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Seasonal pigment fluctuation in diploid and
polyploid Arabidopsis revealed by machine
learning-based phenotyping method
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Long-term field monitoring of leaf pigment content is informative for under-
standing plant responses to environments distinct from regulated chambers
but is impractical by conventional destructive measurements. We developed
PlantServation, a method incorporating robust image-acquisition hardware
and deep learning-based software that extracts leaf color by detecting plant
individuals automatically. As a case study, we applied PlantServation to
examine environmental and genotypic effects on the pigment anthocyanin
content estimated from leaf color. We processed >4 million images of small
individuals of four Arabidopsis species in the field, where the plant shape,
color, and background vary over months. Past radiation, coldness, and pre-
cipitation significantly affected the anthocyanin content. The synthetic allo-
polyploidA. kamchatica recapitulated the fluctuations of natural polyploids by
integrating diploid responses. The data support a long-standing hypothesis
stating that allopolyploids can inherit and combine the traits of progenitors.
PlantServation facilitates the study of plant responses to complex environ-
ments termed “in natura”.

Plants in field environments (hereafter referred to as “in natura”) are
exposed to complex environments with multiple abiotic and biotic
factors1. Therefore, knowledge from indoor studies, mostly focusing
on a single factor, is not necessarily directly transferrable to thefield2–4.
Time-series data from the field are informative for understanding how
plants thrive. However, collecting time-series data onplant growth and
response in fluctuating environments is labor-intensive and often
destructive5. Image analysis serves as a non-destructive alternative for
time-series data collection in the field; however, the acquisition and
analysis of high-resolution time-series images from the field is chal-
lenging for several reasons. First, a setup is exposed for months to

various weather conditions, such as sunlight, rain, snow, or storms.
Such robust systems are often costly5. Second, even with fixed-point
image acquisition, the camera positions change owing to extreme
weather conditions, maintenance work, etc., resulting in the incon-
sistency of the position of target plants in images from different time
points. Third, plant segmentation in acquired images may not be
straightforward6,7. Plant size, morphology, and color can change over
timeor are affectedby conditions suchas snowfall. External conditions
such as light intensity, soil texture, and wind disturbance also vary
among sites, introducing variations among images fromdifferent sites.
Fourth, the ideal image resolution to observe a small single individual,
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such as seedlings of model Arabidopsis species, may be difficult to
achieve with the currently available cost-efficient methodologies. The
resolution of close-up images by drones is typically of the order of
centimeters or at bestmillimeters because of the disturbance of plants
caused by the wind that the drones generate5,8. In contrast to drones,
ground-based systems can easily capture close-up images; however,
commercially available products are intended for large-scale fields and
are not cost-efficient for small-scale research9. Yang et al. (2022) and
Hawkesford and Lorence (2017) emphasized that it is important to
decrease the cost of phenotyping to promote further research5,10.
Finally, the amount of collected data can be large, resulting in a long
processing time for analysis. Overcoming all these challenges and
analyzing time-series images of different species in different environ-
ments further our understanding of the growth and environmental
responses of plants.

Deep neural network (DNN) is a powerful tool for analyzing
complex images. DNN is increasingly being deployed to process large
image datasets in diverse disciplines, from medical science to
engineering11. In plant science, it hasbeen successfully implemented to
segment the target plant or the position of the plant in an image under
controlled conditions, where the plant appearance and background
are relatively uniform12,13. The analysis methods established for plants
with relatively simple shapes under controlled conditions are not
directly applicable to complicated images from the field. Large varia-
tions in the target plant, light, and background need to be covered in
annotating the images from the field to prepare a training dataset for
DNN, which can be laborious when performedmanually for thousands
of target plants14. In addition, the best DNN architecture depends on
variations in the images. Various DNN architectures are available with
different strengths. For example, U-Net has been used for the seg-
mentation of plants from the top view6,13,15 as well as roots in soil16.
Other architectures that are successful in other disciplines can also be
promising for plant image analysis, e.g., SINet in segmenting camou-
flaged animals17 or DANet in detecting fine structures such as human
veins18. Thus, to efficiently analyze complex images from a field within
a realistic workload, it is necessary to reduce the manual annotation
effort and select the DNN architecture whose strength best suits the
analysis of the features in the target images6,19. The application of DNN
to high-resolution image analysis of plants in the field while over-
coming the challenges described in this and the previous paragraphs
enables the identification of diverse biological questions, including
ecology and evolution, with pigment accumulation in allopolyploids
and their progenitors being an example.

Accumulation of anthocyanin pigment is induced by various
environmental conditions and is considered a stress marker20–22.
Laboratory studies of the model plant Arabidopsis thaliana have
shown that anthocyanin in leaves increases in response to various
external stresses, such as intense light, cold temperature, and drought,
as a protection against oxidation, making the plant appear reddish23,24.
In contrast to laboratory conditions, even in A. thaliana, little is known
about the mechanism of pigment accumulation in complex field
environments in which air temperature, radiation, and precipitation
fluctuate25,26. Furthermore, widespread variation of anthocyanin con-
tent within and among species suggests its evolutionary significance in
adaptation and speciation20.

Allopolyploid speciation occurs through hybridization between
different species with genome duplication. Its prevalence among nat-
ural and crop plant species has stimulated discussions and debates
regarding the advantages and disadvantages of allopolyploid
species27–29. Since the end of the 20th century, a major focus of the
polyploid study has been on genome-wide mutations that are induced
at the time of polyploidization termed “genome shock”. However,
recent reports have shown a lack of genome shock in Arabidopsis and
grass polyploids30,31, suggesting that it is not essential for polyploid
adaptation. Instead of novel mutations, environmental responses of

diploid progenitor species can be inherited and combined in allopo-
lyploid species, which was originally discussed in plant evolutionary
and systematics studies29,32–34. Soltis et al. (2016) have emphasized that
the paucity of model polyploid species that integrate functional and
ecological data is amajor barrier to testing evolutionary and ecological
hypotheses on polyploidy29,34. In the model genus Arabidopsis, the
allotetraploid species A. kamchatica is emerging as a model polyploid
species,whichwasderived from twodiploid progenitors,A. halleri and
A. lyrata35. In addition to natural A. kamchatica genotypes, synthetic A.
kamchatica plants can be used to examine the effects of environ-
mental responses inherited from progenitors36. The natural distribu-
tion range of A. kamchatica is wider than that of diploid progenitors,
both in latitude and altitude37,38. Physiological and transcriptome
experiments in regulated laboratory conditions showed that A. kam-
chatica inherited the gene expression pattern associated with the cold
response from the diploid progenitor A. lyrata that was distributed in
colder habitats than the other progenitor39,40. From the diploid pro-
genitorA.halleri,A. kamchatica inherited the gene expressionpatterns
responsible for zinc hyperaccumulation and tolerance41. Zinc con-
centration analysis of soils from natural habitats showed that A. kam-
chatica can toleratemoderately contaminated soil, suggesting that the
allopolyploid inherited adaptive environmental tolerance of A. halleri
in natural fields42. In contrast to relatively stable natural environments
such as soil metal concentrations, time-series field observations are
critical for capturing plant reactions to fluctuating meteorological
conditions.

In this study, we present PlantServation, a method for image
acquisition and analysis that consists of hardware and software, and
applied it to studying environmental and genotypic effects onpigment
amounts using four Arabidopsis species as a case study. Using the
robust yet inexpensive image acquisition system with an RGB camera,
we collected daily images of small individuals grown in the field in
Switzerland and Japan for five months each for three years. We
developed an efficient image analysis pipeline using DNN by register-
ing the position of individual plants in time-series images by aug-
menting annotation data and comparing the performance of multiple
DNN architectures. We estimated the time-series anthocyanin content
using leaf color information from PlantServation with experimental
validation. We addressed two biological questions on the effect of
environments and genotypes on anthocyanin pigments, respectively:
(1) How do air temperature, radiation, and precipitation affect the
anthocyanin content in Arabidopsis species in complex field environ-
ments? (2) Does the synthetic polyploid A. kamchatica recapitulate the
seasonal fluctuation of anthocyanin in natural polyploids, and how is it
associated with those of the diploid progenitors?

