
Improving Compound−Protein Interaction Prediction by Self-
Training with Augmenting Negative Samples
Takuto Koyama, Shigeyuki Matsumoto,* Hiroaki Iwata, Ryosuke Kojima, and Yasushi Okuno*

Cite This: J. Chem. Inf. Model. 2023, 63, 4552−4559 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Identifying compound-protein interactions (CPIs) is crucial for drug
discovery. Since experimentally validating CPIs is often time-consuming and costly,
computational approaches are expected to facilitate the process. Rapid growths of
available CPI databases have accelerated the development of many machine-
learning methods for CPI predictions. However, their performance, particularly
their generalizability against external data, often suffers from a data imbalance
attributed to the lack of experimentally validated inactive (negative) samples. In
this study, we developed a self-training method for augmenting both credible and
informative negative samples to improve the performance of models impaired by
data imbalances. The constructed model demonstrated higher performance than
those constructed with other conventional methods for solving data imbalances,
and the improvement was prominent for external datasets. Moreover, examination
of the prediction score thresholds for pseudo-labeling during self-training revealed
that augmenting the samples with ambiguous prediction scores is beneficial for
constructing a model with high generalizability. The present study provides guidelines for improving CPI predictions on real-world
data, thus facilitating drug discovery.

■ INTRODUCTION
Identifying compound-protein interactions (CPIs) is of great
importance for drug discovery.1 Especially in the early drug
development stage, many CPIs are experimentally evaluated to
find hit compounds and avoid undesired off-target effects using
various biological assay techniques. These experimental
approaches are often time-consuming and expensive.2 There-
fore, computational approaches are expected to accelerate the
identification of CPIs in drug discovery.
Computational approaches are roughly categorized into two

groups: structure-based and structure-free (chemical genomics-
based) methods. Structure-based methods evaluate CPIs by
calculating physical chemistry-based scores from three-dimen-
sional (3D) complex models generated by molecular docking
simulations.3−5 When reliable 3D structures of the target
proteins are available, docking methods can be applied without
prior information on known interactions. Their performance
heavily depends on the scoring function’s accuracy and
predicted docking pose. Structure-free methods are primarily
chemoinformatic approaches that utilize prior information on
known CPIs to predict unknown interactions. They can
accurately predict CPIs with relatively low computational costs
when the prior information covers sufficient pharmacological
space.
In recent years, publicly available CPI databases, such as

ChEMBL, BindingDB, PubChem, DrugBank, and
PDBbind,6−10 have been rapidly growing, thereby accelerating
the development of various structure-free methods using

machine learning (ML) algorithms.11,12 These ML methods
consider compound information, protein information, and
their interactions in a unified framework.13−16 More recently,
the CPI prediction models using deep learning (DL)
techniques, such as convolutional neural networks (CNNs),
graph convolutional networks (GCNs),17 and transformer
algorithms,18 have shown substantially improved predictive
performance and interpretability.19−24 These models can
extract the feature representations of compounds and proteins
during end-to-end learning of their interactions.
The performance of structure-free methods using ML

techniques is often hampered by the quality of the training
data derived from known interactions available in CPI
databases. In many cases, experimentally validated inactive
(negative) samples are lacking in public databases, which leads
to class imbalances in the available CPI data. This insufficiency
results in poor performance of ML models on out-of-domain
samples and overestimation caused by the majority class in
CPI predictions. To compensate for the insufficiency of
negative samples, the random pairing method (referred to as
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Random Negative henceforth)21,23,25 has been employed in
previous studies. This method randomly generates negative
samples from compound−protein pairs that have not been
experimentally confirmed to interact. However, the extracted
samples could contain potentially active (positive) samples,
resulting in low credibility. To address this problem, Liu et al.
proposed a method for generating highly credible negative
samples using a systematic screening framework to select
samples distant from positive CPIs.26 Nevertheless, a recent
study demonstrated that similarity-controlled negative samples
that are overly distant from positives are “easy” to learn for the
model training, and the model’s generalization performance on
external datasets is significantly lower than that of the Random
Negative model.27

