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Abstract: A deep-learning-based semantic segmentation
approach (U-Net) was used to partition the anatomical fea-
tures in the cross-section of hinoki (Chamaecyparis obtusa)
wood during a micro three-point bending test. Using the
Crocker–Grier linking algorithm, thousands of cells were
successfully extracted, and several parameters (area, eccen-
tricity, fitted ellipse aspect ratio, bounding box aspect ratio)
were used to evaluate the intensity of the cells’ deformation.
Thus, the 2Dmapof thedeformation intensitydistributionwas
constructed. By analyzing flat-sawn, quarter-sawn, and rift-
sawn specimens, it was confirmed that the annual ring
orientation affects the flexural behavior of wood in the trans-
verse direction. The quarter-sawn specimens exhibited the
largest modulus of elasticity (MOE) and modulus of rupture
(MOR). The ray tissue aligned against the load may have
contributed to the restrictionof cell deformation. The rift-sawn
specimens exhibited the smallest MOE and MOR, possibly
owing to the loading of the specimen in the in-plane off-axial
direction, which induced the shear deformation of the cell
wall. For all three specimen types, the fracture had high
occurrence probability in the tension part of the specimen,
which exhibited large cell deformation. Therefore, the pro-
posed method can be adapted to the prediction of wood
specimen fractures. With different test wood species, this
approach can be of great help in elucidating the relationship
between the anatomical features and themechanical behavior
ofwood to improve the effective utilization ofwood resources.

Keywords: cell deformation; deep learning; flexural
behavior; individual cell tracking; semantic segmentation.

1 Introduction

Wood is a natural cellular material with complex structure
and different cell types (anatomical features) acting together
to serve the needs of the living tree (Robert 2010). As an
anisotropic material, wood has excellent mechanical prop-
erties parallel to the grain (longitudinal direction), while its
mechanical properties perpendicular to the grain (transverse
direction) are relativelyweakandvary amongdifferentwood
species in accordance with the species’ unique anatomical
features (Gibson and Ashby 1998; Robert 2010).

Since ancient times, humans have used wood as a
constructionmaterial and considered themicrostructure of
wood in the transverse direction. A relevant example is the
traditional Japanese roofing method called kokerabuki
(Harada 1999; Yokoyama 2016). In this method, quarter-
sawn boards with a thickness of 2–3 mm, width of 90–
150 mm, and length of 300 mm are stacked on the flat part
of the roof, while rift-sawn boards are used for the curved
surface of the roof, owing to their excellent flexibility in the
transverse direction, of which Japanese artisans are aware
through empirical knowledge. Understanding the rela-
tionship between the anatomical features and the me-
chanical behavior of wood is important for improving the
effective utilization of wood resources. To clarify this
relationship, wood scientists have developed several ap-
proaches from two main perspectives.

The first perspective is the top-down one, which refers to
the direct microscopic observation of the deformation of
anatomical features during or after a mechanical test. Ando
and Onda (1999a) used a wet-type scanning electron micro-
scope (SEM) to observe the compression of wood cell walls.
Combined with image analysis, they found that the first
fracture of the cell wall occurred in one tangential row of the
earlywood tracheid just after the load–displacement
curve exceeded the proportional limit. Müller et al. (2003)
observed the cell deformation of both softwood (spruce) and
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hardwood (oak and beech) at different yielding stages of the
compression test using a SEM and a light microscope to
obtain the different fracture patterns of the anatomical fea-
tures of these species. Murata et al. (1999) used the digital
image correlation (DIC) approach to analyze the video taken
during compression test of wood in the radial direction by
microscope. By applying a random speckle on the surface of
the cross-section, the strain distribution was successfully
calculated, which suggests the DIC is a useful method for
understanding the mechanical behavior of wood. Hwang
et al. (2021) used the replicamethod to intermittently analyze
the cell wall deformation offlat-sawn, quarter-sawn, and rift-
sawn specimens in the transverse direction of wood sub-
jected to a three-point bending test. The rift-sawn softwood
specimen exhibited a unique deformation pattern of the
earlywood cell wall, which contributed to extremely large
flexural deformation. These direct microscopic observation
methods combined with image analysis have provided
important information that improveourunderstandingof the
in-situ deformation of wood microstructures.

