{id}^{2}\right) / 4 \in S_{\mathrm{Lip}(I)}$, and then we have $\widetilde{f}_{1} \in \lambda_{0} V_{\left(\eta_{0}, 1\right)}$, because $\widehat{\mathrm{id}}\left(\eta_{0}\right)=1$. We deduce from (2.14) that

$$
\begin{equation*}
\Delta\left(f_{1}\right)(0)+\widehat{\Delta\left(f_{1}\right)^{\prime}}\left(\phi_{1}\left(\eta_{0}\right)\right) \phi_{2}\left(\lambda_{0},\left(\eta_{0}, 1\right)\right)=\alpha\left(\lambda_{0},\left(\eta_{0}, 1\right)\right) \tag{2.20}
\end{equation*}
$$

Combining (2.17) and (2.19) with (2.20), we have

$$
\Delta\left(f_{1}\right)(0)+\widehat{\Delta\left(f_{1}\right)^{\prime}}\left(\phi_{1}\left(\eta_{0}\right)\right) \phi_{2}\left(-\lambda_{0},\left(\eta_{0},-1\right)\right)=\alpha\left(-\lambda_{0},\left(\eta_{0},-1\right)\right)
$$

Here, we recall that $T\left(\widetilde{f}_{1}\right)=\widetilde{\Delta\left(f_{1}\right)}$ by (2.4). Then the above equality with (2.5) and (2.14) implies that $T\left(\widetilde{f}_{1}\right) \in \alpha\left(-\lambda_{0},\left(\eta_{0},-1\right)\right) V_{\phi\left(-\lambda_{0},\left(\eta_{0},-1\right)\right)}=T\left(-\lambda_{0} V_{\left(\eta_{0},-1\right)}\right)$, which
shows $\widetilde{f}_{1} \in\left(-\lambda_{0}\right) V_{\left(\eta_{0},-1\right)}$. Consequently, $\tilde{f}_{1} \in\left(-\lambda_{0}\right) V_{\left(\eta_{0},-1\right)} \cap \lambda_{0} V_{\left(\eta_{0}, 1\right)}$, and therefore, we obtain

$$
f_{1}(0)-\widehat{f_{1}^{\prime}}\left(\eta_{0}\right)=-\lambda_{0}=-\left\{f_{1}(0)+\widehat{f_{1}^{\prime}}\left(\eta_{0}\right)\right\}
$$

This leads to $f_{1}(0)=-f_{1}(0)$, which yields $f_{1}(0)=0$. On the other hand, $f_{1}(0)=$ $\lambda_{0}\left(2+\operatorname{id}^{2}(0)\right) / 4=\lambda_{0} / 2 \neq 0$. This is a contradiction. We conclude that $\Delta\left(\lambda \mathbf{1}_{I}\right)(0) \neq 0$ for all $\lambda \in \mathbb{T}$.

Lemma 2.17. The values $\alpha(x)$ and $\varepsilon_{0}(x)$ are both independent from the variable $x \in \mathcal{M} \times \mathbb{T}$; we shall write $\alpha(x)=\alpha$ and $\varepsilon_{0}(x)=\varepsilon_{0}$.

Proof. Take any $\lambda \in \mathbb{T}$ and $x=(\eta, z) \in \mathcal{M} \times \mathbb{T}$. According to (2.14), applied to $f=\lambda \mathbf{1}_{I}$, we have

$$
\begin{aligned}
1 & =\left|\lambda^{\varepsilon_{0}(x)} \alpha(x)\right|=\left|\Delta\left(\lambda \mathbf{1}_{I}\right)(0)+\widehat{\Delta\left(\lambda \mathbf{1}_{I}\right)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda, x)\right| \\
& \leq\left|\Delta\left(\lambda \mathbf{1}_{I}\right)(0)\right|+\left|\widehat{\Delta\left(\lambda \mathbf{1}_{I}\right)^{\prime}}\left(\phi_{1}(\eta)\right)\right| \leq\left\|\Delta\left(\lambda \mathbf{1}_{I}\right)\right\|_{\sigma}=1 .
\end{aligned}
$$

The above inequalities show that

$$
\left|\Delta\left(\lambda \mathbf{1}_{I}\right)(0)+\widehat{\Delta\left(\lambda \mathbf{1}_{I}\right)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda, x)\right|=1=\left|\Delta\left(\lambda \mathbf{1}_{I}\right)(0)\right|+\left|\widehat{\Delta\left(\lambda \mathbf{1}_{I}\right)^{\prime}}\left(\phi_{1}(\eta)\right)\right| .
$$

Note that $\Delta\left(\lambda \mathbf{1}_{I}\right)(0) \neq 0$ by Lemma 2.16. By the above equality, there exists $t \geq 0$ such that $\widehat{\Delta\left(\lambda \mathbf{1}_{I}\right)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda, x)=t \Delta\left(\lambda \mathbf{1}_{I}\right)(0)$. We thus obtain

$$
\left|t \Delta\left(\lambda \mathbf{1}_{I}\right)(0)\right|=\left|\widehat{\Delta\left(\lambda \mathbf{1}_{I}\right)^{\prime}}\left(\phi_{1}(\eta)\right)\right|=1-\left|\Delta\left(\lambda \mathbf{1}_{I}\right)(0)\right|
$$

which yields $(1+t)\left|\Delta\left(\lambda \mathbf{1}_{I}\right)(0)\right|=1$. Consequently,

$$
\lambda^{\varepsilon_{0}(x)} \alpha(x)=\Delta\left(\lambda \mathbf{1}_{I}\right)(0)+\widehat{\Delta\left(\lambda \mathbf{1}_{I}\right)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda, x)=(1+t) \Delta\left(\lambda \mathbf{1}_{I}\right)(0)=\frac{\Delta\left(\lambda \mathbf{1}_{I}\right)(0)}{\left|\Delta\left(\lambda \mathbf{1}_{I}\right)(0)\right|}
$$

by (2.14). Then $\alpha(x)=\Delta\left(\mathbf{1}_{I}\right)(0) /\left|\Delta\left(\mathbf{1}_{I}\right)(0)\right|$ is independent from $x \in \mathcal{M} \times \mathbb{T}$. Letting $\lambda=i$ in the above equality, we get $i \varepsilon_{0}(x) \alpha(x)=\Delta\left(i \mathbf{1}_{I}\right)(0) /\left|\Delta\left(i \mathbf{1}_{I}\right)(0)\right|$. Thus, ε_{0} is constant on $\mathcal{M} \times \mathbb{T}$.

