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A B S T R A C T   

The Human Connectome Project (HCP)-style surface-based brain MRI analysis is a powerful technique that al-
lows precise mapping of the cerebral cortex. However, the strength of its surface-based analysis has not yet been 
tested in the older population that often presents with white matter hyperintensities (WMHs) on T2-weighted 
(T2w) MRI (hypointensities on T1w MRI). We investigated T1-weighted (T1w) and T2w structural MRI in 43 
healthy middle-aged to old participants. Juxtacortical WMHs were often misclassified by the default HCP 
pipeline as parts of the gray matter in T1w MRI, leading to incorrect estimation of the cortical surfaces and 
cortical metrics. To revert the adverse effects of juxtacortical WMHs, we incorporated the Brain Intensity Ab-
Normality Classification Algorithm into the HCP pipeline (proposed pipeline). Blinded radiologists performed 
stereological quality control (QC) and found a decrease in the estimation errors in the proposed pipeline. The 
superior performance of the proposed pipeline was confirmed using an originally-developed automated surface 
QC based on a large database. Here we showed the detrimental effects of juxtacortical WMHs for estimating 
cortical surfaces and related metrics and proposed a possible solution for this problem. The present knowledge 
and methodology should help researchers identify adequate cortical surface biomarkers for aging and age-related 
neuropsychiatric disorders.   

1. Introduction 

Surface-based analysis of brain MRI can more accurately delineate 
complicated cortical ribbons and more precisely map the functional 
neuroanatomy of the brain than volume-based analysis (Anticevic et al., 
2008; Fischl et al., 2008; Frost and Goebel, 2012; Tucholka et al., 2012; 
Van Essen et al., 2012; Glasser et al., 2016; Coalson et al., 2018). Among 
surface-based analysis methods, the Human Connectome Project (HCP) 
pipeline is a widely used workflow of advanced surface-based analyses 
of multimodal brain MRIs (Glasser et al., 2013). The usefulness of the 
HCP-style approach has been shown with the young adult HCP dataset 

(YA-HCP) and the subsequent developing and aging connectome data-
sets (Elam et al., 2021). A human brain atlas was proposed based on 
YA-HCP multimodal MRI data, including myelin and thickness maps, 
and functional connectivity (Glasser et al., 2016). Taking advantage of 
its registration accuracy, the HCP-style approach has now been adopted 
in cross-scanner harmonization projects worldwide, including the UK 
biobank (Williams et al., 2023) and the Brain/MINDS-beyond (Koike 
et al., 2021). Next, the application of HCP-style analysis to the older 
population is warranted to gain new insights into the pathophysiological 
mechanisms of age-related neurodegenerative diseases, including de-
mentia and Parkinson’s disease (Bookheimer et al., 2019; Li et al., 2021; 
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Wakasugi and Hanakawa, 2021). 
However, caution must be exercised when applying surface-based 

analysis to MRI data from older populations, since they often present 
with age-related structural changes in the brain, including periven-
tricular and deep white matter (WM) hyperintensities (WMHs) on T2 
weighted (T2w) MRIs. WMHs are caused mainly by small vessel vas-
culopathy and resultant ischemic changes (Barkhof and Scheltens, 
2002). WMHs are observed not only in neurological conditions such as 
vascular dementia and parkinsonism (Gootjes et al., 2004; Bohnen and 
Albin, 2011) but also at a variable degree in healthy seniors (Scott et al., 
2015; Phuah et al., 2022). The prevalence of WMHs increases with age; 
at least 80–90 % of the population over the age of 60 have WMHs 
(Launer, 2003; Kruit et al., 2004; Liao et al., 1997; de Leeuw et al., 2001; 
Caunca et al., 2019; Atwood et al., 2004; Silbert et al., 2008). Further-
more, age-related WM abnormalities cannot only be visualized as WMH 
on T2w MRI but also as low-intensity areas on T1 weighted (T1w) MRI, 
making the signal intensity of the gray matter (GM) similar to that of the 
WM. This can be problematic in segmenting between the GM and WM 
based on the contrast of signal intensity of T1w MRIs. A recent study 
showed that an automated segmentation algorithm may misclassify 
parts of WMHs as GM, resulting in an incorrect estimation of GM vol-
umes (Dadar et al., 2021). 

