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Solitonic symmetry has been believed to follow the homotopy-group classification of topological
solitons. Here, we point out a more sophisticated algebraic structure when solitons of different dimensions
coexist in the spectrum. We uncover this phenomenon in a concrete quantum field theory, the 4D CP1

model. This model has two kinds of solitonic excitations—vortices and hopfions—which would follow two
Uð1Þ solitonic symmetries according to homotopy groups. Nevertheless, we demonstrate the nonexistence
of the hopfion Uð1Þ symmetry by evaluating the hopfion charge of vortex operators. We clarify that what
conserves hopfion numbers is a noninvertible symmetry generated by 3D spin topological quantum field
theories (TQFTs). Its invertible part is just Z2, which we recognize as a spin bordism invariant. Compared
with the 3D CP1 model, our work suggests a unified description of solitonic symmetries and couplings to
topological phases.
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Introduction.—Solitons are nonperturbative excitations
in quantum field theories (QFTs), and they appear in
various areas of contemporary physics, especially almost
ubiquitous in high-energy and condensed-matter physics.
Their stability is protected by topological conservation laws
and summarized as solitonic symmetries. It is widely
accepted that these conservation laws are classified by
the homotopy groups of the target space [1–3]. In this
Letter, we revisit the solitonic conservation laws in QFTs
that allow more than one type of solitonic excitations. We
shall reveal that higher-dimensional solitons may contami-
nate the conservation law of lower-dimensional solitons,
destroy the simple solitonic symmetry predicted by homo-
topy groups, and lead us to a far more sophisticated
symmetry structure.
This phenomenon may be best exemplified by the

nonlinear sigma model with the target space CP1—i.e.,
S2—in the 4D spacetime. This model is also quite interest-
ing on its own, since it arises as an infrared effective
description of many condensed-matter and high-energy
systems resulting from the spontaneous breaking of an
SUð2Þ symmetry into Uð1Þ. There are two types of

solitonic excitations according to the following homotopy
groups:

π1ðCP1Þ ≃ 0; π2ðCP1Þ ≃ Z; π3ðCP1Þ ≃ Z: ð1Þ

On the one hand, π3ðCP1Þ classifies the solitons of
dimension 1—i.e., particle excitations—which are often
called hopfions (or Hopf solitons) [4,5]. The integer-valued
hopfion charge implies a Uð1Þ hopfion symmetry as the
topological conservation law. On the other hand, π2ðCP1Þ
classifies the solitons of dimension 2—i.e., stringy exci-
tations—which we shall call vortices. Similarly, the integer-
valued vortex charge implies a Uð1Þ vortex symmetry,
except that it is a 1-form symmetry [6].
As has been known for a long time, unlike the vortex

Uð1Þ symmetry, the hopfion Uð1Þ symmetry does not have
a local conserved current, although it is a continuous
symmetry, which has always confused physicists. As we
shall see, this hopfion Uð1Þ is an illusion caused by the
homotopy group and does not exist at all. The authentic
hopfion symmetry is merely Z2, provided that we insist on
the reversibility of a symmetry transformation. This invert-
ible hopfion symmetry follows a bordism classification
instead of a homotopy group classification. The bordism
classification appears repetitively in contemporary physics,
and notable examples include the classification of invertible
topological phases, and thereby ’t Hooft anomalies [7–12].
However, this Z2 hopfion symmetry provides only an

inadequate conservation law. To obtain a complete con-
servation law, we must give up the conventional doctrine on
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the invertibility of symmetry transformations. Such non-
invertible symmetries were recently noticed in 2D QFTs
(see Refs. [13–19]) and have also been recognized in higher
dimensions since last year (see, e.g., Refs. [20–30]). They
are found to provide additional selection rules and to
impose novel constraints on the dynamics. As we shall
see, the complete hopfion symmetry is indeed a non-
invertible symmetry.
A remarkable feature of the complete hopfion symmetry

is that its symmetry operators are given by 3D topological
QFTs (TQFTs). Just as bordisms can describe invertible
topological phases (i.e., short-range entangled topological
phases), TQFTs can describe topological orders (i.e., long-
range entangled topological phases). If we reduce the CP1