To overcome these limitations, we propose a new self-
training28 method for effectively augmenting negative samples.
This method was applied to graph-based CPI prediction
models and successfully improved the model performance,
including generalizability. Concretely, the CPI prediction
models trained with our approach showed higher robustness
on the external dataset than other methods addressing the class
imbalance. Furthermore, examination of the parameters in our
approach revealed that the pseudo-labeled samples predicted
with “near-boundary” scores were more beneficial for model
generalizability than the samples readily classified as negative.

■ MATERIALS AND METHODS
Dataset. The dataset for constructing the binary classi-

fication model and evaluating its performance was derived
from ChEMBL.10 The external datasets for verifying general-
izability were constructed from BioPrint (Eurofins, Luxemburg
City, Luxemburg), Davis,29 and BindingDB.9 The threshold for
annotating positive and negative labels was set to 10 μM. At
the threshold, the ChEMBL and BindingDB datasets primarily

consisted of positive interactions, while the BioPrint and Davis
datasets contained a large volume of experimentally validated
negative samples. CPI data of G protein-coupled receptor
(GPCR) and kinase families were used in the present study.
The details of these four datasets are described below, and
their statistics are summarized in Table 1.
ChEMBL. Activity data targeting human proteins were

collected from ChEMBL version 31.10 We extracted CPI data
with “IC50,” “Ki,” “EC50,” or “Kd” as the standard type,
“single protein” as the protein type, and “B” as the assay type,
and then we selected the target proteins with over 200
interacted compounds. The GPCR and kinase datasets were
extracted from the preprocessed ChEMBL dataset based on
the family names obtained from Swiss-Prot.30 The data points
with pChEMBL values ≥ 5 (activity ≤ 10 μM) and <5
(activity > 10 μM) were labeled as positive and negative,
respectively. pChEMBL is defined as −log (molar IC50, XC50,
EC50, AC50, Ki, Kd, or Potency).
BioPrint. Real-world screening data targeting GPCR

families were obtained from BioPrint, which contains
experimental data on the inhibitory activity at a dose of 10
μM. CPIs were assigned as positive if the inhibition rate at 10
μM was 50% or more.
Davis. Real-world screening data targeting kinase families

were obtained from the Davis29 dataset, composed of binding
affinity information with dissociation constant (Kd) values for
68 drugs and 442 kinase proteins. This version was the same as
found in the Github repository of DeepDTA31 (https://
github.com/hkmztrk/DeepDTA/). Data points were anno-
tated as positive if Kd < 10 μM and negative if Kd = 10 μM
(indicating weak or inactive).
BindingDB. The external dataset in which positive

interactions outnumber negatives was derived from the
BindingDB.9 The activity data with IC50 values targeting

Table 1. Summary of the ChEMBL, BioPrint, Davis, and BindingDB Datasets

ChEMBL BioPrint Davis BindingDB

GPCR kinase GPCR kinase GPCR kinase

compound 70,545 66,652 2621 68 43,293 119,518
protein 106 113 89 442 134 307
interaction 111,064 99,398 232,334 30,056 54,619 171,721
positive 107,908 94,911 15,630 9125 47,774 152,010
negative 3156 4487 216,704 20,931 6845 19,711

Figure 1. The overall workflow of our proposed method using self-training.
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human proteins were extracted and labeled into two classes in
the same way as in the ChEMBL.
Workflow of Our Proposed Method Using Self-

