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ABSTRACT

Linearized collision operators are model operators that approximate the nonlinear Landau collision operator, but cannot capture all the
features of the Landau operator. Various linearized collision operators have been proposed, including the one that ensures the self-
adjointness of the operator and another that maintains the friction–flow relations derived from the exact linearized collision operator. To elu-
cidate the basis for choosing an appropriate model operator that derives the matrix elements used to express the friction forces, the roles of
momentum conservation and the self-adjointness of the collision operator in the neoclassical particle flux are investigated theoretically, alge-
braically, and numerically within the framework of the moment method. Linear algebraic calculations confirm that ambipolarity only
requires the property of momentum conservation, while the self-adjointness is additionally necessary to ensure the independence of poloidal
flow and particle flux from the radial electric field, which must be established in an axisymmetric system. This fact is also numerically vali-
dated by the one-dimensional fluid-based transport code TASK/TX, extended to handle impurity species, and the moment-method-based
neoclassical transport code Matrix Inversion. In tokamak experiments, where a parallel electric field is typically present, it induces the inward
Ware flux, where even electrons can have the same or larger particle flux as main ions and impurities. The Ware flux can significantly con-
tribute to the total neoclassical particle flux, highlighting the importance of considering the electron flux when modeling neoclassical impu-
rity fluxes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0164313

I. INTRODUCTION

Controlling the particle balance in the core plasma region of
tokamaks is critically important for achieving a steady state. In a steady
state, the particle supply to and particle transport from the core region
must be balanced for each species. Currently, particle supply systems
such as pellet injection, gas jet, gas puffing, and neutral beam injection
(NBI) effectively play a role by supplying the same amount of particles
that are transported outboard of the plasma. However, in ITER and
DEMO plasmas, which have larger volumes and higher densities and
temperatures compared to current experiments, direct fueling to the
core becomes challenging. Hydrogen isotopes need to be transported
from the edge to the core regions to sustain a burning plasma state, as
they are constantly lost in the core due to fusion reactions. In other
words, the condition should be maintained where deuterium and tri-
tium are transported inward, while helium ashes move outward.1

From the perspective of achieving high performance, not only for
burning plasmas but also plasmas in general, it is favorable to have a

density profile that peaks toward the magnetic axis, keeping the
Greenwald density fraction below one in the edge region while attain-
ing it above one in the core. These facts emphasize the need to under-
stand particle transport physics precisely. Particle transport has been
less well understood than heat transport, partly due to the difficulty in
estimating particle sources involving neutrals. However, in recent
years, significant progress has been made in theoretical understanding,
experimental comparisons, and model development.2

Turbulent and neoclassical transport play a crucial role in deter-
mining particle fluxes. The focus in this study is on neoclassical trans-
port. The theoretical foundation of neoclassical transport was
established half a century ago.3,4 The moment approach, which utilizes
ordered moment equations obtained by integrating the drift-kinetic
equations multiplied by velocities,5 has enabled neoclassical calcula-
tions with fairly high accuracy and speed. Its numerical implementa-
tions6,7 have become prevalent for quantitative experimental analyses
and have been incorporated into integrated transport models. In

Phys. Plasmas 30, 092305 (2023); doi: 10.1063/5.0164313 30, 092305-1

Published under an exclusive license by AIP Publishing

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

 22 Septem
ber 2023 08:16:23

https://doi.org/10.1063/5.0164313
https://doi.org/10.1063/5.0164313
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0164313
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0164313&domain=pdf&date_stamp=2023-09-18
https://orcid.org/0000-0003-3942-0080
mailto:honda.mitsuru.5c@kyoto-u.ac.jp
https://doi.org/10.1063/5.0164313
pubs.aip.org/aip/php


recent years, with advancements in computer performance, codes that
directly solve local drift kinetic equations8,9 or global drift kinetic equa-
tions10–14 have been developed and utilized for these purpose.
Additionally, neoclassical transport theory has been extended to
include the effects of large flows,15 heavy impurities,16,17 plasma rota-
tion,17 poloidal asymmetry,16,18 and neoclassical toroidal viscosity aris-
ing from toroidal asymmetry or three-dimensional geometry.19,20

Furthermore, efforts have been made to improve the linearized model
collision operator.21,22

As such, neoclassical theory has been extended by relaxing some
of the physical assumptions previously made. However, the moment
method has proven capable of reproducing many fundamental phe-
nomena derived from the neoclassical transport theory quite well.
Consequently, numerical implementations of the moment method,
such as Matrix Inversion (MI)6,23,24 and NCLASS,7 remain widely
used, particularly in integrated transport models (e.g., see Refs. 25–29).
In the moment method, the collision operator is velocity-integrated to
obtain the matrix elements, which are the essential components of the
friction coefficients and viscosity coefficients. The combination of the
friction coefficients and the generalized flows describes the friction
forces, and this relationship is known as the friction–flow relations.5

The choice of model collision operator in the drift kinetic equation
influences the moment method through these matrix elements. The
initial model collision operator used in the original moment method
paper5 was designed to conserve momentum but not the self-adjoint-
ness.30 This model collision operator is only approximately self-
adjoint for the different masses and temperatures, although it still
guarantees momentum conservation.24,31,32 The self-adjointness
ensures symmetry in the matrix elements and friction coefficients,
while momentum conservation results in ambipolarity of neoclassical
particle fluxes. Violating the self-adjointness could introduce nonphys-
ical problems, so the actual numerical implementation devised a
method to enforce symmetry in the friction coefficients by ensuring
symmetry in the matrix elements.7,24 Recently, as the need to handle
multi-species plasmas has grown, drift kinetic solvers have been
updated to incorporate the exact linearized collision operator.33–35 The
velocity-space moments of the exact linearized collision operator have
been proposed as applicable to any arbitrary mass and temperature
ratios,31,32 and they have been numerically implemented in MI.24 The
matrix elements derived from the exact linearized operator maintain
momentum conservation but do not generally preserve the self-
adjointness;31,32 however, the self-adjointness holds when the tempera-
tures of colliding particles are equal.

The exact linearized collision operator itself does not satisfy the
self-adjointness.21 Therefore, a linearized model collision operator for
multi-species plasmas has been proposed, which conserves particles,
momentum, and energy while satisfying the self-adjointness. This
operator, commonly referred to as the Sugama operator (named after
the developer), remains valid even for collisions between unlike species
with unequal temperatures.21 However, the field-particle part of the
Sugama operator diverges from that of the exact operator in a high col-
lisionality regime. To address this drawback, two types of improved
model collision operators have been developed.22 The first one is
the improved Sugama operator, which can reproduce the same
friction–flow relations as those given by the exact linearized collision
operator. However, the self-adjointness is only approximately valid for
collisions between unlike species with unequal temperatures. The other

is the modified improved Sugama operator, which exactly satisfies the
self-adjointness but yields friction coefficients that deviate slightly from
those given by the exact operator. The matrix elements of the friction
coefficients for both models are provided in Ref. 22 and are readily
available for implementation in a code based on the moment method.
The paper does not provide a clear guideline regarding which model to
use, so the choice must be made based on the specific purpose or, in
other words, whether to prioritize the self-adjoint property.

In tokamak plasmas, ambipolarity is a crucial property. Both tur-
bulent and neoclassical particle fluxes must be individually ambipolar;
otherwise, the radial current torque, known as the j� B torque, would
induce toroidal rotation in the plasma. Here, j and B represent the cur-
rent density and the magnetic field, respectively. Due to the transport
ordering, conventional transport codes explicitly assume quasi-
neutrality, and the density of at least one species, typically electrons, is
determined based on the quasi-neutrality condition. That is, in this
case, the particle transport equation for electrons is not solved, and the
electron particle flux needs to be determined based on the ambipolar
condition. In other words, the ambipolar condition is automatically
satisfied and typically does not pose a concern. In contrast to conven-
tional transport codes, the one-dimensional fluid-based transport code
TASK/TX solves a set of equations analogous to the two-fluid model
for all particle species.36,37 The governing equations, derived using the
drift ordering, are flux-surface averaged. The unique aspect of this
code is that it does not impose quasi-neutrality and ambipolarity forc-
ibly. Instead, quasi-neutrality and ambipolarity are naturally achieved
as a result of the physical models implemented in the code, such as the
friction coefficients, rather than through enforced conditions.
Consequently, the use of friction coefficients that do not satisfy ambi-
polarity can lead to non-ambipolar neoclassical fluxes, which in turn
result in spurious toroidal rotation due to the j� B force. Another
essential property in an axisymmetric system like a tokamak is that the
particle fluxes and the poloidal flows should not depend on the radial
electric field Er:

5,38 Er should not influence transport. In conventional
transport codes where quasi-neutrality is forcibly imposed, Er is typi-
cally determined by the radial force balance equation. However, strictly
speaking, this is inconsistent since the static Er originates from a slight
imbalance in charge densities. In TASK/TX, Er satisfies both the radial
force balance and the slight charge density imbalance. These facts
clearly demonstrate that the TASK/TX system is highly autonomous,
and any slight inconsistency can potentially lead to a breakdown of
physical soundness. Thus, selecting an appropriate physics model is
indispensable for a system like TASK/TX to maintain its physical
integrity. Therefore, it is necessary to scrutinize the relationship
between these features and the self-adjointness.

