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ABSTRACT

The lack of treatment options for congenital (0.1%) and partial (10%) tooth anomalies highlights the need
to develop innovative strategies. Over two decades of dedicated research have led to breakthroughs in
the treatment of congenital and acquired tooth loss. We revealed that by inactivating USAG-1, congenital
tooth agenesis can be successfully ameliorated during early tooth development and that the inactivation
promotes late-stage tooth morphogenesis in double knockout mice. Furthermore, Anti- USAG-1 antibody
treatment in mice is effective in tooth regeneration and can be a breakthrough in treating tooth
anomalies in humans. With approximately 0.1% of the population suffering from congenital tooth
agenesis and 10% of children worldwide suffering from partial tooth loss, early diagnosis will improve
outcomes and the quality of life of patients. Understanding the role of pathogenic USAG-1 variants, their
interacting gene partners, and their protein functions will help develop critical biomarkers. Advances in

next-generation sequencing, mass spectrometry, and imaging technologies will assist in developing
companion and predictive biomarkers to help identify patients who will benefit from tooth regeneration.
© 2023, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Loss of teeth due to congenital or acquired diseases or accidents
is a common health condition in almost all age groups, especially in
the aging populations. Current approaches to treating tooth loss
include prostheses, transplantations, and dental implants. There-
fore, to address the unmet needs of oral care, new strategies and
therapeutic alternatives, such as tooth regeneration, are required
for patients to regain normal food intake and lifestyle. However,
this issue remains a challenge for dental researchers and the dental
industry. Over the past decade, the integration of health and life
science fundamentals with advanced chemistry and engineering
has provided alternatives and advanced therapeutics for tooth
regeneration [1]. Several regenerative methods, including scaffold-
based tissue regeneration, cell and tissue engineering, activation of
the third dentition, and gene-edited tooth regeneration in animal
models are being developed to improve the chances of regenerating
lost teeth. Regeneration of teeth by activating the third dentition
has proven to be a scientifically viable approach [2]. In this review,
we present the scientific progress toward tooth regeneration that
has resulted from almost two decades of research by the Takahashi
group and other investigators.

2. Classification of tooth agenesis

Depending on the number of missing congenital teeth, tooth
agenesis can be classified as hypodontia, oligodontia, and ano-
dontia [3,4]. Another classification of tooth agenesis includes syn-
dromic and non-syndromic forms, based on the accompanying
syndromes of tooth loss. The syndromic form of the disease is
associated with various systemic conditions and syndromes [5—8].
Patients with syndromic tooth agenesis may have accompanying
anomalies such as delayed tooth formation and eruption, canine
transposition, and enamel hypoplasia [3]. Other possible clinical
indicators of tooth agenesis include ectodermal dysplasia, cleft lip,
cleft palate, Down syndrome, and Van der Woude syndrome [9].

Non-syndromic tooth agenesis is more common than the syn-
dromic form [5]. Patients with this form of tooth agenesis primarily
present with congenitally missing teeth, which is the only apparent
symptom. In addition, non-syndromic tooth agenesis can be spo-
radic or familial [7]. In sporadic cases, hypodontia (<6 missing
teeth, usually 1—3 missing teeth) can be caused by environmental
or genetic factors. This condition could signify tooth agenesis in
patients without other associated syndromes [4]. In familial cases
of tooth agenesis, hypodontia can serve as the only clinical indicator
or as part of an associated syndrome [6] with autosomal dominant
inheritance.

161

In addition to the congenital, acquired, and environmental fac-
tors, other factors that cause tooth agenesis include Rubella virus
infection and tooth agenesis due to orofacial trauma during
odontogenesis [3]. Several studies have quantified craniofacial
anomalies in patients with syndromic tooth agenesis. As a result of
advances in molecular, next-generation sequencing, and imaging
technologies, different underlying causes have been reported
regarding the role of genetics and genomic variants in non-
syndromic tooth agenesis and their influence on tooth agenesis
and associated medical conditions [10—16].