By Lemma 2.17, we can rewrite (2.15) as

$$
\begin{equation*}
\Delta(f)(0)+\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \lambda^{\varepsilon_{0}-\varepsilon_{1}(x)} \phi_{2}(x)=\lambda^{\varepsilon_{0}} \alpha \tag{2.21}
\end{equation*}
$$

for all $\lambda \in \mathbb{T}, x=(\eta, z) \in \mathcal{M} \times \mathbb{T}$ and $f \in S_{\operatorname{Lip}(I)}$ with $\tilde{f} \in \lambda V_{x}$.
Lemma 2.18. Let $\eta \in \mathcal{M}, \lambda \in \mathbb{T}$ and $f \in S_{\operatorname{Lip}(I)}$ be such that $\widehat{f^{\prime}}(\eta)=\lambda$. Then $\Delta(f)$ satisfies $\Delta(f)(0)=0$ and

$$
\begin{equation*}
\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda z,(\eta, z))=(\lambda z)^{\varepsilon_{0}} \alpha \tag{2.22}
\end{equation*}
$$

for all $z \in \mathbb{T}$.

Proof. Fix an arbitrary $z \in \mathbb{T}$. By the choice of f, we have $\tilde{f} \in \lambda z V_{(\eta, z)}$. By (2.21) with $\phi_{2}(\lambda z,(\eta, z))=(\lambda z)^{\varepsilon_{0}-\varepsilon_{1}(\eta, z)} \phi_{2}(\eta, z)$, we obtain

$$
\begin{equation*}
\Delta(f)(0)+\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda z,(\eta, z))=(\lambda z)^{\varepsilon_{0}} \alpha \tag{2.23}
\end{equation*}
$$

We observe that $\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty} \neq 0$; for if $\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}=0$, then we would have $\Delta(f)(0)=$ $(\lambda z)^{\varepsilon_{0}} \alpha$ for all $z \in \mathbb{T}$, which is impossible. Equality (2.23) shows that

$$
\begin{aligned}
1 & =\left|\Delta(f)(0)+\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda z,(\eta, z))\right| \\
& \leq|\Delta(f)(0)|+\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)\right| \leq\|\Delta(f)\|_{\sigma}=1,
\end{aligned}
$$

and hence, $\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)\right|=\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty} \neq 0$. Then there exists $s \geq 0$ such that

$$
\begin{equation*}
\Delta(f)(0)=s \widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda z,(\eta, z)) \tag{2.24}
\end{equation*}
$$

It follows from (2.23) that

$$
(1+s) \widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda z,(\eta, z))=(\lambda z)^{\varepsilon_{0}} \alpha
$$

which yields $(1+s)\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}=1$, or equivalently, $s\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}=1-\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}$. These equalities show that

$$
\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda z,(\eta, z))=\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}(\lambda z)^{\varepsilon_{0}} \alpha
$$

We deduce from the last equality with (2.24) that $\Delta(f)(0)=s\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}(\lambda z)^{\varepsilon_{0}} \alpha=$ $\left(1-\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}\right)(\lambda z)^{\varepsilon_{0}} \alpha$, that is,

$$
\Delta(f)(0)=\left(1-\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}\right)(\lambda z)^{\varepsilon_{0}} \alpha
$$

By the liberty of the choice of $z \in \mathbb{T}$, we get $1-\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}=0=\Delta(f)(0)$. Thus, by (2.23), $\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\lambda z,(\eta, z))=(\lambda z)^{\varepsilon_{0}} \alpha$ for all $z \in \mathbb{T}$.

Lemma 2.19. For each $\lambda, z \in \mathbb{T}$ and $\eta \in \mathcal{M}$,

$$
\phi_{2}(\lambda,(\eta, z))=\lambda^{\varepsilon_{0}-\varepsilon_{1}(\eta)} \phi_{2}(1,(\eta, 1)) z^{\varepsilon_{1}(\eta)},
$$

where $\varepsilon_{1}(\eta)=\varepsilon_{1}(\eta, 1)$.

Proof. Fix arbitrary $\lambda, z \in \mathbb{T}$ and $\eta \in \mathcal{M}$. Setting $\mu=\lambda \bar{z}$ and $v=\mu \mathbf{1}_{\mathcal{M}} \in S_{C(\mathcal{M})}$, we see that $\mathcal{I}(v) \in S_{\operatorname{Lip}(I)}$ satisfies $\widehat{\mathcal{I}(v)^{\prime}}(\eta)=\mu$ by (2.3). We may apply (2.22) to $f=\mathcal{I}(v)$, and we get $\widehat{\Delta(\mathcal{I}(v))^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\mu z,(\eta, z))=(\mu z)^{\varepsilon_{0}} \alpha$. Therefore, we obtain

$$
\widehat{\Delta(\mathcal{I}(v))^{\prime}}\left(\phi_{1}(\eta)\right) \phi_{2}(\mu z,(\eta, z))=\mu^{\varepsilon_{0}} \alpha \cdot z^{\varepsilon_{0}}=\widehat{\Delta\left(\mathcal{I}(v)^{\prime}\right.}\left(\phi_{1}(\eta)\right) \phi_{2}(\mu,(\eta, 1)) z^{\varepsilon_{0}}
$$

Then $\widehat{\Delta(\mathcal{I}(v))^{\prime}}{ }^{\prime}\left(\phi_{1}(\eta)\right) \neq 0$, and hence $\phi_{2}(\mu z,(\eta, z))=\phi_{2}(\mu,(\eta, 1)) z^{\varepsilon_{0}}$. This implies

$$
\phi_{2}(\lambda,(\eta, z))=\phi_{2}(\lambda \bar{z},(\eta, 1)) z^{\varepsilon_{0}} .
$$

Applying Lemmas 2.14 and 2.17 to the last equality, we now get

$$
\begin{aligned}
\phi_{2}(\lambda,(\eta, z)) & =\phi_{2}(\lambda \bar{z},(\eta, 1)) z^{\varepsilon_{0}}=(\lambda \bar{z})^{\varepsilon_{0}-\varepsilon_{1}(\eta)} \phi_{2}(1,(\eta, 1)) z^{\varepsilon_{0}} \\
& =\lambda^{\varepsilon_{0}-\varepsilon_{1}(\eta)} \phi_{2}(1,(\eta, 1)) z^{\varepsilon_{1}(\eta)}
\end{aligned}
$$