Thus, the existence of WMHs may also degrade surface estimation in 
HCP-style analysis. In the HCP pipeline, the FreeSurfer software suite 
6.0 (Fischl, 2012; https://surfer.nmr.mgh.harvard.edu/) segregates the 
cortical GM and WM based on the contrast of the signal intensity of T1w 
MRI and estimates the boundary between the WM and GM (the WM 
surface hereafter) along the cortical ribbon. Notably, because the in-
tensity of WMHs in T1w MRI is close to that of the GM, voxels in jux-
tacortical WMHs may be misclassified as parts of the cerebral cortex, 
resulting in an incorrect estimation of the WM surface. As the WM sur-
face is also used as an input to the pipeline when the cortical outer 
surface (pial surface hereafter) is subsequently estimated, the error in 
the WM surface estimation can easily propagate to the erroneous pial 
surface estimation. In contrast to commonly used surface analysis 
methods that use only T1w MRI, the HCP pipeline uses information from 
T2w MRI as well as T1w MRI for tuned estimation of the pial surfaces to 
reduce the adverse effects of the dura mater signals (Glasser et al., 
2013). The possibility of surface estimation errors due to WMHs has not 
yet been thoroughly examined. Thus, it is worth investigating the like-
lihood of surface estimation errors due to WMHs and the propagation of 
tissue misclassification into the inaccurate computation of thickness and 
myelin contrast, particularly when analyzing MRIs with WHMs. 

A solution for solving the surface estimation errors caused by WMHs 
is to correct the WM segmentation by manually editing the misclassified 
voxel label in the WMHs. (https://surfer.nmr.mgh.harvard.edu/fswiki 
/FsTutorial/WhiteMatterEdits_freeview). Rerunning FreeSurfer after 
manual editing should revert the erroneous WM surface estimation, 
followed by better estimation of the pial surfaces, thickness, and myelin 
contrast in the HCP pipeline. However, manual correction relies on time- 
consuming hand-editing operations by human experts. These laborious 
processes may make manual correction impractical for application to 
large population studies. Another possible solution is to take advantage 
of recently developed machine learning (ML) algorithms for the auto-
mated detection of WMHs (Griffanti et al., 2016) and integrate the al-
gorithms as a module into the HCP pipeline. 

Herein, we aimed to elucidate the potentially detrimental effects of 
juxtacortical WMHs for estimating cortical surfaces and related metrics 
and to implement a module for correcting surface estimation errors in 
the HCP pipeline. To automatically detect WMH labels, we used an ML- 
based Brain Intensity AbNormality Classification Algorithm (BIANCA) 
(Griffanti et al., 2016). Furthermore, we incorporated BIANCA-derived 
WMH masks into FreeSurfer to update the WM segments of the Free-
Surfer pipeline, followed by re-estimation of the pial surface, thickness, 
and myelin in the HCP pipeline. The applied pipeline was validated by 
comparing the results with those obtained using manually edited WMHs 

in the same dataset. Using the outputs of the cortical surface analysis 
(WM and pial surfaces, cortical thickness, and myelin contrast), we 
compared the surface estimation errors of the automated ML 
WMH-adapted HCP pipeline (ML pipeline) with those of the manually 
delineated WMH-adapted HCP pipeline (manual pipeline) and the 
default HCP pipeline without considering WMHs (default pipeline). To 
evaluate the effect of the proposed pipeline, we developed two quality 
control (QC) methods identifying surface reconstruction errors because 
past QC methods have limitations in terms of inter-rater variability and 
difficulty of quantification (Backhausen et al., 2016; Monereo-Sánchez 
et al., 2021). A stereological QC method was developed for 
semi-quantitative visual estimation of the pial and white matter surface 
errors. We also developed a fully automated QC algorithm for detectings 
extreme outliers of surface metrics. We find these QC accurate and 
reliable for verifying cortical surface reconstruction by the proposed 
preprocessing pipelines. 