The second perspective is the bottom-up one, which
refers to the mechanical simulation of wood properties with
consideration to its hierarchical structure. Watanabe et al.
(1999, 2000, 2002) first used fast Fourier transform (FFT) to
extract the axial length of the tangential and radial cell wall,
cellwall thickness, and soon, of several coniferwoodspecies
to simulate the tangential Young’smodulus through cellwall
modeling. Ando and Onda (1999b) used the generalized cell
wall model to simulate the first buckling mechanism of the
conifer wood cell wall under radial compression. Holmberg
et al. (1999) employed the finite element method (FEM) to
simulate the nonlinear mechanical behavior with consider-
ation to the irregular cell shape, anisotropic layer structure of
the cell walls, and periodic variations of wood density. The
simulated deformation and fracture of wood were similar to
those observed in the process of wood refinement. De Mag-
istris and Salmén (2008) used FEMmodels to investigate the
compression and combined shear and compression defor-
mation of a cellwallwith anisotropic one-layer cellwalls and
an orthotropic multi-layer cell wall. They found that cell
structures are key factors influencing the deformation
pattern. Recently, the multi-scale FEM was used to simulate
the compression behavior of wood under both axis and
transverse loading (Zhong et al. 2021). It was found that the
transverse deformation of wood is gradual and uniform,
while the loading velocity greatly affects the wood micro-
structure failure modes under loading in the axial direction.
The above-mentioned approaches are useful in elucidating
the mechanical behavior of wood.

Computer vision technologies have become quite
prevalent even in wood science, and those techniques have

been usually used to address wood species identification
and property prediction problems. Recently, they have been
used for semantic segmentation, such as the automatic
extraction of individual cell types (Hwang and Sugiyama
2021). With the advent of deep-learning-based semantic
segmentation approaches, suchasU-Net (Ronneberger et al.
2015), LinkNet (Chaurasia andCulurciello 2017), andFeature
Pyramid Network (Lin et al. 2017), Garcia-Pedrero et al.
(2020) successfully segmented xylem vessels from cross-
sectional micrographs by using U-Net, a multi-scale
encoder-decoder model based on convolutional neural
network (CNN). If such semantic segmentation can be
adapted to the analysis of wood cell deformation, it will be
able to simultaneously analyze almost all local changes in
the anatomical features and their interaction during a me-
chanical test. The obtained information can enable us more
accurate and quantitative image analysis in the top-down
approaches, while the collected cell wall geometry will
contribute to parameter settings for mechanical simulation
in the bottom-up approaches. This study presents a flow to
achieve individual cell tracking to accurately analyze the
morphological changes of the individual tracheid of hinoki
wood that are extracted by semantic segmentation and their
local deformation during a micro three-point bending test.

2 Materials and methods

2.1 Specimen preparation

This study investigated mature Hinoki (Chamaecyparis obtusa) wood.
Three sample types (flat-sawn, rift-sawn, and quarter-sawn) were first
prepared only from sapwoodwith consideration to the orientation of the
annual ring, which was confirmed by visual observation. The angle of
the annual ring aligned in the horizontal direction and vertical direction
was 0° and 90°, respectively. The sample with an annual ring angle of
0°–30° was defined as flat-sawn, that with a ring angle of 30°–60° was
definedas rift-sawn,and thatwitha ringangle of 60°–90°wasdefinedas
quarter-sawn. Five flat-sawn, quarter-sawn, and rift-sawn, specimens
were prepared with the dimensions of 10 mm (longitudinal) × 20 mm
(width) × 1.5 mm (thickness), respectively. The cross-section of all
specimenswas smoothed by a slidingmicrotome (TU-213, Yamato Kohki
industrial Co., Ltd., Japan). Then, all specimens were conditioned in a
plastic glove box at 60% relative humidity (RH) and 25 °C using sodium
bromide solution for more than two weeks. The average density and
moisture content of specimens with standard deviation (SD) in paren-
thesis were 399 (17) (kg/m3) and 11.1 (0.3) %, respectively.