model to 3D spacetime, hopfions become zero-dimensional
objects—i.e., instantons. The Z2 invertible hopfion sym-
metry reduces to the discrete θ-angles, and the full non-
invertible hopfion symmetry reduces to the couplings of the
3D CP1 sigma model to topological orders [31,32].
Therefore, our work suggests that solitonic symmetry in
a higher-dimensional spacetime and couplings with topo-
logical phases in a lower-dimensional spacetime are
described by a unified language. Coupling a topological
phase might be phrased as coupling a “0-form background
gauge field” to the “(−1)-form solitonic symmetry.” Such
unification may pave the way for further insights into both
the solitonic symmetry and the topological phase, as well as
their interplay.
Operators and solitonic charges.—Hopfions are par-

ticles, and are thus created/annihilated by local operators.
We denote by BmðxÞ an operator that creates m hopfions at
the location x in the spacetime. This hopfion operator
BmðxÞ is characterized as the point defect such that the field
configuration on the infinitesimal S3 that surrounds x
belongs to the deformation class m ∈ π3ðCP1Þ ≃ Z.
Similarly, vortices are created/annihilated by line operators
because they have one more dimension than hopfions. We
denote by AnðM1Þ an operator that creates n vortices
bounded by the loop M1. This vortex operator AnðM1Þ
is characterized as the line defect such that the field
configuration on an infinitesimal S2 that links M1 belongs
to n ∈ π2ðCP1Þ ≃ Z.
We are going to look carefully into the solitonic charges

of these solitonic operators Bm and An. For our purpose, it
is convenient to describe theCP1 target space using the unit
C2 vector, z⃗ ¼ ðz1; z2Þ, with the Uð1Þ gauge redundancy,
z⃗ðxÞ ∼ eiαðxÞz⃗ðxÞ. We then introduce an auxiliary Uð1Þ
gauge field,

a≡ iz⃗† · dz⃗: ð2Þ
Its properly normalized Uð1Þ curvature da=2π is conserved
due to the Bianchi identity and integrates to an integer on
any closed 2-manifold M2:

Z
M2

da
2π

∈ Z: ð3Þ

This integral clearly measures the vortex charge π2ðCP1Þ,
and da=2π gives the 2-form conserved current of the
vortex Uð1Þ 1-form symmetry. We may construct a
vortex Uð1Þ 1-form symmetry operator VβðM2Þ on M2

through

VβðM2Þ≡ exp

�
iβ
Z
M2

da
2π

�
; β ∈

R
2πZ

: ð4Þ

If we link Vβ with the vortex operator An, we will obtain
the phase expðiβnÞ.
How to measure the hopfion charge is less obvious.

π3ðCP1Þ comes from π3ðS3Þ after gauging out a Uð1Þ
action, and the conserved current for π3ðS3Þ is easy to find.
Via this trick, the hopfion charge is expressed as the integral
of a properly normalized Chern-Simons form [33–35],

Z
S3

ada
4π2

∈ Z; ð5Þ

which is called the Hopf invariant. [36] We may construct a
hopfion Uð1Þ symmetry operator HαðS3Þ on S3 through

HαðS3Þ≡ exp

�
iα
Z
S3

ada
4π2

�
; α ∈

R
2πZ

: ð6Þ

If we link HαðS3Þ with the hopfion operator Bm, we will
obtain the phase expðiαmÞ. From this observation, one
might be tempted to define the 3-form current for the
hopfion Uð1Þ symmetry as the Chern-Simons form
ada=4π2. It is indeed a conserved current, since Eq. (2)
orders ðdaÞ2 ¼ 0. However, it is not gauge invariant and is
thus not a physically sensible current. As a result, its
integral on a general closed 3-manifoldM3 may suffer from
gauge ambiguity.
One particularly interesting case is the hopfion charge of

the vortex operator AnðM1Þ. As M1 is a loop, we can
surround it byM3 ≃ S2 × S1. Let us parametrize the loop S1

by τ ∈ R=2πZ and perform the large gauge transformation
z → z0 ¼ e−ikτz with an integer k. Then, the auxiliary Uð1Þ
gauge field a → a0 ¼ kdτ þ a. After this transformation,
the integral of the Chern-Simons form changes according to