Results
Image acquisition in the field
We established an inexpensive image acquisition system that endured
in the field for fivemonths during the growing season over three years.
The hardware part of PlantServation was set up in common gardens in
Switzerland and Japan using commercial polytunnel skeletons and
weather-resistant RGB cameras (RICOH WG-40) positioned at 150 cm
from the ground to collect the top-view images (Fig. 1a). Normal
camera batteries do not last longer than a few weeks in our environ-
ment. For a stable power supply and to save the labor of exchanging
batteries frequently, we replaced camera batteries with custom-made
direct current (DC) couplers that could be connected to a common
power source with an alternating current (AC) adaptor (Fig. 1a, b). A
commercial uninterruptable power supply (UPS) provides emergency
power in unexpected power breaks (Fig. 1a). The use of a flat cable
enabled a connection between the DC coupler and cable while closing
and sealing the battery lid (Fig. 1a, b, Supplementary Fig. 1). The sup-
port bars were fixed to each other and to the polytunnel skeletons
using moving scaffolding clamps, whereas the DC cables were fixed to

Article https://doi.org/10.1038/s41467-023-41260-3

Nature Communications |         (2023) 14:5792 2



the support bars using cable ties (Fig. 1c). To minimize the mis-
alignment of cameras, we inserted a rubber sheet between the
camera holder and support bar. We installed a custom-made lid to
protect the cameras from snow, rain, and radiation (Fig. 1d). To avoid
herbivores and birds, the polytunnel skeletons were covered with
mesh sheets, with the top part kept open during winter to allow
snowfall and to prevent damage to the polytunnel skeletons by
seasonal winds (Fig. 1e). Altogether, the expense for the hardware
part of PlantServation with eight cameras to observe 384 plants was
ca. USD 2600 as of 2017.

Using PlantServation, we obtained approximately 4,032,000
images of target plants (12 genotypes × 20 replicates × 2 sites × 16–24
images/day × 150 days/year × 3 years) using the Interval Shooting
function of the camera. These were captured using five cameras at
each of the Swiss and Japanese sites. Each image had 16M (4608 ×
3456) pixels with a pixel range of 0 to 255 in the 8-bit sRGB color space
and included the top view of the 48 target plants as one plot (Fig. 2a).
The height and width of 1 pixel corresponded to approximately
0.45mm. The 48 target plants consisted of four blocks, each of which
consisted of 12 genotypes representing four species of Arabidopsis
(Supplementary Table 1): the model species A. thaliana, natural and
synthetic allotetraploid A. kamchatica, and its diploid progenitors A.
halleri and A. lyrata35,38,43–45. Two independently synthesized A. kam-
chatica plants, along with their progenitor genotypes, enabled the
comparison of polyploids shortly after emergence with those
long after establishment and generations under natural selection,
while the inclusion of the model plant A. thaliana facilitated the

interpretation of results in light of previous molecular and physiolo-
gical studies40.

The acquired images contained large variations in layout, back-
ground, and target plants. The layout of the frame around the plots
varied between the Swiss and Japanese sites, whereas the background
(soil, sand, and humus) varied between and within sites (Fig. 2a). Var-
iation also existed at the target plant level with respect to light con-
ditions, background, and the color, shape, and size of plants (Fig. 2b).
In both sites, four white marble balls of 2.5 cm diameter, fixed to
wooden or metal nail inserted in the ground, were placed at the cor-
ners of the rectangular area containing the target plants (Fig. 2a).
Thesewere used asmarkers for adjusting the position in the images to
be consistent throughout the timepoints (see Step 2 in Image analysis
pipeline for an overview and Methods for details). Using our eco-
nomical image acquisition system, we successfully collected daily
images of different genotypes of Arabidopsis in the field over several
months.

Image analysis pipeline
In the PlantServation software, images from each camera were pro-
cessed using a pipeline implemented in Python (Fig. 3a). Here, we
provide a brief overview of our pipeline and describe the details in the
Methods section. In Step 1 (Fig. 3a), we selected up to four images per
day by thresholding the pixel values and setting a timewindowclose to
midday to reduce the variation in brightness among the images,
yielding ca. a total of 740,432 individual plant images.

In thefield, the cameras inevitablymoveowing towind andduring
maintenance, resulting in inconsistencies in the position of the target
plants among the images. To address this issue, in Step 2, we per-
formed registration and compilation of the images fromdifferent time
points and defined the plant position as the peak where the center of
the plant was most frequently detected (Supplementary Fig. 2).

Once the center of theplantwas defined,we segmented theplants
in Step 3 after cropping individual plants from the image using end-to-
end segmentation with DANet which was the best among the five DNN
architectures examined (Supplementary Fig. 3, Supplementary
Table 2). We used a custom-made training dataset consisting of 7,500
images augmented from 225 manually labeled images (Supplemen-
tary Fig. 4).

We examined the performance of our pipeline using DANet by
analyzing 30 plant images that were not used to build the pipeline and
by comparing the outcome with the ground truth, the plant area
marked by humans. The pipeline worked reasonably well in segment-
ing different background types at the Swiss (soil or sand) and Japanese
(sand and humus) sites (Supplementary Table 3). The performance of
the segmentation was slightly higher for the soil background (Fig. 3b).
When the color of the plant and that of the background were similar,
the Dice coefficient was lower; however, this did not hinder the sub-
sequent color analysis, the major purpose of this study (Fig. 3b).

In Step 4, we color-converted the pixel values in RGB of the seg-
mented plant area to those in L*a*b* (Fig. 3c). We subsequently cal-
culated the average value of L*a*b* per target plant. Supplementary
Movies 1–3 show examples of time-series compilation of a segmented
plant area.

Finally, the pipeline outputs color information, genotype, and
date for each target plant. We excluded anomalous data from further
analyses by referring to the field record, for example, on snow cover
and plant death, by a z-score threshold calculated with nearest
neighbor interpolation and by visually examining the original image
for individuals whose time-series plots deviated from the norm (Sup-
plementary Fig. 5; see Methods for further details).

Validation of color-based estimation of leaf pigment content
To estimate the anthocyanin content from the color information of
images, we used another set of plants to collect color information from
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during winter in Switzerland as seen in the photo.
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images and compared it with the actual pigment content measured
experimentally.We obtainedboth anthocyanin content per leafweight
and per leaf area and compared models with different color spaces,
indices, andmodel types (seeMethods and Supplementary Figs. 6 and
7). Among model types, a random forest model, a machine learning
method, performed the best, consistent with a previous study of pig-
ment estimation from color in Arabidopsis in the laboratory46 (see
Supplementary Fig. 6 and Methods for details). Among the random
forestmodels, themodelwith the relative anthocyanin content per leaf
weight as a response variable and L*, a*, and b* as explanatory variables
performed the best (Supplementary Fig. 7). Among the three color
features, a* and b* largely contributed to the variation in anthocya-
nin content per weight, followed by L* (importance: a* 40.5%, b* 43.3%,
L* 14.5%). Fitting results indicated that there was a high correlation
between measured and estimated anthocyanin content per weight
when genotypes were separated (Pearson correlation coefficient
r >0.850 for the majority of genotypes, Supplementary Fig. 8) and
pooled (Pearson correlation coefficient, r = 0.846, p < 2.2e-16, Fig. 4,
Source Data 1).

For anthocyanin content per area,we found that the samemethod
worked the best, although its R-squared value (R2) was lower than that
of anthocyanin content per weight (Supplementary Fig. 7). The fitting
result showed a similarly high correlation between the measured and
estimated values, although the values are overestimated in the small
value range and underestimated in the large value range (Supple-
mentary Figs. 9 and 10, Source Data 1). In the subsequent analyses on
the effect of environments and genotypes, both anthocyanin content
perweight and per area resulted in similar results, andwewill show the
former in the main text.

