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Abstract. In the optimal general factor problem, given a graph G =
(V,E) and a set B(v) ⊆ Z of integers for each v ∈ V , we seek for
an edge subset F of maximum cardinality subject to dF (v) ∈ B(v) for
v ∈ V , where dF (v) denotes the number of edges in F incident to v. A
recent crucial work by Dudycz and Paluch shows that this problem can
be solved in polynomial time if each B(v) has no gap of length more
than one. While their algorithm is very simple, its correctness proof
is quite complicated. In this paper, we formulate the optimal general
factor problem as the jump system intersection, and reveal when the
algorithm by Dudycz and Paluch can be applied to this abstract form
of the problem. By using this abstraction, we give another correctness
proof of the algorithm, which is simpler than the original one. We also
extend our result to the valuated case.

1 Introduction

1.1 General Factor Problem

Matching in graphs is one of the most well-studied topics in combinatorial opti-
mization. Since a maximum matching algorithm was proposed by Edmonds [6] in
1960s, a lot of generalizations of the matching problem have been proposed and
studied in the literature. Among them, we focus on the general factor problem,
which contains several important problems as special cases. In the general factor
problem (or also called B-factor problem), we are given a graph G = (V,E) and
a set B(v) ⊆ Z of integers for each v ∈ V . The objective is to find an edge subset
F ⊆ E such that dF (v) ∈ B(v) for any v ∈ V if it exists, where dF (v) denotes
the number of edges in F incident to v. Such an edge set is called a B-factor.

Since the general factor problem is NP-hard in general (e.g. it contains the
3-edge-coloring problem [13]), polynomially solvable special cases have attracted
attention. A B-factor amounts to a perfect matching if B(v) = {1} for each
v ∈ V , and it is called a b-factor if B(v) = {b(v)} for each v ∈ V , where
b : V → Z. For a, b : V → Z, if B(v) = {a(v), a(v) + 1, a(v) + 2, . . . , b(v)−1, b(v)}
(resp, B(v) = {a(v), a(v) + 2, a(v) + 4, . . . , b(v) − 2, b(v)}) for v ∈ V , then a
B-factor is called an (a, b)-factor (resp. an (a, b)-parity factor). It is well-known
that, in the above cases, we can find a B-factor in polynomial time by using

? The full version is available at arXiv [10].
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a maximum matching algorithm; see [13] and [23, Section 35]. Note that the
parity constraint can be dealt with by adding 1

2 (b(v) − a(v)) self-loops to each
v ∈ V and modifying B(v). Another special case is the antifactor problem, in
which B(v) = {0, 1, 2, . . . , dE(v)} \ {αv} for some αv ∈ {0, 1, 2, . . . , dE(v)}, that
is, exactly one value is forbidden for each v ∈ V . Graphs with an antifactor
were characterized by Lovász [14]. The edge-and-triangle partitioning problem
is to cover all the vertices in a graph by edges and triangles that are mutually
disjoint, which can be easily reduced to the general factor problem with B(v) =
{1}, {0, 2}, or {0, 2, 3}. The edge-and-triangle partitioning problem is known to
be solvable in polynomial time [4].

All the above polynomially solvable cases have a property that each B(v) has
no gap of length more than one. Here, B(v) ⊆ Z is said to have a gap of length p if
there exists α ∈ B(v) such that α+1, α+2, . . . , α+p 6∈ B(v) and α+p+1 ∈ B(v).
It turns out that this is a key property to design a polynomial-time algorithm.
Indeed, Cornuéjols [3] gave a polynomial-time algorithm for the general factor
problem with this property and Sebő [24] gave a good characterization.

An optimization variant of the general factor problem has also attracted at-
tention, which we call the optimal general factor problem (or the optimal general
matching problem). In the problem, given a graph G = (V,E) and a set B(v) ⊆ Z
of integers for each v ∈ V , we seek for a B-factor of maximum cardinality. It
is the maximum matching problem if B(v) = {0, 1}, and is the maximum b-
matching problem if B(v) = {0, 1, . . . , b(v)}, both of which can be solved in
polynomial time. In the same way as the search problem described above, we
can find a maximum (a, b)-factor (or (a, b)-parity factor) in polynomial time;
see [23, Section 35]. The optimization variant of the edge-and-triangle partition-
ing problem was studied with the name of the simplex matching problem, and a
polynomial-time algorithm was designed for this problem [1]; see also [22].

Recently, Dudycz and Paluch [5] showed that the optimal general factor
problem can be solved in polynomial time if each B(v) has no gap of length
more than one. This is definitely a crucial result in this area, because it is a
generalization of all the above results. While their algorithm is very simple, its
correctness proof is quite complicated.

1.2 Jump System Intersection

In this paper, we introduce an abstract form of the optimal general factor prob-
lem by using the concept of jump systems introduced by Bouchet and Cunning-
ham [2] (see also [9,17]). Let V be a finite set. For x, y ∈ ZV , we say that s ∈ ZV
is an (x, y)-step if ‖s‖1 = 1 and ‖(x + s) − y‖1 = ‖x − y‖1 − 1. A non-empty
subset J ⊆ ZV is called a jump system if it satisfies the following property:

(JUMP) For any x, y ∈ J and for any (x, y)-step s, either x + s ∈ J or there
exists an (x+ s, y)-step t such that x+ s+ t ∈ J .