Z
S2×S1

a0da0

4π2
−
Z
S2×S1

ada
4π2

¼ 2nk: ð7Þ

Therefore, the hopfion charge of An≠0ðM1Þ is only well
defined modulo 2jnj,

Z
S2×S1

ada
4π2

∈ Z2jnj; ð8Þ
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and a gauge-invariant symmetry operator HαðM3Þ sur-
rounding An≠0ðM1Þ has more restrictive coefficients:

Hq
nπ
ðS2 × S1Þ≡ exp

�
i
q
n

Z
S2×S1

ada
4π

�
; q ∈ Z2jnj: ð9Þ

It means a Z2jnj symmetry instead of Uð1Þ.
The existence of a mod-2jnj Hopf invariant suggests that

the vortex charge does not completely constrain a vortex
operator; An≠0 has 2jnj finer deformation classes [37]
which can be distinguished by the mod-2jnj Hopf invariant.
From now on, we shall write a vortex operator as An;l,
adding a new subscript l ∈ Z2jnj to label the finer defor-
mation classes. As an example, we now give an explicit
construction of A1;l with l ¼ 0, 1. In general, a line defect
on M1 is characterized by the boundary condition of the
CP1 field on the infinitesimal M3 ≃ S2 × S1 that surrounds
M1. We can view it as a family of CP1 configurations on S2

parametrized by S1. For A1;lðM1Þ, this S1-parametrization
simply describes the rotation process of a 2-sphere. Recall
that π1ðSOð3ÞÞ ≃ Z2, which implies there are two defor-
mation classes of such rotation processes. The untwisted
rotation process corresponds to A1;0, and the twisted
rotation process corresponds to A1;1.
Invertible solitonic symmetry from bordism.—We have

encountered a strange situation. The range of the hopfion
charge depends on what operator it measures [see Eqs. (5)
and (8)] and, accordingly, the structure of the hopfion
symmetry depends on what operator it acts on [see Eqs. (6)
and (9)]. We point out that only theZ2 symmetry generator,

HπðM3Þ≡ exp

�
i
Z
M3

ada
4π

�
→ �1; ð10Þ

is always well-defined for all these cases. It is then natural
to guess that the true hopfion symmetry is Z2 rather than
Uð1Þ. To demonstrate this statement, we now describe
some correlation functions that violate the Uð1Þ selection
rule but are consistent with the Z2 selection rule.
Let us evaluate hA1;lðM1ÞBmðxÞi. We put a line defect on

M1 and a point defect at x in the (infrared-regularized)
spacetime S4. The spacetime with the singularities caused
by defects removed, denoted by M4, can be described as
follows. First, we consider a system of coordinates
ðα; β; μ; νÞ on C2 via

z1 ¼ αeiμ; z2 ¼ βeiν: ð11Þ

We require α, β ≥ 0 and μ; ν ∈ R=2πZ. Then, we define a
subregion by the following inequalities:

α2 þ β2 ≤ ð2cÞ2; ðα − cÞ2 þ β2 ≥ d2; ð12Þ

where c and d are constants such that 0 < d < c. The α-β
quadrant bounded by these inequalities is shown in Fig. 1.
The subregion in C2 constrained by these inequalities is
exactly diffeomorphic to M4. We now write down a series
of concreteCP1 configurations onM4. For this purpose, we
take the standard spherical coordinates ðθ;φÞ on CP1

(recall that 0 ≤ θ ≤ π and φ ∈ R=2πZ). For each integer
m, we introduce a configuration ϕm∶ M4 ↦ CP1 defined
by ϕmðα; β; μ; νÞ≡ ðθðα; βÞ;φmðμ; νÞÞ, where