We also measured the chlorophyll content of the same leaves,
which also affects leaf color47. Anthocyanin per weight was negatively

correlated with chlorophyll per weight, however, the variation was
large, suggesting that no clear dependencyof the anthocyanin content
on the chlorophyll content (Pearson correlation coefficient, r = –0.433,
p < 2.2e-16, Supplementary Fig. 11). Although it is possible that the
chlorophyll content works as noise in estimating anthocyanin content,
these analyses suggest that the leaf images contained information of
the anthocyanin content. Thus, we next examine whether our esti-
mationmodel works in capturing the seasonal patterns of anthocyanin
fluctuation and in evaluating the effects of environments and
genotypes.

Seasonal fluctuation of plant traits
We applied a random forest regression model in the previous section
to the time-series images and estimated the anthocyanin content from
L*a*b* in the image per time point per genotype per site. To examine
the pattern of fluctuation in the estimated anthocyanin content and
other traits in the field and the variation among genotypes, we gen-
erated time-series plots for each trait per site per genotype (Fig. 5 and
Supplementary Figs. 12–15, Source Data 2–7). The values were aver-
aged among images when there were multiple images per day.

The variation in the estimated anthocyanin content throughout
the season and among genotypes was more pronounced at the Swiss
site than at the Japanese site (Fig. 5 and Supplementary Fig. 12). At the
Swiss site, the anthocyanin content of most genotypes increased from
autumn to winter. The difference between the two sites is consistent
with the mild winter conditions at the Japanese site, in which snow
rarely falls. These data will be used for analyses in the following two
sections.

The a* trend resembled that of the estimated anthocyanin content
(Fig. 5 and Supplementary Figs. 12 and 13). In contrast to a* and the
estimated anthocyanin content, b* and L* showed a reverse pattern
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images from the Swiss site, strong light on the right half of the bottom images from
the Japanese site) varied among images. Blue arrows indicate white marbles placed
at the corners of the target area. b Close-up images representing the diversity in
light conditions, in the background, and in the color, shape, and size of plants.
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over time and in the order of the genotypes according to the value of
the variable (Fig. 5 and Supplementary Figs. 12–15). These results were
consistent with that a* ranges along the green–red gradient and thus
corresponds to the leaf color gradient well (see the previous section
and Fig. 3c).

Effect of environmental factors on anthocyanin content
Experiments in regulated chamber conditions showed that anthocya-
nin in A. thaliana is induced by stress treatment at low temperatures,
strong light, and drought23,24. Using the time-series anthocyanin

content estimated in the field, we examined whether environmental
conditions had a significant effect on the anthocyanin content of A.
thaliana and its relatives in complex natural environments (Fig. 6a, b).
We fitted linear regression models with the estimated anthocyanin
content as the response variable and radiation, coldness, and pre-
cipitation as explanatory variables. Considering the response time and
threshold of plants to environmental cues, we adopted the best
parameter combination for window, lag, and temperature thresholds
in the past month, as in previous phenological studies48 (Fig. 6a). We
found that the estimated anthocyanin content was associated strongly

The software part of PlantServation for 1 camera
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Fig. 3 | Image analysis pipeline and its performance. aTheworkflowof the image
analysis. 16–24 images per camera were taken per day for ca. 150 days per season.
Images from five cameras per site for three seasons were subject to the analysis.
b The evaluation result of the outcome of the machine learning using DANet.
Images varying in plant size, shape, color, and background were examined con-
cerning theDice coefficient and Precision. Six representative images are shown. For
each plant, the original image with circular mask, ground truth, DANet

segmentation outcome, and the score for Dice coefficient and Precision are shown.
From top to bottom: a green plant with a soil background in the Swiss site, a plant
with green anddark leaveswith a soil background in the Swiss site, a dark plantwith
a soil background in the Swiss site, a green plant with a sand background in the
Swiss site, a dark plant with a sand background in the Swiss site, a dark plant with
a humus background in the Japanese site. c RGB color space (left) and L*a*b* color
space (right).
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with coldness and radiation and relatively weakly with precipitation in
most genotypes (Supplementary Tables 4 and 5). This suggests that
the three stress conditions studied in the laboratories also exhibited
significant effects in the field conditions and confirmed that Plant-
Servationworkflow is useful for evaluating the environmental effect on
plant traits. In addition, the analysis showed that each of the three
environmental factors explained up to 60% of the variation in the
estimated anthocyanin content. At the Swiss site, the radiation was
particularly influential (Fig. 6b and Supplementary Fig. 16, Source
Data 8). Time-series plots of the model species A. thaliana at the Swiss
site with the estimated environmental parameters suggested that the
estimated anthocyanin content was well associated with radiation,
whereas the relationship between rainfall and coldness was not
straightforward (Supplementary Figs. 17 and 18, Source Data 8). At the
Japanese site, coldness contributed significantly to all the genotypes,
although the number of significant factors tended to be lower than
those at the Swiss site, possibly because of the mild winter with neg-
ligible snow. Considered together, the results suggest that coldness,
radiation, and precipitation contribute to the anthocyanin content in
thefield, with the extent of contribution varying among environmental
factors, sites, and genotypes. Roughly, half of the variations in antho-
cyanin content were not explained by the three environmental factors,
suggesting the need for further studies on other factors and their
combinatorial effects (see Discussion).

Anthocyanin content in Arabidopsis polyploids
Next, we examined the differences in the estimated anthocyanin
content between species and genotypes.We addressed the question of
whether synthetic polyploids recapitulate the patterns of natural
polyploids and whether they combine the traits of diploid progenitor
species. We included two independent synthetic polyploid genotypes
of A. kamchaticawith their diploid progenitors: RS7 derived fromHAL
(A. halleri) and SEP (A. lyrata), and RS8 derived from HAL and MED (A.
lyrata). As natural A. kamchatica, we planted four genotypes of

Japanese polyploids and two genotypes named Northern polyploids,
which are estimated to have originated independently from Japanese
polyploids38. The Swiss site showed a higher variation among geno-
types and seasons, as described above, and the genotypes can be
grouped roughly into four according to the pattern of fluctuation of
the estimated anthocyanin (Fig. 5 and Supplementary Fig. 12). First, the
diploid progenitors A. lyrata (MED and SEP) had a higher content than
others in early seasons, followed by intermediate in late seasons.
Second, the diploid progenitor A. halleri (HAL) showed an opposite
trend (intermediate and subsequently higher than the others). Third,
the Japanese allopolyploids exhibit low contents throughout the sea-
sons. Fourth, synthetic allopolyploids and natural allopolyploids of
northern origin showed an interesting pattern. They did not constitute
a simple mean of diploid progenitors but a combination of periods
during which they resembled diploid progenitors (Fig. 5 and Supple-
mentary Fig. 12). For example, the synthetic allopolyploids showed a
trend similar to that of the natural diploid A. halleri at the beginning
and to the diploid A. lyrata later in the second year at the Swiss site.
Overall, the trend of the synthetic allopolyploids resembled that of the
diploids with a smaller content of the estimated anthocyanin at a given
time point.

To compare the trend of the estimated anthocyanin content
among genotypes throughout the seasons, we conducted dimension
reduction via principal component analysis (PCA) on the estimated
anthocyanin for all years from both sites (Fig. 7 and Supplementary
Fig. 19, Source Data 9). The first principal component (PC1) explained
51.8% of the variation in the data (Fig. 7). Along PC1, the diploid pro-
genitors were closer to the synthetic allopolyploids, and the synthetic
allopolyploids were closer to the natural allopolyploids of northern
origin than to the natural allopolyploids from Japan (Fig. 7). The sec-
ondprincipal component (PC2) explained 19.7% of the variation. Along
PC2, two diploid species were located at both tips (Fig. 7).