TASK/TX was originally developed assuming a pure plasma.
While it was capable of handling neutrals and fast ions generated by
NBI, it only considered electrons and main ions when it came to
charged thermal particles. However, recent extensions to TASK/TX
now include impurity species among the thermal species. The focus is
primarily on fully stripped carbon species, as they are the main impu-
rity species in the current experimental device, such as JT-60U. This
extension allows for the examination of ambipolarity in the neoclassi-
cal particle fluxes, not only in MI but also in TASK/TX, since the
behavior of neoclassical particle fluxes significantly differs between a
pure plasma and an impure plasma. In a pure plasma, the electron
particle flux must be balanced with the ion particle flux to satisfy the
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ambipolar condition, i.e., Cw
e ¼ Cw

i . However, in an impure plasma, it
is usually assumed that the electron particle flux becomes negligible
due to the disparate mass ratio, and the main ion and impurity fluxes
are balanced (Cw

e � Cw
i � ZIC

w
I ).

5,16 Here, Cw
a � hCa � rwi repre-

sents the contravariant component of the particle flux for species a,
Ca, where h� � �i denote the flux surface average, w is the poloidal flux
function, Z is the charge number, and e, i, and I refer to the electron,
main ion, and impurity species, respectively. The neoclassical impurity
flux is typically modeled based on the relation Cw

I � Z�1I Cw
i using the

main ion thermodynamic forces.16,18 However, these discussions did
not account for the presence of the parallel electric field Ek, which is
almost always present in tokamak experiments as long as the Ohmic
current flows, or in other words, when a one-turn or loop voltage Vloop

is applied. As will be discussed in detail later, the Ware fluxes, which
are a part of the banana-plateau fluxes, must emerge for any species
including electrons, whenever Ek exists. The electron Ware fluxes
could be comparable to or even greater than the fluxes driven by the
thermodynamic forces, depending on the specific situations. If the
Ware particle flux is significant in tokamak plasmas, it is not always
reasonable to model Cw

I from Cw
i by assuming that Cw

e is negligibly
small. The parallel, toroidal, and radial flows, as parts of the dependent
variables of the governing equations, are self-consistently solved in
TASK/TX, allowing for the natural occurrence of neoclassical trans-
port. Consequently, there is no need to implement neoclassical trans-
port models such as MI and NCLASS within TASK/TX. In other
words, the neoclassical particle fluxes in TASK/TX can be compared
with those calculated by the neoclassical transport models. To ensure
the soundness of the calculations, the neoclassical particle fluxes calcu-
lated in TASK/TX using the same friction and viscosity coefficients as
those used in MI will be compared directly with the fluxes calculated
by MI. This comparison also aims to investigate the conditions
required for ambipolarity and to assess the impact of the Ware flux.

The remaining sections of the paper are organized as follows: In
Sec. II, we revisit the theoretical expression of fluxes within the frame-
work of the moment method. Next, in an axisymmetric system, we rig-
orously demonstrate the necessary conditions for ambipolarity and the
independence of poloidal flows and particle fluxes from Er using linear
algebra. It is crucial to provide a mathematical proof of these condi-
tions rather than relying solely on numerical analysis, as it guarantees
their validity in all situations. Section III explains the extension of
TASK/TX to handle impurity species. In Sec. IV, we compare the neo-
classical particle flux between TASK/TX and MI, focusing on the rela-
tive impact of the electron particle flux compared to the main ion and
impurity fluxes, with particular emphasis on the Ware flux. Finally,
Sec. V presents the conclusions and outlines future perspectives.

II. THEORETICAL FOUNDATION OF CROSS-FIELD
PARTICLE FLUXES AND AMBIPOLARITY
A. Friction–flow relations

First, we will revisit the fundamental formulation of neoclassical
transport, which is necessary in Secs. II B–II E. The notations used in
the following are primarily based on those introduced in Hirshman’s
review paper.5 By projecting the momentum and heat flux equations
in the toroidal direction and neglecting the subdominant terms, we
can derive the following flux-friction relations in axisymmetric
systems:

hCa � rwi ¼ � 1
ea
hR2rf � ðFa1 þ eanaEÞi; (1)

1
Ta
hqa � rwi ¼ � 1

ea
hR2rf � Fa2i; (2)

where qa; Fa1; Fa2, ea, na, and Ta represent the heat flux, particle fric-
tion force, heat friction force, charge, density, and temperature for par-
ticle species a, respectively. In general, the particle and heat fluxes, Ca

and qa, are obtained by integrating the particle distribution function fa
in the velocity space as

Ca ¼
ð
vfa dv; (3)

qa

Ta
¼
ð
v

mav2

2Ta
� 5
2

� �
fa dv; (4)

where v; v are microscopic particle speed and velocity, and ma repre-
sents the particle mass. Fa1 and Fa2 are defined using the collision
operator Ca as

Fa1 ¼ ma

ð
vCaðfaÞ dv; (5)

Fa2 ¼ ma

ð
v

mav2

2Ta
� 5
2

� �
CaðfaÞ dv: (6)

The neoclassical fluxes stem from the gyrotropic part of fa. E denotes
the electric field, while f and R are the toroidal angle coordinate and
major radius, respectively. Applying the identity, which holds in the
axisymmetric configuration,

R2rf ¼ I
B2

B� B�rw
B2

: (7)

Equation (1) turns out to be

hCa � rwi ¼ � I
ea

�
BFa1k þ eanaBEk

hB2i

þ 1
B2

1� B2

hB2i

 !
ðBFa1k þ eanaBEkÞ

�

þ 1
ea

�
B�rw

B2
� Fa1 þ eana

B�rw
B2

� E
�
;

¼ � I
eahB2i hBFa1k þ eanaBEki �

I
ea

�
Fa1k
B

1� B2

hB2i

 !�

þ 1
ea

�
B�rw

B2
� Fa1

�
� Ina

�
Ek
B

1� B2

hB2i

 !�

þ
�
na

E � B
B2
� rw

�
;

� hCBP
a � rwi þ hCPS

a � rwi þ hCCL
a � rwi

�Ina
�
Ek
B

1� B2

hB2i

 !�
þ
�
na

E � B
B2
� rw

�
: (8)

Here, I denotes the poloidal current function. The superscript “BP”
represents the banana-plateau component of the neoclassical fluxes
dominant in the long mean free path regime, “PS” represents the
Pfirsch–Schl€uter component effective in the collisional regime, and
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“CL” refers to the classical flux. The banana-plateau flux is primarily
driven by surface-averaged pressure anisotropies, as explained in detail
later. As is clear from the definitions in Eq. (8), the Pfirsch–Schl€uter
flux arises from the poloidal variation of the friction forces on a mag-
netic flux surface, while the classical flux is driven by friction forces
perpendicular to the magnetic field. If the collision operator satisfies
momentum conservation,

P
a Fa1 ¼ 0 holds, and it is evident from

Eq. (8) that each particle flux becomes ambipolar. In the following, we
will confirm in detail that ambipolarity actually holds due to momen-
tum conservation by expressing the friction forces in terms of flows.
The fourth and fifth terms in Eq. (8) describe the motion of magnetic
flux surfaces and the small classical E � B radial pinch,5 respectively.
It is worth noting that assuming quasi-neutrality would cause these
terms to vanish when evaluating ambipolarity; hence, they are
neglected in the subsequent derivation.

Equation (2) can also be reduced in a similar manner,

1
Ta
hqa � rwi ¼ � I

eahB2i hBFa2ki �
I
ea

�
Fa2k
B

1� B2

hB2i

 !�

þ 1
ea

�
B�rw

B2
� Fa2

�
;

� 1
Ta
hqBP

a � rwi þ 1
Ta
hqPS

a � rwi þ 1
Ta
hqCL

a � rwi:

(9)

The friction forces can be expressed in terms of the friction coef-
ficients and flows, which is known as the friction–flow relation. The
particle and heat friction forces are given as

Fa1 ¼
X
b

‘ab11ub �
2
5
‘ab12

qb

pb

� �
; (10)

Fa2 ¼
X
b

�‘ab21ub þ
2
5
‘ab22

qb

pb

� �
; (11)

where u and q represent the particle and heat flows, respectively. The
symbol ‘abij denotes the friction coefficient between species a and b,5

and p refers to the pressure. It is possible to include higher-order flow
components in these relations without modifying the expressions of
the equations.5,24 For simplicity, we will not explicitly consider them
in the following derivation, unless otherwise specified. If the collision
operator used to derive the friction coefficients ensures momentum
conservation, X

a

‘ab1j ¼ 0 (12)

holds for j¼ 1, 2. If the collision operator possesses the self-adjoint
property, it ensures the symmetry of the friction coefficients,

‘abij ¼ ‘baji : (13)

The combination of momentum conservation and the self-adjointness
leads to X

b

‘abi1 ¼ 0 (14)

for i¼ 1, 2. These relations are mentioned in Appendix D of Ref. 22,
and their proof is considered straightforward enough to be omitted
here.