Typical examples of jump systems include matroids, delta-matroids, integral
polymatroids (or submodular systems [7]), and degree sequences of subgraphs.
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When J ⊆ Z is one-dimensional, one can see that J is a jump system if and
only if it has no gap of length more than one. One can also see that the direct
product of one-dimensional jump systems is also a jump system. We consider
the optimization problem over the intersection of two jump systems, where one
is the direct product of one-dimensional jump systems.

Jump System Intersection
Input. A jump system J ⊆ ZV , a finite one-dimensional jump system B(v) ⊆ Z

for each v ∈ V , and a vector c ∈ ZV .
Problem. Find a vector x ∈ J∩B maximizing c>x, where B ⊆ ZV is the direct

product of B(v)’s.

If J consists of degree sequences of subgraphs, i.e., J = {dF ∈ ZV | F ⊆ E},
and c(v) = 1 for v ∈ V , then the problem amounts to the optimal general factor
problem, which can be solved in polynomial time [5]. On the other hand, if J is
a 2-polymatroid and B(v) = {0, 2} for each v ∈ V , then the problem amounts
to the matroid matching problem [15] or the matroid parity problem [12]. This
implies that the problem cannot be solved in polynomial time if J is given as a
membership oracle [8, 16]; see also [18].

A similar problem is to determine whether the intersection of two jump sys-
tems J1 and J2 is empty or not, which is also hard in general. This problem was
studied in [17] as a membership problem of J1 − J2 := {x− y | x ∈ J1, y ∈ J2},
because J1 ∩ J2 6= ∅ if and only if 0 ∈ J1 − J2.

1.3 Our Contribution: Jump System with SBO Property

A natural question is why the optimal general factor problem can be solved
efficiently, while the general setting of Jump System Intersection is hard.
In this paper, we answer this question by revealing the properties of J that are
essential in the argument in [5].

For a positive integer `, we denote {1, 2, . . . , `} by [`]. For x, y ∈ ZV , we
say that a multiset {p1, . . . , p`} of vectors is a 2-step decomposition of y − x if
pi ∈ ZV and ‖pi‖1 = 2 for each i ∈ [`], ‖y − x‖1 = 2`, and y − x =

∑
i∈[`] pi.

A non-empty subset J ⊆ ZV is called a jump system with SBO property1 if it
satisfies the following property:

(SBO-JUMP) For any x, y ∈ J , there exists a 2-step decomposition {p1, . . . , p`}
of y − x such that x+

∑
i∈I pi ∈ J for any I ⊆ [`].

We can see that (SBO-JUMP) implies (JUMP). To see this, for given x, y ∈ J ,
suppose that there exist vectors p1, . . . , p` ∈ ZV satisfying the conditions in
(SBO-JUMP). Then, for any (x, y)-step s, there exists an (x+ s, y)-step t such
that s + t = pi for some i ∈ [`], and hence x + s + t = x + pi ∈ J . Therefore,
if J is a jump system with SBO property, then it is a jump system such that

1 SBO stands for strongly base orderable (see Example 1).
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v∈V x(v) has the same parity for any x ∈ J , which is called a constant parity

jump system. See [21] for a characterization of constant parity jump systems.
We now give a few examples of jump systems with SBO property.

Example 1. A matroid M = (S,B) with a ground set S and a base family B
is called strongly base orderable if, for any bases B1, B2 ∈ B, there exists a
bijection f : B1 \ B2 → B2 \ B1 such that (B1 \ X) ∪ {f(x) | x ∈ X} ∈ B for
any X ⊆ B1 \B2 (see e.g., [23, Section 42.6c]). By definition, the characteristic
vectors of the bases of a strongly base orderable matroid satisfy (SBO-JUMP).

Note that the characteristic vectors of the bases do not satisfy (SBO-JUMP)
if the matroid is not strongly base orderable, which implies that the class of
jump systems with SBO property is strictly smaller than that of constant parity
jump systems. By merging some elements in Example 1, we obtain the following
example, which was studied for linear matroids in a problem similar to Jump
System Intersection [25].

Example 2. Let M = (S,B) be a strongly base orderable matroid and let (S1,
S2, . . . , Sn) be a partition of S. Then, J = {x ∈ Zn | B ∈ B, x(i) = |B ∩
Si| for i ∈ [n]} satisfies (SBO-JUMP).

Another example is the set of the degree sequences of subgraphs.

Example 3. Let G = (V,E) be a graph and let J be the set of the degree se-
quences of subgraphs, i.e., J = {dF | F ⊆ E}. Then, J satisfies (SBO-JUMP).
To see this, for x, y ∈ J , let M,N ⊆ E be edge sets with dM = x and dN = y.
Then, the symmetric difference of M and N can be decomposed into alternating
paths P1, . . . , P` and alternating cycles such that {dN∩Pi − dM∩Pi | i ∈ [`]} is a
2-step decomposition of y − x. Note that each Pi is regarded as an edge subset.
Let pi := dN∩Pi

− dM∩Pi
for i ∈ [`]. For any I ⊆ [`], x +

∑
i∈I pi is the degree

sequence of the symmetric difference of M and
⋃
i∈[I] Pi, and hence it is in J .