The timeline in Fig. 1 depicts the seminal findings over the past
two decades, before identifying USAG-1 as a potential therapeutic
target for tooth regeneration. This study established a system for
efficient gene delivery to cranial neural crest cells using a recom-
binant adenovirus [17]. Subsequently, our group successfully
demonstrated cartilage regeneration in cranial neural crest cells
using a dominant-negative mutant that ectopically suppressed the
function of MSX2 [18]. Further research was conducted to deter-
mine the number of teeth that could be regenerated and identify
the molecular factors associated with tooth agenesis. Gene therapy
and recombinant adenovirus system were used to achieve the
desired results. A breakthrough came in 2007, when Suginami et al.
first reported mice with USAG-1 deficiency and supernumerary
teeth. This condition results from the active role of mesenchymal
cells [19], which would otherwise have been lost due to apoptosis.
Avyear later, the same group identified a significant role of BMP and
Wnt signaling pathways in USAG-1-deficient mice that resulted in
supernumerary teeth [20]. Tooth development is under both con-
trol of partner genes and interactive signaling between the oral
epithelium and cranial mesenchyme [21]. Over the next five years,
this group reported several cutting-edge findings that involve the
interactions and role of USAG-1 and other partner genes, such as
BMP7 and Runx 2 genes, in tooth development [22,23]. The focus on
finding novel causative variants in Japanese patients with
congenital tooth agenesis resulted in the discovery of WNT10A
variants that play a crucial role in the development of lateral in-
cisors, which are more sensitive to WNT and B-catenin signaling
from other teeth [24]. Owing to the role of Sox 2 in stemness and
proximity of CEBPB to Sox2, further functional analysis of CEBPB and
Runx2 in knockout (KO) mouse models demonstrated their role in
supernumerary tooth formation in adults [25]. With over a decade
of evidence and research on understanding the reasons behind
supernumerary teeth in USAG-1-deficient mice, Kiso et al. provided
another breakthrough. They determined whether these results
could be applied to human tooth anomalies. Following reports that
the third dentition in humans could result in supernumerary teeth
formation, Kiso et al. performed a computed tomography scan
study to evaluate the role of third dentition in supernumerary teeth
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Fig. 1. Timeline of tooth regeneration breakthroughs in Takahashi's lab.

formation. They concluded that third dentition drives supernu-
merary tooth formation in humans, predominantly in male patients
[26]. A year later, the same team reported using an antibody and
siRNA against USAG-1 for tooth regeneration in mouse models [27].
This team is currently validating the efficacy of USAG-1 antibody
treatment in other mammalian models of tooth agenesis before
beginning a phase 1 clinical trial.

3. Genetics of tooth agenesis

Understanding tooth development is critical for examining and
identifying the genetic factors that regulate the interactions be-
tween epithelial and mesenchymal cells. The number of teeth in all
species is usually determined and evolutionarily conserved based
on the form and function of teeth in the dentition. However, re-
searchers have made breakthroughs by demonstrating how rudi-
mentary incisor teeth survive and grow as supernumerary teeth
due to the knockout of USAG-1 (Fig. 1). Although this was a mouse
study, the prospect of similar results in humans is still promising.
Establishing these results in humans would support the suggestion
that “third dentition,” when activated, can form new teeth and
occur in addition to permanent dentition [1].

In contrast to non-congenital reasons, congenitally missing
permanent teeth are rare. Regular scientific and clinical reports on
syndromic tooth agenesis and other abnormalities are available.
Genetic factors play a crucial role in tooth development and are
usually the cause of tooth agenesis. Over the last few decades, tooth
transplantation and dental implant procedures have become
treatment options for tooth agenesis.

Nearly 200 genes involved in different pathways are expressed
at different sites and stages during tooth development [28]. Several
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animal models, primarily mice, serve as model organisms to
elucidate the role of specific functional mutants and provide in-
sights into the underlying biological and molecular mechanisms
that lead to supernumerary tooth formation. With the current
knowledge of supernumerary teeth biology, genetic components
are thought to play a role in the partial or total activation of the
third dentition in humans. Candidate genes are expected to play a
role in stimulating embryonic teeth or in controlling the number
and type of regenerated teeth. Thus, when activated or dysregu-
lated, testing the biological role of candidate genes provides an
excellent opportunity to improve and develop applications to
successfully grow new teeth successfully [29].