The PCA plot indicated that the two independent synthetic poly-
ploids showed a similar pattern, confirming reproducible changes
immediately after polyploidization. Furthermore, the synthetic poly-
ploidswereclosely related tonatural polyploids, that is, twogenotypes
of northern polyploids (Fig. 7 and Supplementary Fig. 19). The other
four natural polyploids showed similar PC2 values to synthetic poly-
ploids but diverged at PC1, potentially reflecting their different or
older polyploid origin (see Discussion). These data suggest that the
synthetic polyploids recapitulated the pattern of anthocyanin
responses of certain natural polyploids. In addition, the synthetic
polyploids resembled one of the parents A. lyrata in PC1 and another
parent A. halleri in PC2 (Fig. 7). When the data of the two sites were
analyzed separately, a similar patternwas found for the Swiss data, and
the synthetic polyploids were located in the middle of the two diploid
progenitor species both in PC1 and PC2 for the Japanese data (Sup-
plementary Figs. 20 and 21, Source Data 11). Moreover, the PCA plot of
a* for all years fromboth sites resembled those of anthocyanin content
(Fig. 7 and Supplementary Figs. 19 and 22, Source Data 9). These
analyses support the observations of the inheritance andmerger of the
traits of the two diploid progenitors. The grouping of the genotypes in
these analyses on genotype averages was generally consistent with
that of the analyses at the individual plant level (Supplementary
Figs. 23 and 24, Source Data 12). The plots of the PC scores with the
estimated anthocyanin content for each genotype suggest that some
site-by-year combinations, such as the Swiss site Year 1 (yr1) for PC1
and the Swiss and Japanese sites Year 3 (yr3) for PC2, may be parti-
cularly influential to the among-genotype differenceof the overall PCA
plots (Supplementary Figs. 25 and 26).

Discussion
Using PlantServation, we successfully distinguished the time-series
trends of different plant genotypes and species varying in morphol-
ogy, color, and size under fluctuating and noisy outdoor conditions via
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image analysis using DNN. This was achieved by a relatively small
manual annotation effort owing to augmentation (Supplementary
Fig. 4). Our data demonstrate that it is possible to quantitatively and
non-destructively evaluate plant color at high-resolution throughout
the season. Hence, we could overcome the challenges in conventional
manual data collection and qualitative color evaluation using visual
inspection or color charts49. Notably, our image acquisition system is
robust and simultaneously relatively simple and inexpensive, allowing
non-experts to implement the data acquisition without a large
investment.Manywaterproof, shockproof, freezeproof, anddustproof
cameras with interval shooting functionality are available on the
market. Any of such tough cameras can be an alternative if a compa-
tible DC coupler can be prepared. All other parts, e.g., support bars,
cables, terminals, and UPS, of the hardware are also easily available at
affordable prices. In this regard, this study paves the way for com-
paring and classifying the responses of plants of different genotypes
and species to seasonally fluctuating environments.

The best DNN architecture for analyzing our dataset was DANet.
This could be attributed to the strength of DANet in detecting fine
structures such as petioles in our dataset. For our dataset, DANet
outperformed SINet, though the latter is widely known for detecting
camouflaged objects. Although not optimal for our dataset, U-Net has
been shown to perform effectively with small labeling datasets in
medical research50–52 and has recently been increasingly applied to
agriculture for leaf disease symptom diagnostics53. Many DNN archi-
tectures havebeendeveloped infields other thanplant science11.When

selecting a DNN architecture, widening the search beyond plant sci-
ence can yield a better solution. Indeed, DANet was originally devel-
oped to detect scenes and objects on the street in computer vision and
was later successfully applied to detectfine vessels in the human retina
in medical research18,54. For accurate segmentation, it is important to
grasp the critical features of the target image and select a suitableDNN
architecture that can detect them, regardless of the type of object to
be segmented.

Augmentation achieved reasonable segmentation performance
with a relatively small labeling dataset. We used 225 manually labeled
images, which ismarkedly less comparedwith similar indoor studies in
which hundreds or thousands of images were labeled12,13. Considering
the complexity of our images from the field, our approach was highly
labor-saving. For similar plant segmentation tasks in future studies,
fewer manually labeled data will be sufficient to construct a DNN
model using the transfer learning of our learned model as well as the
data augmentation strategy55. Our data also highlight many difficulties
in handling time-series images from the field. Among them, the
detection of the target plant was the most critical for accurate data
acquisition for downstream analysis. In particular, whenever the color
and texture of the target plant and background are similar, it is chal-
lenging to identify the area of the target plant, even for humans. Even
though it might be difficult to avoid such situations, data quality could
be improved by addressing other issues. A potential future possibility
is to change the segmentation procedure. Segmentation was inde-
pendently performed for each frame. The incorporation of temporal
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information into the DNN input may facilitate the segmentation of
images that are difficult to segment within a single frame. In this
context, the application of Video Object Segmentation methods is
potentially promising55. Another possibility is the additional imple-
mentation of manually obtained information regarding the target
plant and its circumstances. Non-target objects in the image, such as
snow, can be labeled for training theDNN to distinguish them from the
target plant during segmentation (Supplementary Fig. 5a). Cross-
referencing withmanual records is effective for issues that are difficult
to address bymodifying the analysis pipeline. For example, plant death
may not be precisely recognized by the DNN when the plant body
remains intact (Supplementary Fig. 5b). In such cases, manual scoring
of plant survival can complement the analysis of time-series growth.

Overall, time-series image acquisition in the field inevitably faces a
number of predictable and unpredictable challenges, from the simi-
larity in color and texture between target plants and their surround-
ings to the interference of non-target objects. Not all the issues would

be solvable; however, a priori preventive measures as well as the
measures necessary for the image acquisition system should improve
the quality of downstream image analysis. An effective understanding
of the study system, e.g., the plant life cycle and weather conditions at
the study site, would enable the selection of the appropriate measures
for each case.

We estimated the time series of leaf anthocyanin content from the
color information. As in a previous studyonArabidopsis thaliana in the
laboratory, a random forest model functioned effectively for our
dataset in the estimation of anthocyanin46. With the strength of cap-
turing nonlinearity in data, a random forest model can be effective for
samples from the field where the environment is heterogeneous,
causing noise in the color information. By successfully estimating
anthocyanin content from color information, this study opens up the
possibility of monitoring plant physiological responses to the envir-
onment over months in a non-destructive manner.

Our study demonstrates that time-series data can contribute to
the evaluation of plant responses to environments. Regression ana-
lyses indicated that in most genotypes, more than one of the cumu-
lative coldness, radiation, and precipitation in the past days to weeks
were significantly associated with the estimated anthocyanin content
in the field. These results are consistent with those of previous studies
in the laboratory reporting temperature, light, and drought as key
environmental factors affecting anthocyanin accumulation and high-
light the importance of considering multiple environmental factors

Fig. 6 | Environmental variables associated with the estimated anthocyanin
content per weight. a Illustration of the concept of the moving total of pre-
cipitation, coldness, and radiation used in the regression analysis. b Relative
importance of the environmental variables on the estimated anthocyanin content
for 12 genotypes of Arabidopsis at the Swiss and Japanese sites. The genotype code
in three capital letters is indicated for each genotype. 2x indicates diploid and
4x indicates allotetraploid A. kamchatica. P: Precipitation, C: Coldness, R: Radia-
tion. Significant variables based on confidence intervals calculated with bias-
corrected and accelerated (BCa) bootstrapping are indicatedwith asterisks. n = 663
for the regression analysis of each genotype. Source data are provided as a Source
Data file.
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(Fig. 6b)2,23,24,56. The linear regression model incorporating lag and
window of past temperature suggests that the anthocyanin content is
better explained by past temperatures than by the current tempera-
ture (Supplementary Tables 4 and 5, the extreme would be lag 0 and
window 1). Along with gradual changes in anthocyanin content, plants
may accumulate past temperature information through transcrip-
tional and epigenetic memory similar to vernalization, seasonal
responses, or heat acclimation1,57–60. The observed diversity in antho-
cyanin fluctuations may have been caused by the diversity in the sen-
sitivity of such environmental responses as well as the regulatory
variation of pigment metabolic enzymes. Integration of transcriptome
and metabolome data with image analysis is valuable for under-
standing the molecular basis of plant responses in natura.