Our contribution is to introduce the jump system with SBO property and
show that (SBO-JUMP) is crucial when we apply the algorithm in [5] for Jump
System Intersection. For α, β ∈ Z with α ≤ β that have the same parity,
a set {α, α + 2, . . . , β − 2, β} is called a parity interval. The main result in this
paper is stated as follows.

Theorem 1. There is an algorithm for Jump System Intersection whose
running time is polynomial in

∑
v∈V

∑
α∈B(v) log(|α|+1)+

∑
v∈V log(|c(v)|+1)

if the following properties hold:

(C1) a feasible solution x0 ∈ J ∩B is given,
(C2) J satisfies (SBO-JUMP), and
(C3) for any direct product B′ ⊆ ZV of parity intervals, there is an oracle for

finding a vector x ∈ J ∩B′ maximizing c>x.

Note that no explicit representation of J is required in this theorem. We only
need the oracle in Condition (C3). Note also that Condition (C3) implies the
existence of the membership oracle of J .
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When J is the set of the degree sequences of subgraphs, we see that J satisfies
(C1)–(C3) as follows. It was shown by Cornuéjols [3] that a feasible solution x0 ∈
J ∩ B in (C1) can be found in polynomial time, and (C2) holds by Example 3.
The subproblem in (C3) is to find a maximum (a, b)-parity factor, which can be
solved in polynomial time.

Our proof for Theorem 1 is based on the argument of Dudycz and Paluch [5].
While their algorithm is very simple, the correctness proof is quite complicated.
In particular, an involved case analysis is required to prove a key lemma [5,
Lemma 2]. Our technical contribution in this paper is to give a new simpler
proof of this lemma in a slightly different form (Lemma 1). In our proof, we use
several properties that are peculiar to our problem formulation (see Section 4.1),
which is an advantage of introducing the abstract form of the optimal general
factor problem. We also show that a scaling technique used in [5] is not required
in the algorithm, which is another contribution of this paper.

We also introduce a quantitative extension of (SBO-JUMP), and extend The-
orem 1 to a valuated variant of Jump System Intersection; see Theorem 2.

1.4 Organization

The rest of this paper is organized as follows. Some preliminaries are given in
Section 2. In Section 3, we describe our algorithm and prove its correctness
by using a key technical lemma (Lemma 1). A proof of Lemma 1 is given in
Section 4, where properties shown in Section 4.1 play important roles to simplify
the argument. In Section 5, we extend our results to the valuated case and
show that a polynomial-time algorithm for the weighted general factor problem
is derived from our results. Proofs of theorems/lemmas marked with (?) are
omitted due to the page limitation and given in the full version [10].

2 Preliminaries

Let V be a finite set. For v ∈ V , let χv ∈ ZV denote the characteristic vector of
v, that is, χv(v) = 1 and χv(u) = 0 for u ∈ V \{v}. For each v ∈ V , we are given
a non-empty finite set B(v) ⊆ Z that has no gap of length more than one, i.e.,
B(v) is a one-dimensional jump system. Throughout this paper, let B ⊆ ZV be
the direct product of B(v)’s, i.e., B := {x ∈ ZV | x(v) ∈ B(v) for any v ∈ V }.
For x ∈ ZV , we denote minB ≤ x ≤ maxB if minB(v) ≤ x(v) ≤ maxB(v)
for every v ∈ V . For x ∈ ZV , we define q(x) = |{v ∈ V | x(v) 6∈ B(v)}|. Note
that, if minB ≤ x ≤ maxB, then q(x) := miny∈B ‖x − y‖1, because each B(v)
has no gap of length greater than one. Recall that a parity interval is a subset
of Z that is of the form {α, α+ 2, . . . , β − 2, β}. For v ∈ V , we see that B(v) is
uniquely partitioned into inclusionwise maximal parity intervals (see Figure 1),
which we call maximal parity intervals of B(v). For α, β ∈ Z with minB(v) ≤
α ≤ β ≤ maxB(v), we define distB(v)(α, β) as the number of maximal parity
intervals of B(v) intersecting [α, β] minus one. In other words, distB(v)(α, β)
is the number of pairs of consecutive integers in B(v) ∩ [α, β]. We also define
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Fig. 1. Blue circles are elements in B(v) and red arrows are maximal parity intervals.

distB(v)(β, α) := distB(v)(α, β). For x, y ∈ ZV with minB ≤ x, y ≤ maxB, we
define distB(x, y) :=

∑
v∈V distB(v)(x(v), y(v)); see Figure 2. Note that distB

satisfies the triangle inequality.

Fig. 2. In this two-dimensional example, distB(v1)(x(v1), y(v1)) = 3,
distB(v2)(x(v2), y(v2)) = 2, distB(x, y) = 5, ‖x− y‖1 = 14, q(x) = 1, and q(y) = 0.

3 Algorithm and Correctness

Our algorithm for Jump System Intersection is basically the same as [5]. We
first initialize the vector x := x0, where x0 is as in Condition (C1) in Theorem 1.
In each iteration, we compute a vector x′ ∈ J ∩ B maximizing c>x′ subject to
distB(x, x′) ≤ 2. If c>x′ = c>x, then the algorithm terminates by returning x.
Otherwise, we replace x with x′ and repeat the procedure. See Algorithm 1 for
a pseudocode of the algorithm.

In the correctness proof, we use the following key lemma, whose proof is given
in Section 4. Note again that giving a simpler proof for this lemma is a technical
contribution of this paper.