θðα; βÞ≡ Arg½ðαþ iβÞ2 − c2�; ð13aÞ

φmðμ; νÞ≡ νþmμ: ð13bÞ

We plot θðα; βÞ in Fig. 1 for clarity. Our
ϕmjα2þβ2¼ð2cÞ2∶ S3 ↦ CP1—i.e., the configuration restric-
ted on the S3 part of ∂M4—describes nothing but the point
defect Bm. Different ϕm’s describe different deformation
classes of point defects. But this is not the case for line
defects, which are described by ϕmjðα−cÞ2þβ2¼d2∶ S2×
S1 ↦ CP1. All the ϕmjðα−cÞ2þβ2¼d2 with even m give the
same deformation class A1;0, and all the ϕmjðα−cÞ2þβ2¼d2

with oddm give A1;1, as a consequence of π1ðSOð3ÞÞ ≃ Z2.
We can recognize this fact via the explicit description of
A1;l we introduced before. Therefore, ϕm’s provide us with
bordisms connecting A1;m mod 2 and Bm, the presence of
which proves the following results:

hA1;0ðM1ÞBmðxÞi ≠ 0 for evenm;

hA1;1ðM1ÞBmðxÞi ≠ 0 for oddm: ð14Þ

These correlation functions show that A1;0 emits/absorbs
any even number of hopfions, while A1;1 emits/absorbs
any odd number of hopfions. Bm and Bmþ2 have to
share the same hopfion charge, provided the invertibility.

FIG. 1. The range of the coordinates α, β defined in Eq. (11)
and the function θðα; βÞ defined in Eq. (13a). The solid quarter
arc describes the point defect, and the solid semicircle describes
the line defect. On the α axis and the β axis, θ is either 0 or π,
which ensures that the CP1 configuration is regular and single-
valued.
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This intriguing phenomenon is consistent with the Z2

selection rule described by Eq. (10) but violates the
Uð1Þ selection rule predicted by homotopy groups.
As we have just seen, the evaluation of the correlation

functions of defect operators is actually a bordism problem.
Our ϕm precisely establishes a bordism between a con-
figuration on S3 and another on S2 × S1. Actually,
the Z2 generator [Eq. (10)] detects a reduced spin bordism
group,

Ω̃spin
3 ðCP1Þ ≃ Z2; ð15Þ

and thereby generates HomZðΩ̃spin
3 ðCP1Þ; Uð1ÞÞ ≃ Z2.

Thus, the symmetry operator can be defined on any closed
spin 3-manifold. This bordism group also appears if we
lower one spacetime dimension [31,32]. In that context, our
symmetry operator in Eq. (10) precisely gives the only
invertible topological phase that can be coupled to the 3D
CP1 model [31,32], (i.e., a Z2 θ-angle).
Noninvertible solitonic symmetry from TQFT.—The

collection of all operators including An;l’s and Bm’s follow
the Z2 selection rule. Nevertheless, if we look at a
subcollection of operators, we can see enhanced selection
rules larger than Z2. For example, if we consider the
collection of An;l’s with n ¼ 0 mod N, as well as Bm’s, we
shall see a Z2N selection rule. More drastically, if we
confine ourselves to the collection of mere Bm’s, the Uð1Þ
seems to revive. If these selection rules are given by some
conserved charges, their algebraic structure cannot be a
conventional grouplike one. Such a generalized form of
symmetry is called noninvertible symmetry in the literature.
Let us try to construct operators that generate complete

hopfion symmetry. Such an operator has to be a bordism
covariant instead of a bordism invariant. We need an
“intelligent” functional HαðM3Þ that yields different types
of hopfion symmetry [Eq. (6) or Eq. (9)] according to the
topology and the vortex charge of M3. Interestingly, for
special values of coefficients, α ∈ πQ, the partition func-
tion of a ν ¼ α=π fractional quantum Hall state exactly
provides such an intelligent functional. Let us start with the
simplest case of α ¼ ðπ=NÞ for a positive integer N. Then a
symmetry operator can be defined as

Hπ
N
ðM3Þ≡

Z
Db exp

�
−i

Z
M3

�
N
4π

bdbþ 1

2π
bda

��
; ð16Þ

where b is a Uð1Þ gauge field defined only on M3. This
auxiliary Uð1Þ gauge field is introduced just to define a
TQFT partition function and is integrated out in the path
integral [Eq. (16)]. This is the partition function of the
Uð1ÞN spin Chern-Simons theory which describes a ν ¼
1=N fractional quantum Hall state.
We now demonstrate that Eq. (16) has the desired

feature. Equation (16) is a quadratic integral, and thus
its phase is given by the classical action of the saddle.