2. Method 

2.1. Participants 

We used MRI data registered in the MRI database of the Integrative 
Brain Imaging Center of the National Center of Neurology and Psychi-
atry (NCNP). This MRI database was originally created to serve as 
control data for neurodegenerative disorders including Parkinson’s 
disease (Togo et al., 2023) and spinocerebellar degeneration (Bando 
et al., 2019). The research protocol was approved by the Institutional 
Review Board of NCNP (A2018-086) and was performed in accordance 
with the Declaration of Helsinki. For the present study, we retrieved MRI 
data from participants with both 3D T1 and FLAIR images. Resultantly, 
the present data were derived from 43 individuals who did not report 
any previous neuropsychiatric disorders (64.4 years old [SD 11.1], age 
range 41–83 years, 29 males). The exclusion criteria were as follows: a 
Mini-Mental State Examination (MMSE) score < 24 or local brain lesions 
(e.g., brain tumor or cerebral infarction) incidentally identified on MRIs. 
In addition, all study participants provided written informed consent. 
The mean MMSE score was 29.1 (SD 1.4, range =24–30). The Fazekas 
score (Fazekas et al., 1987) was 0, 1, 2, and 3 in 10, 21, 8, and 5 par-
ticipants, respectively, in the periventricular area, and 0, 1, 2, and 3 in 
12, 19, 9, and 3 participants, respectively, in the deep WM. 

2.2. Data acquisition 

All MRI scans were acquired using a 3-T MRI scanner with a 32-chan-
nel phased-array head coil (MAGNETOM Verio Dot, Siemens Medical 
Systems, Erlangen, Germany). In addition, T1w MRIs were acquired 
using the three-dimensional (3D) magnetization-prepared rapid 
gradient-echo (MPRAGE) sequence: repetition time (TR) = 1900 ms; 
echo time (TE) = 2.52 ms; inversion time (TI) = 900 ms; base resolution 
= 256; field of view (FoV) read = 250 mm; flip angle (FA) = 9◦; sagittal 
slices = 192; voxel size = 0.98 × 0.98 × 1 mm3. T2w fluid-attenuated 
inversion recovery (FLAIR) MRIs were acquired using 3D sampling 
perfection with application-optimized contrast using different flip angle 
evolution (3D SPACE) sequences: TR = 5000 ms; TE = 383.0 ms; TI =
1800 ms; base resolution = 256; FoV read = 250 mm; FA = 150◦; sagittal 
slices = 176; interpolation = on; voxel size = 0.5 × 0.5 × 1 mm3. 

2.3. Data analysis 

2.3.1. Preprocessing of MRI data 
All structural MRI data were converted from Digital Imaging and 

Communications in Medicine files to Neuroimaging Informatics Tech-
nology Initiative (NIfTI) files and then preprocessed using the HCP 
pipeline implemented with Connectome Workbench ver. 1.5.0, FMRIB 
Software Library (FSL) 6.0.4 (Smith et al., 2004) and FreeSurfer 5.3-HCP 
(Fischl, 2012). The HCP pipeline consists of three steps: 
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PreFreeSurferPipeine, FreeSurferPipeline, and PostFreeSurferPipeline 
(Fig. 1a). The initial PreFreeSurfer Pipeline step corrected the T1w and 
T2w structural MRIs for image distortions related to the gradient 
nonlinearity inherent to the scanner type, registered MRIs into the 
anterior-posterior commissural coordinate space of the Montreal 
Neurological Institute (MNI) templates using functional magnetic reso-
nance imaging of the brain’s (FMRIB) Linear Image Registration Tool 
(FLIRT) algorithm, and resampled the data at a 0.7-mm isovoxel. The 
pipeline then performs brain extraction, fine-tuned registration of T1w 
and T2w with boundary-based registration (Greve and Fischl, 2009), 
biasfield correction of T1w and T2w (Glasser and Van Essen, 2011), and 
nonlinear registration to the MNI template. The nonlinear registration 
was conducted using FMRIB’s nonlinear Image Registration Tool 
(FNIRT), and both T1w and T2w volumes were resampled using spline at 
0.7-mm and 2-mm isovoxels in the MNI space. 