Training. Self-training begins with training a teacher model
with labeled data. The teacher model is used to generate
pseudo-labels by predicting unlabeled data. After adding the
selected pseudo-labeled data to the training data, a student
model is trained with the updated data. This process is iterated
using the student model as the next teacher model. Figure 1
illustrates the workflow of our proposed method using self-
training, and the following steps were implemented.
Step 1: Build a Teacher Model. A teacher model f T(x) is

trained by minimizing the binary cross-entropy loss on the
labeled data {(x1,y1), (x2,y2), ...(xn,yn)}

n
y f x1

BCE( , ( ))
i

n

i iT
(1)

where the b inary cross ent ropy i s defined as
y y y y y yBCE( , ) log( ) (1 ) log(1 )i i i i i i= · + · , with yi and yi

representing a label and prediction score, respectively.
Step 2: Predict Unlabeled Data. The teacher model

f T(x) is used to generate pseudo-negative labels for the
unlabeled data x x x, , ... n1 2{ }. If xi satisfies f x( ) 0.5iT , xi
is regarded as a pseudo-negative sample, where ϕ∈[0,0.5) is a
threshold parameter and i∈{1,2,...,n} is an index of the
unlabeled data.
Step 3: Add Selected Samples to the Training Data.

Pseudo-labeled negative samples are added to the labeled data.
Step 4: Build a Student Model. A student model f S(x) is

trained by minimizing the binary cross-entropy loss on both
labeled and pseudo-labeled data

n
y f x

m
y f x1

BCE( , ( ))
1

BCE( , ( ))
i

n

i i
i

m

i iS S+
(2)

where y 0i = represents the pseudo-negative label.
Step 5. Substitute the student model for the teacher and

return to Step 2.

f fS T (3)

In CPI predictions, x = (c,p) indicates compound-protein
pairs, where c is a compound and p is a protein. Unlabeled data
x x x, , ... n1 2{ } were generated by randomly pairing compounds
and target proteins. These compounds were derived from the
preprocessed ChEMBL dataset (317,244 compounds). A
subset of the data to be pseudo-labeled was randomly sampled
from all the unlabeled data at each iteration. We set the sample
size of a subset to 750 and 500 K for the GPCR and kinase
datasets, respectively. For the parameter ϕ in Step 2, we set ϕ
= 0.20 for both GPCR and kinase datasets. The iterations were
terminated if the negative sample size of every target protein
reached the same number of positive interactions or if the
number of iterations reached the predetermined maximum. We
set the maximum number of iterations to nine.
CPI Prediction Model. We used a binary classification

model for the CPI prediction to determine whether a given
compound and protein interact. A model with a multimodal
neural network was constructed using kMoL (https://github.
com/elix-tech/kmol), which is an open-source chemoinfor-
matics library based on kGCN32 and can combine various
architectures using several input features, such as molecular

graphs and extended connectivity fingerprints (ECFP)33 for
compounds and Bag-of-Words and tokens for protein
sequences. This study mainly employed molecular graphs for
compounds and Bag-of-Words for protein sequences as input.
The output of kMoL was activated by a sigmoid function,
resulting in a score ranging from 0 to 1. Additional detailed
information on the model architecture and model training is
provided in the Supporting Information Text S1, Tables S1−
S3.
Performance Evaluation. Our proposed method was

internally evaluated by 5-fold cross-validation using the
ChEMBL dataset. The ChEMBL dataset was randomly divided
into five folds so that the training and test splits were stratified
according to the sample size of each target. Twenty percent of
the randomly selected training data was used as validation data.
We then evaluated the model performances on the external
datasets Davis (kinase), BioPrint (GPCR), and BindingDB
(GPCR and kinase). The area under the receiver operating
characteristic curve (ROC-AUC) and the area under the
precision−recall curve (PR-AUC) were used for performance
evaluation. The ROC curve plots the true positive rate against
the false positive rate, and the PR curve plots the precision
against the recall.
The effectiveness of our proposed method was compared

with that of four other methods addressing class imbalance
along with the baseline model, which trains the original
imbalanced data.

Weighted Loss. This method generally applies to a DL
framework trained with a class-imbalanced dataset.34 We
adopted the simplest weighted loss approach, which weights
the binary cross-entropy loss according to the sample size of
the training dataset

l x y
n

n
n

y y y y( , )
1

log( ) (1 ) log(1 )
i

n

i i i i
0

1

l
moo
noo

|
}oo
~oo

= · + ·

(4)

where n0 and n1 represent the number of negative and positive
samples (n0 + n1 = n).