Let M3 be an S3 surrounding a Bm. Then the triviality of
Uð1Þ bundles on S3 allows us to recover Eq. (6)—i.e.,

Hπ
N
ðS3Þ → exp

�
iðπ=NÞ
4π2

Z
S3
ada

�
¼ exp

�
i
π

N
m

�
; ð17Þ

which detects the integer Hopf invariant, and this obser-
vation justifies calling Eq. (16) the hopfion symmetry
generator. Now, let M3 be an S2 × S1 surrounding an
An;l. Then, we must very carefully perform the b path
integral due to the nontrivial Uð1Þ bundle caused by the
vortex charge. This path integral vanishes if the vortex
charge n is not divisible by N, since there is no saddle in
this case. When N divides n, Eq. (16) recovers to Eq. (9)
with q ¼ n=N. This leads us to the following result:

Hπ
N
ðS2 × S1Þ →

�
exp ði πN lÞ; n ¼ 0 mod N

0; n ≠ 0 mod N
: ð18Þ

This result is precisely invariant under the transformation
l → lþ 2n and thus detects the mod-2jnj Hopf invariant.
Therefore, the symmetry operator in Eq. (16) is intelligent
enough to yield different types of hopfion symmetry
according to different situations.
Let us now turn to general rational coefficients. The

Uð1ÞN Chern-Simons theory we just used belongs to a
family called the spin-minimal Abelian TQFTs [39] (they
were first studied in Ref. [40]; see also Refs. [41,42]). A
member of this family is denoted by AN;p for a positive
integer N and a mod-N integer p such that gcdðN; pÞ ¼ 1.
We can characterize AN;p as the minimal 3D spin TQFT
that has a ZN 1-form symmetry whose ’t Hooft anomaly is
labeled by p. Every AN;p can be expressed as an Abelian
Chern-Simons theory due to its Abelian nature and
describes a ν ¼ ðp=NÞ fractional quantum Hall state. We
couple da=N as the 2-form gauge field of their ZN 1-form
symmetry. Then the hopfion symmetry operators are given
by their partition functions—i.e., [43]

Hp
Nπ
ðM3Þ≡AN;p½M3; da=N�; ð19aÞ

HðpNþ1ÞπðM3Þ≡Hp
Nπ
ðM3ÞHπðM3Þ; ð19bÞ

where HπðM3Þ has been defined in Eq. (10).
AN;p was recently used to furnish the construction of

chiral symmetry in 4D QED [28,29]. As clarified there,
once we accept TQFTs as operators, we indeed obtain
noninvertible symmetry and need to abandon the group-
like fusion rule. As a remarkable example, let us consider
the fusion of Hðπ=NÞðM3Þ and its seemingly inverse

H2π−ðπ=NÞðM3Þ ¼ H†
ðπ=NÞðM3Þ. Then we obtain the follow-

ing result instead of the identity:

Hπ
N
ðM3Þ ×H2π−π

N
ðM3Þ ¼ CðM3Þ; ð20Þ
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where CðM3Þ is the condensation operator (see, e.g.,
Refs. [24,44]) defined via gauging the ZN subgroup of
the vortex Uð1Þ 1-form symmetry only on M3. We
emphasize that the right-hand side of Eq. (20) cannot be
the identity operator, because the left-hand side acts on
vortex operators nontrivially, as we can readily deduce
from Eq. (18). This clarifies the noninvertible nature of the
algebraic structure for the hopfion symmetry. The Z2

symmetry we found before generated by HπðM3Þ is the
invertible part of this complete hopfion symmetry.
Like the invertible Z2 symmetry operators, the non-

invertible symmetry operators [Eq. (19)] also appear in
the 3D spacetime. In that context, they just describe the
couplings of the 3DCP1 model toAN;p. The particular case
of Eq. (16) was discussed in Ref. [31]. Due to the minimal
nature of AN;p, the coupling to any topological order must
factor through AN;p. Therefore, Eq. (19) actually classifies
all the possible couplings of the 3D CP1 model to topo-
logical orders. We thus arrive at a unified description of
different phenomena in different spacetime dimensions: The
solitonic symmetry in a higher-dimensional spacetime
exactly classifies the couplings with topological phases in
a lower-dimensional spacetime. In particular, the invertible
solitonic symmetry corresponds to invertible phases, while
the noninvertible solitonic symmetry corresponds to topo-
logical orders. A coupling to a topological phase might
be phrased as a “0-form background gauge field” of the
“(−1)-form solitonic symmetry”.
Summary and outlook.—We clarified that hopfions in the