The three environmental factors that were tested based on pre-
vious laboratory studies explained roughly half of the variation in the
anthocyanin content in the field. Besides noise in the field, the unex-
plained variations suggest that the linear regression models incor-
porating the lag and window of the three factors are not adequate for
understanding the complex fluctuations in the field. Fine-grained
measurement of climatic variables, such as soil moisture, distinct
measurement of air and soil temperature, the spectrum of irradiation
including UV-irradiation, and the interaction thereof, would explain
more variations in anthocyanin content2,21. In addition, biotic interac-
tions such as disease and herbivory are known to affect anthocyanin
content, although theywerenot observed in these experiments21,22. We
suggest that little is still known about plant environmental responses
in natura. Our pipeline paves the way to search for combinatorial
environmental effects along with intrinsic developmental stages and
thus, would increase the proportion of anthocyanin changes to be
explained.

Time-series monitoring of anthocyanin content and leaf color
in Arabidopsis species in the field provided a unique opportunity to
address long-standing questions on polyploidy using ecological
data29,34. First, the fluctuations in anthocyanin content and leaf color
of the synthetic allopolyploid A. kamchatica in the field were highly
similar to those of certain natural polyploids, that is, northern
polyploids. The similarity of synthetic allopolyploids to a subset of
natural counterparts that exhibit variation in a trait is consistent
with the findings on the pigments (cyanidin, quercetin, and
kaempferol) and color in Nicotiana flowers under controlled
conditions61,62. Our time-series data suggest that synthetic poly-
ploids can recapitulate the polyploid speciation that is observable
in the fluctuation of anthocyanin content and leaf color in outdoor
conditions. Thewide variation among the natural polyploidsmay be
attributed to their local adaptation or independent origins. Mole-
cular population genetic studies suggested that northern poly-
ploids of A. kamchatica had an independent polyploid origin and
possibly originated more recently than Japanese polyploids based
on their high similarity to diploid sequences38,63. The divergence of
Japanese polyploids from synthetic polyploids may be attributed to
the longer evolutionary time since polyploidization. In addition,
Japanese polyploids may originate from diploid genotypes with
different anthocyanin responses.

Second, the analysis supported a long-standing hypothesis stating
that the synthetic polyploid can combine the responses of two pro-
genitor species. The two independent synthetic polyploid lines
showed similar results, suggesting that the stochastic novel mutation
at the polyploidization events (may be called “genome shock”) did not
play a significant role29. This phenotypic trait analysis is in agreement
with transcriptomic studies showing inherited and combined respon-
ses of allopolyploid species29,40,64,65. Interestingly, the anthocyanin
content of the synthetic polyploids tended to be closer to the lower
values of the two diploid progenitors. If we can assume that antho-
cyanin content is a stress indicator, it suggests that synthetic and
northernA. kamchatica accumulate less anthocyanin than progenitors

because they are able to withstand stress throughout the season by
obtaining a generalist niche through the combination of progenitors’
environmental responses. Consistent with the observed similar
anthocyanin contents of A. kamchatica and A. lyrata during cold sea-
sons, laboratory studies suggested that A. kamchatica inherited cold
tolerance and associated gene expression patterns from the pro-
genitor A. lyrata39,40. To further verify this generalist hypothesis ori-
ginally proposed by Stebbins, measurements of fitness components
are important32.

PlantServation enables continuous image acquisition in the field
overmonths, capturing changes in leaf color andpigment in seasonally
fluctuating environments, while retaining the simplicity of the image
acquisition system reported earlier66. As laboratory settings do not
necessarily reproduce field environments, field data are essential for
understanding plant responses to complex natural environments3. We
envisage the application of PlantServation in field experiments on
model species. The spatial resolution of PlantServation enabled the
monitoring of Arabidopsis seedlings at the individual level. Field
observations of A. thaliana and its relatives will enable the study of
plant responses in the field, taking advantage of a large number of
studies in regulated chambers as well as mutant collections. For
example, destructive sampling of A. thaliana showed that anthocyanin
content was reduced in the double mutants of UVR8 and CRY1 pho-
toreceptor genes in the field67, which can be extended to time-course
studies. By connecting to solar power, PlantServation can be deployed
at remote natural sites to observe diverse species. Furthermore,
PlantServation can be exploited for other studies, including the
screening of crops, where trait scoring at an individual plant or a finer
level is informative. For example, the drought and iron deficiency
responses or disease resistance quantified in previous studies can be
monitored for a longer period68–70. Furthermore, although it was not
the focus of the current study, the combination of our image acqui-
sition system and the image analysis pipeline could also detect dif-
ferences in morphological features among plants, as observed in the
segmentation results (Fig. 3b). Thus, this study should also contribute
to fine-scale morphological analyses using field images in future
studies.

In conclusion, we demonstrated that it is possible to estimate the
anthocyanin content in plants grown in the field based on the color
information obtained from images using an inexpensive photo-
shooting system and an efficient image analysis pipeline using DNN.
Moreover, we showed that time-series field data can provide insights
into plant evolution and environmental responses, furthering our
understanding of how plants thrive in natura.

Methods
Study species
We studied 12 genotypes of four species in the genus Arabidopsis. The
Arabidopsis thaliana (2n = 10) Col-0 accession was used as the stan-
dard experimental strain. Arabidopsis lyrata (2n = 2x = 16) inhabits a
circumpolar region, whereas A. halleri (2n = 2x = 16) is distributed in
central Europe and the Far East43. The allotetraploid A. kamchatica
(2n = 4x = 32) originated from diploids A. lyrata subsp. petraea and A.
halleri subsp. gemmifera38. Arabidopsis kamchatica is widely dis-
tributed ranging from Taiwan, Japan, and Siberia in the Far East to
North America38. Two subspecies are recognized in Japan: A. kamcha-
tica subsp. kawasakiana, which is restricted to sandy shores in the
lowlands and A. kamchatica subsp. kamchatica, which occurs at var-
ious altitudes35,38,44. Two syntheticA. kamchatica samples of laboratory
origin were included (see Supplementary Table 1 for details). The
genotypeRS8was synthesized by applying colchicine to a seedling of a
hybrid of the diploid progenitors A. halleri subsp. gemmifera (W302
from Japan, called HAL) and A. lyrata subsp. petraea (namedMED after
its synonym Arabis media); the genome assembly has been reported
for both63,71. The genotype RS7 was spontaneously polyploidized from
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a hybrid of the same A. halleri genotype and A. lyrata subsp. petraea
from another population in Siberia (named SEP after its synonym
Arabis septentrionalis)72. The number of generations since allopoly-
ploidization was three to five for a given year (yr) of the experiment,
with four (yr1 and yr2) and five (yr3) for RS7 and three (yr1), four (yr2),
and five (yr3) for RS8, respectively. All the genotypes were propagated
by selfing in a laboratory.

Study sites
The study was conducted at the Center for Ecological Research, Kyoto
University, Japan (34°58′16″N, 135°57′24″E, 150m a.s.l.), and at the
University of Zurich, Switzerland (47°23′46″N, 8°33′05″E, 508m a.s.l.).

Experimental set-up
The experiment was conducted from autumn (seedling stage) to the
following spring (end of the vegetative stage), starting in 2017 (yr1),
2018 (yr2), and 2019 (yr3). According to the local phenology of the
study species, we transplanted seedlings in Switzerland and Japan in
September or October, and November, respectively.