2.3.2. Cortical surface estimation and calculation of T1w/T2w myelin 
contrast 

Subsequently, the FreeSurferPipeline performed cortical surface 
reconstruction using both T1w and T2w volumes. We used T2-weighted 
images to minimize the impact of the skull or dura signal on the surface 
reconstruction. In brief, the process included skull stripping of T1w 
volume using the standard brian mask template and the deformation 
field calculated in the PreFreeSurferPipeline (Glasser et al., 2013), 
classification of brain voxels into subcortical and cortical GM and WM 
segments (Fischl et al., 2002), intensity normalization (Sled et al., 1998), 
and extraction of the WM segment of the cerebrum. Next, the WM 
segment was used for the initial estimation of the tentative GM and WM 
boundary, forming a ‘WM surface’ in each hemisphere, followed by 
fine-tuning of the WM surface placement using the 0.7-mm isovoxel T1w 
volume (Glasser et al., 2013), the estimation of GM and cerebrospinal 
fluid (CSF) boundary forming a ‘pial surface’, fine-tuned registration of 
T2w to T1w with a boundary-based registration (Greve and Fischl, 
2009), and fine-tuning of the pial surface using high-resolution (0.7 mm 
isovoxel) T2w volume (Glasser et al., 2013). We found that juxtacortical 
WMHs were often mislabeled as parts of cortical GM because of rela-
tively low- and high-intensity WMHs in T1w and T2w MRIs, respec-
tively, resulting in errors in the white and pial surface estimation. These 
phenomena are detailed in Section 3.2 and the correction methods in 
Section 2.3.5. Cortical thickness was calculated as the distance between 
the white and pial surfaces at each vertex of the cortex (Fischl and Dale, 
2000). In the last step, the PostFreeSurferPipeline performed surface 
registration using a multimodal surface matching (MSM) program 

(Robinson et al., 2018) based on a metric of the folding pattern, ‘sulc’, 
generated by FreeSurfer (MSMsulc). The white and pial surfaces were 
then resampled into standardized mesh surfaces using 164k and 32k 
vertices after symmetrization between the left and right hemispheres 
(Van Essen et al., 2012). Next, the pipeline created a volume with a ratio 
of the T1w and T2w signals (myelin mapping) and mapped the values of 
the voxels between the inner and outer cortical surfaces onto the 
mid-thickness surface in the participants’ native space. The surface 
metrics including the T1w/T2w myelin contrast and cortical thickness 
were resampled onto the 164k and 32k mesh surfaces (Glasser and Van 
Essen, 2011). The result of this analysis was based on the default setting 
of the HCP pipeline, which we call the "default pipeline". 

2.3.3. Manual delineation of WMH masks 
In this study, we created manually defined WMH masks on the 2-mm 

isovoxel image in the MNI space in each participant using FSL eyes in 
FSL (McCarthy, 2022). In addition, manual delineation of WMHs was 
achieved through a consensus between two board-certified neurologists 
(Y.O. and M.H.) who had access to both 0.7-mm and 2-mm versions of 
the T1w and T2w-FLAIR MRIs. The manually defined WMH masks were 
used as the training data for BIANCA and were directly fed into the HCP 
pipeline for surface re-estimation (see Section 2.3.5). The total volume 
of the WMHs was calculated for each participant after the WMH masks 
were registered back into the participant’s native space using the 
inversion warp field. 

2.3.4. Machine learning prediction of WMHs 
Automated supervised ML-based segmentation of WMHs was per-

formed using BIANCA (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA). 
BIANCA is based on a k-nearest neighbor algorithm and computes the 
probability of each voxel being a WMH according to the voxel intensity 
and its spatial features. Furthermore, BIANCA has the flexibility to 
achieve accurate WMH segmentation in different MRI acquisition pro-
tocols by adapting to data. 