In an axisymmetric system, the neoclassical viscous forces only
damp the magnitude of the poloidal components of the particle and
heat flows. They can be expressed as5,39

hB � r �Pai ¼ 3hðn � rBÞ2i la1ûah þ
2
5
la2

q̂ah
pa

� �
; (15)

hB � r �Hai ¼ 3hðn � rBÞ2i la2ûah þ
2
5
la3

q̂ah
pa

� �
; (16)

where n ¼ B=B and lak for k¼ 1, 2, 3 represent the parallel neoclassi-
cal viscosities for species a. The poloidal flow ûah and the poloidal heat
flow q̂ah are defined as the flux functions: ûah � ðua � rhÞ=ðB � rhÞ
and q̂ah � ðqa � rhÞ=ðB � rhÞ, respectively. The particle and heat
flow velocities are

ua ¼ ua? þ uakn; (17)

qa ¼ qa? þ qakn; (18)

while the perpendicular flow velocities are the first order classical dia-
magnetic flows,

ua? ¼
B�rpa
eanaB2

þ E � B
B2

; (19)

qa? ¼
5
2
pa

B�rTa

eaB2
: (20)

The scalar product of Eqs. (17) and (18) with rh yields the parallel
flows after taking the flux-surface average,

hBuaki ¼ BV1a þ ûahhB2i; (21)

2hBqaki
5pa

¼ BV2a þ
2q̂ah
5pa
hB2i: (22)

The diamagnetic flows BV1a and BV2a are naturally determined as

BV1a ¼ �I
Ta

ea

@ ln pa
@w

� I
@U
@w

; (23)

BV2a ¼ �I
Ta

ea

@ lnTa

@w
; (24)

where U is the electrostatic potential. The spatial gradient of U corre-
sponds to Er through Er � �@wU. We note that BV1a and BV2a are
flux functions. The viscous coefficient of q̂ah in Eq. (15), i.e., la2, and
that of ûah in Eq. (16) are the same due to the self-adjoint property of
the collision operator.5

B. Banana-plateau fluxes

In the long mean free path regime, the primary force balances in
the momentum and heat flux equations parallel to the magnetic field
occur between the viscosity forces and the friction forces,

hB � r �Pai ¼ hBFa1k þ eanaBEki; (25)

hB � r �Hai ¼ hBFa2ki; (26)

whereP andH are the viscous stress tensor and the viscous heat stress
tensor, respectively.

Ambipolarity of the banana-plateau flux can be straightforwardly
verified without explicitly knowing the expressions of the flows. From
Eqs. (8) and (10), we obtain
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X
a

eahCBP
a � rwi

¼ � I
hB2i

X
a

hB � r �Pai

¼ � I
hB2i

X
a

hBFa1k þ eanaBEki

¼ � I
hB2i

X
b

X
a

‘ab11

� �
hBubki �

X
a

‘ab12

� � 2hBqbki
5pb

" #

� 1
hB2i

X
a

eana
� �

hBEki

¼ 0: (27)

It is evident that ambipolarity is established solely throughmomentum
conservation given in Eq. (12) and quasi-neutrality, regardless of the
particle and heat flows, as noted in Refs. 5 and 38. Although theoretical
proof of ambipolarity was sufficient in Eq. (27), it was necessary to
confirm its validity through the same process actually calculated in
numerical codes such as MI6,23,24 and NCLASS.7 Both codes calculate
the neoclassical flows and subsequently the fluxes by numerically
inverting the matrix consisting of friction coefficients and viscosities,
solving the simultaneous equations. In the references of both codes,
there is no mention of ambipolarity, or if there is, there is no analytical
discussion of the necessary conditions for ambipolarity to hold.

Another important feature in an axisymmetric system, namely,
the independence of the poloidal flow and the particle flux from Er, is
not mentioned either. Hirshman5,39 analytically derived this feature
based on the assumption that the viscous forces are smaller than
the friction forces: Da � MaxðDa

ijÞ, where Da
ij � ð3hðn � rBÞ

2i=
hB2iÞðlai=‘

aa
ij Þ < 1. This assumption directly implies the negligible

contribution of the viscous forces in the left-hand side of Eqs. (25) and
(26). To OðDaÞ, neglecting the parallel electric field, momentum con-
servation given in Eq. (12) leads to the existence of a common parallel
flow, where all parallel particle flows have the same value, and simulta-
neously the absence of a common parallel heat flow. By introducing
the common parallel flow, which can be derived fromP

ahB � r �Pai ¼ 0, into Eq. (21), it is found that ûah is independent
of @wU. The detailed derivation of this fact is given in Appendix.
However, this conclusion was reached under the specific assumption
of virtually ignored viscous forces, and it is not clear whether the same
conclusion can be reached when these forces are explicitly considered.
Furthermore, besides momentum conservation, it is unknown whether
other conditions, such as the self-adjointness, are required. Therefore,
it is of significant importance to clarify these analytically in a more
general situation.

Up to this point, particle species have been represented using the
symbols a and b. For convenience in the following matrix calculations,
we will replace the symbols representing particle species with numbers.
For instance, if the plasma consists of electrons, main ions, and one
impurity ion, they will correspond to 1, 2, and 3, respectively, and
the total number of species n will be 3. Let us define the sets
M ¼ f1; 2;…; ng and N ¼ f1; 2;…; n; nþ 1; nþ 2;…; 2ng.

By substituting Eqs. (21) and (22) into a set of equations obtained
by substituting Eqs. (15) and (16) into Eqs. (25) and (26), we express
the parallel particle and heat flows for species i without the poloidal
flows,

hBuiki
2hBqiki
5pi

2
64

3
75 ¼ �Xn

j¼1

ðci;jÞ ðci;nþjÞ
ðcnþi;jÞ ðcnþi;nþjÞ

" #
BV1j

BV2j

" #

�
Xn
j¼1

ðbi;jÞ ðbi;nþjÞ
ðbnþi;jÞ ðbnþi;nþjÞ

" #
ejnjhBEki

0

" #
; (28)

where ðci;jÞ and ðbi;jÞ for i; j 2 M are abbreviated notations for the
matrices, which are submatrices of C and B, respectively. Hereafter,
unless otherwise specified, the subscripts i and j range from 1 to n
when a matrix is written in this form. We will scrutinize what ðci;jÞ
and ðbi;jÞ actually represent. First, we observe that the viscous matrix
D becomes a block diagonal matrix since the viscosity tensor of species
a in Eqs. (15) and (16) depends only on the flows and viscosity coeffi-
cients of species a. Therefore,D can be expressed as

D ¼
diagðd1;1;…; dn;nÞ diagðd1;nþ1;…; dn;2nÞ

diagðdnþ1;1;…; d2n;nÞ diagðdnþ1;nþ1;…; d2n;2nÞ

" #
; (29)

where, for i 2 M,

di;i ¼ ~li;1; di;nþi ¼ dnþi;i ¼ ~li;2; dnþi;nþi ¼ ~li;3 (30)

and

~lik � ð�1Þkþ1
3hðn � rBÞ2i
hB2i lik: k ¼ 1; 2; 3: (31)

The self-adjointness of the collision operator ensures the symmetric
property of D, i.e., di;nþi ¼ dnþi;i. By defining ~lik as in Eq. (31), which
includes ð�1Þkþ1, we can express the friction coefficient matrix as

L ¼
ð‘ij11Þ ð‘

ij
12Þ

ð‘ij21Þ ð‘
ij
22Þ

" #
� ðli;jÞi;j2N ; (32)

such that the minus sign in ‘ij appearing when ðiþ jÞ is odd, as
observed in Eqs. (10) and (11), is eliminated. We then define the
matrix A as A � L�D and its inverse matrix as B � A�1.
Furthermore, we define the matrix product of BD as C: C � BD. It is
now evident that ðci;jÞi;j2N ¼ C and ðbi;jÞi;j2N ¼ B.

Now that the parallel flows can be explicitly described, the poloi-
dal flows can be expressed as follows using Eqs. (21) and (22):

ûih

2q̂ih
5pi

2
64

3
75 ¼ � 1

hB2i
Xn
j¼1

ðci;jÞ þ di;j ðci;nþjÞ
ðcnþi;jÞ ðcnþi;nþjÞ þ di;j

" #
BV1j

BV2j

" #

� 1
hB2i

Xn
j¼1

ðbi;jÞ ðbi;nþjÞ
ðbnþi;jÞ ðbnþi;nþjÞ

" #
ejnjhBEki

0

" #
;

(33)

where di;j is the Kronecker delta, which equals one when i¼ j and zero
otherwise. These equations are exactly the algebraic equations solved
in MI.6 Since the expressions of the friction forces, which are indepen-
dent of the magnetic field, are valid in all collisionality regimes, the
expressions of the poloidal flows are also valid in all regimes when the
viscous force expressions applicable among the various regimes are
adopted. It is evident from Eq. (23) that the diamagnetic flow explicitly
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contains the term @wU, representing Er. However, in an axisymmetric
system, the poloidal flows are found to be independent of @wU.5 This
implies that to this order, the toroidal flows can be arbitrary due to the
axisymmetry and the conservation of the toroidal angular momentum.
In combination with Eqs. (23), (24), and (33), we observe that the fol-
lowing conditions must be satisfied for any i 2 M:

Xn
j¼1

ci;j þ di;j
� �

¼ 0; or equivalently;
Xn
j¼1

ci;j ¼ �1; (34)

Xn
j¼1

cnþi;j ¼ 0: (35)

Here, ci;j denotes the (i, j) entry of the matrix C. For the time being, we
will proceed assuming that the above conditions are satisfied. In Sec.
II C, we will revisit this issue to thoroughly examine the algebraic con-
ditions under which the aforementioned equations hold.