4. Third dentition

Humans are typically diphyodonts that develop two successive
sets of teeth, namely deciduous and permanent dentition. In
addition to the permanent dentition in humans, a “third denti-
tion” with one or more teeth can occur. In some cases, this third
dentition is thought to develop as a partial dentition following
permanent dentition [19,30,31]. Diphyodont dentition occurs in
both mammals and humans [32]. In humans, deciduous or milk
teeth are the first set of teeth. Except for molars, permanent teeth
belong to the second generation. In the dental community, the
term “third dentition” refers to an extra set of teeth that occur in
addition to the primary and permanent teeth. Early reports of
rudimentary third dentition in a few mammals were published in
the 19th century [33]. In humans, a rudimentary epithelial form of
the third dentition has been identified [34,35]. After almost a
century, Ooé et al. observed that the epithelium that helps form
the third dentition develops lingual to the permanent tooth germs
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[31]. In addition, when the epithelial anlagen was found, the
permanent tooth germ was reportedly bell-shaped [31]. Detection
of the third dentition during early childhood facilitates the visu-
alization and characterization of hyperdontia in the mouth of
infant and some fetuses. Thus, identifying the third dentition is a
valuable tool for exploring its potential for successful tooth
regeneration.

5. MSX1 anomalies and tooth agenesis

MSX1 encodes a DNA-binding protein that is located on chro-
mosome 4 [36]. MSX1 interacts with TATA box-binding protein [37]
and other transcription factors to regulate transcription rate
[38—40]. The MSX1 protein is known to regulate gene expression,
which is essential for initiating tooth development during the early
phase of growth. The DNA-binding domains in MSX-1 regulate
other interacting gene partners associated with pathways leading
to tooth formation [41]. Alterations in MSX1 and PAX9 expression
are associated with autosomal dominant inheritance of tooth
agenesis and oligodontia and a decrease in tooth size, respectively
[42]. Defects in MSX1 and PAX9 disrupt the early phase of tooth
formation, leading to the loss of different teeth [43—49]. The nature,
presence, and location of mutations in homeobox genes result in
altered tooth agenesis phenotypes. For example, missense muta-
tions in MSX1 result in familial tooth agenesis, nonsense mutations
lead to aggravated tooth agenesis and nail abnormalities, and the
absence of the C-terminal sequence in MSX1 results in orofacial
clefts [50]. MSX1 and PAX9 variants are observed in <1% of patients,
whereas WNT10A variations are frequently detected in 25—50% of
patients with congenital tooth agenesis.

6. PAX9 anomalies and tooth agenesis

PAX9 encodes a transcription factor essential for the natural
arrangement and structure of teeth [51—53]. The DNA-binding
domain was found in exon 2 of PAX9. Mutations in the paired
domain of PAX9 cause tooth agenesis [54,55]. The absence or low
expression of or mutations in the start codon of PAX9 are known to
cause critical defects in the premolars [56,57].

7. Other genes anomalies associated with tooth agenesis

A few other genes are known to play a role in oligodontia or
other types of tooth agenesis, such as EDA, WNT10A, AXIN2, LTBP3,
and TP63 [58].

8. Tooth regeneration in murine models

Following the successful identification and reporting of mice
with USAG-1 deficiency and supernumerary teeth in 2007, Taka-
hashi et al. used mouse models and molecular techniques to
demonstrate successful tooth regeneration. Mating mice with
congenital tooth agenesis and supernumerary teeth revealed
phenotypic changes in a double-t KO mouse. Development of both
the maxillae and mandibles was arrested in the early stages in
USAG-1"7"/Msx1/~ mice. However, histological observations
revealed that all mice lacking both USAG-1 and Msx1 had regular
third maxillary molars. Following these findings, researchers
considered the genomic and functional significance of EDA1 in
tooth agenesis and analyzed EDA1~/ ‘/USAG—I‘/ ~ mice for tooth
regeneration. EDA1~/~/USAG-1~/~ mice had normal teeth, hyper-
dontia, or combined mandibular molars. Molar hypodontia in the
mandible was detected in 75% of the female USAG-1*/*/EDA17/~
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and male USAG-17/*/EDA1*/~ mice. Phenotypes such as hair loss
and tail kinks, typically associated with tabby mice, were also
detected in all USAG-1/EDA1 double KO mice. This study further
revealed that by inactivating USAG-1, congenital tooth agenesis can
be successfully ameliorated during early tooth development and
that this inactivation promotes late-stage tooth morphogenesis
[59].