Random Undersampling. The majority-class sample size
was randomly reduced to be the same as the minority-class
samples to balance the two classes.35

Random Negative. This method generates negative samples
by randomly pairing a compound and protein to eliminate the
data imbalance.21,23,25 Negative samples were generated until
they compensated for the shortage in the original training
dataset.

Similarity Controlled. Negative samples are selected from
unlabeled pairs based on the dissimilarity from positive
samples. We adopted the same algorithm as employed in the
previous study by Yaseen et al.27 and set the inter-class
similarity α as 0.10.

■ RESULTS AND DISCUSSION
Performance on the Internal Dataset: ChEMBL. To

validate the effectiveness of self-training in CPI prediction, we
conducted 5-fold cross-validations on the ChEMBL dataset. As
shown in Table 2, the average ROC-AUC scores of the
baseline models on the internal dataset for the GPCR and
kinase families were 0.9139 and 0.9175, respectively. By
applying our self-training method to the imbalanced data, the
sizes of the positive and negative samples were progressively
approximated, and the ratio of positive samples in each protein
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converged asymptotically to 0.5 toward the final iteration
(Figure S1). The model trained with the updated data showed
a slightly better performance based on the ROC-AUC scores of
GPCR (0.9336) and kinase (0.9336). This improvement can
be attributed to the expanded data distribution and resolved
data imbalance. The performance of our method was better
than that of the Random Negative models (GPCR: 0.9034 and
kinase: 0.9053). This improvement was expected because the
generated samples based on the predictive scores would be
more credible than the randomly paired negative samples. Our
models outperformed the Random Undersampling, Weighted
Loss, and Similarity-Controlled methods (Table 2). We
additionally implemented three types of 5-fold cross-validation
recently adopted in CPI prediction and other fields:36,37

Compound cross-validation (CV), protein CV, and com-
pound−protein CV (see Supporting Information Text S2). As
shown in Figure S2, our approach performed best in all the
CVs, validating our self-training method’s effectiveness.
Performance on the External Datasets: BioPrint,

Davis, and BindingDB. To evaluate the generalizability of
the currently constructed models, we compared the model
performances on the external datasets, BioPrint for the GPCR
families and Davis for the kinase families. Here, we employed
the PR-AUC score as the primary metric, which is more

appropriate for evaluating model performance on an
imbalanced dataset dominated by negative samples.38 Our
model showed improved performances on the BioPrint and
Davis datasets, with PR-AUC scores of 0.4344 and 0.5792,
respectively, which were 28.7 and 17.5% better than the
baseline model (Figure 2). Our method also performed better
than other methods for addressing data imbalance. The PR-
AUC scores of the second-best Random Negative model were
0.2927 and 0.5491. These results demonstrated that our self-
training method could significantly improve model robustness
on external datasets. Our method also outperformed other
models in F1 scores that is a harmonic mean of Precision and
Recall since other models were highly biased toward one side,
emphasizing the advantages of our approach (Tables S4 and
S5). It should be noted that our method is not biased toward
negative predictions because the prediction performance on
the BindingDB datasets, which are dominated by positive
interactions, was not compromised (ROC-AUC, PR-AUC, and
Precision: 0.7778, 0.9517, and 0.9585 for GPCR, 0.8009,
0.9606, and 0.9604 for kinase) (Figure S3, Tables S6 and S7).
We analyzed the model’s generalizability using the Davis