We define the thermodynamic forces Ai
1 and Ai

2 and the parallel
electric field force Ai

3 as follows:

Ai
1 ¼

@ ln pi
@w

; (36)

Ai
2 ¼

@ lnTi

@w
; (37)

Ai
3 ¼ ei

hBEki
hB2i : (38)

If Eqs. (34) and (35) are satisfied, the term involving the electrostatic
potential in Eq. (33) vanishes in the expressions of the poloidal flows.

Now we observe that the particle and heat fluxes in the banana-
plateau regime given in Eqs. (8) and (9) can be expressed in terms of
the poloidal flows, ûih and 2q̂ih=ð5piÞ, using Eq. (33). By substituting
Eq. (33) into the fluxes in the banana-plateau regime, we can represent
these fluxes in terms of the thermodynamic forces Ai

1 and Ai
2 and the

parallel electric field force Ai
3. Similarly, the parallel current

eknkhBukki can be expressed using Eq. (28). As a result, the cross field
fluxes and the parallel current can be expressed in the matrix form (c.f.
Ref. 38) as follows:

hCBP
i � rwi

T�1i hqBP
i � rwi

einihBuiki

2
664

3
775 ¼Xn

j¼1

Lij11 Lij12 Lij13

Lij21 Lij22 Lij23

Lij31 Lij32 Lij33

2
664

3
775

Aj
1

Aj
2

Aj
3

2
664

3
775: (39)

Here, the matrix components L are given as follows:

Lij11 ¼ �
I2

hB2i
Tj

eiej
di;iðdi;j þ ci;jÞ þ di;nþicnþi;j
� �

; (40)

Lij12 ¼ �
I2

hB2i
Tj

eiej
di;ici;nþj þ di;nþiðdi;j þ cnþi;nþjÞ
� �

; (41)

Lij21 ¼ �
I2

hB2i
Tj

eiej
dnþi;iðdi;j þ ci;jÞ þ dnþi;nþicnþi;j
� �

; (42)

Lij22 ¼ �
I2

hB2i
Tj

eiej
dnþi;ici;nþj þ dnþi;nþiðdi;j þ cnþi;nþjÞ
� �

; (43)

Lij13 ¼ I
nj
ei

di;ibi;j þ di;nþibnþi;j
� �

; (44)

Lij23 ¼ I
nj
ei

dnþi;ibi;j þ dnþi;nþibnþi;j
� �

; (45)

Lij31 ¼ �I
ni
ej
ci;j; (46)

Lij32 ¼ �I
ni
ej
ci;nþj; (47)

Lij33 ¼ �hB2ieiejninjbi;j: (48)

The sum of the particle fluxes of each species multiplied by their
respective charge must be zero in order for ambipolarity to hold,

Xn
i¼1

eihCBP
i � rwi ¼

Xn
j¼1

Xn
i¼1

eiL
ij
11

 !
Aj
1 þ

Xn
i¼1

eiL
ij
12

 !
Aj
2

" #

þ
Xn
i¼1

Xn
j¼1

eiejL
ij
13

 !
hBEki
hB2i ¼ 0: (49)

Therefore, for any j 2 M, the following conditions must be satisfied
simultaneously: Xn

i¼1
eiL

ij
11 ¼ 0; (50)

Xn
i¼1

eiL
ij
12 ¼ 0; (51)

Xn
i¼1

Xn
j¼1

eiejL
ij
13 ¼ 0: (52)

C. Necessary conditions for ambipolarity
of the banana-plateau flux

We have examined the necessary conditions for ambipolarity in
detail. We have revealed that Eqs. (50)–(52) must all be satisfied for
ambipolarity to hold. In this section, we employ linear algebra to eluci-
date the essential physical conditions required for ambipolarity. While
Eqs. (34) and (35) are not strictly necessary for ambipolarity, they do
play a crucial role in ensuring that the poloidal flows, and consequently
the particle fluxes, remain independent of Er in an axisymmetric system.

First, we focus on the necessary conditions for Eqs. (34) and (35).
The matrix C ¼ BD can be expressed as

C ¼
ðci;jÞ ðci;nþjÞ
ðcnþi;jÞ ðcnþi;nþjÞ

" #

¼
ðbi;jdj;j þ bi;nþjdnþj;jÞ ðbi;jdj;nþj þ bi;nþjdnþj;nþjÞ
ðbnþi;jdj;j þ bnþi;nþjdnþj;jÞ ðbnþi;jdj;nþj þ bnþi;nþjdnþj;nþjÞ

" #
;

(53)

by applying Eq. (29). Since the matrix B is the inverse of the matrix A,
the (i, j) entry of B can be written as

bi;j ¼
1
jAj ~aj;i; (54)

where jAj represents the determinant of A, and ~aj;i represents the
cofactor of Aj;i in A. The determinant of a square matrix can be
expanded along an arbitrary row or column number using the cofac-
tors. This is called the Laplace expansion or the cofactor expansion.
For this case, the 2n-order square matrix A can be expanded as
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jAj ¼
X2n
k¼1

ai;k~ai;k ¼
X2n
k¼1

ak;j~ak;j: (55)

An important feature of the Laplace expansion is that when i 6¼ j, we have

0 ¼
X2n
k¼1

ai;k~aj;k ¼
X2n
k¼1

ak;i~ak;j: (56)

We now recall that A ¼ L�D, where L and D are the matrices of the
friction coefficients and the viscosities, respectively. It is apparent that
momentum conservation given in Eq. (12), which can now be rewrit-
ten as

Pn
i¼1 li;j ¼ 0 for any j 2 N , solely derives

Xn
i¼1

ai;j ¼
Xn
i¼1

li;j �
Xn
i¼1

di;j ¼ �dj;j; (57)

and similarly,

Xn
i¼1

ai;nþj ¼ �dj;nþj (58)

for any j 2 M. Assuming the self-adjointness in addition to momen-
tum conservation, Eq. (14) holds, which can be rewritten asPn

j¼1 li;j ¼ 0 for any i 2 N , and we obtain

Xn
j¼1

ai;j ¼
Xn
j¼1

li;j �
Xn
j¼1

di;j ¼ �di;i; (59)

and similarly,

Xn
j¼1

anþi;j ¼ �dnþi;j (60)

for any i 2 M. We note that the symmetric property of di;nþi ¼ dnþi;j in
Eq. (30), stemming from Eqs. (15) and (16), is the consequence of the self-
adjointness of the collision operator used to derive viscosities. With this
symmetry, another symmetric property of the friction coefficients as a con-
sequence of the self-adjointness shown in Eq. (13), i.e., li;j ¼ lj;i, leads to

ai;j ¼ aj;i: (61)

We first examine the necessary conditions for Eq. (34) to hold,Xn
j¼1

ci;j ¼
Xn
j¼1

bi;jdj;j þ bi;nþjdnþj;j
� �

;

¼ � 1
jAj
Xn
j¼1

~aj;i
Xn
k¼1

ak;j þ ~anþj;i
Xn
k¼1

anþj;k

" #
;

¼ � 1
jAj
Xn
j¼1

~aj;i
Xn
k¼1

aj;k þ ~anþj;i
Xn
k¼1

anþj;k

" #
;

¼ � 1
jAj

X2n
k¼1

~ak;iak;i þ
Xn

l¼1;l 6¼j

X2n
k¼1

~ak;iak;l

2
4

3
5;

¼ � 1
jAj jAj þ 0½ � ¼ �1: (62)

The second equality follows from Eqs. (57) and (60), which mean that
both momentum conservation and the self-adjointness are required.
The third equality follows from the self-adjointness, shown in Eq. (61).

Equations (55) and (56) have been applied in the second-to-last equal-
ity. Similarly, for Eq. (35),Xn

j¼1
cnþi;j ¼

Xn
j¼1

bnþi;jdj;j þ bnþi;nþjdnþj;j
� �

;

¼ � 1
jAj
Xn
j¼1

~aj;nþi
Xn
k¼1

ak;j þ ~anþj;nþi
Xn
k¼1

anþj;k

" #
;

¼ � 1
jAj
Xn
j¼1

~aj;nþi
Xn
k¼1

aj;k þ ~anþj;nþi
Xn
k¼1

anþj;k

" #
;

¼ � 1
jAj

Xn
l¼1

X2n
k¼1

~ak;nþiak;l

" #
;

¼ 0: (63)

The linear algebraic calculation has revealed that not only momentum
conservation but also the self-adjointness must be required to render
the poloidal flows independent of the electrostatic potential.