9. Use of USAG-1 antibodies for tooth regeneration

Single systemic and dose-dependent administration of USAG-1-
targeting antibodies in EDA1-deficient and wild-type mice [59]
ameliorated tooth agenesis and promoted normal tooth formation.
These findings established a significant role for USAG-1 and USAG-
1-targeted antibodies in promoting tooth regeneration. The anti-
bodies generated by neutralizing USAG-1 action on BMP signaling
and reducing low Lrp5/6 dosage recovered the USAG-1-null
phenotype, including hyperdontia [59,60]. However, several mice
died in this Lrp5/6 study, thereby obscuring any information on
Wnt signaling regulation. Thus, Takahashi's group aimed to over-
come these shortcomings by performing further analyses,
including detailed protein analysis of additional USAG-1—targeting
antibodies. Observations from such experiments have revealed
associations between causal genes, including Msx1 and USAG-1, and
successful tooth regeneration in congenital tooth agenesis mice.

A single systemic administration of USAG-1-targeting antibodies
did not cause any side effects in this mouse lineage. Notably, USAG-
1 abrogation prevented the development of cleft palates by regu-
lating Wnt signaling in Pax 9-deficient mice [61]. In addition, small-
molecule Wnt agonists reportedly correct cleft palate in Pax9-
deficient mice [62]. EDA controls BMP activity [63] and EDAR targets
Whnt genes [64,65]. However, USAG-1-targeting antibodies did not
result in tooth recovery in any of these cases. Nonetheless, genes
and mutations associated with congenital tooth agenesis may be
potential biomarkers for patient selection.

A single systemic dose of EDA antibody rescued congenital tooth
agenesis in EDA-deficient canines [66]. Likewise, administering a
USAG-1—neutralizing antibody, which targets BMP signaling, but
not Wnt signaling, can rescue congenital tooth agenesis. Thus,
USAG-1-targeting antibodies can be tailored to focus on specific
signaling pathways. Next-generation sequencing and imaging
technologies can identify molecular vulnerabilities and thereby
focus on USAG-1-antibody selection and use for treating congenital
tooth agenesis. USAG-1-neutralizing antibody did not prevent tooth
loss in any of the cases. Nonetheless, genes and mutations associ-
ated with congenital tooth agenesis may be potential biomarkers
for patient selection.

Takahashi et al. successfully generated new teeth using USAG-1-
targeted antibodies [59]. After receiving these antibodies, no
abnormal symptoms apart from the usual phenotypic changes were
observed in wild-type mice compared to USAG-1-KO mice. This
suggests that, in EDA1-deficient mice, the third dentition can be
activated using USAG-1-targeting antibodies, which regenerate
regular teeth. After analyzing 78 patients with supernumerary
teeth, researchers concluded that third dentition was the cause of
these additional teeth [26]. This finding suggests strategies to
monitor outcomes in patients receiving targeted molecular therapy
to stimulate the third dentition. The researchers also demonstrated
that systemic application of USAG-1-targeting antibodies in ferrets
could regenerate a tooth similar to the third dentition. This result is
encouraging given that ferrets share dental patterns similar to
those of humans. However, the clinical application of USAG-1-
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targeting antibodies to regenerate lost teeth requires further safety
and efficacy validation in nonrodent models.

The inhibition of BMP signalling in early mandible by exogenous
Noggin protein resulted in ectopic Barx-1 expression in the distal
presumptive incisor mesenchyme and transformation of tooth
identity from incisor to molar [67]. However, any specific factors for
all the 28 types of human teeth are not identified. It is possible to
control the eruption of regenerated tooth with accurate
morphology, adequate calcification, correct eruption timing and
region by administration of anti- USAG-1 antibody [29,59]. Because
USAG-1 protein has only the potential to rescue the developmental
arrested tooth germ, that had been programmed the certain tooth
type [1,2,19,20,22,23,29,59]. Furthermore, our strategy of tooth
regeneration is acellular system [59]. It is enough to administrate
only anti-USAG-1 antibody [59]. Our observation demonstrates that
the morphology of supernumerary teeth is depended on the posi-
tion. If it erupts in the incisor or molar region, its shape is incisor or
molar [59].