Lemma 1. Let x, y ∈ B be vectors with distB(x, y) = 4, let {p1, . . . , p`} be a
2-step decomposition of y − x, and let wi ∈ R for i ∈ [`]. Then, there exists a
set I ⊆ [`] such that z := x +

∑
i∈I pi is contained in B, distB(x, z) = 2, and∑

i∈I wi ≥ min{0,
∑
i∈[`] wi}.
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Algorithm 1: Algorithm for Jump System Intersection

Input: J,B, c, and x0.
Output: x ∈ J ∩B maximizing c>x.

1 x← x0;
2 while true do

3 Find a vector x′ ∈ J ∩B maximizing c>x′ subject to distB(x, x′) ≤ 2;

4 if c>x′ = c>x then
5 return x
6 x← x′;

Remark 1. In Lemma 1, the roles of x and y are symmetric by changing the
signs of pi and wi, because Ī := [`] \ I satisfies the following:

– x+
∑
i∈I pi = y +

∑
i∈Ī(−pi),

– distB(x, z) = 2 ⇐⇒ distB(y, z) = 2, and
–
∑
i∈I wi ≥ min

{
0,
∑
i∈[`] wi

}
⇐⇒

∑
i∈Ī(−wi) ≥ min

{
0,
∑
i∈[`](−wi)

}
.

Let w ∈ R` be the vector consisting of wi’s, and denote w(I) :=
∑
i∈I wi for

I ⊆ [`]. We next show the following lemma. Note that almost the same result is
shown for degree sequences in [5, Lemma 1].

Lemma 2. Let k be a positive integer. Let x, y ∈ B be vectors with distB(x, y) =
2k and let {p1, . . . , p`} be a 2-step decomposition of y−x. Then, there exist index
sets ∅ = I0 ( I1 ( I2 ( · · · ( Ik = [`] such that zj := x+

∑
i∈Ij pi is contained

in B and distB(zj−1, zj) = 2 for j ∈ [k].

Proof. It suffices to construct I1 ⊆ [`] satisfying the conditions, because I2,
I3, . . . , Ik−1 can be constructed in this order in the same way.

By changing the direction of axes if necessary, we may assume that x(v) ≤
y(v) for every v ∈ V . Then, each pi is equal to χa + χb for some a, b ∈ V
(possibly a = b). For z ∈ ZV , we denote φ(z) := (distB(x, z), q(z)) ∈ Z2

≥0. In
order to construct I1, we start with I := I0 = ∅ and add an element one by one
to I. During the procedure, we keep φ(z) ∈ {(0, 0), (0, 2), (1, 1), (2, 0)}, where
z := x+

∑
i∈I pi. Note that φ(z) = (0, 0) when I is initialized to I0.

If φ(z) = (2, 0), then I1 := I clearly satisfies the conditions. Otherwise, it
holds that φ(z) ∈ {(0, 0), (0, 2), (1, 1)}. In this case, we show that there exists an
index i ∈ [`] \ I such that φ(z+ pi) ∈ {(0, 0), (0, 2), (1, 1), (2, 0)} by the following
case analysis.

– Suppose that φ(z) = (0, 0). Let i be an arbitrary index in [`] \ I. Then,
pi = χa + χb for some a, b ∈ V (possibly a = b). We see that φ(z + χa) ∈
{(0, 1), (1, 0)}, and hence φ(z+pi) = φ(z+χa+χb) ∈ {(0, 0), (0, 2), (1, 1), (2, 0)}.

– Suppose that φ(z) = (0, 2). Then, z+χa +χb ∈ B for some distinct a, b ∈ V
such that z(a) < y(a) and z(b) < y(b). Let i be an index in [`] \ I such that
pi = χa + χc for some c ∈ V (possibly c = a or c = b). Then, we see that
φ(z+χa) = (0, 1), and hence φ(z+pi) = φ(z+χa+χc) ∈ {(0, 0), (0, 2), (1, 1)}.
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– Suppose that φ(z) = (1, 1). Then, z + χa ∈ B for some a ∈ V with z(a) <
y(a). Let i be an index in [`] \ I such that pi = χa + χb for some b ∈ V
(possibly b = a). Then, we see that φ(z+χa) = (1, 0), and hence φ(z+pi) =
φ(z + χa + χb) ∈ {(1, 1), (2, 0)}.

If φ(z+pi) = (2, 0), then I1 := I ∪{i} satisfies the conditions. Otherwise, we
replace I with I ∪ {i} and repeat the procedure. Since [`] is finite, this process
terminates by finding a desired index set I1, which completes the proof. ut

By using Lemmas 1 and 2, we can evaluate the improvement of the objective
value in each iteration of Algorithm 1 as follows.

Lemma 3. Let J be a jump system with SBO property, let x∗ ∈ J ∩ B be
an optimal solution of Jump System Intersection, and let x ∈ J ∩ B be
a vector with x 6= x∗. Let x′ ∈ J ∩ B be a vector maximizing c>x′ subject to
distB(x, x′) ≤ 2. Then, c>x′ − c>x ≥ 2

‖x∗−x‖1 (c>x∗ − c>x).