Next, the ambipolarity conditions will be investigated. It has
already been found from Eq. (27) that only momentum conservation
ensures ambipolarity of the banana-plateau flux, and this fact will be
verified in the following algebraic calculation. The left-hand sides of
Eqs. (50)–(52) can be written as

Xn
i¼1

ejL
ij
11 ¼ �

I2

hB2i
Tj

ej

Xn
i¼1

di;ici;j þ di;nþicnþi;j
� �

þ dj;j

( )
; (64)

Xn
i¼1

ejL
ij
12¼�

I2

hB2i
Tj

ej

Xn
i¼1

di;ici;nþjþdi;nþicnþi;nþj
� �

þdj;nþj

( )
; (65)

Xn
i¼1

Xn
j¼1

eiejL
ij
13 ¼ I

Xn
j¼1

ejnj
Xn
i¼1

di;ibi;j þ di;nþibnþi;j
� �( )

: (66)

For Eqs. (50)–(52) to hold, we should apparently examine the expres-
sions in f� � �g. With regard to Eq. (64),

Xn
i¼1

di;ici;j þ di;nþicnþi;j
� �

¼
Xn
i¼1

di;iðbi;jdj;j þ bi;nþjdnþj;jÞ þ di;nþiðbnþi;jdj;j þ bnþi;nþjdnþj;jÞ
� �

¼ dj;j
Xn
i¼1
ðbi;jdi;i þ bnþi;jdi;nþiÞ

" #

þdnþj;j
Xn
i¼1
ðbi;nþjdi;i þ bnþi;nþjdi;nþiÞ

" #

¼ � dj;j
jAj
Xn
i¼1

~aj;i
Xn
k¼1

ak;i þ ~aj;nþi
Xn
k¼1

ak;nþi

" #

� dnþj;j
jAj

Xn
i¼1

~anþj;i
Xn
k¼1

ak;i þ ~anþj;nþi
Xn
k¼1

ak;nþi

" #

¼ �
dj;j
jAj

X2n
k¼1

~aj;kaj;k þ
Xn

l¼1;l 6¼j

X2n
k¼1

~aj;kaj;l

2
4

3
5� dnþj;j

jAj
Xn
l¼1

X2n
k¼1

~anþj;kal;k

¼ �dj;j: (67)
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In the course of the reduction, we have only used Eqs. (57) and (58) to
obtain the third equality. Similarly, Eq. (65) can be reduced as

Xn
i¼1

di;ici;nþj þ di;nþicnþi;nþj
� �

¼
Xn
i¼1

di;iðbi;jdj;nþj þ bi;nþjdnþj;nþjÞ
�

þdi;nþiðbnþi;jdj;nþj þ bnþi;nþjdnþj;nþjÞ
�

¼ dj;nþj
Xn
i¼1
ðbi;jdi;i þ bnþi;jdi;nþiÞ

" #

þdnþj;nþj
Xn
i¼1
ðbi;nþjdi;i þ bnþi;nþjdi;nþiÞ

" #

¼ �dj;nþj: (68)

The terms in the brackets in the second equality are the same as those
in Eq. (67), and the detailed explanation of manipulating the equation
after the second equality has not been repeated here. Finally, Eq. (66)
turns out to be

Xn
i¼1

di;ibi;j þ di;nþibnþi;j
� �

¼ 1
jAj
Xn
i¼1

~aj;i
Xn
k¼1

ak;i þ ~aj;nþi
Xn
k¼1

ak;nþi

" #

¼ � 1
jAj

X2n
k¼1

~aj;kaj;k þ
Xn

l¼1;l 6¼j

X2n
k¼1

~aj;kaj;l

2
4

3
5

¼ �1: (69)

Again, momentum conservation has been solely used here.
Equations (67)–(69) are substituted into Eqs. (64)–(66), resulting

in the validity of Eqs. (50)–(52). We note that only for Eq. (52) to
hold, quasi-neutrality must be additionally required, as apparent from
Eqs. (66) and (69). In summary, ambipolarity requires momentum
conservation only, and quasi-neutrality is needed as well when Ek
exists.

While proving ambipolarity, the assumption has already been
made that the poloidal flow is independent of the electrostatic poten-
tial, which is equivalent to Eqs. (34) and (35) holding. However,
we note that this condition is not necessary for ambipolarity to hold.
The thermodynamic force Ai

1 given in Eq. (36) could be written as
Ai
1 ¼ @w ln pi þ ðei=TiÞ@wU if the dependence of the electrostatic

potential were left explicitly. In this case, ambipolarity additionally
requires X

i¼1
eiL

ij
11

ej
Tj
¼ 0; (70)

and obviously, it must hold whenever Eq. (64) becomes zero. This fea-
ture is referred to as automatic or intrinsic ambipolarity, which means
that ambipolarity holds regardless of the value of the electrostatic
potential.5 Through linear algebraic calculations concerning ambipo-
larity, we have confirmed that the self-adjointness has no influence on
ambipolarity, and momentum conservation solely matters in conjunc-
tion with quasi-neutrality.

D. Pfirsch–Schl€uter and classical fluxes

In the regimes where collisions predominate, the viscosities do
not play a significant role, and the fluxes are determined by the friction
forces. From Eqs. (8) and (9), the fluxes can be expressed as

hCPS
a � rwi

T�1a hqPS
a � rwi

" #
¼ � I

ea

*
1
B2
� 1
hB2i

� � BFa1k
BFa2k

" #+
: (71)

By substituting the friction forces given in Eqs. (10) and (11), as well
as the parallel flows given in Eqs. (21) and (22), we obtain the particle
and heat fluxes for species a in the Pfirsch–Schl€uter regime as

hCPS
a � rwi

T�1a hqPS
a � rwi

" #

¼ � I
ea

�
1
B2

�
� 1
hB2i

 !X
b

‘ab11 �‘ab12
�‘ab21 ‘ab22

" #
BV1b

BV2b

" #

¼ I2

ea

D 1
B2

E
� 1
hB2i

� �X
b

Tb

eb

‘ab11 �‘ab12
�‘ab21 ‘ab22

" # @ lnpb
@w

þ eb
Tb

@U
@w

@ lnTb

@w

2
6664

3
7775:

(72)

In the process of derivation, the relation hðB�2 � hB2i�1ÞB2i ¼ 0
was applied, which eliminated the dependence of the fluxes on the
poloidal flows. It is evident that negating @wU in the fluxes requiresP

b ‘
ab
i1 ¼ 0 for i¼ 1, 2, which is identical to Eq. (14). This fact indi-

cates that both momentum conservation and the self-adjointness are
necessary, similar to the case of the banana-plateau fluxes.

Next, it can be readily found that

X
a

eahCPS
a � rwi ¼ I2

�
1
B2

�
� 1
hB2i

 !

�
X
b

X
a

‘ab11

� � Tb

eb

@ ln pb
@w

þ @U
@w

� �"

�
X
a

‘ab12

� �Tb

eb

@ lnTb

@w

#
(73)

would be zero when
P

a ‘
ab
1j ¼ 0 for j¼ 1, 2, which corresponds to

momentum conservation as shown in Eq. (12). Finally, similar to the
banana-plateau flux, ambipolarity is satisfied through momentum
conservation alone.

Next, let us examine the classical fluxes. From Eqs. (8) and (9),
they can be expressed as

hCCL
a � rwi

T�1a hqCL
a � rwi

" #
¼ 1

ea

*
1
B2

B�rw � Fa1

B�rw � Fa2

" #+
: (74)

We will now substitute Eqs. (10) and (11) into the expressions.
Recalling B � rw ¼ 0 if nested flux surfaces exist, we can confirm

B�rw � ua ¼ �B� ua? � rw

¼ �jrwj2 Ta

ea

@ ln pa
@w

þ ea
Ta

@U
@w

� �
: (75)
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Here, we have applied Eqs. (17) and (19). Similarly, we have

2
5

B�rw � qa

pa
¼ �jrwj2 Ta

ea

@ lnTa

@w
: (76)

From these, we obtain

hCCL
a � rwi

T�1a hqCL
a � rwi

" #
¼ 1

ea

�
jrwj2

B2

�X
b

Tb

eb

‘ab11 �‘ab12
�‘ab21 ‘ab22

" #

�

@ ln pb
@w

þ eb
Tb

@U
@w

@ lnTb

@w

2
6664

3
7775: (77)

Therefore, the conclusions regarding the independence from @wU and
ambipolarity for the classical particle fluxes are the same as those for
the Pfirsch–Schl€uter fluxes since the expressions of the classical fluxes
are essentially equivalent to those of the Pfirsch–Schl€uter fluxes given
in Eq. (72) except for the factors related to the magnetic field. The dif-
ference in the factors indicates that the classical fluxes are by one order
of the inverse aspect ratio smaller than the Pfirsch–Schl€uter fluxes.