10. Advances from teeth atlas

Regenerative therapies require an extensive understanding of
the human organs. Whole organ and tissue functional reconstitu-
tion and regeneration depend primarily on stem cell composition.
In human dental pulp and periodontium, the expression of
different genes, including FRZB, THY1, and MYH11, aid in the char-
acterization and classification of mesenchymal stem cells (MSCs).
FRZB as a reliable marker based on FRZB's ability to markedly
identify periodontal region to dental mesenchyme from early
stages of odontogenesis, by allowing Wnt molecules and thus
regulating the Wnt-dependent transcription [68]. CD90 (also
known as Thy-1) as a positive marker to identify dental pulp stem
cells and as a cell surface marker proposed to identify mesenchymal
stem cells [69—71]. Similar differentiation patterns and results in
bone tissues further help identify differences between MSCs from
the dental pulp and periodontium [72—75]. Despite these differ-
ences, periodontal and pulp MSCs exhibit the same migratory
behavior when cultured independently.

Notably, when periodontal and dental pulp MSCs are co-
cultured, periodontal MSCs divide rapidly and migrate towards
dental pulp MSCs. Thus, both cell types exhibit different prolifera-
tion and migration abilities [ 76]. Complex intercellular interactions
rather than transcriptional differences in periodontal and dental
pulp MSCs determine the extent of proliferation and migration
[74,76]. However, MSCs express different proteins and factors that
determine their roles in tooth formation.

Homology analysis revealed that periodontal fibroblasts and
MSCs highly express genes encoding collagens, matrix metal-
loproteinases, and osteonectin [77]. Periodontal fibroblasts express
matrix GIA protein and have high affinity for calcium ions [78].
Epithelial-like cells form most periodontal cell types. These
epithelial-like cells express signaling proteins such as follicular
dendritic cell secreted protein (FDCSP) and WNT10A, which play
significant roles in controlling the proliferation and differentiation
of periodontal MSCs [79—81].

Additionally, periodontal dental epithelial stem cells have the
potential to initiate and develop tooth-associated hard tissues,
including the alveolar bone, dentin, and enamel [82,83]. Notably,
the signals sent by epithelial stem cells influence the interactions
and roles of periodontal MSCs.

Accordingly, cell states, gene, or protein expression, and other
unique signatures can explain the dynamic remodeling of the
periodontium. This dynamic remodeling is closely associated with
tooth masticatory capability. Along with these unique signatures,
standard collagen levels, extracellular matrix remodeling, and

164

Regenerative Therapy 22 (2023) 160—168

mineralization prevention are required for the active role of the
periodontium [84]. The dental pulp and periodontium are hetero-
geneous microenvironments that exhibit unique characteristics in
each tissue. These special features, including different kind of cells
including mucosal immune cells, cellular interactions, oral micro-
biome, salivary pH and the role of food intake can all become in-
dicators of the tissue microenvironment. The unique
microenvironment of the periodontium and dental pulp can drive
MSC differentiation to achieve fibroblast-like and osteogenic fates,
respectively.

Aside from regeneration efforts, recent studies have also shown
that understanding the tooth status can inform various other health
conditions, like stress [85], cognitive impairment, and dementia
[86]. Single-cell analysis of pulp and periodontal tissues to better
understand these conditions may lead to breakthroughs that could
advance cell-based regenerative treatments and help identify pre-
dictive biomarkers.

However, stem cell therapy should be pursued with caution.
Technical challenges involved in these therapies and the associated
costs must be considered before using stem cells for tooth regen-
eration. These considerations can limit stem cell use in tooth
regeneration, providing an excellent opportunity for antibody-
based drug discovery and single-dose vaccines to treat tooth
anomalies.