4D CP1 model follow an unexpected sophisticated con-
servation law as a noninvertible symmetry instead of Uð1Þ
predicted by π3ðCP1Þ ≃ Z. The symmetry is generated by
spin TQFTs and, in particular, its invertible part Z2 is
generated by spin bordism invariant. This spin nature of the
hopfion symmetry signifies hopfions’ capability of being
fermions [45].
We would like to convey two messages via this work.

First, the homotopy groups might not correctly capture the
solitonic symmetry when the spectrum includes solitonic
excitations of different dimensions. Second, two prominent
topological phenomena, the solitonic symmetry and the
topological phase, are perhaps supposed to be treated in a
unified scheme. We hope these messages will lead us to
further insights into the topological phenomena in con-
temporary physics. The complete algebraic structure of the
solitonic charge/symmetry, something like a “generalized
(co)homology with TQFT coefficients,” awaits to be
explored by physicists/mathematicians.

This work was initiated during S. C.’s visit to YITP with
the Atom-type visiting program, and the authors appreciate
the hospitality of Yukawa institute. This work was sup-
ported by JSPS KAKENHI Grants No. 21J20877 (S. C.),
No. 22H01218, and No. 20K22350 (Y. T.), and also by
the Center for Gravitational Physics and Quantum
Information (CGPQI).

*s.chern@nt.phys.s.u-tokyo.ac.jp
†yuya.tanizaki@yukawa.kyoto-u.ac.jp

[1] N. D. Mermin, The topological theory of defects in ordered
media, Rev. Mod. Phys. 51, 591 (1979).

[2] S. Coleman, Aspects of Symmetry: Selected Erice Lectures
(Cambridge University Press, Cambridge, United Kingdom,
1985).

[3] N. S. Manton and P. Sutcliffe, Topological Solitons,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2004).

[4] L. D. Faddeev and A. J. Niemi, Knots and particles, Nature
(London) 387, 58 (1997).

[5] J. Gladikowski and M. Hellmund, Static solitons with
nonzero Hopf number, Phys. Rev. D 56, 5194 (1997).

[6] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries, J. High Energy Phys. 02
(2015) 172.

[7] X.-G. Wen, Classifying gauge anomalies through sym-
metry-protected trivial orders and classifying gravitational
anomalies through topological orders, Phys. Rev. D 88,
045013 (2013).

[8] A. Kapustin, Symmetry protected topological phases,
anomalies, and cobordisms: Beyond group cohomology,
arXiv:1403.1467.

[9] D. S. Freed and M. J. Hopkins, Reflection positivity and
invertible topological phases, Geom. Topol. 25, 1165
(2021).

[10] K. Yonekura, On the cobordism classification of symmetry
protected topological phases, Commun. Math. Phys. 368,
1121 (2019).

[11] I. n. García-Etxebarria and M. Montero, Dai-Freed anoma-
lies in particle physics, J. High Energy Phys. 08 (2019) 003.

[12] E. Witten and K. Yonekura, Anomaly inflow and the
η-invariant, in The Shoucheng Zhang Memorial Workshop
(2019), 9, arXiv:1909.08775.

[13] E. P. Verlinde, Fusion rules and modular transformations in
2D conformal field theory, Nucl. Phys. B300, 360 (1988).

[14] J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert, Duality
and defects in rational conformal field theory, Nucl. Phys.
B763, 354 (2007).

[15] L. Bhardwaj and Y. Tachikawa, On finite symmetries and
their gauging in two dimensions, J. High Energy Phys. 03
(2018) 189.

[16] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin,
Topological defect lines and renormalization group flows in
two dimensions, J. High Energy Phys. 01 (2019) 026.

[17] R. Thorngren and Y. Wang, Fusion category symmetry I:
Anomaly in-flow and gapped phases, arXiv:1912.02817.