Proof. If distB(x, x∗) ≤ 2, then the inequality is obvious. Since distB(x, x∗)
is even, suppose that distB(x, x∗) ≥ 4. Since x, x∗ ∈ J , there exists a 2-step
decomposition {p1, . . . , p`} of x∗−x that satisfies the conditions in (SBO-JUMP).

For i ∈ [`], we define wi = c>pi − c>x∗−c>x
` + ε, where ε is a sufficiently small

positive number (e.g. ε = 1
(`+1)2 ) that is used to break ties. Observe that, for

I, I ′ ⊆ [`] with |I| 6= |I ′|, w(I) 6= w(I ′) holds because of ε. By Lemma 2, there
exist index sets ∅ = I0 ( I1 ( I2 ( · · · ( Ik = [`] such that zj := x+

∑
i∈Ij pi is

contained in B and distB(zj−1, zj) = 2 for j ∈ [k]. We choose I1, I2, . . . , Ik−1 so
that (w(I1), w(I2), . . . , w(Ik−1)) is lexicographically maximum. Note that zj ∈ J
for j ∈ [k] by (SBO-JUMP).

Let j ∈ [k] be the minimum index such that w(Ij−1) < w(Ij). Note that
such j must exist, because w(I0) = 0 < ε` = w(Ik). Assume that j 6= 1. Then,
the minimality of j shows that w(Ij−2) > w(Ij−1) < w(Ij), where we note
that w(Ij−2) 6= w(Ij−1) as |Ij−2| 6= |Ij−1|. By applying Lemma 1 to a 2-step
decomposition {pi | i ∈ Ij \Ij−2} of zj−zj−2, we obtain an index set I ⊆ Ij \Ij−2

such that z′j−1 := zj−2 +
∑
i∈I pi is contained in B, distB(zj−2, z

′
j−1) = 2, and

w(I) ≥ min{0, w(Ij \ Ij−2)}. Let I ′j−1 := Ij−2 ∪ I. By z′j−1 = x+
∑
i∈I′j−1

pi and

(SBO-JUMP), we see that z′j−1 ∈ J . Furthermore, we obtain

w(I ′j−1) = w(Ij−2) + w(I) ≥ min {w(Ij−2), w(Ij)} > w(Ij−1),

which contradicts the choice of Ij−1.
Therefore, we obtain j = 1, that is, 0 = w(I0) < w(I1). Since

0 < w(I1) =
∑
i∈I1

(
c>pi −

c>x∗ − c>x
`

+ ε
)

= c>z1 − c>x−
(c>x∗ − c>x

`
− ε
)
|I1|
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and ε is sufficiently small, we obtain

c>z1 − c>x ≥
(c>x∗ − c>x)|I1|

`
.

We also see that c>x′ ≥ c>z1, because z1 ∈ J ∩ B and distB(x, z1) ≤ 2. By

combining these inequalities with |I1| ≥ 1 and ` = ‖x∗−x‖1
2 , we obtain c>x′ −

c>x ≥ 2
‖x∗−x‖1 (c>x∗ − c>x). ut

This implies that the global optimality is guaranteed by the local optimality.

Corollary 1. In an instance of Jump System Intersection with (C2), a
feasible solution x ∈ J ∩ B maximizes c>x if and only if c>x ≥ c>x′ for any
x′ ∈ J ∩B with distB(x, x′) ≤ 2.

We are now ready to prove the correctness of Algorithm 1.

Proof (Proof of Theorem 1). We first show that each iteration of Algorithm 1
runs in polynomial time. For x, x′ ∈ B with distB(x, x′) ≤ 2, we see that x(v)
and x′(v) are contained in the same maximal parity interval of B(v) for any
v ∈ V except at most two elements. Thus, for x ∈ B, {x′ ∈ B | distB(x, x′) ≤ 2}
can be partitioned into O(n2) sets, each of which is a direct product of parity
intervals. Therefore, we can find a vector x′ ∈ J ∩ B maximizing c>x′ subject
to distB(x, x′) ≤ 2 by using the oracle in Condition (C3), O(n2) times.

We next evaluate the number of iterations in the algorithm. Let OPT be the
optimal value of the problem and let Bsize :=

∑
v∈V |B(v)|. Since J is a jump

system with SBO property by Condition (C2), we can apply Lemma 3. By this
lemma, if x is replaced with x′ in line 6 of Algorithm 1, then

OPT− c>x′ ≤
(

1− 2

‖x∗ − x‖1

)
(OPT− c>x) ≤

(
1− 1

Bsize

)
(OPT− c>x),

that is, the gap to the optimal value decreases by a factor of at most 1− 1
Bsize

.

Therefore, by repeating this procedure O(Bsize log(OPT− c>x0)) times, the al-
gorithm terminates and returns an optimal solution.

This shows that Algorithm 1 solves Jump System Intersection in poly-
nomial time. ut

4 Outline of the Proof of Lemma 1

4.1 Minimal Counterexample

This section gives an outline of the proof of Lemma 1. A tuple (x, y, (pi)i∈[`], w)
is called an instance and a set I satisfying the conditions is called a solution.
To derive a contradiction, assume that Lemma 1 does not hold. Suppose that
(x, y, (pi)i∈[`], w) is a counterexample that minimizes ‖y − x‖1. Among such
counterexamples, we choose one that minimizes |{(pi, wi) | i ∈ [`]}|, that is, we
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minimize the number of different (pi, wi) pairs. Such (x, y, (pi)i∈[`], w) is called a
minimal counterexample. Define U ⊆ V as U := {v ∈ V | distB(v)(x(v), y(v)) ≥
1}. By changing the direction of axes if necessary, we may assume that x(v) ≤
y(v) for every v ∈ V . Then, each pi is equal to χa+χb for some a, b ∈ V (possibly
a = b). We show some properties of the minimal counterexample. Our argument
becomes simpler with the aid of these properties.