11. Beyond conventional approaches: Antibody-based tooth
regeneration therapeutics

Over the past three decades, extensive research has been con-
ducted using tissue engineering techniques [87,88] to identify
standard treatment methods. Owing to cost, safety, and technical
limitations, current therapies are ineffective in promoting tooth
regeneration. Takahashi's group noted the presence and benefits of
activating the third dentition, which provided new research
impetus and hope for potential therapeutics to regrow lost teeth in
humans, as well as in animal care. They demonstrated the role of
USAG-1 in the development of tooth primordia and subsequent
tooth regeneration. Furthermore, their research revealed that a lack
of tooth development results from congenital tooth agenesis, which
is associated with different genetic abnormalities.

For this reason and its associated limitations, the traditional
approach involving tissue engineering in regenerative medicine is
less commonly used in tooth regeneration. As described in earlier
sections, Takahashi's research outcomes suggest that targeting
USAG-1 activates the third dentition and effectively treats the
different clinical presentations of congenital tooth agenesis. Mo-
lecular biomarker discovery could reduce the gulf, improve patient
selection for targeted therapies, and achieve precision in tooth
regeneration. The latest advances in precision medicine and tech-
nologies will promote further discoveries that facilitate tooth
regeneration and fulfill patient demands. Further genomic
sequencing-driven studies across different ethnic groups are
needed to determine and understand the heterogeneous nature of
individuals with tooth anomalies. This in-depth understanding
would help improve standard care and genetic counseling prac-
tices, especially in cases of familial or congenital tooth agenesis.

12. Use of predictive biomarkers

Biomarkers can predict treatment responses, identify potential
individuals who may benefit from a clinical trial, and monitor
treatment responses. Genomic and functional biomarker discovery
has led to the growth of precision medicine, allowing researchers
and clinicians to tailor treatment alternatives for patients. Under-
standing the role of pathogenic mutations in signaling and
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Fig. 2. Picture on the left shows interacting partners of USAG-1 gene with the default settings in STRING ver 11.5. Picture on the right shows USAG-1 interacting partners including
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activation pathways is vital for understanding the response of pa-
tients to specific treatments. Next-generation sequencing, mass
spectrometry, and imaging technologies can create companion
and/or predictive diagnostic markers to identify patients who are
most likely to benefit from a specific treatment. There is a clear
unmet medical need for a companion and/or predictive diagnostic
test that helps identify and stratify patients (based on age, sex, and
other clinical features) who are most likely to respond to USAG-1
antibody treatment. Developing a functional biomarker assay
could also assist in precision treatment by examining receptor-
protein binding interactions under different conditions of tooth
agenesis. Analysis of USAG-1 and its interacting partners will help
identify several mutation-linked post-translational modifications
and membrane attachments, demonstrating the potential for un-
derstanding the functional consequences of genetic mutations and
the need to examine the protein-level effects of mutations. The
dbSNP search for USAG-1 resulted in approximately 2,368 variants
with or without molecular consequences (missense, frameshift,
and/or synonymous), based on their genomic location (such as in
introns and upstream).

Consequently, predicting interacting partners at the residue
level is crucial for understanding the role of mutations in USAG-1
activity. A brief analysis of the interacting partners of USAG-1

using STRING [89] helped identify (Fig. 2) partner candidates, such
as BMP family genes. Furthermore, adding more nodes to the
network revealed other significant interacting partners such as the
SMAD family of genes and RUNX2. Understanding the functional
relevance of mutations at the protein level has rapidly improved
cancer treatment [90]. Thus, translating these innovations into
tooth regeneration research could improve our understanding of
the role of mutations in the respective proteins. This will reveal the
mechanisms by which the differentially expressed isoforms and
wild-type proteins play distinct roles in identifying protein com-
ponents in specific subcellular compartments or interaction part-
ners. Additionally, comparing ™"t and /! genotypes and protein
levels for any post-transcriptional and translational modifications,
analyzing gain or loss of function that might affect subcellular
localization, and altering downstream signaling might help
distinguish diseases associated with the wild type or isoform. A
MalaCards search for “tooth agenesis” resulted in ClinVar data with
418 genetic disease variations with a list of genes, such as LRP6,
EDAR, MSX1, PAX9, and WNT family genes [91].