To run BIANCA, bias-corrected T1w and T2w-FLAIR MRIs, which are 
the interim products of the default HCP pipeline, were used as features, 
and a manually delineated binary WMH mask as a label feature. The 
leave-one-out cross-validation scheme was used for training the model 
and predicting WMHs for each participant. The bias-corrected T1w and 
T2w-FLAIR volumes in the MNI nonlinear space were resampled to a 2 
mm isovoxel. The WMH masks, brain mask, and T2w FLAIR volume 
were fed into the BIANCA. To run BIANCA, the following options were 
applied: spatial weighting = 1; no patch; selection of the non-lesion 

Fig. 1. Overview of processing pipelines for cortical surface analysis in the current study.  
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points = no border (excluding three voxels close to the lesion’s edge); 
the number of lesion points to use = 2000; the number of non-lesion 
points to use = 10,000. BIANCA outputs a volume file in which the in-
tensity of each voxel represents the probability of being a WMH, ranging 
from zero to one (WMH probability map). To make a binary WMH mask 
from the WMH probability map, an appropriate threshold was chosen by 
using a region-by-region threshold optimization technique, LOCally 
Adaptive Threshold Estimation (LOCATE) (Sundaresan et al., 2019). 
LOCATE refines the estimation accuracy in three steps. First, the lesion 
probability map was divided into subregions based on Voronoi tessel-
lation. Second, local features within these subregions were extracted. 
Finally, based on the extracted features, the optimal local threshold was 
estimated through a supervised learning method using the manually 
delineated WMH masks as the training data and the leave-one-out 
cross-validation scheme. Using the optimized threshold by LOCATE, 
BIANCA yields a binary mask for each individual (ML-predicted WMH 
mask). The ML-predicted WMH mask was validated using the dice 
similarity index (SI) with reference to manual WHM masks. The SI was 
calculated as 2*(|manually defined WMHs ∩ ML-predicted WMH 
mask|)/(|manually defined WMHs| + |ML-predicted WMH mask|). 

2.3.5. Cortical surface re-estimation 
The manually defined or ML-predicted WMH masks were both 

resampled into 0.7-mm isovoxel resolution using FLIRT with spline 
interpolation and binarized again by thresholding at 0.5, for each 
participant. The cortical surfaces were re-calculated by running a 
customized FreeSurferPipeline to rerun the surface reconstruction pro-
gram (‘recon-all’ of FreeSurfer), according to ‘Manual-Intervention 
Workflow for WM edit’. In brief, the user-edited, binarized WMH masks 
(derived from either the manual or the ML pipeline) were labeled with a 
value of "255", by following the WM editing procedure of FreeSurfer 
(https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/WhiteMatter 
Edits_freeview). The labels were transferred to the corresponding voxels 
of the WM segmentation file (wm.mgz) as the WM representing the WM 
mask to be used for subsequent white surface reestimation. Next, the 
‘recon-all’ command was rerun by specifying the workflow to re- 
estimate the cortical surface (with flags of -autorecon2-wm and -autor-
econ3). The products of the cortical surface re-estimation, such as the 
pial and WM surfaces, thickness, and ‘sulc’, were used to rerun the 
PostFreeSurfer pipeline, as described above. With the new surface in-
formation, the pipeline re-calculated the symmetrization, resampled the 
surfaces to 164k and 32k meshes, re-registered the surfaces with 
MSMSulc, and re-calculated the myelin mapping and thickness. 