Consequently, $\phi_{2}(\lambda,(\eta, z))=\lambda^{\varepsilon_{0}-\varepsilon_{1}(\eta)} \phi_{2}(1,(\eta, 1)) z^{\varepsilon_{1}(\eta)}$.
We shall write $\phi_{2}(1,(\eta, 1))=\phi_{2}(\eta)$ for simplicity. According to Lemma 2.19, we can write

$$
\begin{equation*}
\phi_{2}(\lambda,(\eta, z))=\lambda^{\varepsilon_{0}-\varepsilon_{1}(\eta)} \phi_{2}(\eta) z^{\varepsilon_{1}(\eta)} \tag{2.25}
\end{equation*}
$$

for all $\lambda \in \mathbb{T}$ and $(\eta, z) \in \mathcal{M} \times \mathbb{T}$. Combining (2.21) and (2.25), with $\phi_{2}(\lambda, x)=$ $\lambda^{\varepsilon_{0}-\varepsilon_{1}(x)} \phi_{2}(x)$, we obtain

$$
\begin{equation*}
\Delta(f)(0)+\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \lambda^{\varepsilon_{0}-\varepsilon_{1}(\eta)} \phi_{2}(\eta) z^{\varepsilon_{1}(\eta)}=\lambda^{\varepsilon_{0}} \alpha \tag{2.26}
\end{equation*}
$$

for all $\lambda \in \mathbb{T},(\eta, z) \in \mathcal{M} \times \mathbb{T}$ and $f \in S_{\operatorname{Lip}(I)}$ with $\tilde{f} \in \lambda V_{(\eta, z)}$.
Lemma 2.20. Let $\lambda \in \mathbb{T},(\eta, z) \in \mathcal{M} \times \mathbb{T}$ and $f \in S_{\operatorname{Lip}(I)}$ be such that $\widetilde{f} \in$ $\lambda V_{(\eta, z)}$. Then

$$
\Delta(f)(0)=|\Delta(f)(0)| \lambda^{\varepsilon_{0}} \alpha \quad \text { and } \quad \widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)=\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty} \lambda^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)} z^{-\varepsilon_{1}(\eta)}
$$

In particular,

$$
\begin{equation*}
|\Delta(f)(0)|+\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)\right|=|f(0)|+\left|\widehat{f^{\prime}}(\eta)\right| \tag{2.27}
\end{equation*}
$$

for all $f \in S_{\operatorname{Lip}(I)}$ with $\tilde{f} \in \lambda V_{(\eta, z)}$.
Proof. By assumption, (2.26) holds. Taking the modulus of (2.26) to get

$$
\begin{align*}
1 & \leq|\Delta(f)(0)|+\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \lambda^{\varepsilon_{0}-\varepsilon_{1}(\eta)} \phi_{2}(\eta) z^{\varepsilon_{1}(\eta)}\right| \tag{2.28}\\
& \leq|\Delta(f)(0)|+\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}=\|\Delta(f)\|_{\sigma}=1 .
\end{align*}
$$

We derive from the last inequalities that $\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)\right|=\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}$.
If $\Delta(f)(0)=0$, then the identity $\Delta(f)(0)=|\Delta(f)(0)| \lambda^{\varepsilon_{0}} \alpha$ is obvious; in addition, $\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}=\|\Delta(f)\|_{\sigma}=1$, and hence $\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)=\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty} \lambda^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)} z^{-\varepsilon_{1}(\eta)}$ by (2.26). We next consider the case when $\Delta(f)(0) \neq 0$. There exists $s \geq 0$ such
that $\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \lambda^{\varepsilon_{0}-\varepsilon_{1}(\eta)} \phi_{2}(\eta) z^{\varepsilon_{1}(\eta)}=s \Delta(f)(0)$ by (2.28). Entering the last equality into (2.26) to get $(1+s) \Delta(f)(0)=\lambda^{\varepsilon_{0}} \alpha$. We thus obtain $(1+s)|\Delta(f)(0)|=1$, and consequently, $\Delta(f)(0)=|\Delta(f)(0)| \lambda^{\varepsilon_{0}} \alpha$ holds even if $\Delta(f)(0) \neq 0$. Having in mind that $|\Delta(f)(0)|+\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty}=1$, we infer from (2.26) that

$$
\begin{aligned}
\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty} \lambda^{\varepsilon_{0}} \alpha & =(1-|\Delta(f)(0)|) \lambda^{\varepsilon_{0}} \alpha=\lambda^{\varepsilon_{0}} \alpha-\Delta(f)(0) \\
& =\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right) \lambda^{\varepsilon_{0}-\varepsilon_{1}(\eta)} \phi_{2}(\eta) z^{\varepsilon_{1}(\eta)}
\end{aligned}
$$

This shows that $\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)=\left\|\widehat{\Delta(f)^{\prime}}\right\|_{\infty} \lambda^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)} z^{-\varepsilon_{1}(\eta)}$. Since $\tilde{f} \in \lambda V_{(\eta, z)}$, we get

$$
1=|\lambda|=\left|f(0)+\widehat{f^{\prime}}(\eta) z\right| \leq|f(0)|+\left|\widehat{f^{\prime}}(\eta)\right| \leq\|f\|_{\sigma}=1
$$

and hence $|\Delta(f)(0)|+\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)\right|=1=|f(0)|+\left|\widehat{f^{\prime}}(\eta)\right|$.
For each $\lambda \in \mathbb{T}$ and $\eta \in \mathcal{M}$, we define λP_{η} by

$$
\lambda P_{\eta}=\left\{u \in S_{C(\mathcal{M})}: u(\eta)=\lambda\right\} .
$$

Lemma 2.21. Let $\eta_{0} \in \mathcal{M}$ and $f \in S_{\operatorname{Lip}(I)}$. We set $\lambda=\widehat{f}^{\prime}\left(\eta_{0}\right) /\left|\widehat{f}^{\prime}\left(\eta_{0}\right)\right|$ if $\widehat{f^{\prime}}\left(\eta_{0}\right) \neq 0$, and $\lambda=1$ if $\widehat{f}^{\prime}\left(\eta_{0}\right)=0$. For each $t \in \mathbb{R}$ with $0<t<1$, there exists $u_{t} \in P_{\eta_{0}}$ such that

$$
|t f(0)| \lambda+t \widehat{f}^{\prime}+\left\{1-|t f(0)|-\left|t \widehat{f}^{\prime}\left(\eta_{0}\right)\right|\right\} \lambda u_{t} \in \lambda P_{\eta_{0}}
$$

Proof. Note first that $1-|t f(0)|-\left|t \widehat{f^{\prime}}\left(\eta_{0}\right)\right|>0$, since $|t f(0)|+\left|t \widehat{f^{\prime}}\left(\eta_{0}\right)\right| \leq\|t f\|_{\sigma}<$ 1. We set $r=1-|t f(0)|-\left|t \widehat{f}^{\prime}\left(\eta_{0}\right)\right|$,

$$
\begin{aligned}
G_{0}=\left\{\eta \in \mathcal{M}:\left|t \widehat{f^{\prime}}(\eta)-t \widehat{f}^{\prime}\left(\eta_{0}\right)\right|\right. & \left.\geq \frac{r}{4}\right\} \\
\text { and } \quad G_{m} & =\left\{\eta \in \mathcal{M}: \frac{r}{2^{m+2}} \leq\left|t \widehat{f^{\prime}}(\eta)-t \widehat{f}^{\prime}\left(\eta_{0}\right)\right| \leq \frac{r}{2^{m+1}}\right\}
\end{aligned}
$$