dataset to evaluate its predictive performance at the protein
level. As shown in Figure 3, the distribution of PR-AUC scores
for our model (median 0.6253) was significantly higher than
that of the baseline (median: 0.4888; Mann−Whitney U test, p
= 1.40 × 10−5) and Random Negative (median: 0.5426; Mann−
Whitney U test, p = 1.30 × 10−23). We separately evaluated the
prediction performance for both seen and unseen proteins,
which were stratified according to their presence in the training
dataset (ChEMBL). The average PR-AUC scores of the
baseline model, Random Negative, and our model for unseen
proteins were 0.4504, 0.4877, and 0.5573, respectively, while
those of the seen proteins were 0.4975, 0.6658, and 0.7144,
respectively. Although a performance gap between the seen
and unseen proteins was observed, our model outperformed
the other models in both cases. This observation further
supports the effectiveness of our method in improving its
generalizability. For the BioPrint dataset, our model (median:
0.1695) outperformed the baseline model (median: 0.0479;
Mann−Whitney U test: p = 6.33 × 10−4), while statistical
significance was not found from Random Negative (median:
0.0928; Mann−Whitney U test: p = 0.157) at the protein level

Table 2. Performance Evaluation on the ChEMBL Dataset

GPCR Kinase

ROC-AUC
(Stda)

PR-AUC
(Std)

ROC-AUC
(Std)

PR-AUC
(Std)

baseline 0.9139
(0.0083)

0.9962
(0.0005)

0.9175
(0.0035)

0.9946
(0.0004)

weighted loss 0.9182
(0.0079)

0.9965
(0.0005)

0.9149
(0.0089)

0.9945
(0.0006)

random
undersampling

0.9026
(0.0046)

0.9958
(0.0002)

0.8982
(0.0066)

0.9933
(0.0006)

random negative 0.9034
(0.0063)

0.9961
(0.0004)

0.9053
(0.0012)

0.9940
(0.0002)

similarity
controlled

0.9234
(0.0059)

0.9969
(0.0002)

0.9166
(0.0060)

0.9947
(0.0005)

self-training
(ours)

0.9336
(0.0035)

0.9974
(0.0003)

0.9336
(0.0021)

0.9960
(0.0002)

aStandard deviation (Std) was calculated from the results of 5-fold
cross-validation.

Figure 2. Performance evaluation on the external datasets. ROC-AUC and PR-AUC scores on the BioPrint dataset (A) and ROC-AUC and PR-
AUC scores on the Davis dataset (B) for the evaluated six models. The error bars represent the standard deviations of the scores predicted by the
six models in the cross-validation.
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(Figure S4). The difficulty in observing the significant
difference from Random Negative could be due to the small
number of available proteins.
Applicability to Other CPI Prediction Models. To

further demonstrate the usefulness of the self-training
approach, we applied our method to a classical multi-layer
perceptron (MLP) classifier using ECFP4 and Bag of Words as
inputs and existing graph-based CPI prediction model,
GraphDTA,20 which uses graph isomorphism network39

(GIN) and convolutional neural network (CNN). As shown
in Tables 3 and 4, the PR-AUC scores for the BioPrint and

Davis dataset were significantly improved by our method, and
the improvements were superior to Random Negative. These
results demonstrated that our self-training method widely
applies to other CPI prediction models.
UMAP Visualization of Training Data. The improve-

ment in the performance of our self-training approach can be
attributed to clarifying the decision boundary by generating

negative samples. To visualize the distribution of the training
dataset and decision boundary, we mapped the 64-dimensional
features extracted from the last hidden layer of the interaction
module in kMoL (Supporting Information Text S1) onto a 2-
dimensional space using UMAP.40 The distribution of the
originally labeled data in the baseline model showed that their
decision boundary was ambiguous because most negative
samples were embedded in the same space as the positive
samples (Figure 4A). In contrast, the decision boundary in our
self-training model was clarified by augmenting the negative
samples covering known negatives (Figure 4B,C). The
separation of the two classes into different spaces would
contribute to improving the predictive performance. Similar
results were obtained using the GPCR dataset (Figure S5).
Effect of the Score Threshold on Model General-