[18] Z. Komargodski, K. Ohmori, K. Roumpedakis, and S.
Seifnashri, Symmetries and strings of adjoint QCD2,
J. High Energy Phys. 03 (2021) 103.

[19] M. Nguyen, Y. Tanizaki, and M. Ünsal, Noninvertible
1-form symmetry and Casimir scaling in 2D Yang-Mills
theory, Phys. Rev. D 104, 065003 (2021).

[20] M. Nguyen, Y. Tanizaki, and M. Ünsal, Semi-Abelian gauge
theories, non-invertible symmetries, and string tensions
beyond N-ality, J. High Energy Phys. 03 (2021) 238.

[21] M. Koide, Y. Nagoya, and S. Yamaguchi, Non-invertible
topological defects in 4-dimensional Z2 pure lattice gauge
theory, Prog. Theor. Exp. Phys. 2022, 013B03 (2022).

PHYSICAL REVIEW LETTERS 131, 011602 (2023)

011602-5

https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.1038/387058a0
https://doi.org/10.1038/387058a0
https://doi.org/10.1103/PhysRevD.56.5194
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1103/PhysRevD.88.045013
https://doi.org/10.1103/PhysRevD.88.045013
https://arXiv.org/abs/1403.1467
https://doi.org/10.2140/gt.2021.25.1165
https://doi.org/10.2140/gt.2021.25.1165
https://doi.org/10.1007/s00220-019-03439-y
https://doi.org/10.1007/s00220-019-03439-y
https://doi.org/10.1007/JHEP08(2019)003
https://arXiv.org/abs/1909.08775
https://doi.org/10.1016/0550-3213(88)90603-7
https://doi.org/10.1016/j.nuclphysb.2006.11.017
https://doi.org/10.1016/j.nuclphysb.2006.11.017
https://doi.org/10.1007/JHEP03(2018)189
https://doi.org/10.1007/JHEP03(2018)189
https://doi.org/10.1007/JHEP01(2019)026
https://arXiv.org/abs/1912.02817
https://doi.org/10.1007/JHEP03(2021)103
https://doi.org/10.1103/PhysRevD.104.065003
https://doi.org/10.1007/JHEP03(2021)238
https://doi.org/10.1093/ptep/ptab145


[22] Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao,
Noninvertible duality defects in 3þ 1 dimensions, Phys.
Rev. D 105, 125016 (2022).

[23] J. Kaidi, K. Ohmori, and Y. Zheng, Kramers-Wannier-like
Duality Defects in ð3þ 1ÞD Gauge Theories, Phys. Rev.
Lett. 128, 111601 (2022).

[24] K. Roumpedakis, S. Seifnashri, and S.-H. Shao, Higher
gauging and non-invertible condensation defects, arXiv:
2204.02407.

[25] Y. Hayashi and Y. Tanizaki, Non-invertible self-duality
defects of Cardy-Rabinovici model and mixed gravitational
anomaly, J. High Energy Phys. 08 (2022) 036.

[26] L. Bhardwaj, L. E. Bottini, S. Schafer-Nameki, and A.
Tiwari, Non-invertible higher-categorical symmetries,
SciPost Phys. 14, 007 (2023).

[27] J. Kaidi, G. Zafrir, and Y. Zheng, Non-invertible symmetries
of N ¼ 4 SYM and twisted compactification, J. High
Energy Phys. 08 (2022) 053.

[28] Y. Choi, H. T. Lam, and S.-H. Shao, Noninvertible Global
Symmetries in the Standard Model, Phys. Rev. Lett. 129,
161601 (2022).

[29] C. Cordova andK. Ohmori, Non-Invertible Chiral Symmetry
and Exponential Hierarchies, Phys. Rev. X 13, 011034
(2023).

[30] Y. Choi, H. T. Lam, and S.-H. Shao, Non-invertible
Time-reversal Symmetry, Phys. Rev. Lett. 130, 131602
(2023).

[31] D. S. Freed, Z. Komargodski, and N. Seiberg, The sum over
topological sectors and θ in the 2þ 1-dimensional CP1 σ-
model, Commun. Math. Phys. 362, 167 (2018).

[32] R. Kobayashi, Y. Lee, K. Shiozaki, and Y. Tanizaki,
Topological terms of ð2þ 1ÞD flag-manifold sigma models,
J. High Energy Phys. 08 (2021) 075.