for each $m \in \mathbb{N}$. We see that G_{n} is a closed subset of \mathcal{M} with $\eta_{0} \notin G_{n}$ for all $n \in \mathbb{N} \cup\{0\}$. For each $n \in \mathbb{N} \cup\{0\}$, there exists $v_{n} \in P_{\eta_{0}}$ such that

$$
\begin{equation*}
v_{n}=0 \quad \text { on } G_{n} \tag{2.29}
\end{equation*}
$$

by Urysohn's lemma. Setting $u_{t}=v_{0} \sum_{n=1}^{\infty} v_{n} / 2^{n}$, we see that u_{t} converges in $C(\mathcal{M})$, since $\left\|v_{n}\right\|_{\infty}=1$ for all $n \in \mathbb{N}$. We observe that

$$
1=u_{t}\left(\eta_{0}\right) \leq\left\|u_{t}\right\|_{\infty} \leq\left\|v_{0}\right\|_{\infty} \sum_{n=1}^{\infty} \frac{\left\|v_{n}\right\|_{\infty}}{2^{n}}=1
$$

and hence $u_{t} \in P_{\eta_{0}}$. Here, we define

$$
w_{t}=|t f(0)| \lambda+t \widehat{f}^{\prime}+r \lambda u_{t} \in C(\mathcal{M})
$$

We shall prove that $w_{t} \in \lambda P_{\eta_{0}}$. Since $u_{t}\left(\eta_{0}\right)=1$ and $t \widehat{f^{\prime}}\left(\eta_{0}\right)=\left|t \widehat{f}^{\prime}\left(\eta_{0}\right)\right| \lambda$, we have

$$
w_{t}\left(\eta_{0}\right)=|t f(0)| \lambda+t \widehat{f^{\prime}}\left(\eta_{0}\right)+\left\{1-|t f(0)|-\left|t \widehat{f}^{\prime}\left(\eta_{0}\right)\right|\right\} \lambda=\lambda
$$

Fix an arbitrary $\eta \in \mathcal{M}$. To prove that $\left|w_{t}(\eta)\right| \leq 1$, we shall consider three cases. First, we consider the case when $\eta \in G_{0}$. Then $v_{0}(\eta)=0$ by (2.29), and hence $u_{t}(\eta)=0$ by definition. We thus obtain $\left|w_{t}(\eta)\right| \leq|t t(0)| \lambda+t \widehat{f}^{\prime}(\eta) \mid \leq\|t f\|_{\sigma}<1$, and consequently, $\left|w_{t}(\eta)\right|<1$ if $\eta \in G_{0}$.

We next consider the case when $\eta \in \cup_{n=1}^{\infty} G_{n}$, and then $\eta \in G_{m}$ for some $m \in \mathbb{N}$. By the choice of G_{m}, we get $\left|t \widehat{f}^{\prime}(\eta)-t \widehat{f}^{\prime}\left(\eta_{0}\right)\right| \leq r / 2^{m+1}$. Thus, $\left|t \widehat{f}^{\prime}(\eta)\right| \leq\left|t \widehat{f}^{\prime}\left(\eta_{0}\right)\right|+r / 2^{m+1}$. We derive from (2.29) that $\left|r \lambda u_{t}(\eta)\right| \leq r\left|v_{0}(\eta)\right| \sum_{n \neq m}\left|v_{n}(\eta)\right| / 2^{n} \leq r\left(1-2^{-m}\right)$. Since $|t f(0)|+\left|\widehat{t f^{\prime}}\left(\eta_{0}\right)\right|=1-r$, we obtain

$$
\begin{aligned}
\left|w_{t}(\eta)\right| & \leq|t f(0)|+\left|t \hat{f}^{\prime}(\eta)\right|+\left|r \lambda u_{t}(\eta)\right| \leq|t f(0)|+\left|t \hat{f}^{\prime}\left(\eta_{0}\right)\right|+\frac{r}{2^{m+1}}+r\left(1-\frac{1}{2^{m}}\right) \\
& =(1-r)-\frac{r}{2^{m+1}}+r=1-\frac{r}{2^{m+1}}<1
\end{aligned}
$$

Hence, $\left|w_{t}(\eta)\right|<1$ for $\eta \in \cup_{n=1}^{\infty} G_{n}$.
Finally we consider the case when $\eta \notin \cup_{n=0}^{\infty} G_{n}$. Then $\widehat{f}^{\prime}(\eta)=\widehat{f^{\prime}}\left(\eta_{0}\right)$, and hence $\left|w_{t}(\eta)\right| \leq|t f(0)|+\left|t \widehat{f}^{\prime}\left(\eta_{0}\right)\right|+r=1$. We thus conclude that $\left|w_{t}(\eta)\right| \leq 1$ for all $\eta \in \mathcal{M}$, and consequently, $w_{t} \in \lambda P_{\eta_{0}}$.

§ 3. Proof of Main results

Proof of Theorem 1.1. Fix arbitrary $f \in S_{\operatorname{Lip}(I)}$ and $\eta \in \mathcal{M}$. Set $\zeta=\phi_{1}(\eta)$ and $\lambda=\widehat{f^{\prime}}(\eta) /\left|\widehat{f^{\prime}}(\eta)\right|$ if $\widehat{f^{\prime}}(\eta) \neq 0$, and $\lambda=1$ if $\widehat{f^{\prime}}(\eta)=0$. Thus, $\widehat{f^{\prime}}(\eta)=\left|\widehat{f^{\prime}}(\eta)\right| \lambda$. For each $t \in \mathbb{R}$ with $0<t<1$, we define $r=1-|t f(0)|-\left|t \widehat{f}^{\prime}(\eta)\right|$, and then $r>0$. By Lemma 2.21, there exists $u_{t} \in P_{\eta}$ such that $w_{t}=|t f(0)| \lambda+t \widehat{f}^{\prime}+r \lambda u_{t} \in \lambda P_{\eta}$. We obtain

$$
\begin{aligned}
\left\|w_{t}-\widehat{f}^{\prime}\right\|_{\infty} & =\left\||t f(0)| \lambda+(t-1) \widehat{f^{\prime}}+r \lambda u_{t}\right\|_{\infty} \\
& \leq|t f(0)|+(1-t)\left\|\widehat{f^{\prime}}\right\|_{\infty}+1-|t f(0)|-\left|t \widehat{f}^{\prime}(\eta)\right| \\
& =(1-t)\left\|\widehat{f^{\prime}}\right\|_{\infty}+1-\left|t \widehat{f}^{\prime}(\eta)\right| .
\end{aligned}
$$

Since $w_{t} \in \lambda P_{\eta}$, we see that $\widehat{\mathcal{I}\left(w_{t}\right)^{\prime}}(\eta)=w_{t}(\eta)=\lambda$, that is, $\widetilde{\mathcal{I}\left(w_{t}\right)} \in \lambda V_{(\eta, 1)}$. Then $\Delta\left(\mathcal{I}\left(w_{t}\right)\right)(0)=0$ and $\left.\left.\Delta \widehat{\left(\mathcal{I}\left(w_{t}\right)\right.}\right)^{\prime}(\zeta)=\Delta \widehat{\left(\mathcal{I}\left(w_{t}\right)\right.}\right)^{\prime}\left(\phi_{1}(\eta)\right)=\lambda^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)}$ by Lemma 2.20.