izability. The threshold of the score f x( )iT for pseudo-labeling
is an important parameter for model performance in a self-
training algorithm. Conventional self-training approaches
adopt unlabeled data with extremely confident scores in the
pseudo-labeling step as the augmented samples.28 Never-
theless, we selected unlabeled data with more ambiguous
scores (0.2 ≤ f x( )iT ≤ 0.5 in the case of kinase families) as the
added negative samples, which are hereafter referred to as near-
boundary samples. To validate the effectiveness of the adopted
score threshold, we compared the learning process on the
ChEMBL dataset and the predictive performance on the Davis
dataset with two other score thresholds: f x( )iT ≤ 0.2 and
f x( )iT ≤ 0.5. The learning process of the model at the last
iteration demonstrated that the validation ROC-AUC using
confident negative samples ( f x( )iT ≤ 0.2) reached a plateau
earlier than that using near-boundary samples (Figure 5A).
Meanwhile, the PR-AUC score of the model using near-

boundary samples was better than that using confident samples
(Figure 5B). The model self-trained with a threshold of f x( )iT
≤ 0.5 showed intermediate behaviors (Figure 5). These results
indicated that the near-boundary samples are more informative
than the confident samples for model training; therefore,
selecting near-boundary samples is crucial for achieving high
generalizability. Confident samples are overly distant from
positive interactions, thus constituting an easy-to-learn dataset,
which is supported by the rapid convergence of the validation
ROC-AUC (Figure 5A). This easy-to-learn situation would
result in poor generalizability (Figure 5B), which is compatible
with the situation discussed by Yaseen et al. when using
similarity-controlled negative samples.27 Similar behavior was
also observed in the GPCR models (Figure S6). We further
evaluate the effect of the hyperparameter in the pseudo-
labeling process, ϕ, on the prediction performance, showing
that higher ϕ leads to better prediction performance in the
ChEMBL, Davis, and BioPrint datasets (Figure S7). This result
also supports that near-boundary samples are more beneficial
for improving the model performance.

■ CONCLUSIONS
In this study, we constructed a self-training method to improve
model performance and generalizability suffering from a data
imbalance in CPI prediction. Model evaluations demonstrated
that our method outperformed the other methods for
addressing class imbalance on both internal and external
datasets. The analysis of the score thresholds for determining
pseudo-labeled samples showed that improved generalizability

Figure 3. Performance evaluation at the protein level using the Davis
dataset. The box plot shows the distribution of PR-AUC scores for
individual proteins. Each dot in the swarm plot represents the PR-
AUC score of each protein color-coded in blue and orange for seen
and unseen proteins, respectively. The Mann−Whitney U test
determined the statistical significance of the performance of our
proposed method. ****p < 0.0001.

Table 3. PR-AUC Scores for the BioPrint Dataset Using
Other Models

kMoL (Stda)
MLP

(ECFP4 + BoWb) GraphDTA20

baseline 0.1471 (0.0072) 0.1319 0.1160
random negative 0.2927 (0.0149) 0.2328 0.2364
self-training
(ours)

0.4344
(0.0075)

0.4362 0.3279

aStd: Standard deviation. bBoW: Bag of Words.

Table 4. PR-AUC Scores for the Davis Dataset Using Other
Models

kMoL (Stda)
MLP

(ECFP + BoWb) GraphDTA20

baseline 0.4042 (0.0279) 0.3629 0.4202
random negative 0.5491 (0.0171) 0.4909 0.4566
self-training
(ours)

0.5792 (0.0225) 0.5409 0.5136

aStd: Standard deviation. bBoW: Bag of Words.
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could be achieved by using credible samples verified from
predictive values and prioritizing the addition of informative
samples near the boundary. In addition, we verified the
effectiveness of self-training in other CPI prediction models,
emphasizing that our method and the obtained insights could
be broadly helpful in resolving data imbalance problems in
other structure-free methods. The present study will provide
guidelines for improving CPI prediction and facilitate the
identification of novel interactions in real-world drug
discovery.
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