2.2 Micro three-point bending test

After the conditioning, all specimens were subjected to the micro
three-point bending test. A customized metal jig (Figure1a) was used
for testing. A motor (BLM230P-GFV2, ORIENTAL MOTOR Co., Ltd.,
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Japan) with a test speed of 1 mm/min was used to horizontally bend
the specimens. A 200-N load cell (LUR-A-200NSA1, Kyowa Electronic
Instruments Co., Ltd., Japan) with a sensor interface (PCD-320 A,
Kyowa Electronic Instruments Co., Ltd., Japan) was used to record the
force; the sampling speed was 1 Hz. During the test, a stereo-
microscope (Leica DMS300, Leica Camera AG, Germany) was set
perpendicularly to the cross-section to record the deformation of the
tracheid cells on video at 30 fps. The resolution was 1080p; the length
of one pixel is equal to approximately 2.09 µm. All experiments were
conducted at 60% RH and 25 °C.

2.3 Deep learning based semantic segmentation model

To prepare themodel training dataset, after capturing the videoduring
the bending test, the first image at every second of the video was
captured to compile an image sequence. Twelve original images with
256 × 256 pixels were randomly cropped from the image sequence. The
watershed segmentation implemented by the Python Mahotas pack-
age was first applied to label the boundary of the tracheid cells
(Figure 2b) (Coelho 2013; Vincent and Soille 1991). The unlabeled part
was manually modified to make the corresponding ground truth
masks. The boundaries were labeled at the centerline of the adjacent
cell walls. For a tracheid cell wall adjacent to the ray parenchyma

cells, owing to the low contrast of the ray parenchyma cell lumen, the
boundaries were always labeled at the center part of the ray paren-
chyma cell, which means that part of a ray parenchyma cell was
recognized as a tracheid cell (Figure 2b). In future work, the paren-
chyma cell walls should be labeled separately and the microscopic
observation method should be improved.

Twelve sets of original images, and the corresponding ground
truth masks with the cell boundaries labeled in white and the back-
ground labeled in black, were used to build the semantic segmenta-
tion model. For model training, the symmetric U-Net architecture,
which is achieved by using the “same” padding instead of “valid” in
the original model (Ronneberger et al. 2015) was used. The network
was implemented using the Tensorflow framework (ver. 1.5.0) and
Keras (ver. 2.2.4). The binary cross-entropy was used as the loss
function, and Adam was used as the optimizer. The learning rate was
0.0001. During model training, the images were augmented by the
image generator. The details of augmentation parameters were shown
in Supplementary Table S1.

2.4 Model evaluation metrics

Fourmetrics, namely, precision, recall, F1, and accuracy, were used to
evaluate the trained model. These metrics were calculated from the
true positive (TP), false positive (FP), true negative (TN), and false
negative (FN) obtained from the confusion matrix for the binary
classification of the cell boundary and background. The following
equations were used:

Precision = TP
TP + FP

(1)

Recall = TP
TP + FP

(2)

F1 = 2 × Precision × Recall
Precision + Recall

(3)

Accuracy = TP + TN
TP + FP + TN + FN

(4)

2.5 Image prediction and individual cell tracking

After model training, the trained model assisted by a patch blending
algorithm (Chevalier 2017) was used to partition all potential cells in
the image sequence with 1920 pixels × 1080 pixels. After predicting

Figure 1: Illustration of micro three-point bending test: (a) Illustra-
tion of mechanical test apparatus: (b) cross-section of wood spec-
imen observed with stereo-microscope.