Plant cultivation
Swiss site. Seeds of Arabidopsis lyrata, natural and synthetic A. kam-
chatica, and A. thaliana were sown in 12 well plates (Nunclon TM Delta
Surface, Thermo Scientific, Denmark) with quartz sand (0.1–0.8mm
TOPMINERAL AG, Switzerland) hydrated with tap water and placed at
4 °C for a week and subsequently by a window to stimulate germina-
tion. The seedlings at the cotyledon stage were transferred to biode-
gradable pots (W× L ×H: 3 cm× 3 cm× 5 cmPeat Pot Strips, Jiffy) filled
with a mixture of Floratorf (Floragard, Oldenburg, Germany): quartz
sand (0.4–0.8mm Quarzsand, Carlo Bernasconi AG, Switzerland) = 1:1
in volume. The potted seedlings of A. lyrata and A. kamchatica were
cultivated in a growth chamber with a long-day setting (22 °C/20 °C,
16 h:8 h light: dark, RH 60%, light 120–140 μE) for six weeks, while A.
thaliana seedlings were placed in a short day chamber for three weeks
to keep them vegetative (18 °C/16 °C, 8 h:16 h light: dark, RH 60%, light
120–140 μE). For A. halleri, we cultivated clonally propagated small
branch segments (1–2 cm) inpots in a long-day chamber forfiveweeks.
For all species, potted plantswereplacedona plastic tray coveredwith
a transparent lid that was half-opened on the 3rd day and fully opened
one week after potting. At potting and once per week, watering was
performed using Wuxal Universaldünger nutrient solution (Maag,
Westland Schweiz GmbH, Switzerland). We acclimated all plants out-
side under the roof for a week before transplanting them to the
common garden at the Irchel Campus of the University of Zurich. The
plantletswereplanted in twobuilt-in compartments, each 1 × 7m,filled
with well-watered Rasenerde (Ökohum GmbH, Switzerland). Only in
yr3 wehad a ca. 5mm layer of quartz sand on the soil surface to ensure
better color contrast between plants and the background. The entire
compartment was covered with polyester mesh sheets (1mm × 1mm
grid) over the skeleton of the polytunnel (model A-17, Nan-ei Kogyo,
Japan) to prevent herbivory and damage by birds. During winter, the
mesh at the top was removed to allow snowfall and prevent the ske-
letons from collapsing owing to strong winds.

Japanese site. The seeds of A. lyrata, natural and synthetic A. kam-
chatica, and A. thaliana were sown on sterilized plastic dishes (Asnol
PetriDishφ90× 20mm, 1-8549-04, ASONECorporation)filledwith ca.
60 g of 0.3-0.6mm quartz (#5, Toyo Matelan Co. Ltd.) hydrated with
tap water. The dishes were kept in an incubator (KOITOTRON HNM-
S11, KI Holdings Group) at 21 °C/15 °C, 12 h:12 h light: dark for four
weeks, except for A. thalianawhichwas kept there for oneweek.When
the seeds did not germinate after four weeks, the dishes were kept in
the chamber for up to additional two weeks. The seedlings at the
cotyledon stage were planted on blocks of mineral wool (rock fiber
for cultivationM40T40,Nittobo) thatwere kept in an incubator (22 °C/

20 °C, 16 h:8 h light: dark, RH 74%, light 125–145μE, KOITOTRONHNM-
S11) for six weeks, except the branch segments of A. halleri prepared in
the same manner as in the Swiss site and the seedlings of A. thaliana
which were brought in one week later and three weeks later, respec-
tively. Watering was performed twice a week, once of which using ×
2000 HYPONeX solution (HYPONeX Japan Corp., Ltd.). All seedlings
were acclimated for a week outside under the roof before transplant-
ing. The seedlings were transplanted in a compartment (W × L × H:
100 cm× 100 cm× 20 cm) filledwith amixture of 40 L of humus (100%
Shinshu Fall Leaves 100% Natural Fermented Products, Koshin Kawara
Co. Ltd.) and 60 kg of the 0.3–0.6mm quartz. We covered the surface
of the soil mixture with a 1–2mm thick layer of 0.3–0.6mm quartz to
increase the color contrast between the plants and the ground. The
ground was wet immediately before transplanting and watered once
directly after transplanting topromote theplant establishment. During
the growing season, we set up a cage with mesh (20 µm × 20 µm,
Moritaya, Japan&Marushin, Japan) over each compartment to prevent
herbivory. A root-cutting-sheet (‘Kurapapy’, Kuraray Co. Ltd. in yr1 and
yr2 and ‘Paopao Nekiri Sheet’ Nihon Nougyou System in yr3) was
placed at the bottom of the soil to prevent overgrowth.

Experimental design
The plants were placed according to a randomized complete block
design with a 15 cm interval to the next plant. Twelve plants consisting
of twelve genotypes were randomly assigned within block. Four adja-
cent blocks (2 × 2) constituted one plot, each of which was monitored
using a single camera. The number of plots was five for each of the
Japanese and the Swiss sites.

Image acquisition (PlantServation hardware)
We used a RICOH WG-40 camera resistant to water, shock, dust, and
freeze (protection level IP68) with autofocus and no flash modes. The
detailed settings of the photo shoot are shown in Supplementary
Table 6. The cameras were fixed onto frame bars usingmounting tools
(RICOH O-CM1472 and O-CH1470) that were specific to the camera.
The acquired images were stored on an SD card and manually down-
loaded to a PC using a provided cable connection.

Continuous interval shooting throughout the season (16 images
per day in yr1 and yr2 with 90-min intervals, and 24 images per day in
yr3 with 60-min interval) was enabled by the customized power supply
system (Fig. 1a). The combined use of an AC adaptor (9V) and a house-
designed DC coupler converted the voltage to 5 V to operate the
camera (Fig. 1b, see Supplementary Fig. 1 legend for detailed design). A
wooden fixing panel was placed next to the DC coupler to stabilize the
position of the thin DC coupler in the camera battery slot. The flat
cable connected to the DC coupler came out from the camera with the
lid closed (Fig. 1a and Supplementary Fig. 1) with sealant (3M Gel
Coating GC-TCORL) on the rim of the lid to prevent corrosion. Outside
the camera, the flat cable was connected to a 10 m-long DC cable. The
connecting points (‘connector’ in Fig. 1b) were sealed with a self-fusing
tape for sealing and insulation (Fig. 1a).We bound four DC cables, each
of which was obtained from one camera, using a power barrel con-
nector jack connected to an AC adaptor. The UPS station supplied
power for up to 30min in the case of a power break to prevent the
interruption of photo shooting (Fig. 1a).

Image analysis (PlantServation software)
Figure 3 summarizes the workflow of the image analysis conducted
using in-house Python scripts (version 3.6.6). PlantServation demo set
is available as described in Code availability.

Step 1: We selected up to four images per day that satisfied the
following criteria: First, thresholding allowed only images with max-
imum and average pixel values greater than 80 and 10, respectively, to
be analyzed. Second, the time at which an image was acquired was
restricted to 10:00–14:00. These filterings reduced the variation in
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brightness and sunlight direction, and the contamination of acciden-
tally dark images.

Step 2: To adjust the position of the target plants and detect each
plant location, we first detected white marbles at the corners of the
plot using aDNN (ResNet), registered the image series via homography
transformation, matching the marbles to reference the marbles which
were determined by averaging the position of each marble, and sub-
sequently downsized each to an image of 1152 × 864 pixels (Supple-
mentary Fig. 2). Each of these low-resolution images was divided into
nine patches of 384 × 384 pixels, and segmentation was applied to
roughly assign 1 and 0 to the plant and background regions, respec-
tively. Subsequently, we adopted both areas for overlapping parts
(‘AND’) to fit 1152 × 864 pixels. This image was enlarged four times in
length (4608 × 3456). This series of resizing and processing steps
contributes to shortening the total processing time. Subsequently, we
overlaid themask images (where the object and restwere assigned to 1
and 0, respectively, to generate binary images) acquired at different
time points and obtained one summed image with local peaks. Each
local peak corresponds to the center of the plant from a given time
point. The position of the local peaks was regarded as the position of
the target plant in the image. Because thepeakwasdistinctly separated
from the background value and exhibited a distinct value, peak
detection was straightforwardly performed using the peak_local_max
function in the skimage feature library (https://scikit-image.org/docs/
dev/api/skimage.feature.html). After peak detection, we examined
whether the plants were correctly detected, and when not correctly
detected, we manually identified the plant or removed the plant that
had been incorrectly identified.