Lemma 4. For any i ∈ [`], pi = χa + χb for some a, b ∈ U (possibly a = b).
Consequently, x(v) = y(v) for all v ∈ V \ U .

Proof. Assume to the contrary that there exists i ∈ [`] such that pi = χa + χc
for some a ∈ V and for some c ∈ V \ U .

Suppose that a = c, i.e., pi = 2χc. We consider a new instance by removing
pi and replacing y with y − 2χc ∈ B. By the minimality of the counterexample,
the obtained instance has a solution I ⊆ [`] \ {i}, which implies that w(I) ≥ 0
or w(I) ≥ w([`] \ {i}). Then, I ′ := I is a solution of the original instance in the
former case and I ′ := I ∪ {i} is a solution of the original instance in the latter
case, which is a contradiction.

Suppose next that a 6= c. Since distB(c)(x(c), y(c)) = 0 and x(c), y(c) ∈ B(c),
we see that x(c) and y(c) have the same parity. Thus, there exists i′ ∈ [`] \ {i}
such that pi′ = χb + χc for some b ∈ V \ {c}. We merge pi and pi′ as follows:
replace pi and pi′ with a new vector pi′′ := χa + χb whose weight is wi + wi′ ,
and replace y with y − 2χc ∈ B. By the minimality of the counterexample, the
obtained instance has a solution I ⊆ ([`] \ {i, i′}) ∪ {i′′}. Then, we see that the
set

I ′ :=

{
(I \ {i′′}) ∪ {i, i′} if i′′ ∈ I,

I otherwise

is a solution of the original instance, which is a contradiction. ut

Lemma 5. (?) For any i ∈ [`], pi 6= 2χa for a ∈ U with distB(a)(x(a), y(a)) = 1.

Lemma 6. For any i, j ∈ [`] with pi = pj, it holds that wi = wj.

Proof. Let (x, y, (pi)i∈[`], w) be a minimal counterexample of Lemma 1, and as-
sume that pi = pj does not imply wi = wj . Let I∗ ⊆ [`] be a maximal index set
such that pi = pj for any i, j ∈ I∗ and wi 6= wj for some i, j ∈ I∗. We denote
I∗ = {i1, i2, . . . , it}, where wi1 ≥ wi2 ≥ · · · ≥ wit . Let w∗ := 1

tw(I∗). Define
w′i := w∗ for i ∈ I∗ and w′i := wi for i ∈ [`] \ I∗. We note that w′([`]) = w([`]). If
there exists a solution I ′ ⊆ [`] for a new instance (x, y, (pi)i∈[`], w

′), then I := (I ′\
I∗)∪ {i1, i2, . . . , i|I′∩I∗|} is a solution for the original instance (x, y, (pi)i∈[`], w),
because wi1 + wi2 + · · · + wi|I′∩I∗| ≥ |I

′ ∩ I∗| · w∗ = w′(I ′ ∩ I∗) implies that

w(I) ≥ w(I ′). This shows that instance (x, y, (pi)i∈[`], w
′) has no solution, and

hence it is a counterexample. Since |{(pi, w′i) | i ∈ [`]}| < |{(pi, wi) | i ∈ [`]}|,
this contradics the minimality of (x, y, (pi)i∈[`], w). ut

Let I+ := {i ∈ [`] | wi > 0} and z+ := x +
∑
i∈I+ pi. By Lemma 6, we

observe the following.
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Observation 1 For any i ∈ I+ and for any j ∈ [`] \ I+, it holds that pi 6= pj.

Since x(v) = y(v) = z+(v) for v ∈ V \ U by Lemma 4, it holds that q(z+) ≤
|U | ≤ distB(x, y) = 4. We derive a contradiction for the cases when |U | = 4,
|U | = 3, and |U | ≤ 2, separately. In this extended abstract we only consider the
case when |U | = 3 as a demonstration. The other cases are dealt with in the full
version [10].

In the case analysis, we use the following lemma, which is obtained by the
same argument as Lemma 2. Here, we denote φ(z) := (distB(x, z), q(z)) ∈ Z2

≥0

for z ∈ ZV .

Lemma 7. Let I0 ⊆ [`] be an index set such that z0 := x +
∑
i∈I0 pi satisfies

φ(z0) ∈ {(0, 0), (0, 2), (1, 1), (2, 0)}. Then, there exists an index set I ⊆ [`] with
I0 ⊆ I such that z := x +

∑
i∈I pi is contained in B and distB(x, z) = 2, i.e.,

φ(z) = (2, 0).

4.2 Part of Case Analysis: |U | = 3

In this extended abstract, we only consider the case when |U | = 3. Let U =
{v1, v2, v3} such that distB(v1)(x(v1), y(v1)) = distB(v2)(x(v2), y(v2)) = 1 and
distB(v3)(x(v3), y(v3)) = 2. By Lemmas 4 and 5, for any i ∈ [`], either pi = χa+χb
for some distinct a, b ∈ U or pi = 2χv3 .