Figure 2: Preparation of dataset for semantic segmentation model training: (a) cropped patch of wood cross-section; (b) trachied cell
boundarymask labeled bywatershed segmentation algorithm; (c) manually corrected imagemask. The scale bar indicates a length of 100 μm.
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all image sequences, watershed segmentation was used to achieve
the instance segmentation of all cells. Finally, the coordinates of the
centroid of the segmented cells were collected, and a tracking al-
gorithm (Crocker and Grier 1996) implemented using the Python
Trackpy package was used to link the same cell walls in each image
(Allan et al. 2021). Figure 3 is the sample data indicating the pro-
cesses of watershed segmentation (Figure3a), coordinate extraction
of centroids (Figure3b), and individual cell tracking (Figure3c)
described above with 256 X 256 pixels image.

2.6 Parameter measurement for cell deformation
analysis

After tracking the individual cells that existed in every image
sequence, the area, eccentricity, major and minor axis length of the
fitted ellipse (Figure 4①②), and the vertical and horizontal length of
the bounding box (Figure 4 ③ ④) for each cell wall were measured.
The eccentricity was calculated from the fitted ellipse with the same
second moments as the cell wall. The eccentricity of a circle is zero,

while the eccentricity of an ellipse is greater than zero but less than
one. These measurements were made using the Python scikit-image
package (Van Der Walt et al. 2014). The fitted ellipse aspect ratio and
bounding box aspect ratio were calculated based on the following
equations:

Fitted ellipse aspect ratio = major axis length of  f itted ellipse(①)
minor axis length of  f itted ellipse(②) (5)

bounding box aspect ratio = vertical length of  bounding box(③)
horizontal length of  bounding box(④)

(6)

To evaluate the intensity of the cell deformation, the changes in
the area, eccentricity, fitted ellipse aspect ratio, and bounding box
aspect ratio were calculated based on the following equation:

Changes in parameter(%) = parameteri(n) − parameteri(0)
parameteri(0)

× 100 (7)

where n indicates the order of the observed image sequence and
i indicates the type of the measured parameters shown in Figure 4.

Figure 3: Tracking of cell deformation during mechanical test: (a) watershed segmentation of predicted image by trained U-Net model to
achieve instance segmentation; (b) centroid coordinates for each cell extracted as features for individual cell tracking; (c) centroid trajectories
obtained by Crocker–Grier linking algorithm; the color of each trajectory was randomly generated.

Figure 4: Measurement parameters for evaluating intensity of cell deformation.

878 S. Chen et al.: Cell deformation analysis by computer vision approach



3 Results and discussion

3.1 Flexural behavior of flat-sawn, quarter-
sawn, and rift-sawn specimens in the
transverse direction

Figure 5 shows the difference in the mechanical properties
of the flat-sawn, quarter-sawn, and rift-sawn specimens in
the transverse direction. During the micro three-point
bending test, the rift-sawn specimens exhibited the
smallest load values with the largest displacement of
approximately 3.3 mm, which resulted in the smallest
modulus of elasticity (MOE) andmodulus of rupture (MOR)
(Figure 5a). Assuming that the linear stage of calculated
stress-strain is the elastic region and the nonlinear stage is
the plastic region, the rift-sawn specimens had the largest
plastic region. In contrast, the quarter-sawn specimens
exhibited the largest MOE andMOR (Figure 5b) and had the
smallest plastic region. These results are consistent with
the results obtained by a previous study (Hwang et al.
2021), which suggests that the orientation of the annual
ring contributes significantly to the flexural behavior of
wood in the transverse direction, and also demonstrates
that the micro three-point bending test system is reliable
for the investigation of the mechanical properties of wood
in the transverse direction.