We get

$$
\begin{aligned}
1-\left|\widehat{\Delta(f)^{\prime}}(\zeta)\right| & =\left|\lambda^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)}\right|-\left|\widehat{\Delta(f)^{\prime}}(\zeta)\right| \leq\left|\lambda^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)}-\widehat{\Delta(f)^{\prime}}(\zeta)\right| \\
& \left.\left.=\mid \Delta \widehat{\left(\mathcal{I}\left(w_{t}\right)\right.}\right)\right)^{\prime}(\zeta)-\widehat{\Delta(f)^{\prime}}(\zeta) \mid \leq\left\|\Delta\left(\widehat{\mathcal{I}\left(w_{t}\right)}\right)^{\prime}-\widehat{\Delta(f)^{\prime}}\right\|_{\infty} \\
& =\left\|\Delta\left(\mathcal{I}\left(w_{t}\right)\right)-\Delta(f)\right\|_{\sigma}-|\Delta(f)(0)| \\
& =\left\|\mathcal{I}\left(w_{t}\right)-f\right\|_{\sigma}-|\Delta(f)(0)|=|f(0)|+\left\|w_{t}-\widehat{f^{\prime}}\right\|_{\infty}-|\Delta(f)(0)| \\
& \leq|f(0)|+(1-t)\left\|\widehat{f}^{\prime}\right\|_{\infty}+1-\left|t \widehat{f}^{\prime}(\eta)\right|-|\Delta(f)(0)|,
\end{aligned}
$$

where we have used that $\Delta\left(\mathcal{I}\left(w_{t}\right)\right)(0)=0=\mathcal{I}\left(w_{t}\right)(0)$ and Δ is an isometry. Letting $t \nearrow 1$ in the above inequalities, we have

$$
\begin{equation*}
1-\left|\widehat{\Delta(f)^{\prime}}(\zeta)\right| \leq\left|\lambda^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)}-\widehat{\Delta(f)^{\prime}}(\zeta)\right| \leq|f(0)|+1-\left|\widehat{f^{\prime}}(\eta)\right|-|\Delta(f)(0)| . \tag{3.1}
\end{equation*}
$$

In particular, we obtain $|\Delta(f)(0)|-\left|\widehat{\Delta(f)^{\prime}}(\zeta)\right| \leq|f(0)|-\left|\widehat{f^{\prime}}(\eta)\right|$, that is,

$$
\begin{equation*}
|\Delta(f)(0)|-\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)\right| \leq|f(0)|-\left|\widehat{f^{\prime}}(\eta)\right| \tag{3.2}
\end{equation*}
$$

Let $\eta_{0} \in \mathcal{M}$ be such that $\left|\widehat{f^{\prime}}\left(\eta_{0}\right)\right|=\left\|\widehat{f^{\prime}}\right\|_{\infty}$. There exist $\mu, z \in \mathbb{T}$ such that $f(0)=|f(0)| \mu$ and $\widehat{f^{\prime}}\left(\eta_{0}\right)=\left|\widehat{f^{\prime}}\left(\eta_{0}\right)\right| z=\left\|\widehat{f^{\prime}}\right\|_{\infty} z$. Thus,

$$
f(0)+\widehat{f^{\prime}}\left(\eta_{0}\right) \bar{z} \mu=\left(|f(0)|+\left\|\widehat{f^{\prime}}\right\|_{\infty}\right) \mu=\|f\|_{\sigma} \mu=\mu
$$

and hence $\tilde{f} \in \mu V_{\left(\eta_{0}, \bar{z} \mu\right)}$. Equality (2.27) shows that

$$
\begin{equation*}
|\Delta(f)(0)|+\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}\left(\eta_{0}\right)\right)\right|=|f(0)|+\left|\widehat{f^{\prime}}\left(\eta_{0}\right)\right| . \tag{3.3}
\end{equation*}
$$

Note that $|\Delta(f)(0)|-\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}\left(\eta_{0}\right)\right)\right| \leq|f(0)|-\left|\widehat{f^{\prime}}\left(\eta_{0}\right)\right|$ holds by (3.2). If we add the last inequality to (3.3), we get $|\Delta(f)(0)| \leq|f(0)|$. We may apply the above arguments to Δ^{-1}, then we obtain $\left|\Delta^{-1}(g)(0)\right| \leq|g(0)|$ for all $g \in S_{\operatorname{Lip}(I)}$. Entering $g=\Delta(f)$ into the last inequality to get $|f(0)| \leq|\Delta(f)(0)|$, and thus

$$
|\Delta(f)(0)|=|f(0)| .
$$

It follows from (3.2) that $\left|\widehat{f^{\prime}}(\eta)\right| \leq\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)\right|$. Having in mind that $\widetilde{f} \in \mu V_{\left(\eta_{0}, \bar{z} \mu\right)}$ and $f(0)=|f(0)| \mu$, we derive from Lemma 2.20 that

$$
\begin{equation*}
\Delta(f)(0)=|\Delta(f)(0)| \mu^{\varepsilon_{0}} \alpha=|f(0)| \mu^{\varepsilon_{0}} \alpha=[f(0)]^{\varepsilon_{0}} \alpha \tag{3.4}
\end{equation*}
$$