Since distB(x, z+)+distB(y, z+) = 4, by changing the roles of x and y if neces-
sary (see Remark 1), we may assume that distB(x, z+) ≤ 2.2 Furthermore, since
‖x− z+‖1 is even, we see that distB(x, z+) + q(z+) is even. Therefore, the pair
φ(z+) := (distB(x, z+), q(z+)) is one of the following: (0, 0), (0, 2), (1, 1), (1, 3),
(2, 0), and (2, 2), where we note that q(z+) ≤ |U | = 3. We derive a contradiction
by considering each case separately.

Case 1: φ(z+) = (0, 0), (0, 2), (1, 1), or (2, 0).
By Lemma 7, there exists an index set I ⊆ [`] with I+ ⊆ I such that

z := x +
∑
i∈I pi is contained in B and distB(x, z) = 2. Since wi ≤ 0 for each

i ∈ [`] \ I, we obtain w(I) ≥ w([`]), and hence I is a solution of Lemma 1. This
is a contradiction.

Case 2: φ(z+) = (1, 3).
In this case, z+(v) 6∈ B(v) for v ∈ U . Since z+(v1) 6= y(v1), there exists

i ∈ [`]\I+ such that pi = χv1 +χu for some u ∈ {v2, v3}. Since φ(z++pi) = (1, 1),
by Lemma 7, there exists an index set I ⊆ [`] with I+ ∪ {i} ⊆ I such that
z := x+

∑
j∈I pj is contained in B and distB(x, z) = 2. We see that such I is a

solution of Lemma 1 in the same way as Case 1, which is a contradiction.

Case 3: φ(z+) = (2, 2).
Since q(z+) = 2 and |U | = 3, at least one of z+(v1) 6∈ B(v1) and z+(v2) 6∈

B(v2) holds. By changing the roles of v1 and v2 if necessary, we may assume that

2 If we change the roles of x and y, then I− := {i ∈ [`] | wi < 0} and z− := y−
∑

i∈I− pi
play the roles of I+ and z+, respectively. We see that if distB(x, z+) ≥ 3, then
distB(y, z−) ≤ distB(y, z+) = 4− distB(x, z+) ≤ 1.
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Fig. 3. Possible situations in Case 3. A blue edge (u, v) corresponds to an element
i ∈ [`]\I+ with pi = χu+χv, a red dashed edge (u, v) corresponds to an element i ∈ I+
with pi = χu + χv, and a vertex v ∈ V in a rectangle satisfies that z+(v) 6∈ B(v).

z+(v1) 6∈ B(v1). Let v∗ ∈ {v2, v3} be the other element such that z+(v∗) 6∈ B(v∗).
Since z+(v1) 6= x(v1), there exists i1 ∈ I+ such that pi1 = χv1 + χu for some
u ∈ {v2, v3}. Similarly, since z+(v1) 6= y(v1), there exists i2 ∈ [`] \ I+ such that
pi2 = χv1 + χu for some u ∈ {v2, v3}. By Observation 1, either pi1 = χv1 + χv∗

or pi2 = χv1 + χv∗ holds (Figure 3). If pi1 = χv1 + χv∗ , then I := I+ \ {i1} is a
solution, because w(I) ≥ 0, which is a contradiction; see Figure 3 (left two). If
pi2 = χv1 + χv∗ , then I := I+ ∪ {i2} is a solution, because w(I) ≥ w([`]), which
is a contradiction; see Figure 3 (right two).

5 Extension to Valuated Problem

In this section, we consider a valuated version of Jump System Intersection.

Valuated Jump System Intersection
Input. A function f : J → Z on a jump system J ⊆ ZV and a finite one-

dimensional jump system B(v) ⊆ Z for each v ∈ V .
Problem. Find a vector x ∈ J ∩ B maximizing f(x), where B ⊆ ZV is the

direct product of B(v)’s.

Note that f and J may be given in an implicit way, e.g., by an oracle. To
simplify the notation, we extend the domain of f to ZV by setting f(x) = −∞ for
x ∈ ZV \ J . The following property is a quantitative extension of (SBO-JUMP).

(SBO-M-JUMP) For any x, y ∈ J , there exist real values g1, . . . , g` and a
2-step decomposition {p1, . . . , p`} of y−x such that f(x+

∑
i∈I pi) ≥ f(x)+∑

i∈I gi for any I ⊆ [`] and f(y) = f(x) +
∑
i∈[`] gi.

Note that we use “M” in the name of the exchange axiom, because it defines
a subclass of M-concave functions on constant parity jump systems [21]; see
Remark 2 below. We can see that if f satisfies (SBO-M-JUMP), then its effective
domain J := {x ∈ ZV | f(x) > −∞} satisfies (SBO-JUMP). By using (SBO-M-
JUMP), we generalize Theorem 1 as follows.

Theorem 2. (?) There is an algorithm for Valuated Jump System Inter-
section whose running time is polynomial in

∑
v∈V

∑
α∈B(v) log(|α| + 1) +

maxx∈J log(|f(x)|+ 1) if the following properties hold:
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(C1’) a vector x0 ∈ J ∩B is given,
(C2’) f satisfies (SBO-M-JUMP), and
(C3’) for any direct product B′ ⊆ ZV of parity intervals, there is an oracle for

finding a vector x ∈ J ∩B′ maximizing f(x).