3.2 Validation of U-Net model and large
image prediction

With the development of artificial intelligence, fully con-
volutional network (FCN) models have been proposed for
semantic segmentation (Long et al. 2015). The U-Net ar-
chitecture was proposed by Ronneberger et al. 2015 as an
improvement of FCN and is designed to use fewer training
samples for model training. The U-Net architecture is a
U-shaped architecture consisting of encoder blocks,
decoder blocks, and skip connections, and has become a
popular approach for semantic segmentation tasks.
Recently it was extensively investigated to conduct even 3D
segmentation of several kinds of plant tissues and achieved
excellent accuracy (Wonly et al. 2020).

Figure 6a shows the evolution of the binary cross-
entropy loss during training for 100 epochs with the U-Net
architecture. After training for approximately 40 epochs, the
validation loss tended to become approximately constant
and training loss continued to decrease to approximately
0.1. The average values (SD) of precision, recall, F1, and
accuracy of five test images are 0.82 (0.02), 0.82 (0.02), 0.82
(0.02), and0.92 (0.01), respectively,which indicates that the
constructed semantic segmentation model is accurate.
Figure 6b showsanexample of the original input image, and
Figure 6c shows the image predicted by the trained model.

Figure 5: Mechanical properties of flat-sawn, quarter-sawn, and rift-sawn hinoki specimens in the transverse direction: (a) load–displace-
ment curve of three types of hinoki specimens duringmicro three-point test; (b) MOE andMORof three specimen types. The error bars indicate
the standard deviation.
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The large image of the cross-section was satisfactorily pre-
dicted by combining the patch blending algorithm and the
trainedmodel Supplementary Figure S1. Most tracheid cells
appeared to be satisfactorily segmented, whereas the
partition of the latewood tracheid cells and some earlywood
cell walls were not satisfactorily predicted, owing to the low
contrast of the cell wall lumen. To overcome this problem,
the microscopic observation method must be improved to
increase the contrast of the cell wall lumen.

The geometrical parameters of a flat-sawn specimen
were measured to further confirm the segmentation accu-
racy. The vertical bounding box and horizontal bounding
box were considered as the cell radial diameter and cell
tangential diameter. Figure 7 shows the distribution of the
typical parameters measured from the segmented cells. The
averaged values (SD) of the area, cell eccentricity, cell radial
diameter, and cell tangential diameter are 955 μm (306),
0.60 (0.15), 37.5 μm (7.6), and 34.8 μm (6.6), respectively.
These parameters are consistent with the geometrical
parameters reported by a previous study (Saiki 1963).

3.3 Typical deformation patterns of tracheid
cell in three specimen types

Figure 8 shows the typical deformation patterns of a
tracheid earlywood cell wall located in both compression
and tension part of the three specimen types during the
micro three-point bending test. For the flat-sawn speci-
mens, the compressive and tensile stress likely induced the
uniaxial compression and elongation of the cell in the
tangential direction, respectively. Due to the Poisson effect,
the radial cell width of the cell located at the tension part
decreased (Figure 8a). Owing to the orthogonal orientation of
the cell, similar deformation seems to be observed in the
radial direction of quarter-sawn specimens. Because the
quarter-sawn specimens fractured at the early stage of the
bending test, when the displacement was only approxi-
mately 1mm, the dimensional changes of the cell weremuch
smaller than those of the flat-sawn specimens while the
Poisson effect was confirmed at both compression and ten-
sion part (Figure 8b).

Figure 6: Tracheid cell boundary prediction by trained U-Net model: (a) binary cross-entropy loss plotted against training epochs; (b) original
image input; (c) predicted image. The scale bar indicates the length of 400 μm.