Step 3: Once the plant position was determined, we performed
segmentation of the target plants in each 384 × 384-pixel image
(Fig. 3a). Although a patch-based segmentation method using a con-
volutional neural network was effective for detecting fine features in a
previous study73, it was time-consuming and missed detailed features
of our dataset; therefore,weused anend-to-end segmentationmethod
with DNN using the library pytorch (https://pytorch.org/) (Supple-
mentary Fig. 3).

The training dataset for the segmentation of the target plants was
prepared as shown in Supplementary Fig. 4. First, using the annotation
tool labelme, we labeled 225 images with soil background at the Swiss
site consisting of plants with diverse colors, sizes, andmorphologies74.
The 225 labeled images were augmented by rotating, shifting, scaling,
and changing the brightness and contrast to yield 4100 training ima-
ges. We used the same 225 labeled images to generate 3400 training
images for the sand background at the Swiss and Japanese sites. For
this, we overlaid a labeled plant image on a randomly selected back-
ground image, fromwhich we cut out the area of the plant. Thereafter,
for each of the 7500 training images, we cut out an area of 384 × 384
pixels containing the target plant and cropped it by cutting out a
circular areawith adiameter of 384pixelswith the plant position as the
center. This cutting procedure was effective in excluding neighboring
plants. In later growth stages, some of the neighboring leaves may be
included, but they are considered minor for the effect on color esti-
mation in comparison to the fully grown focal plant. This image was
used as the input for training using the best DNN architecture for our
dataset. The best DNN architecture was identified as the method that
yielded the most accurate segmentation results using 4100 training
data points for the soil background in the Swiss site. We compared the
standard U-Net15, U-Net with pre-trained ResNet-10175 or EfficientNet-
B776 as a backbone, SINet17, and DANet54. For all DNN architectures, we
split the 4100 input data into 68%, 12%, and 20% corresponding to
training, validation, and test set, respectively. DANet performed best
with our dataset andwas used in the analysis (Supplementary Table 2).
All 7500 training images were used to further characterize the per-
formance of the DANet model in both the soil and sand backgrounds
(Supplementary Table 3). The labeling data and the time-series images

are available as Dryad datasets [https://doi.org/10.5061/dryad.
1g1jwsv11] and [https://doi.org/10.5061/dryad.h70rxwdnk].

After the segmentation of the plant, post-processing was per-
formed to remove noise. First, the output image of the DANet was
subjected to Gaussian filtering at sigma = 1 (pixel). After filtering, we
converted the images to black and white using thresholding. Subse-
quently, small distinct objects in the background of the mask images,
mostly soil particles or fallen leaves of bright color, were removed by
thresholding.

Step 4:Wemultiplied themask image above and the raw (original)
image, such that only the plant exhibited a color pixel value of more
than 0, enabling the measurement of the average and median of RGB
and L*a*b* values of the plant without background.

The images were processed in a Linux Ubuntu OS using eight
CPUs with four cores (Intel Xeon Cache 10 MB, Intel (R) Xeon (R) CPU
E5-1620 v4 @3.5GHz), and 32 GB memory. Furthermore, we used a
GPU (GeForce GTX 1080 Ti) with 11 GB graphic memory for compu-
tationally demanding tasks, including registration, augmentation,
segmentation, and training using a DNN.

Evaluation of the image analysis outcome
We prepared ground truth data (manually annotated ‘correct’ plant
area) consisting of nine, nine, and twelve labeled single-plant images
from the soil background at the Swiss site, sand background at the
Swiss site, and sand background at the Japanese site, respectively. The
images were selected, such that they represented variations in color,
shape, and size among plants and backgrounds in all the images. Using
the ground truth and outcome of the DANet, we calculated the Dice
coefficient, Precision, Sensitivity, and Specificity as follows:

• Dice coefficient = 2 × area of overlap between ground truth and
DANet outcome / total number of pixels in the ground truth and
DANet outcome,

• Precision = tp/(tp + fp),
• Sensitivity = recall = tp/(tp + fn),
• Specificity = tn/(tn + fp),

where tp, tn, fp, and fn indicate true positives, true negatives, false
positives, and false negatives, respectively.

Leaf pigment and leaf color
To examine how appropriately the leaf color represents the antho-
cyanin and chlorophyll contents, wephotographed the leaves of plants
growing in the common garden, harvested them, and quantified
anthocyanin and chlorophyll at the Swiss site, according to protocols
based on the absorption spectrometry methods that detect wide
molecular species of anthocyanin and chlorophyll a and b77,78. We
included all genotypes sampled on multiple dates to cover the wide
pigment accumulation levels. These plants were grown in addition to
the plants for image acquisition. In yr2, one leaf per plant was subject
to the study for DEN, RS7, and RS8. We had eight replicates per gen-
otype at each of the four time points (October 31, November 20,
February 14, and March 20). At each time point, we used plants that
were not subject to the study at the earlier timepoint(s). In yr3, one leaf
per plant from the remaining nine genotypes was subject to the study
at each of the five time points (October 31, November 14, December 3,
February 25, and April 23). We had eight replicates per genotype per
time point. Due to limitations in space and the number of seeds, we
used the sameplants onOctober 31, December 3, and February 25, and
on November 14 and April 23. The right and left halves of the leaf were
subject to the measurement of anthocyanin and chlorophyll, respec-
tively. The collected leaveswereprocessed immediately or kept frozen
at –80˚C until processed.

For the extraction of anthocyanin, each leaf tissue was ground in
1000μL of extraction buffer (18% isopropanol and 1% HCl) and incu-
bated at room temperature in a shaded condition for 24 h. After the
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centrifugationof 10min at 15000 g, the absorbance of the supernatant
wasmeasured at 535 nm (yr2) or 530 nm (yr3) and 650nm. The relative
anthocyanin content per area or weight was calculated by dividing the
value (A535 or 530 – A650) by the leaf area (mm2) or weight (mg). In the
figures, we displayed the relative anthocyanin amount per area (cm2)
or weight (g) of a leaf or plant for better visibility. The leaf area was
measured from the images using Fiji (Image J ver. 1.52n79). For the
extraction of chlorophyll, each leaf tissue was immersed in a tube with
1000μL of 100% dimethylformamide, the extraction buffer. After
three days of being shaded from light in a fridge, the tube was cen-
trifuged to spin down plant material. The absorbance of 300 µl
supernatant was measured at 664 nm and 647 nm. The relative chlor-
ophyll content was calculated as (chlorophyll a + chlorophyll b) / leaf
weight (mg) where chlorophyll a and chlorophyll b were calculated as
11.65*A664 – 2.69*A647 and 20.81*A647 – 4.53*A664, respectively.

Before leaf sampling, RGB images were acquired at 150 cm above
the plants using a RICOH WG-40 camera with the same setting as the
time-series image acquisition (Supplementary Table 6). Before the
analyses, the images were converted from the sRGB scale to the L*a*b*
color space using the Python (ver 3.8.3) package grDevices. The mean
pixel values were acquired from the leaf regions which had been
defined as above to measure the leaf area.