E. Self-adjointness

The results obtained in Sec. II can be summarized as follows:
Detailed linear algebraic calculations have revealed that the banana-
plateau particle flux, Pfirsch–Schl€uter flux, and classical flux become
independently ambipolar solely due to momentum conservation in
the collision operator, and the self-adjointness is not necessarily
required for ambipolarity. This characteristic of the classical and neo-
classical particle fluxes is known as the detailed balance principle.5

In contrast, it is important to note that when using friction coeffi-
cients derived from a collision operator that does not satisfy the self-
adjointness, the poloidal flows become dependent on Er. Fortunately,
it is known that the fluxes are independent of Er regardless of the self-
adjointness. Therefore, if the poloidal flows given in Eq. (33) are
numerically modeled using Ai

1; A
i
2, and Ai

3 and explicitly excluding
the @wU term from the diamagnetic flow BV1j, it is possible to use the
friction coefficients that do not satisfy the self-adjointness without vio-
lating important physics constraints.

III. IMPURITY EXTENSION OF TASK/TX

Let us begin by providing a brief overview of the major
characteristics of TASK/TX. As mentioned in Sec. I, TASK/TX is a
one-dimensional fluid-based transport code conforming to the axi-
symmetric flux coordinates.37 The governing equations are essentially
derived based on a drift-ordered two-fluid model. The electromagnetic
fields in a plasma are described by Gauss’s law, Faraday’s law, and
Ampère’s law in the code. The time evolution of the plasma as a fluid
is governed by a set of differential equations, including the continuity
equation, the moment equations in the radial, parallel to the magnetic
field and toroidal directions, the heat transport equation, and the par-
allel heat momentum equation. In addition, two algebraic equations
are solved in conjunction with the differential equations, one ensuring
the first-order incompressible flow within the flux surface and the
other determining the diamagnetic flow as defined in Eq. (23). These
equations are solved for each species. While in a physical sense, it is
not necessary to separate the algebraic equation for the diamagnetic

flow from the radial momentum equation, it has been empirically
found that dealing with it separately improves numerical stability with
respect to Er. Furthermore, multiple equations for fast ions and neu-
trals are incorporated within the framework. This formulation natu-
rally incorporates neoclassical particle transport, the bootstrap current,
and resistivity without the need for implementing corresponding
terms and coefficients estimated by external neoclassical transport
modules. However, it is important to note that within TASK/TX, it is
not possible to isolate and extract only the neoclassical contribution
from the particle flux,37 as can be done in conventional transport code
frameworks. The particle fluxes in TASK/TX are expressed as the sum
of all contributions, including turbulence, neoclassical transport, and
sources, and cannot be decomposed into individual components.
When observing the neoclassical particle flux alone, after the forces
driving turbulent transport are artificially turned off, the simulation is
run for a very short duration. The resulting particle fluxes obtained
under these conditions represent the neoclassical fluxes, although they
still include some other effects like sources, which are usually minor in
the core region. For more details on the TASK/TX modeling, please
refer to Refs. 36 and 37.

TASK/TX solves nearly identical set of equations for electrons
and ions. The equations for each species exhibit minimal differences,
with variations occurring only in the coefficients that depend on
mass and charge. In the previous work,37 TASK/TX was limited to
handling electrons and hydrogen isotope ions, primarily deuterium,
while impurities were not considered. For the purpose of this study,
TASK/TX will be extended to incorporate impurity species. The
extension of TASK/TX to handle impurities is relatively straightfor-
ward since the equations for impurities are very similar to those for
the main ions. The main differences arise in the modeling of friction
forces and equipartition processes, which are associated with colli-
sions between unlike-particle species. With the inclusion of impuri-
ties, the total number of equations to be simultaneously solved
increases from 33 to 41.

In this study, fully ionized carbon (C6þ) is assumed as the impu-
rity species. Carbon is a commonly observed impurity species in many
plasma experiments, and in high-temperature plasmas, it becomes
completely ionized within a short time period. However, it should be
noted that the modeling of source terms that supply C6þ to the core
plasma and sink terms that cause its loss from the plasma have not
been implemented in the version of TASK/TX used for this study.
These aspects will be reported in a separate paper, focusing on the
modeling of impurity sources and sinks.

IV. NUMERICAL RESULTS
A. Benchmark tests

A benchmark test was conducted to compare the neoclassical
particle fluxes calculated by TASK/TX and MI. As mentioned earlier,
the set of governing equations in TASK/TX includes the equations
required for neoclassical transport calculations, which were imple-
mented in MI. In this benchmark test, MI was integrated in TASK/TX
as a subroutine to compare fluxes under identical conditions, utilizing
the exact same plasma profiles. However, it should be emphasized
again that TASK/TX is capable of independently calculating neoclassi-
cal fluxes alone without MI.

A TASK/TX simulation was performed assuming an L-mode
plasma to generate plasma profiles for the purpose of comparison. The
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circular equilibrium was numerically constructed with a major radius
R ¼ 3:2m, a minor radius a ¼ 0:8m, a plasma current Ip ¼ 1MA,
and a toroidal magnetic field RBt ¼ 8:576 Tm, and the equilibrium
remained unchanged throughout the simulation. The plasma con-
sisted of electrons (e), deuteriums (i), and fully stripped carbon impu-
rities (C). Based on the fact that the exact linearized collision operator
does not maintain the self-adjoint property for different mass and
temperature ratios between species, it is advisable to setup a situation
where the electron-to-ion temperature ratio is large for testing pur-
pose. Therefore, no auxiliary heating was applied, and the electrons
were primarily heated by Ohmic heating, as depicted in Fig. 1(b). The
presence of Ohmic current and Ohmic heating naturally gives rise to a
finite Ek, as illustrated in Fig. 1(d). Figure 1(c) demonstrates that car-
bon experiences higher collisionality compared to electrons and ions
due to their larger mass and charge, placing carbon in a different colli-
sionality regime. Particle transport is individually calculated for each
species, and the density profiles depicted in Fig. 1(a) are determined
based on their respective transport. Er is formed to be compatible with
the slight imbalance in the charge densities in the code. Consequently,

the profile of the effective charge number Zeff is typically non-
uniform, as shown in Fig. 1(d).

The expressions of the particle fluxes implemented in MI explic-
itly incorporate terms associated with @wU. If a user selects a collision
operator model that satisfies the self-adjointness, these terms will have
no impact on the fluxes. However, when a user opts for a model that
does not precisely satisfy the self-adjointness, these terms will generate
fluxes, typically of minor magnitude. In this benchmark test, as MI
embedded in TASK/TX is used, it naturally shares @wU calculated in
TASK/TX in common.

The simulation employed expressions for the friction coefficients
that incorporate the effects of higher-order flows.24 However, as
alluded to earlier, it should be noted that the forms of the friction
forces remain the same as in Eqs. (10) and (11). The only modification
arising from the higher-order flow effects is the replacement of ‘abij
with f abij , as defined in Ref. 24. If ‘ satisfies Eqs. (12)–(14), f also satis-
fies them, and vice versa. The conclusions derived in Sec. II therefore
remain unchanged, and henceforth, the friction coefficients continue
to be denoted as ‘ without distinguishing between ‘ and f.

FIG. 1. The plasma profiles used in this study as a function of q, including (a) density, (b) temperature, (c) effective collisionality �	, and (d) the effective charge Zeff , and the
parallel electric field hBEki. The subscript a denotes an arbitrary species, and q is defined by the square root of the normalized toroidal flux.
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The simulations were conducted using two different types of
matrix elements regarding the collision operator. Case (A) utilized the
elements derived from the Hirshman’s model collision operator,5

which satisfy both momentum conservation and the self-adjointness
in general cases. Case (B) employed those derived from the exact line-
arized collision operator,24,31,32 which satisfy momentum conservation
but deviate to some extent the self-adjointness for different mass and
temperature ratios between species. The theoretical and algebraic anal-
ysis has already shown that momentum conservation is the sole factor
relevant to ambipolarity of the neoclassical particle fluxes, while the
self-adjoint property has no impact on it. Therefore, it is expected that
both cases should exhibit a similar degree of ambipolarity. Figure 2
illustrates the comparison of the neoclassical particle fluxes, multiplied
with their respective charges, i.e., eaC

w
a , between TASK/TX and MI for

cases (A) and (B). In Figs. 2(a), the “sum” represents
P

a eaC
w
a , which

is identical to those shown in Figs. 2(b): Figs. 2(b) provide a close-up
view of the

P
a eaC

w
a profiles shown in Figs. 2(a). It can be observed

that the fluxes calculated by TASK/TX and MI exhibit good agreement
for all species. The slight differences between them can be explained as
follows. In reality, a TASK/TX simulation is unable to decompose the
contributions to a particle flux. Consequently, all contributions are
consistently combined to form the particle flux. Although turbulence
is a prominent driver of particle flux, in this case, the simulation was
allowed to proceed for only one time step after the forces responsible

for turbulent transport were artificially deactivated. The resulting par-
ticle flux can be reasonably considered as primarily the neoclassical
flux. However, considering the intricate nature of the governing equa-
tions in TASK/TX, other small influences inevitably come into play,
causing a slight deviation of the resultant flux from a purely neoclassi-
cal flux.