Cortical surfaces are reconstructed using three pipelines: (1) the 
original HCP pipeline (default pipeline), (2) the white matter (WM) 
hyperintensity (WMH)-adapted pipeline with manually-drawn WMHs 
(manual pipeline), and (3) the WMH-adapted pipeline with the machine 
learning (ML) algorithm (ML pipeline). T1w and T2w-fluid-attenuated 
inversion recovery (FLAIR) images are used as inputs of the HCP pipe-
line consisting of PreFreSurferPipeline, FreeSurferPipeline, and Post-
FreeSurferPipelines in the default pipeline (the upper row). In the 
manual pipeline, manually-drawn WMHs are used for editing WM, and 
FreeSurfer is run with -autorecon2 and -wm options to re-estimate 
cortical surface (middle row). The ML pipeline (lower row) used an 
ML algorithm for WMH estimation (FSL BIANCA), trained using 
manually-made WMH masks, followed by optimized thresholding 
(LOCATE) and the same edits of WM for re-estimation. The WM surface, 
pial surface, and bias-corrected T1w/T2w myelin and thickness maps 
are used to evaluate the validity of the customized pipelines. 

2.3.6. Quality control (QC) of cortical surface 

2.3.6.1. Stereological QC by Experts. Two expert radiologists (T.O. and 
T.A.) were asked to independently evaluate the quality of the pial and 
WM surfaces of the three pipelines and to count the number of surface 

errors in a blinded manner with respect to the difference in pipelines. 
For the semi-quantification of errors, we applied a stereological method, 
which is commonly used in quantitative neuroanatomy, for example, to 
count the number of neurons with a microscope (Saper, 1996; Zhao and 
van Praag, 2020). The coronal sections of T1w images and pial and WM 
surfaces in the MNI nonlinear standard space are displayed in a 4 × 7 
matrix (a total of 28 sections at an interval of 7 mm in the y-direction) 
with grid lines overlaid at 7-mm intervals (Fig. 2). The images were 
imported into the background image and grids using Microsoft Excel 
(Microsoft Corporation 2019). The aforementioned radiologists were 
asked to identify the surface errors in each grid, depending on the type of 
surface errors: pial surface error only, WM surface error only, and both 
errors. The radiologists were asked to exclude medial temporal regions 
(including the hippocampus and amygdala) from their evaluation, based 
on anatomical location on structural MRIs. This policy was set because 
the cortical surfaces were not necessarily well estimated in these regions 
in some cases, regardless of the WMHs in the default pipeline. The 
number of each category was computed cell by cell across the 43 data-
sets separately for the manual, ML, and default pipelines, yielding two 
sets of each category data for each pipeline. 

2.3.6.2. QC using surface defect score. Automation or quantification of 
surface QC has not yet been achieved. To date, QC of cortical surface 
estimation has commonly been performed by visual inspection of the 
cortical surface boundaries overlain over the orthogonal sections of T1w 
images (e.g., https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/ 
OutputData_freeview). 

In this study, we developed an original QC method for the cortical 
surfaces. We assume that if there are cortical surface defects, then the 
values of both T1w/T2w myelin and thickness at a surface vertex deviate 
from the standard values. One may expect that cortical surface defects 
may cause an error exclusively in thickness, but this is unlikely because 
T1w/T2w values should take much lower (CSF) or higher signals (WM) 
than those in the cortical ribbons. The deviation from the standard 
values can be estimated using robust Z-scores (RZ) based on the standard 
values. The HCP pipeline can internally define a “medial wall” (repre-
senting the inner/medial surface of 3rd ventricles, hippocampus, 
amygdala and thalamus, and the midsection of the corpus callosum) so 
as to automatically exclude the medial temporal regions. With the use of 
the medial wall, therefore, the defect scores were not calculated in the 
medial temporal regions to be consistent with the policy for the ste-
reological QC. 

We defined a vertex-wise surface defect when absolute RZ values for 
both T1w/T2w myelin (RZm) and thickness (RZt) took outlier values 
from the standard. Therefore, the surface defect at surface vertex i can be 
expressed as follows: 

Surfacedefect(i,Z0) = abs(RZm(i)) > Z0 ∩ abs(RZt(i)) > Z0  

where Z0 is the Z-threshold for outliers. RZ can be estimated using the 
following equation: 

RZ(i) = (X(i) − Q2(i))/NIQR(i)

where X(i) is the measured T1w/T2w myelin (i.e., MyelinMap_BC) or 
thickness at a vertex, i, in 164k Connectivity Informatics Technology 
Initiative (CIFTI) dscalar format in a participant, Q2 is the median of the 
standard values at vertex i, and NIQR is the normalized interquartile 
range at vertex i: 

NIQR(i) = (Q3(i) − − Q1(i))/F(0.75) − − F(0.25),

where Q3 and Q1 are 75 percentile and 25 percentile of the standard 
values, respectively, and F(0.75) and F(0.25) are the probability density 
functions of the normal distribution at the probability of 0.75 and 0.25, 
respectively. 