Data analyses were conducted in R 4.1.0 (R Development Core
Team 2021) unless otherwise stated. To examine the relationship
between the relative pigment content and color information from
images, we compared generalized linear models, linear models, and
random forest models with the area- or weight-based anthocyanin
content as the response variable and a color space (L*+a*+b*, Y +U+V,
H + S + V, R +G +B) or a color index calculated from R, G, and B, i.e.,
Excess Red (ExR): (1.4R – G) / (R +G +B), Green-Red Vegetation Index
(GRVI): (R –G) / (R +G), or Red Green Ratio (RGR): R / G as explanatory
variables80–83. The random forest model was developed using the
randomForest package with default parameter settings. The details of
the R packages used in this study are summarized in Supplementary
Table 7.We did not include the genotype or date effect in themodel to
avoid overfitting and to allow genotype- and date-nonspecific esti-
mation of the pigment. We evaluated the accuracy of the models by
leave-one-out cross-validation, where one out of the 451 data points
was removed from the training dataset and used for prediction in each
trial and by calculating the average of the root mean square errors for
451 trials (Supplementary Figs. 27 and 28, Source Data 10). In general,
the random forest model with L*a*b* performed the best for each
response variable (Supplementary Fig. 6). For random forest models
with L*a*b*, R2 was the highest when anthocyanin per weight was a
response variable (SupplementaryFig. 7). Therefore,wedecided touse
this model for the main analysis and examined the relative contribu-
tion of a*, b*, and L* to the anthocyanin content using the ‘importance’
function in randomForest. For results of the random forest model with
L*a*b* for both anthocyanin per weight and per area, we calculated
Pearson’s correlationbetween themeasured andestimated valueswith
genotypes pooled and separated (Fig. 4 and Supplementary Figs. 8–10)
and performed linear regressions on the estimated values with mea-
sured values (Fig. 4 and Supplementary Fig. 9). In addition, for
anthocyanin per area, we performed a non-linear regression because
of a non-linear relationship between the measured and estimated
values (Supplementary Fig. 9). To examine the influence of chlorophyll
on anthocyanin content, we calculated Pearson’s correlation between
anthocyanin per weight and chlorophyll per weight (Supplementary
Fig. 11). The scripts for analyzing non-image data and generating fig-
ures are provided as Supplementary Data 1.

Time-series plotting
Toobtain a visual understanding of seasonal changes in plant traits, we
plotted the plant area, L*, a*, b*, and estimated anthocyanin content in
a time series. To enhance visibility, we plotted the 5-day moving

averages of all plants of the same genotype per site per year using the
packages zoo, dplyr, ggplot2, and tidyverse84,85. The number of plants
per site per year is summarized in SupplementaryTable 8.We removed
images from one camera at the Swiss site from yr2 because the plant
IDs in the images could not be confirmed at the time of the analyses. In
addition, we removed anomalous data according to three criteria: [1]
manual records of snow, storms, and other incidents that affect seg-
mentation quality, [2] visual inspection of time-series plots for a*,
where the cases of deviation from the normwere followed upbased on
the inspection of the original images to identify obstacles such asmesh
and extreme cases of positioning failure, and [3] exclusion of the
period of drastic value changes (outliers) in the time-series plots of the
plant area. This was intended to filter out biologically unreasonable
size fluctuations in the data and was performed via nearest neighbor
imputation as follows: [3–1] Divide the time series into 10 blocks for
each season for each site. [3–2]Mask one of the 10 blocks to be treated
as a missing value. [3–3] Impute the missing values via the nearest
neighbormethod. [3–4] Calculate the difference between the imputed
andoriginal values. Referring to the score z > 5basedon thedifference,
we identified and removed the data from 2018/02/18 – 2018/03/12 at
the Swiss site that corresponded to the period of snow, frost, and
strong light (Supplementary Fig. 29, Source Data 13–18). The analyses
and plots were done using Python ver. 3.9.10. The data_removed sheet
in Source Data 2–7 summarizes the dates on which all data were
removed from the analysis as well as the reasons for removal. Gen-
erally, the initial plant area was large at the Swiss site and small at the
Japanese site (Supplementary Fig. 30). A small size increase during the
season likely reflects the large starting size at the Swiss site, whereas at
the Japanese site, it could be a combination of a real phenomenonwith
the difficulty in segmenting small plants (Supplementary Fig. 30b).

Dimension reduction with PCA
To compare the time-series trend of the estimated anthocyanin con-
tent, we compiled data on the genotype average of the estimated
anthocyanin content from three seasons from two sites into one
dataset. Following previous studies analyzing time-series data, we
conducted dimension reduction by PCA using the package base and
vegan86–88. To explore the time points that likely influenced the
emerging pattern, we plotted the PC1 and PC2 scores over time using
the R package tidyverse. To examine whether the trend was consistent
between the two sites,we also conducted PCAs on the dataset inwhich
the two sites were separated.

In addition, we investigated how well the average genotype
represented the variation within the genotype. Accordingly, we split
the dataset into sites and years, as the individuals were not consistent
across sites or years. For each dataset, we performed Bayesian
PCA using the pcaMethods package. This method complements miss-
ing values suitably when they constitute up to approximately 15% of
the data, which is the case in our datasets (Supplementary Figs. 23
and 24).

Environmental data collection
To record environmental conditions, we set up weather stations at
each site for precipitation, radiation, and air temperature. Precipita-
tion data contained both rain and snow. The WS GP2 weather station
(Delta-T Devices) was installed at the Swiss site, whereas at the Japa-
nese site, different parameters were collected using devices from dif-
ferent suppliers (Supplementary Table 9). The data were collected at
10 and 5min intervals at the Japanese and Swiss sites, respectively.

Because of interruptions in data collection, precipitation and
radiation data in the Swiss site were substituted by data from a nearby
weather station of the Swiss Federal Office of Meteorology and Cli-
matology (Source MeteoSwiss) in Fluntern. Missing values in air tem-
perature data in the Swiss site were estimated using the imputeTS
package.
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Relationship between anthocyanin and environmental factors
To analyze how the estimated anthocyanin content is associated
with environmental factors, we included air temperature, radiation,
and precipitation as the key environmental factors in the analysis
based on previous studies, field observations, and laboratory
experiments23,24,48,56 (Supplementary Fig. 31). The threshold tempera-
tures of 1, 4, 7, 10, and 13 °C were set for the calculation of coldness
from air temperature to cover the range adopted or identified as cri-
tical in previous studies on cold treatment inA. thaliana24,89–92 (Fig. 6a).
Considering the response time of plants to environmental cues, we
determined for each environmental factor “reference windows,” i.e.,
durations for accumulating signals for anthocyanin content, and
“lags,” i.e., durations between signal accumulation and anthocyanin
content of a given day (Fig. 6a). The ranges of the reference windows
and lags were 1–14 days and 0–14 days, respectively. To model for the
period when the plants were growing in the field, anthocyanin data for
the first 28 days (=max. window 14 days +max. lag 14 days) for each yr
per site were excluded from the analysis. We split the dataset into
Swiss and Japanese sites to account for the differences in climate and
the trendoffluctuation in the estimated anthocyanin content. For each
genotype, we fitted linear regression models with coldness, radiation,
and precipitation as explanatory variables after standardization and
estimated anthocyanin content as a response variable using one of the
46,305,000 parameter combinations (5 temperature thresholds × 143

windows × 153 lags). We selected the model with the smallest Akaike
information criteria as the best model and used it to examine the
association between environmental factors and estimated anthocya-
nin content. These calculations were performed using R. 4.2.0. As the
assumptions of the linear model were not always met, we determined
the significance of the explanatory variables by calculating confidence
intervals with the bias-corrected and accelerated bootstrap in the boot
package. The relative contributions of the explanatory variables were
extracted using the relaimpo package. In addition, we generated time-
series plots of the estimated anthocyanin content and environmental
factors with the best parameters for the model plant A. thaliana using
the ggplot2 and reshape2 packages.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The time-series image data
for the Swiss site generated in this study have been deposited in a
Dryad repository [https://doi.org/10.5061/dryad.1g1jwsv11]93. The
time-series image data for Japanese site generated in this study as well
as the labeling data for image analysis used in this study are available in
a Dryad repository [https://doi.org/10.5061/dryad.h70rxwdnk]94. Note
that each Dryad datasets is large, nearly 250 GB. Source data are pro-
vided with this paper.

Code availability
The scripts used for the analyzes of non-image data are provided as
Supplementary Data 1. The PlantServation demo set (ca. 600 MB)
including scripts and demo data for PlantServation software is avail-
able at Zenodo [https://zenodo.org/record/7321725]95 accessible via
Dryad repository [https://doi.org/10.5061/dryad.h70rxwdnk]94.
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