In Figs. 2(a), it can be observed that ambipolarity, represented by
the “sum,” is satisfactorily maintained for both cases and both models.
Even in the close-up views shown in Figs. 2(b), a minimal breakdown
of ambipolarity is observed. TASK/TX is somewhat susceptible to
numerical errors due to the need of computing large matrices, which
could have relatively large off diagonal components, composed of
simultaneous linearized equations with 41 unknowns. The influence of
sources and scrape-off layers in the edge region could also contribute
to non-negligible effects. Additionally, achieving ambipolarity requires
charge neutrality, as seen in Eq. (27), but a TASK/TX simulation is
never precisely charge neutral.

P
a 6¼e eana � ne, evaluated as a mea-

sure of charge density balance, is shown in Figs. 2(c). The profile shape
seems to be similar to

P
a eaC

w
a calculated by MI, shown in Figs. 2(b).

The slight breakdown of ambipolarity calculated by MI using the
TASK/TX plasma profiles can thus be attributed to the issue of charge
neutrality, which will be further examined in Sec. IVB. Ultimately, it
can be stated that ambipolarity is well maintained in both TASK/TX
and MI, regardless of whether it is case (A) or case (B). This numerical

FIG. 2. Comparison of (a) the neoclassical particle fluxes and (b) ambipolarity between TASK/TX, drawn by solid lines, and MI, drawn by open circles. The figures (c) demon-
strate the degree of charge density neutrality calculated in TASK/TX by evaluating

P
a6¼e eana � ne. (A-a) means (a) of case (A) using Hirshman’s model operator, and the

same labeling convention applies to (B), which uses the exact linearized operator. Note that the graphs in (b) are identical to those labeled as “sum” in (a), but with a different
scale on the vertical axis. For better visibility, the MI results in figure (b) are multiplied by a factor of 10.
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finding solidifies the fact that the self-adjointness does not play a role
in ambipolarity. From another perspective, these numerical results
affirm the reliability of the numerical implementation.

Another observation from Fig. 2 is that the magnitude of the elec-
tron particle flux is larger than that of the deuterium and carbon parti-
cle fluxes: jCw

e j > jC
w
i j; jZCCw

Cj. This fact can only be explained by
considering the contribution of the Ware flux based on theoretical
considerations. In our setup, the finite hBEki is present, which gives
rise to the Ware flux. The hBEkimust have a significant impact, which
will be elucidated in Sec. IVC.

B. Charge neutrality and ambipolarity

In Sec. IVA, it was mentioned that the tiny breakdown of ambi-
polarity in the particle fluxes calculated by MI is attributed to a small
deviation from perfect charge neutrality. As previously discussed,
achieving perfect charge neutrality is not possible in TASK/TX simula-
tions due to the self-consistent nature, where a slight imbalance in
charge densities leads to the generation of Er according to Gauss’s law.
To address this issue, another code called CHARROT, which has
already implemented MI, is utilized.40,41 Based on neoclassical trans-
port theory, CHARROT was originally developed to convert experi-
mentally measured carbon toroidal rotation to deuterium toroidal
rotation, which cannot usually be measured directly at least in JT-60U.
It is capable of reading plasma profiles and equilibrium data and out-
putting various neoclassical transport quantities. In our case, TASK/
TX provides the plasma profiles shown in Fig. 1 and the equilibrium
data for CHARROT to read. Only the minimum required profile data
for running CHARROT is outputted from TASK/TX, including
Te; Ti; ne; Zeff ; hBEki, and carbon toroidal rotation VtC. Quantities
related to charge neutrality, such as ne and Zeff , as well as the charge
numbers of deuterium and carbon, are important in this context. With
exact charge neutrality imposed, CHARROT calculates the density
profiles for deuterium and carbon, which slightly differ from those in
TASK/TX. Using the matrix elements derived from the exact linear-
ized collision operator, MI implemented in CHARROT computes the
profiles of neoclassical particle fluxes shown in Fig. 3(a), which are vir-
tually equivalent to those in Fig. 2(B-a). A slight difference in the shape
of the particle flux profile near the last closed flux surface (LCFS)
where q¼ 1 can be observed between Figs. 2(B-a) and 3(a). Upon
closer inspection of Fig. 2(B-a), it can be seen that TASK/TX employs

a higher concentration of radial grid points in the edge region to cap-
ture possible steep profile gradients more accurately. On the other
hand, CHARROT just reads in, not calculates, kinetic profiles as input
and does not require an accumulation of grid points even in the case
that the profile shape may change significantly. Therefore, CHARROT
adopts equally spaced grid points, and this difference in the way of
choosing grid points is the cause of the difference in the profiles. Also,
since only the minimum required quantities are read into CHARROT
from TASK/TX, the fluxes may not match exactly, nor is it necessary
for our purpose. Figure 3(b) demonstrates exact ambipolarity at the
level of numerical rounding error. The relatively large roughness
observed in

P
a eaC

w
a near the magnetic axis could be attributed to the

accuracy of the w-derivatives of the kinetic profiles utilized in the
expressions of the thermodynamic forces. This finding indicates that
the particle fluxes computed by MI strictly adhere to ambipolarity
when employing matrix elements that satisfy momentum conserva-
tion, irrespective of the self-adjointness.

C. Influence of the parallel electric field on the particle
flux

In order to gain a detailed understanding of the large electron
neoclassical particle flux in Fig. 3(a), it is necessary to analyze the indi-
vidual components of the flux. These components include the banana-
plateau (bp), Pfirsch–Schl€uter (ps), and Ware pinch (wp) fluxes, as
explained in Sec. II. MI can individually calculate these components,
but TASK/TX cannot. Figure 4 provides the breakdown of the particle
flux for each species. From Figs. 4(a) and 4(b), it is evident that the
contribution of electron flux is relatively small in the banana-plateau
flux, which is driven by the viscous and friction forces, and negligibly
small in the Pfirsch–Schl€uter flux. This fact has already been theoreti-
cally explained, as mentioned earlier, and forms the basis for the impu-
rity flux modeling in the previous work,16 which balances impurity
and main ion fluxes by disregarding the electron flux. On the other
hand, when examining the Ware pinch flux that arises in the presence
of Ek, the electron flux is not clearly negligible, but rather exceeds the
fluxes of main ions and impurities. It should be noted that the electron
flux appears outward in Fig. 4(c) because it is actually �eCw

e .
However, the flux itself Cw

e is directed inward, similar to Cw
i and Cw

C.
This is why this flux is referred to as the Ware “pinch.” The magnitude
of the Ware pinch flux surpasses that of the banana-plateau and

FIG. 3. (a) The neoclassical particle fluxes
calculated in CHARROT using the profile
output from TASK/TX. (b) The species
sum of the particle fluxes multiplied by
their respective charges for checking
ambipolarity. Note that the graph in (b) is
identical to the one labeled as “sum” in
(a), but with a different scale on the verti-
cal axis.
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Pfirsch–Schl€uter fluxes, as one can see from the vertical axis scales of
Fig. 4. Consequently, we understand the reason why the electron flux
becomes prominent, even when compared to the main ion and impu-
rity fluxes, as shown in Fig. 3(a). Finally, we also confirm that the
detailed balanced principle is found to hold.

In our case, the spatial averaged value of hBEki is roughly
0:13 TV=m, as demonstrated in Fig. 1(d). This corresponds to a loop
voltage of Vloop 
 1V at the LCFS. The significance of the Ware flux

evidently relies on its magnitude. Thus, in order to observe the influ-
ence of the Ware flux in the total flux more clearly, we conducted a
simulation by artificially reducing the input hBEki by a factor of 10,
i.e., hBEki 
 0:013 TV=m and Vloop 
 0:1V. Even without perform-
ing a simulation, it can be predicted in advance from Eqs. (8) and (39)
that by reducing hBEki to one-tenth, the Ware flux will decrease by
the same proportion without affecting other flux components. The
simulation confirms that the outcomes presented in Fig. 5 align with

FIG. 5. In the case of hBEki, reduced by a factor of 10 compared to the original case corresponding to Figs. 3 and 4. (a) The neoclassical particle fluxes calculated in
CHARROT using the profiles output from TASK/TX. (b) The species sum of the particle fluxes multiplied by their respective charges for checking ambipolarity. Profiles (c)–(e)
show the breakdown of the particle flux exhibited in (a): (c) the banana-plateau (bp) flux, (d) the Pfirsch–Schl€uter flux (ps), and (e) the Ware pinch (wp) flux.

FIG. 4. Breakdown of the particle flux: (a) the banana-plateau (bp) flux, (b) the Pfirsch–Schl€uter flux (ps), and (c) the Ware pinch (wp) flux.
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this expectation. As a consequence of reducing the Ware flux to one-
tenth, the electron flux is relatively minor compared to the main ion
and impurity fluxes, as depicted in Fig. 5(a).