where $[\nu]^{\varepsilon_{0}}=\nu$ if $\varepsilon_{0}=1$ and $[\nu]^{\varepsilon_{0}}=\bar{\nu}$ if $\varepsilon_{0}=-1$ for $\nu \in \mathbb{C}$.
Now we shall prove that ϕ_{1} is injective. Suppose that $\phi_{1}\left(\eta_{1}\right)=\phi_{1}\left(\eta_{2}\right)$ for $\eta_{1}, \eta_{2} \in$ \mathcal{M}. Set $f_{1}=\mathcal{I}\left(\mathbf{1}_{\mathcal{M}}\right)$, and thus $\widehat{f}_{1}^{\prime}\left(\eta_{j}\right)=1$ for $j=1,2$ by (2.3). Equalities (2.22) and (2.25) show that $\widehat{\Delta\left(f_{1}\right)^{\prime}}\left(\phi_{1}\left(\eta_{j}\right)\right) \phi_{2}\left(\eta_{j}\right)=\alpha$ for $j=1,2$. Since $\phi_{1}\left(\eta_{1}\right)=\phi_{1}\left(\eta_{2}\right)$, we have
$\phi_{2}\left(\eta_{1}\right)=\phi_{2}\left(\eta_{2}\right)$. Applying Lemmas $2.12,2.17$ and 2.19 to (2.8) with $\lambda=1$, we obtain $T\left(V_{(1,(\eta, 1))}\right)=\alpha V_{\left(\phi_{1}(\eta), \phi_{2}(\eta)\right)}$. Therefore, we get $T\left(V_{\left(1,\left(\eta_{1}, 1\right)\right)}\right)=T\left(V_{\left(1,\left(\eta_{2}, 1\right)\right)}\right)$, and consequently, $V_{\left(1,\left(\eta_{1}, 1\right)\right)}=V_{\left(1,\left(\eta_{2}, 1\right)\right)}$. Lemma 2.1 shows that $\eta_{1}=\eta_{2}$, which proves that ϕ_{1} is injective. Now, we may apply the arguments in the last paragraph to Δ^{-1} and ϕ_{1}^{-1}, and then we obtain $\left|\widehat{\Delta(f)^{\prime}}(\zeta)\right| \leq \mid\left(\Delta^{-1(\Delta(f)))^{\prime}\left(\phi_{1}^{-1}(\zeta)\right) \mid \text {, which shows }\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)\right| \leq, ~<~}\right.$ $\left|\widehat{f^{\prime}}(\eta)\right|$. We thus conclude that $\left|\widehat{\Delta(f)^{\prime}}(\zeta)\right|=\left|\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)\right|=\left|\widehat{f^{\prime}}(\eta)\right|$. By inequalities (3.1) and $|\Delta(f)(0)|=|f(0)|$, we obtain

$$
\left|\lambda^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)}-\widehat{\Delta(f)^{\prime}}(\zeta)\right|+\left|\widehat{\Delta(f)^{\prime}}(\zeta)\right|=1 .
$$

The above equality implies that $\widehat{\Delta(f)^{\prime}}(\zeta)=s \lambda^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)}$ for some $s \geq 0$. Then $s=$ $\left|s \lambda^{\varepsilon_{1}(z)} \alpha \overline{\phi_{2}(\eta)}\right|=\left|\widehat{\Delta(f)^{\prime}}(\zeta)\right|=\left|\widehat{f^{\prime}}(\eta)\right|$, which shows $\widehat{\Delta(f)^{\prime}}(\zeta)=\left|\widehat{f^{\prime}}(\eta)\right| \lambda^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)}=$ $\left[\widehat{f}^{\prime}(\eta)\right]^{\varepsilon_{1}(\eta)} \alpha \overline{\phi_{2}(\eta)}$, where we have used $\widehat{f^{\prime}}(\eta)=\left|\widehat{f^{\prime}}(\eta)\right| \lambda$. Thus,

$$
\begin{equation*}
\widehat{\Delta(f)^{\prime}}\left(\phi_{1}(\eta)\right)=\alpha \overline{\phi_{2}(\eta)}\left[\widehat{f^{\prime}}(\eta)\right]^{\varepsilon_{1}(\eta)} \tag{3.5}
\end{equation*}
$$

for all $f \in S_{\operatorname{Lip}(I)}$ and $\eta \in \mathcal{M}$.
We now define $\Delta_{0}: \operatorname{Lip}(I) \rightarrow \operatorname{Lip}(I)$ by

$$
\Delta_{0}(g)=\left\{\begin{array}{lll}
\|g\|_{\sigma} \Delta\left(\frac{g}{\|g\|_{\sigma}}\right) & \text { if } g \in \operatorname{Lip}(I) \backslash\{0\} \\
0 & \text { if } g=0
\end{array}\right.
$$

By the definition of Δ_{0} with (3.4) and (3.5), we observe that

$$
\begin{equation*}
\Delta_{0}(g)(0)=\alpha[g(0)]^{\varepsilon_{0}} \quad \text { and } \quad \widehat{\Delta_{0}(g)^{\prime}}\left(\phi_{1}(\eta)\right)=\alpha \widehat{\phi_{2}(\eta)}\left[\widehat{g^{\prime}}(\eta)\right]^{\varepsilon_{1}(\eta)} \tag{3.6}
\end{equation*}
$$

for all $g \in \operatorname{Lip}(I)$ and $\eta \in \mathcal{M}$. We thus obtain

$$
\begin{aligned}
\left\|\Delta_{0}\left(g_{1}\right)-\Delta_{0}\left(g_{2}\right)\right\|_{\sigma} & =\left|\Delta_{0}\left(g_{1}\right)(0)-\Delta_{0}\left(g_{2}\right)(0)\right|+\sup _{\eta \in \mathcal{M}}\left|\widehat{\Delta_{0}\left(g_{1}\right)^{\prime}}\left(\phi_{1}(\eta)\right)-\widehat{\Delta_{0}\left(g_{2}\right)^{\prime}}\left(\phi_{1}(\eta)\right)\right| \\
& =\left|g_{1}(0)-g_{2}(0)\right|+\sup _{\eta \in \mathcal{M}}\left|\widehat{g_{1}^{\prime}}(\eta)-\widehat{g_{2}^{\prime}}(\eta)\right|=\left\|g_{1}-g_{2}\right\|_{\sigma}
\end{aligned}
$$

for all $g_{1}, g_{2} \in \operatorname{Lip}(I)$, where we have used $\phi_{1}(\mathcal{M})=\mathcal{M}$. Hence Δ_{0} is an isometry on $\operatorname{Lip}(I)$. We infer from (3.6) that Δ_{0} is real linear. We deduce that Δ_{0} is surjective, since so is Δ. Therefore, Δ_{0} is a surjective, real linear isometry on $\operatorname{Lip}(I)$ that extends Δ to $\operatorname{Lip}(I)$.

Proof of Corollary 1.2. Let Δ_{1} be a surjective isometry on $\operatorname{Lip}(I)$. By the Mazur-Ulam theorem [19], $\Delta_{1}-\Delta_{1}(0)$ is a surjective, real linear isometry. Without loss of generality, we may and do assume that Δ_{1} is a surjective real linear isometry.