Disease-linked mutations, including somatic and germline var-
iants, are more likely to affect protein—protein interactions.
Although no clinically relevant mutations and dysfunctional resi-
dues in USAG-1/SOSTDC1 have been reported in ClinVar and

Table 1
Analysis of few gene variants highly associated with tooth agenesis.
Gene UniProtKB Variant id ClinVar ClinVar Residue Effect on Protein
accession id significance change
id

EDA1 Q92838 rs132630319 11044 Pathogenic R65G The mutant residue is more hydrophobic and may disturb
the rigidity of the protein at this position

EDA1 Q92838 rs132630320 11045 Pathogenic Q358E Residue change might disturb the interaction between the
binding domains and could affect protein function.

MSX1 P28360 rs121913129 14879 Pathogenic R202P The residue is located in a DNA binding region and will
affect the function of the protein

MSX1 P28360 rs104893850 14881 Pathogenic Q193X Truncated and unstable protein

MSX1 P28360 rs121913130 14886 Pathogenic M67K This mutation introduces a charge, which can cause the
repulsion of ligands or other residues with the same charge.

MSX1 P28360 rs1553877821 14887 Pathogenic Gly28fs NA

MSX1 P28360 1s515726227 127273 Pathogenic NA NA

WNT10A Q9GZT5 NA 36972 Germline & G95K Deleterious [92]

Pathogenic

WNT10B 000744 rs766021478 253058 Pathogenic W262X Truncated and unstable protein

WNT10B 000744 rs779326570 253057 Pathogenic R211Q Change from positive to neutral residue might disturb the
binding function

SOSTDC1 Q6X4U4 rs34016012 NA NA Q189H occasionally deleterious
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UniProt, respectively, further understanding of its interaction with
significantly associated tooth agenesis genes, such as EDA, MSX1,
and Wnt family genes, will be valuable. Genes associated with tooth
agenesis and pathological variants reported in ClinVar are listed in
Table 1. The functions of the proteins encoded by these genes were
analyzed using PROVEAN [93] and HOPE [94]. Although ClinVar has
assigned pathogenic status to all the variants in Table 1, PROVEAN
analysis showed a deleterious status only for the rs121913129 and
rs121913130 variants of MSX1. Protein structural analysis using the
HOPE tool [94] has revealed the significant role of individual mu-
tations in protein structure and function. Future studies could
analyze how USAG-1 and its partnering protein variants differ be-
tween responders and non-responders to anti-USAG-1 antibody
treatment. Furthermore, these bioinformatics tools can help us
understand the contribution of these variants to tooth agenesis,
thereby validating the accuracy of in vitro experiments, patient
samples, and previous analyses.

Technological advances in imaging will play a prominent role in
the early identification of patients who may benefit from treatment
with anti-USAG-1 antibodies. Toregem BioPharma has undertaken
a study to develop imaging-based biomarkers for this treatment,
and the results will be published for a more comprehensive sci-
entific and public interest. Understanding the incidence rate of a
pathological variant, its charge change, mutation-bearing domains,
and the resulting disturbances in its interactions with binding
partners will play a role in identifying genomic and functional
biomarkers. Treating tooth agenesis as a complex disease while
understanding hereditary patterns can help elucidate the role of
multiple genes in tooth microenvironment and regeneration and
the interactions of their transcribed proteins. A comprehensive
approach for defining the genomic and functional basis of tooth
agenesis provides a more precise and potentially personalized
approach for treating tooth anomalies. Thus, examining the active
role of pathogenic variants in interacting genes could contribute to
the development of specific biomarker assays and identify patients
who would benefit from targeted therapies for tooth regeneration.

13. Conclusions

Further research is required to develop more effective treatment
strategies for tooth agenesis. Compared to dental implants and
dentures, antibody-based treatment is more cost-effective and uses
a naturally existing third dentition in humans at certain ages. Anti-
USAG-1 antibody treatment in mice is effective for tooth regener-
ation and can be a breakthrough in treating tooth anomalies in
humans. Companion and predictive biomarker discovery will assist
in selecting patients who can benefit from precision treatment with
anti-USAG-1 antibodies.
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