This result suggests that even with a loop voltage of standard
tokamak operations, a substantial electron neoclassical particle flux,
primarily consisting of the Ware flux, can be generated.

The L-mode plasma has been examined so far, but it is beneficial
to confirm that the same conclusions apply to an H-mode plasma
with a pedestal in the edge region. Similar to the procedure employed
in the previous L-mode plasma case, a TASK/TX simulation was con-
ducted to generate profiles for the H-mode plasma. The simulation
procedure itself remained consistent, but some adjustments were
made to form pedestals. These adjustments included increasing the
plasma density, applying an equivalent amount of auxiliary heating to
both electrons and ions, and intentionally decreasing turbulent heat
diffusivities in the edge region to form temperature pedestals. Due to
the assumption of the Prandtl number of unity, momentum diffusiv-
ities also exhibited a decrease in the peripheral region. The resultant
plasma profiles used for assessment are presented in Fig. 6. As com-
pared to the L-mode plasma shown in Fig. 1, the temperatures are

higher, collisionalities are lower, and hBEki is smaller. Also, the ion
temperature is higher than the electron temperature, unlike the previ-
ous case.

As Figs. 7(a) and 7(b) demonstrate, the CHARROT calculation
indicates that ambipolarity remains maintained even in the H-mode
plasma. Due to the smaller parallel electric field and the larger tempera-
ture gradients, bulk ions exhibit outward transport, while electrons and
impurities experience inward transport, similar to that seen in Fig. 5(a).
Recall that since the electron charge ee is negative, the positive eeC

w
e

shown in Fig. 7(a) means thatCw
e is directed inward. The steep tempera-

ture and pressure gradients formed in the pedestal region lead to sharp
peaks in the profiles of the banana-plateau and Pfirsch–Schl€uter fluxes,
which are driven by the thermodynamic forces A1 and A2, where
q � 0:9, as seen in Figs. 7(c) and 7(d). On the other hand, the Ware
flux, which is not driven by the gradients, does not show explicit influ-
ence from the pedestal structure, as confirmed in Fig. 7(e).

V. CONCLUSIONS AND PERSPECTIVES

Within the framework of the moment method, the roles of
momentum conservation and the self-adjointness of the collision

FIG. 6. The H-mode plasma profiles as a function of q, including (a) density, (b) temperature, (c) effective collisionality, and (d) the effective charge and the parallel electric
field.
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operator in the neoclassical particle flux were thoroughly investigated
theoretically, algebraically, and numerically. As previously pointed out
in the work,5,38 it was theoretically demonstrated that in an axisym-
metric system, momentum conservation is the sole contributor to
maintaining ambipolarity, while the self-adjoint property does not
play any role. By algebraically inverting the viscous and friction matrix,
we have confirmed this fact. Just checking ambipolarity of the banana-
plateau flux, as shown in Eq. (27), does not necessarily require calcu-
lating the inverse matrix. However, to clearly understand the impor-
tant feature of the poloidal flow and particle flux being independent of
Er in an axisymmetric system, careful matrix calculations are needed.
In other words, both momentum conservation and the self-
adjointness are necessary to establish this fact. This finding is impor-
tant because while the exact linearized collision operator guarantees
momentum conservation, it does not guarantee the self-adjointness in
a general case where colliding particles have different masses and tem-
peratures. Momentum conservation alone ensures ambipolarity.
Therefore, in the case using the exact linearized collision operator,
explicitly excluding terms associated with Er from the numerical imple-
mentation of the poloidal flow and particle flux in a transport code will
avoid physical inconsistencies. This is indeed the approach followed in
the actual numerical implementation.6,7 Now, let us address the ques-
tion of choosing between the two types of the improved Sugama opera-
tors.22 From the standpoint of implementing the matrix elements in a
transport code or a neoclassical transport solver, the emphasis should

not be placed on the self-adjointness. Instead, it is preferable to use the
model that reproduces the same friction–flow relations as those pro-
vided by the exact linearized collision operator.

In contrast, TASK/TX does not directly solve the algebraic equa-
tions that determine the poloidal flow and Er. Instead, it self-
consistently determines these quantities by solving a system of govern-
ing differential equations,37 and the terms dependent on Er cannot be
excluded from the governing equations. Therefore, it is necessary to
use matrix element expressions that preserve the self-adjointness in
TASK/TX to ensure the consistency of the calculations.

In the presence of a finite Ek, we have conducted a detailed inves-
tigation on the composition of each component of the neoclassical
particle flux in the L-mode plasma. The banana-plateau flux and the
Pfirsch–Schl€uter flux exhibit nearly equal fluxes of outward main ions
and inward impurities, respectively, with the electron flux being negli-
gible. However, the inward Ware flux for each species can become
substantial depending on the magnitude of Ek. In a plasma with
Vloop 
 1V, the Ware flux is significantly larger than other compo-
nents, whereas it is comparable to the Pfirsch–Schl€uter flux when
Vloop 
 0:1V. In a typical tokamak plasma, where Ek exists, it is
essential to consider the Ware flux, and therefore, the electron flux
cannot be disregarded. This fact should be taken into account when
modeling a neoclassical impurity flux. Finally, we have confirmed that
the same conclusion reached in the L-mode plasma is applicable to the
H-mode plasma as well.

FIG. 7. In the case of the H-mode plasma compared to the L-mode plasma corresponding to Figs. 3 and 4. (a) The neoclassical particle fluxes calculated in CHARROT using
the profiles output from TASK/TX. (b) The species sum of the particle fluxes multiplied by their respective charges for checking ambipolarity. Profiles (c)–(e) show the break-
down of the particle flux exhibited in (a): (c) the banana-plateau (bp) flux, (d) the Pfirsch–Schl€uter flux (ps), and (e) the Ware pinch (wp) flux.
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Currently, neither TASK/TX nor MI have implemented the
matrix element representation of the improved Sugama operator. The
explicit description of this representation can be found in the paper,22

and it will be incorporated into both codes in the near future.
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APPENDIX: DERIVATION OF THE INDEPENDENCE OF
ûah FROM ›wU IN THE LIMIT OF SMALL VISCOSITIES

In the following, the parallel electric field is assumed to vanish,
i.e., hBEki ¼ 0. Since the smallness of Da means that the viscous
forces are much smaller than the friction forces, from Eqs. (25) and
(26), we obtain

hBFa1ki ¼
X
b

‘ab11hBubki �
2
5
‘ab12
hBqbki
pb

 !
¼ 0; (A1)

hBFa2ki ¼
X
b

�‘ab21hBubki þ
2
5
‘ab22
hBqbki
pb

 !
¼ 0: (A2)

The parallel friction force and the parallel heat friction force are nil
for any species to zeroth order in Da. Equation (14) obtained when
both momentum conservation and the self-adjointness hold can be
rewritten as

‘aai1 ¼ �
X
b6¼a

‘abi1 ; (A3)

and it is then substituted into Eqs. (A1) and (A2) to obtain

�
X
b6¼a

‘ab11ðhBuaki � hBubkiÞ �
X
b

2
5
‘ab12
hBqbki
pb

 !
¼ 0; (A4)

X
b6¼a

‘ab21ðhBuaki � hBubkiÞ þ
X
b

2
5
‘ab22
hBqbki
pb

 !
¼ 0: (A5)

The solutions for which the above equations always hold are as
follows:

hBuaki ¼ hBubki; for any a and bð6¼ aÞ; (A6)

hBqaki ¼ 0; for any a; (A7)

and Eq. (A6) indicates that all the parallel particle flows must have
the same value to this order. It is dubbed the common flow and is
now written as

hBuaki ¼ hBVi: (A8)

Also, Eq. (A7) demonstrates that the common parallel heat flow
does not exist.

As in Eq. (27), momentum conservation ensures that the
species-sum of the parallel viscous force becomes nil. Hence, with
Eqs. (15) and (21), we have

0 ¼
X
a

hB � r �Pai

¼ 3hðn � rBÞ2i
hB2i

X
a

la1 hBVi � BV1að Þ � la2BV2a½ �; (A9)

which leads to

hBVi ¼

X
a

ðla1BV1a þ la2BV2aÞX
a

la1

: (A10)

This is the expression of the common flow. By substituting hBVi
into hBuaki of Eq. (21), the poloidal flow can be expressed as

ûah ¼
1
hB2i

X
b

ðlb1BV1b þ lb2BV2bÞX
b

lb1

� BV1a

2
664

3
775

¼ � I
hB2i

" X
b

lb1

� ��1X
b

lb1
Tb

eb

@ ln pb
@w

þ @U
@w

� ��

þlb2
Tb

eb

@ lnTb

@w

	
� Ta

ea

@ ln pa
@w

þ @U
@w

� �#

¼ � I
hB2i

X
b

lb1

� ��1X
b

Tb

eb
lb1A

b
1 þ lb2A

b
2


 �
� Ta

ea
Aa
1

" #
;

(A11)

which apparently shows that the poloidal flow is independent of
@wU.
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