Since Δ_{1}^{-1} has the same property as Δ_{1}, we see that Δ_{1} maps $S_{\operatorname{Lip}(I)}$ onto itself. Now we may apply (3.4) and (3.5) to Δ_{1}, and then we obtain

$$
\Delta_{1}(f)(0)=\alpha[f(0)]^{\varepsilon_{0}} \quad \text { and } \quad \widehat{\Delta_{1}(f)^{\prime}}\left(\phi_{1}(\eta)\right)=\alpha \widehat{\phi_{2}(\eta)}\left[\widehat{f^{\prime}}(\eta)\right]^{\varepsilon_{1}(\eta)}
$$

for all $f \in \operatorname{Lip}(I)$ and $\eta \in \mathcal{M}$, where $\alpha \in \mathbb{T}, \varepsilon_{0} \in\{ \pm 1\}, \phi_{1}: \mathcal{M} \rightarrow \mathcal{M}, \phi_{2}: \mathcal{M} \rightarrow \mathbb{T}$ and $\varepsilon_{1}: \mathcal{M} \rightarrow\{ \pm 1\}$ are from proof of Theorem 1.1. As we proved in the second paragraph of Proof of Theorem 1.1, we know that ϕ_{1} is injective. By Lemma 2.6, $\psi_{1}=\phi_{1}^{-1}$ is well defined, and then we have

$$
\begin{equation*}
\widehat{\Delta_{1}(f)^{\prime}}(\eta)=\alpha \widehat{\phi_{2}\left(\psi_{1}(\eta)\right)}\left[\hat{f}^{\prime}\left(\psi_{1}(\eta)\right)\right]^{\varepsilon_{1}\left(\psi_{1}(\eta)\right)} \tag{3.7}
\end{equation*}
$$

for $f \in \operatorname{Lip}(I)$ and $\eta \in \mathcal{M}$. We shall prove that ψ_{1} and ϕ_{2} are both continuous. Let $\left\{\eta_{a}\right\}$ be a net in \mathcal{M} converging to $\eta \in \mathcal{M}$. By the continuity of $\widehat{\Delta_{1}(f)^{\prime}}$, we see that $\left|\widehat{\Delta_{1}(f)^{\prime}}\left(\eta_{a}\right)\right|$ converges to $\left|\widehat{\Delta_{1}(f)^{\prime}}(\eta)\right|$ for each $f \in \operatorname{Lip}(I)$. This implies that $\left|\widehat{f^{\prime}}\left(\psi_{1}\left(\eta_{a}\right)\right)\right|$ converges to $\left|\widehat{f}^{\prime}\left(\psi_{1}(\eta)\right)\right|$ for every $f \in \operatorname{Lip}(I)$ by (3.7). Since the weak topology of \mathcal{M} induced by the family $\left\{\left|\widehat{f}^{\prime}\right|: f \in \operatorname{Lip}(I)\right\}$ is Hausdorff, we observe that the identity map from \mathcal{M} with the original topology onto \mathcal{M} with the weak topology is a homeomorphism. Hence, $\psi_{1}\left(\eta_{a}\right)$ converges to $\psi_{1}(\eta)$ with respect to the original topology of \mathcal{M}, and thus ψ_{1} is continuous on \mathcal{M}. Since ψ_{1} is a bijective continuous map on the compact Hausdorff space \mathcal{M}, it must be a homeomorphism. Let id be the identity function on I. Then we have $\widehat{\Delta_{1}(\mathrm{id})^{\prime}}=\alpha \overline{\phi_{2} \circ \psi_{1}}$ by (3.7), which implies the continuity of ϕ_{2} on \mathcal{M}. Moreover, the identity $\widehat{\Delta_{1}(i \mathrm{id})^{\prime}}=\alpha \overline{\phi_{2} \circ \psi_{1}} i\left(\varepsilon_{1} \circ \psi_{1}\right)$ shows that $\varepsilon_{1} \circ \psi_{1}$ is continuous on \mathcal{M}. Since ψ_{1} is a homeomorphism, we have $\varepsilon_{1}=\left(\varepsilon_{1} \circ \psi_{1}\right) \circ \psi_{1}^{-1}$ is continuous on \mathcal{M} as well. Then $\mathcal{M}_{1}=\left\{\eta \in \mathcal{M}: \varepsilon_{1}\left(\psi_{1}(\eta)\right)=1\right\}$ is a closed and open subset of \mathcal{M} with $\varepsilon_{1}\left(\psi_{1}(\eta)\right)=-1$ for all $\eta \in \mathcal{M} \backslash \mathcal{M}_{1}$.

We define a map $\Phi: C(\mathcal{M}) \rightarrow C(\mathcal{M})$ by $\Phi(u)(\eta)=\left[u\left(\psi_{1}(\eta)\right)\right]^{\varepsilon_{1}\left(\psi_{1}(\eta)\right)}$ for $u \in C(\mathcal{M})$ and $\eta \in \mathcal{M}$. We see that Φ is a well defined real linear map on $C(\mathcal{M})$. For each $v_{0} \in C(\mathcal{M})$, we set $u_{0}(\eta)=\left[v_{0}\left(\psi_{1}^{-1}(\eta)\right)\right]^{\varepsilon_{1}(\eta)}$ for $\eta \in \mathcal{M}$. Then we have $\Phi\left(u_{0}\right)(\eta)=$ $\left[u_{0}\left(\psi_{1}(\eta)\right)\right]^{\varepsilon_{1}\left(\psi_{1}(\eta)\right)}=\left[v_{0}(\eta)\right]^{\varepsilon_{1}\left(\psi_{1}(\eta)\right) \varepsilon_{1}\left(\psi_{1}(\eta)\right)}=v_{0}(\eta)$, which shows that Φ is surjective. It is routine to check that Φ is an injective homomorphism, and consequently, Φ is a real algebra automorphism on $C(\mathcal{M})$. Let Γ be the Gelfand transformation from $L^{\infty}(I)$ onto $C(\mathcal{M})$, that is, $\Gamma(h)=\widehat{h}$ for $h \in L^{\infty}(I)$. We define a real algebra automorphism $\Psi=\Gamma^{-1} \circ \Phi \circ \Gamma$ on $L^{\infty}(I)$. For each $f \in \operatorname{Lip}(I)$ and $\eta \in \mathcal{M}$, we obtain

$$
\left[\widehat{f}^{\prime}\left(\psi_{1}(\eta)\right)\right]^{\varepsilon_{1}\left(\psi_{1}(\eta)\right)}=\Phi\left(\widehat{f^{\prime}}\right)(\eta)=(\Phi \circ \Gamma)\left(f^{\prime}\right)(\eta)=(\Gamma \circ \Psi)\left(f^{\prime}\right)(\eta)=\Gamma\left(\Psi\left(f^{\prime}\right)\right)(\eta)
$$

By the continuity of ϕ_{2} and ψ_{1}, we may set $h_{0}=\Gamma^{-1}\left(\alpha \overline{\phi_{2} \circ \psi_{1}}\right) \in L^{\infty}(I)$. We derive from (3.7) that

$$
\left.\widehat{\Delta_{1}(f)^{\prime}}(\eta)=\Gamma\left(h_{0}\right)(\eta) \Gamma\left(\Psi\left(f^{\prime}\right)\right)(\eta)=\Gamma\left(h_{0} \Psi\left(f^{\prime}\right)\right)(\eta)=\widehat{h_{0} \Psi\left(f^{\prime}\right.}\right)(\eta)
$$

for all $\eta \in \mathcal{M}$. Therefore, we conclude $\Delta_{1}(f)^{\prime}=h_{0} \Psi\left(f^{\prime}\right)$ for every $f \in \operatorname{Lip}(I)$. According to (2.2), we have

$$
\Delta_{1}(f)(t)=\Delta_{1}(f)(0)+\int_{0}^{t} \Delta_{1}(f)^{\prime} d m=\alpha[f(0)]^{\varepsilon_{0}}+\int_{0}^{t} h_{0} \Psi\left(f^{\prime}\right) d m
$$

for every $t \in I$ and $f \in \operatorname{Lip}(I)$.