For the Q2, Q3, and Q4 of standard values, we used 164k 

Y. Oi et al.                                                                                                                                                                                                                                       

https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/WhiteMatterEdits_freeview
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/WhiteMatterEdits_freeview
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/OutputData_freeview
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/OutputData_freeview


NeuroImage 281 (2023) 120377

5

MyelinMap_BC and thickness data in a CIFTI dscalar format, which was 
pre-generated from the YA-HCP data S1200 (n=1096) and released at 
BALSA database (https://balsa.wustl.edu/reference/pkXDZ). Next, the 
vertices with the surface defect were mapped onto the surface in each 
individual, which we called the ‘surface defect map’ (SDM). For the 
group-wise evaluation, we created a surface defect frequency map. The 
total number of vertices with surface defects at Z0=5 was termed the 
‘Surface Defect Score’ (SDS5) and was used for the subsequent analysis. 
That was, to define outliers, we used the robust Z score of = 5, which 
corresponds to the extreme outliers in the literature (Tukey, 1977). We 
furthermore checked the validity of this threshold based on preliminary 
analyses in which Z score thresholds between 2 and 5 were applied to 
small data subsets sampled randomly from the entire datasets. Note, 
however, that optimization of thresholding based on the robust 
z-scoring is recommended for future studies since an optimal threshold 
is dependent on the distribution and size of the data. To calculate SDM 
and SDS5, we used a quality check and reporting tool, hcppipe_qc, (htt 
ps://github.com/RIKEN-BCIL/bcil/blob/master/bin/hcppipe_qc), 
which can be applied to the data analyzed using the HCP or non-human 
primate-HCP pipeline. Note that the current SDM and SDS5 are based on 
the standard values of the surface metric distribution of young adults 
(YA-HCP), as well as on a threshold corresponding to extreme outliers. 
These operational parameters may be optimized in the future depending 
on the research questions, protocols of data acquisition, and data quality 
(see Discussion). 

We tested whether the SDS5 values were correlated with the WMH 
volume in each pipeline. In addition, we computed the degree to which 
SDS5 was improved by the proposed pipeline, thereby defining the cases 
in which the proposed pipelines improved the surface analyses above 
chance. We defined the improved cases as participants whose differ-
ences in SDS5 (between the default pipeline and ML pipeline) were 
outliers (Q3+1.5IQR) in the distribution of the SDS5 changes. 

2.3.7. Statistical analysis 
To estimate how the number of surface errors was affected by the 

raters and pipelines, a three-way analysis of variance (ANOVA) was 
applied to the number of errors, with factors of the rater (raters 1 and 2), 
the pipelines (default, manual, and ML pipelines), and surfaces (pial and 
WM). For the comparison between the pipelines, a post-hoc comparison 
was performed using the Wilcoxon matched-pairs signed-rank test, with 
p-values adjusted by Bonferroni correction for multiple comparisons. To 
assess inter-rater agreement, error detection in each grid was analyzed 
between the two raters using Cohen’s kappa. To confirm the effect of age 
on WMH volume in previous studies (Sachdev et al., 2007; Ylikoski 
et al., 1995; Atwood et al., 2004; Silbert et al., 2008), the correlation 
between the logarithm of WMH volume and age was tested using 

Spearman’s rank correlation. We also analyzed the correlation between 
WMH volume and SDS5 in the default, manual, and ML pipelines using 
Spearman’s rank correlation. 