Figure 7: Histogram and density plot indicating the distribution of typical parametersmeasured from flat-sawn specimen beforemechanical test:
(a) cell area (µm2); (b) cell eccentricity; (c) cell diameter (µm) (yellow: cell radial diameter; gray: cell tangential diameter).
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Unlike the flat-sawn and quarter-sawn specimens, the
cell wall in the rift-sawn specimens exhibited different
deformation patterns. The shear deformation of the cell
walls was both observed in compression part and tension
part (Figure 8c). Murata and Masuda (2003) analyzed the
strain distribution of softwood in transverse compression
by DIC method. And the large shear strain was observed in
the case of the compression of rift-sawn type specimen,
and they proposed the rolling shear of the cell wall
contributed to such large shear strain distribution, which is
consistent with our observation. Furthermore, this orien-
tation of the tracheid cells is somewhat similar to the uni-
axial loading of honeycombs in the in-plane off-axial
direction. Li et al. (2018) simulated the in-plane yield
strength of square honeycombs in different directions un-
der compression using a theoretical approach and the FEM
method. They concluded that square honeycombs exhibit
strong anisotropy when loaded in different orientations.
Their numerical simulation results revealed that the axial
yield strength of the square honeycomb has minimum
values at an angle of orientation of 37°–38°, which is in the
range of the orientation of the annual ring of the rift-sawn
specimens. Therefore, it is thought that the shear defor-
mation induced by the off-axis loading of the tracheid cell
is responsible for the large displacement and lowMOE and
MOR of rift-sawn specimens.

3.4 Visualization of distribution of tracheid
cell deformation

Using theCrocker–Grier linkingalgorithm, the coordinatesof
the centroids for each common tracheid cell that existed in
each frame of the image sequence were linked, and thou-
sands of common cells were extracted. These common cells
were mainly the earlywood cells, which had sufficient cell
wall lumen contrast. The latewood cells and earlywood cells,

which had low cell wall lumen contrast along the radial di-
rection, were not linked owing to their bad segmentation.

After evaluating the intensity of the deformation by
calculating the changes in the four parameters (area, ec-
centricity, fitted ellipse aspect ratio, and bounding box
aspect ratio) described in Section 2, suitable parameters for
evaluating cell deformation were selected by considering
the different types of cell deformation in three specimen
types. The area and bounding box aspect ratio were
selected for evaluating the cell deformation of flat-sawn
and quarter-sawn specimens, respectively. As the rift-sawn
specimens exhibited the relatively large shear deformation
of cell, area, eccentricity, and fitted ellipse aspect ratio are
promising parameters for the evaluation of deformation.
Among them, the fitted ellipse aspect ratio was selected for
further analysis in this study. A detailed discussion of
parameter selection was summarized in Supplementary
Figures S2, S3, S4, and S5.

After parameter selection, the 2D mapping of the cell
deformation intensity for the three specimen types at the
elastic region, plastic region and before fracture was con-
structed (Figure 9). The white color indicates that the
measured parameters were unchanged; the darker red and
darker blue color indicate larger increase and larger
decrease in the measured parameters, respectively. In the
elastic region, all specimens exhibited relative slight and
varied deformation for all parameters (Figure 9a, d, g),
which suggests the force was uniformly transferred to each
cell wall. In the plastic region, the cell deformation distri-
bution was different (Figure 9b, e, h). And the intensity of
the deformation reached the maximum before fracture of
specimen (Figure 9c, f, i).

For the flat-sawn specimens, the area appears to be the
most suitable parameter for deformation evaluation. As
shown in Figure 9b, c, the cell area increased in the tension
part and decreased in the compression part of the spec-
imen. Those results might be owing to the existence of
latewood at the compression part, which contributed to the

Figure 8: Typical deformation pattern of tracheid cell for (a) flat-sawn, (b) quarter-sawn, and (c) rift-sawn specimens before fracture. The scale
bar indicates a length of 50 μm.
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restriction of cell deformation. On the whole, it was found
that 60% of the cells showed increases in cell area while
39% of the cells showed decreases in cell area in the
observed cross-section.