Acknowledgement

The authors would like to express our gratitude to the referee for his/her valuable suggestions and comments which have improved the original manuscript.

The second author is supported by JSPS KAKENHI (Japan) Grant Number JP 20K03650.

References

[1] T. Banakh, Every 2-dimensional Banach space has the Mazur-Ulam property, Linear Algebra Appl., 632 (2022), 268-280.
[2] A. Browder, Introduction to function algebras, W.A. Benjamin, Inc., New YorkAmsterdam, 1969.
[3] L. Cheng and Y. Dong, On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 377 (2011), 464-470.
[4] M. Cueto-Avellaneda, D. Hirota, T. Miura and A.M. Peralta, Exploring new solutions to Tingley's problem for function algebras, Quaest. Math., DOI: 10.2989/16073606.2022.2072787.
[5] M. Cueto-Avellaneda, A.M. Peralta, On the Mazur-Ulam property for the space of Hilbert-space-valued continuous functions, J. Math. Anal. Appl., 479 (2019), 875-902.
[6] R.G. Douglas, Banach algebra techniques in operator theory. Second edition, Graduate Texts in Mathematics 179, Springer-Verlag, New York, 1998.
[7] F.J. Fernández-Polo, J.J. Garcés, A.M. Peralta, I. Villanueva, Tingley's problem for spaces of trace class operators, Linear Algebra Appl., 529 (2017), 294-323.
[8] F.J. Fernández-Polo, E. Jordá, A.M. Peralta, Tingley's problem for p-Schatten von Neumann classes, J. Spectr. Theory, 10 (2020), 809-841.
[9] F.J. Fernández-Polo, A.M. Peralta, On the extension of isometries between the unit spheres of a C^{*}-algebra and $B(H)$, Trans. Amer. Math. Soc. Ser. B, 5 (2018), 63-80.
[10] F.J. Fernández-Polo, A.M. Peralta, On the extension of isometries between the unit spheres of von Neumann algebras, J. Math. Anal. Appl., 466 (2018), 127-143.
[11] F.J. Fernández-Polo, A.M. Peralta, Low rank compact operators and Tingley's problem, Adv. Math., 338 (2018), 1-40.
[12] F.J. Fernández-Polo, A.M. Peralta, Tingley's problem through the facial structure of an atomic JBW ${ }^{*}$-triple, J. Math. Anal. Appl., 455 (2017), 750-760.
[13] R. Fleming and J. Jamison, Isometries on Banach spaces: function spaces, Chapman \& Hall/CRC Monogr. Surv. Pure Appl. Math. 129, Boca Raton, 2003.
[14] O. Hatori, The Mazur-Ulam property for uniform algebras, Studia Math., 265 (2022), 227-239.
[15] O. Hatori, S. Oi and R. Shindo Togashi, Tingley's problems on uniform algebras, J. Math. Anal. Appl., 503 (2021), 125346.
[16] H. Koshimizu, Linear isometries on spaces of continuously differentiable and Lipschitz continuous functions, Nihonkai Math. J., 22 (2011), 73-90.
[17] C.W. Leung, C.K. Ng, N.C. Wong, Metric preserving bijections between positive spherical shells of non-commutative L^{p}-spaces, J. Operator Theory, 80 (2018), 429-452.
[18] C.W. Leung, C.K. Ng, N.C. Wong, On a variant of Tingley's problem for some function spaces, J. Math. Anal. Appl., 496 (2021), 124800.
[19] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948.
[20] M. Mori, Tingley's problem through the facial structure of operator algebras, J. Math. Anal. Appl., 466 (2018), 1281-1298.
[21] M. Mori, N. Ozawa, Mankiewicz's theorem and the Mazur-Ulam property for C^{*}-algebras, Studia. Math., 250 (2020), 265-281.
[22] A.M. Peralta, Extending surjective isometries defined on the unit sphere of $\ell_{\infty}(\Gamma)$, Rev. Mat. Complut., 32 (2019), 99-114.
[23] A.M. Peralta, On the unit sphere of positive operators, Banach J. Math. Anal., 13 (2019), 91-112.
[24] A.M. Peralta, R. Tanaka, A solution to Tingley's problem for isometries between the unit spheres of compact C^{*}-algebras and JB*-triples, Sci. China Math., 62 (2019), 553-568.
[25] W. Rudin, Real and complex analysis, Third Edition, McGraw-Hill Book. Co., New York, 1987.
[26] D. Tan, X. Huang, R. Liu, Generalized-lush spaces and the Mazur-Ulam property, Studia. Math., 219 (2013), 139-153.
[27] D. Tan, R. Liu, A note on the Mazur-Ulam property of almost-CL-spaces, J. Math. Anal. Appl., 405 (2013), 336-341.
[28] R. Tanaka, A further property of spherical isometries, Bull. Aust. Math. Soc., 90 (2014), 304-310.
[29] R. Tanaka, The solution of Tingley's problem for the operator norm unit sphere of complex $n \times n$ matrices, Linear Algebra Appl., 494 (2016), 274-285.
[30] R. Tanaka, Spherical isometries of finite dimensional C^{*}-algebras, J. Math. Anal. Appl., 445 (2017), 337-341.
[31] R. Tanaka, Tingley's problem on finite von Neumann algebras, J. Math. Anal. Appl., 451 (2017), 319-326.
[32] D. Tingley, Isometries of the unit sphere, Geom. Dedicata, 22 (1987), 371-378.
[33] R. Wang, Isometries of $C_{0}^{(n)}(X)$, Hokkaido Math. J., 25 (1996), 465-519.
[34] R. Wang and A. Orihara, Isometries on the ℓ^{1}-sum of $C_{0}(\Omega, E)$ type spaces, J. Math. Sci. Univ. Tokyo, 2 (1995), 131-154.

[^0]: Received March 26, 2022. Revised November 7, 2022.
 2020 Mathematics Subject Classification(s): 46B04, 46B20, 46J10.
 Key Words: Lipschitz function, maximal convex set, isometry, Tingley's problem.
 The second author is supported by JSPS KAKENHI Grant Number 20K03650.
 *Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan. e-mail: hirota@m.sc.niigata-u.ac.jp
 ** Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan. e-mail: miura@math.sc.niigata-u.ac.jp