Remark 2. Functions with (SBO-M-JUMP) form a subclass of M-concave func-
tions on constant parity jump systems studied in the context of discrete convex
analysis [11, 19–21]. For J ⊆ ZV , a function f : J → Z is called an M-concave
function on a constant parity jump system [21] if it satisfies the following ex-
change axiom.

(M-JUMP) For any x, y ∈ J and for any (x, y)-step s, there exists an (x+s, y)-
step t such that f(x+ s+ t) + f(y − s− t) ≥ f(x) + f(y).

We can see that (SBO-M-JUMP) implies (M-JUMP) as follows. For x, y ∈ J ,
suppose that there exist a 2-step decomposition {p1, . . . , p`} of y−x and gi ∈ R
for i ∈ [`] satisfying the conditions in (SBO-M-JUMP). For any (x, y)-step s,
there exists an (x + s, y)-step t such that s + t = pi for some i ∈ [`]. Such t
satisfies the conditions in (M-JUMP), because

f(x+ s+ t) + f(y − s− t) = f(x+ pi) + f
(
x+

∑
j∈[`]\{i}

pj

)
≥ (f(x) + gi) +

(
f(x) +

∑
j∈[`]\{i}

gj

)
= f(x) + f(y).

6 Weighted Optimal General Factor Problem

It was shown by Dudycz and Paluch [5] that the edge-weighted variant of the
optimal general factor problem can also be solved in polynomial time if each B(v)
has no gap of length more than one. Formally, in the weighted optimal general
factor problem, given a graph G = (V,E), an edge weight w(e) ∈ Z for e ∈ E,
and a set B(v) ⊆ Z of integers for each v ∈ V , we seek for a B-factor F ⊆ E that
maximizes its total weight

∑
e∈F w(e), where we denote w(F ) :=

∑
e∈F w(e).

Their algorithm consists of local improvement steps used in Algorithm 1 and a
scaling technique.

In what follows in this section, we show that the polynomial solvability of
the weighted optimal general factor problem is derived from Theorem 2.

Theorem 3 (Dudycz and Paluch [5]). The weighted optimal general factor
problem can be solved in polynomial time if each B(v) has no gap of length more
than one.

Proof. Let G = (V,E), w, and B be an instance of the weighted optimal general
factor problem such that each B(v) has no gap of length more than one. Let
J := {dF | F ⊆ E}, and define f : J → Z by f(x) := max{w(F ) | dF = x, F ⊆
E} for x ∈ J .
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We now show (C1’), (C2’), and (C3’) in Theorem 2. Since an edge set
F0 ⊆ E with dF0

∈ B can be found in polynomial time by the algorithm of
Cornuéjols [3] (if it exists), we obtain x0 := dF0 satisfying the condition in
(C1’). The subproblem in (C3’) is to find an (a, b)-factor with parity constraints
that maximizes the total edge weight, which can be solved in polynomial time;
see [23, Section 35]. To see (C2’), for x, y ∈ J , let M,N ⊆ E be edge sets
such that dM = x, dN = y, w(M) = f(x), and w(N) = f(y). As in Exam-
ple 3, the symmetric difference of M and N can be decomposed into alternating
paths P1, . . . , P` and alternating cycles such that {dN∩Pi − dM∩Pi | i ∈ [`]}
is a 2-step decomposition of y − x. For i ∈ [`], let pi := dN∩Pi − dM∩Pi and
gi := w(N ∩Pi)−w(M ∩Pi). For I ⊆ [`], let FI ⊆ E be the symmetric difference
of M and

⋃
i∈[I] Pi. Then, since dFI

= x+
∑
i∈I pi and w(FI) = f(x) +

∑
i∈I gi,

we obtain f(x+
∑
i∈I pi) ≥ f(x) +

∑
i∈I gi. This shows (C2’).

By Theorem 2, we can find x∗ ∈ J ∩B maximizing f(x∗) in polynomial time.
Furthermore, an edge set F ∗ ⊆ E satisfying w(F ∗) = f(x∗) and dF∗ = x∗ can
also be found in polynomial time by a weighted b-factor algorithm. By definition,
such F ∗ is an optimal solution of the weighted optimal general factor problem.

ut

7 Concluding Remarks

In this paper, we have revealed that (SBO-JUMP) is a key property to obtain
a polynomial time-algorithm for Jump System Intersection, which is an
abstract form of the optimal general factor problem. By using this abstraction,
we have obtained a simpler correctness proof for the polynomial solvability of
the optimal general factor problem. We have also extended the results to the
valuated case.

There are some possible directions for future research. It is nice if we obtain
more examples of jump systems satisfying (SBO-JUMP) other than Examples 1–
3. It is open whether Jump System Intersection can be solved in polynomial
time if each B(v) is given as a union of parity intervals. It is also a natural open
problem whether we can obtain a strongly polynomial-time algorithm for the
weighted general factor problem. Finally, it is interesting to find a new property
of J other than (SBO-JUMP) that enables us to design a different polynomial-
time algorithm.
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15. László Lovász. The matroid matching problem. Algebraic Methods in Graph The-
ory, Colloq. Math. Soc. János Bolyai, 25:495–517, 1978.
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