For the quarter-sawn specimen, the bounding box ap-
pears to be a promising parameter. Because the specimen
exhibited minor curvature during the bending test, the
compressive stress caused the ratio to increase, whereas the
tensile stress caused the ratio to decrease. The neutral axis
seems to be approximately located at the central part of the
specimenwith the smallest intensity of the changes.Overall,
50% of the observed cells showed increases in the ratio and
50% of the cells showed decreases in the ratio.

For the rift-sawn specimen, the fitted ellipse aspect ratio
was selected for the evaluation of deformation. An increase in
the fitted ellipse aspect ratio was observed both in the
compression part and tension part (Figure 9h, j) Rather than
in the flat-sawn and quarter-sawn specimens, the more
concentrated and intensive deformation was observed at the
innermost area of the compression part and outermost area of
the tension part of the rift-sawn specimens. In the observed
area, 70% of the cells showed increases in fitted ellipse ratio
and30%of the cells showeddecreases in the ratio. The reason
for this is that the shear formationof thecellwas thedominant

deformation pattern and responsible for the increase major
axis length, and the decrease in the minor axis length.

3.5 Clustering analysis of deformation
pattern of individual cells

To summarize the deformation pattern of each individual
cell, the k-means clustering algorithm was implemented
through the Python scikit-learn package (Pedregosa et al.
2011). According to Figure 10a, e, i, the clustering algorithm
effectively summarized eight clusters corresponding to the
intensity of cell deformation for the three specimen types.
Figure 10b, f, j showed the fracture pattern of specimens after
three-point bending test. The fractures of the three specimen
types had high occurrence probability in the corresponding
tension part of their clustered color that exhibited large cell
deformation. The cluster distribution for the three specimen
types is shown in Figure 10c, d, g, h, k, l showed the rela-
tionship between the eight summarized deformation pat-
terns and the strain of specimen during the three-point
bending test. In the elastic region with the light green color,
linear changes in the cell area, bounding box, and fitted
ellipse aspect ratio for the flat-sawn, quarter-sawn, and rift-

Figure 9: Intensity of cell deformation of flat-sawn, quarter-sawn and rift-sawn specimens duringmicro three-point bending test evaluated by
three selected parameters and their distribution: (a, b, c) changes in area (%); (d, e, f) changes in bounding box aspect ratio (%); (g, h, i)
changes in fitted ellipse aspect ratio (%); (a, d, g) elastic region; (b, e, h) plastic region; (c, f, i) before fracture.
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sawn specimens were observed as the strain increased.
However, the cell deformation pattern of those specimens
was different in the plastic region with skyblue color.

For the flat-sawn specimens, almost linear changes in
cell area with the evolution of strain were observed in
plastic region (Figure 10d). The clustered cells with red
color were located at the outermost area of tension part to
finally have around a 9% increase in cell area. And the area
of cell with vermillion color located at innermost area of

compression part showed about 5% decrease. As shown in
Figure 10b, the ray parenchyma cells appear to be a defect
that facilitates fractures, and the detachment between cells
along the radial direction was also observed.

The linear changes in the bounding box aspect ratio
were also observed in the plastic region of quarter-sawn
specimen (Figure 10h). The significant increase and
decrease in the bounding box aspect ratio mainly occurred
in the earlywood region near the previous latewood region,