[33] J. H. C. Whitehead, An expression of Hopf’s invariant
as an integral, Proc. Natl. Acad. Sci. U.S.A. 33, 117
(1947).

[34] F. Wilczek and A. Zee, Linking Numbers, Spin, and
Statistics of Solitons, Phys. Rev. Lett. 51, 2250 (1983).

[35] Y.-S. Wu and A. Zee, Comments on the Hopf Lagrangian
and fractional statistics of solitons, Phys. Lett. 147B, 325
(1984).

[36] For generic Uð1Þ gauge fields, the Chern-Simons form can
integrate to any real number. But our a is restricted to the
form of Eq. (2).

[37] This fact can be proved via traditional techniques from
algebraic topology; see, e.g., Ref. [38].

[38] L. Pontrjagin, A classification of mappings of the three-
dimensional complex into the two-dimensional sphere, Mat.
Sb. (Recueil Math. N.S.) 9, 331 (1941).

[39] P.-S. Hsin, H. T. Lam, and N. Seiberg, Comments on one-
form global symmetries and their gauging in 3D and 4D,
SciPost Phys. 6, 039 (2019).

[40] G.W. Moore and N. Seiberg, Classical and quantum
conformal field theory, Commun. Math. Phys. 123, 177
(1989).

[41] P. Bonderson, K. Shtengel, and J. K. Slingerland, Interfer-
ometry of non-Abelian anyons, Ann. Phys. (Amsterdam)
323, 2709 (2008).

[42] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang,
Symmetry fractionalization, defects, and gauging of topo-
logical phases, Phys. Rev. B 100, 115147 (2019).

[43] These operators might not give the complete list of gen-
erators for the hopfion symmetry. However, they constitute
at least a dense subset of the complete list, thus capturing the
essential ingredient of the symmetry.

[44] D. Gaiotto and T. Johnson-Freyd, Condensations in higher
categories, arXiv:1905.09566.

[45] They are not necessarily fermions. Statistics of solitons are
determined by the topological term in the Lagrangian. In the
invertible case HomZðΩ̃spin

4 ðCP1Þ, Uð1ÞÞ ≃ Z2, a trivial
θ-angle renders hopfions bosons, while a nontrivial θ-angle
makes hopfions fermions.

PHYSICAL REVIEW LETTERS 131, 011602 (2023)

011602-6

https://doi.org/10.1103/PhysRevD.105.125016
https://doi.org/10.1103/PhysRevD.105.125016
https://doi.org/10.1103/PhysRevLett.128.111601
https://doi.org/10.1103/PhysRevLett.128.111601
https://arXiv.org/abs/2204.02407
https://arXiv.org/abs/2204.02407
https://doi.org/10.1007/JHEP08(2022)036
https://doi.org/10.21468/SciPostPhys.14.1.007
https://doi.org/10.1007/JHEP08(2022)053
https://doi.org/10.1007/JHEP08(2022)053
https://doi.org/10.1103/PhysRevLett.129.161601
https://doi.org/10.1103/PhysRevLett.129.161601
https://doi.org/10.1103/PhysRevX.13.011034
https://doi.org/10.1103/PhysRevX.13.011034
https://doi.org/10.1103/PhysRevLett.130.131602
https://doi.org/10.1103/PhysRevLett.130.131602
https://doi.org/10.1007/s00220-018-3093-0
https://doi.org/10.1007/JHEP08(2021)075
https://doi.org/10.1073/pnas.33.5.117
https://doi.org/10.1073/pnas.33.5.117
https://doi.org/10.1103/PhysRevLett.51.2250
https://doi.org/10.1016/0370-2693(84)90126-6
https://doi.org/10.1016/0370-2693(84)90126-6
https://doi.org/10.21468/SciPostPhys.6.3.039
https://doi.org/10.1007/BF01238857
https://doi.org/10.1007/BF01238857
https://doi.org/10.1016/j.aop.2008.01.012
https://doi.org/10.1016/j.aop.2008.01.012
https://doi.org/10.1103/PhysRevB.100.115147
https://arXiv.org/abs/1905.09566