Figure 10: Results of k-means clustering for deformation patterns and their relationship with fracture pattern and strain of specimens: (a, e, i)
clusterized images of flat-sawn, quarter-sawn, and rift-sawn specimens, respectively. The yellow circle in (i) points out the blue-colored cells
of rift-sawn located at the outermost area of tension part showing minor deformation; (b, f, j) fracture pattern of flat-sawn, quarter-sawn and
rift-sawn specimens, respectively. The scale bar indicates a length of 400 μm; (c, g, k) distribution of clusters of changes in area, bounding box
aspect ratio, and fitted ellipse aspect ratio for flat-sawn, quarter-sawn, and rift-sawn specimens, respectively; (d, h, l) clusterized changes in
area, bounding box aspect ratio, and fitted ellipse aspect ratio during mechanical test for flat-sawn, quarter-sawn, and rift-sawn specimens,
respectively, and their relationship with strain. The light green and skyblue areas indicate the assumed elastic and plastic regions,
respectively.
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which was colored with red and vermilions, respectively
(Figure 10e).With the evolution of strain, the bounding box
aspect ratio of the cells with those two colors showed 12%
increase and 8%decrease, respectively. The earlywood cell
wall located in that region exhibited a thinner cell wall with
a large cell area, which resulted in weaker mechanical
properties. This is assumed to be the reason for the initia-
tion of the fracture of the specimen, which possibly
induced the detachment between cells in the earlywood
region of the tension part (Figure 10f). Because the ray
parenchyma cells of the quarter-sawn specimens were
aligned against the mechanical load, the ray parenchyma
cellsmayhave contributed significantly to the restriction of
the cell deformation, which resulted in larger MOE and
MOR compared with that of the flat-sawn specimens.

For the rift-sawn specimens, with the increases in
strain, pink colors showed a logarithmic increasewhile two
clusters with red and vermilion colors along the radial files
typically exhibited exponential increase (Figure 10l).When
the strain reached around 5%, changes in fitted ellipse
aspect ratio for the pink-colored cells tend to become
almost constant and finally reached 21%. And the red- and
vermilion-colored cells showed a drastic increase in the
changes in fitted ellipse aspect ratio and finally reached 28
and 43% before the fracture, respectively. Such large shear
deformation contributed significantly to the flexibility of
the rift-sawn specimens. Owing to the orientation of the
annual ring at approximately 44.5°, the ray tissue appeared
to impose a minor restriction on the cell walls. Interest-
ingly, as in Figure 10i, the blue cells in the yellow circle
were located at the outermost area of the tension part.
Although those cells remained relatively unchanged, they
were surrounded by red and vermillion-colored cells that
had been largely deformed. Such a restricted blue area is
possibly involved in the initiation of the cell detachment in
Figure 10j. Closer observation of the fractured surface al-
lows us to conclude that the detachment between cells
along the radial direction dominated the fracture pattern of
the specimens.

4 Conclusions

This study constructed a deep-learning-based semantic seg-
mentationmodelwithU-Net architecture to partition tracheid
cells in the cross-section of hinoki wood during amicro three-
point bending test.Using theCrocker–Grier linkingalgorithm,
thousands of cells were extracted. Then, several parameters
(area, eccentricity, major/minor axis length, vertical/hori-
zontal bounding box length) were used to evaluate the

intensity of the cells’ deformation, and the 2Dmapping of the
deformation intensity distribution at the cellular level was
constructed. The following conclusions were drawn:
(1) The area and bounding box aspect ratio are suitable for

evaluating the cell deformation of flat-sawn and
quarter-sawn specimens, respectively. Because the rift-
sawn specimens exhibited the relatively large shear
deformation of the cell wall, the area, eccentricity, and
fitted ellipse aspect ratio are promising parameters for
the evaluation of deformation.

(2) The quarter-sawn specimens exhibited the largest
MOE and MOR. The ray parenchyma cells aligned
against the mechanical load may have contributed to
the restriction of the cell deformation. The rift-sawn
specimens exhibited the smallest MOE and MOR,
possibly owing to the loading of the specimen in the
in-plane off-axial direction, which induced the shear
deformation of the cell wall.

(3) For all three specimen types, according to the k-means
clustering results for the cell deformation pattern,
there was high probability of fracture occurrence in the
tension part of the specimen,which exhibited large cell
deformation. Therefore, the proposed method can be
adapted to fracture prediction for wood specimens.

Wood is a natural composite, and its anatomical structures
and mechanical properties are diverse. Therefore, the
proposed approach with the combination of computer
vision, machine learning, and multivariate analyses has a
great potential in unraveling the relationships between
morphology and mechanical behavior of wood, which
remain uncertain.
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