Furthermore, we adopted a data-driven approach to define the 
improvement in the surface analysis of WMH-adapted pipelines. A 
substantial portion of the SDS5 changes after the application of WMH- 
adapted pipelines was distributed around zero, indicating that many 
MRI data with low WMH load did not show changes by the pipeline. 
There were, however, asymmetric changes in SDS5, that is, some data 
showed considerable decreases, while no data showed such increases. 
These interpretations were supported by the correlation analysis be-
tween the WMH volume and SDS5, as well as by the visual inspection of 
representative cases. 

This information was used to define cases in which cortical analyses 
were improved by the WMH-adapted pipelines; the upper inner fence 
(Q3+1.5*IQR of the data) was adopted as the criterion for the mean-
ingful SDS5 decrease (thus, the improvement of cortical analysis). We 
then performed a receiver-operating characteristic (ROC) curve analysis 
to determine the optimal cutoff value of WMH volume, above which 
cortical estimation procedure likely benefits from the implementation of 
the proposed procedure. With the determined cutoff WMH volume, the 
sensitivity, specificity, AUC, and data with improvement were 
computed. 

To gain insight into the potential effects of WMHs on the group 
comparison, the myelin and thickness maps were parcellated into 180 
parcels using an HCP multimodal parcellation atlas (HCP-MMP, Version 
1.0) (Glasser et al., 2016), upon completion of the cortical surface 
re-estimation process. We compared the myelin maps and cortical 
thickness maps of the default and ML pipelines. A paired t-test was 
applied as implemented in the Permutation Analysis of Linear Models 
(PALM) tool, which provided a non-parametric family-wise error (FWE) 
correction over multiple parcellations (Winkler et al., 2014, 2016). 

3. Results 

3.1. WMHs in the dataset 

During the manual delineation procedure, WMHs were observed in 
all 43 participants. In the group-level frequency map of the WMHs, they 
were distributed most densely in the periventricular zones but also in the 
deep WM just beneath the frontal, temporal and parietal cortices, cor-
responding to the juxtacortical WMHs (Supplementary Fig. S1-a). The 
number of WMHs (combining all the periventricular WMH and deep 
WMH) ranged from 7–268 (median = 80.2), with a mean volume of 6.1 
±8.4 cm3. Hereafter, unless otherwise noted, the term “WMH volume” 
refers to the volume of WMH including both periventricular WMH and 

Fig. 2. A stereological method used in visual 
quality control (QC) of cortical surfaces. 
A) The coronal sections of T1w images (in gray 
color) as well as the pial (blue line) and WM 
surfaces (lime-colored line) in the MNI 
nonlinear standard space are displayed in a 4 ×
7 matrix (a total of 28 sections at an interval of 
7 mm in the y direction) with grid lines overlain 
at 7-mm intervals (in the x and z directions). B) 
A zoomed panel showing grids over the medial 
frontal area. Two qualified radiologists identi-
fied and color-coded the surface errors in each 
grid: the pial surface error only (red), WM 
surface error only (light blue), and both errors 
(yellow).   
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deep WMH. The age of the participants linearly correlated with the 
volume of manually defined WMHs after logarithmic transformation (r 
= 0.63, p < 0.001; Supplementary Fig. S1-b). The ML-predicted WMH 
volume showed a strong correlation with the manually defined WMH 
volume (Spearman’s ρ = 0.95, p < 0.001). The ML-predicted WHMs had 
a sensitivity of 0.63, specificity of 0.999, and SI of 0.51 ± 0.16, using the 
manually defined WHMs as the standard. Overall, from visual inspec-
tion, the ML-predicted WMH agreed well with the manually defined 
WMH. Moreover, a mismatch between the manually defined WMH and 
the ML-predicted WMH was present at the periphery of WMHs in the 
deep or periventricular WM; however, the mismatch was not evident in 
the juxtacortical area. 

3.2. Characteristics of surface estimation errors 

We observed an extreme case in which a small WMH caused exten-
sive cortical surface errors when analyzed using the default pipeline 
(Fig. 3). In such cases, WMHs were mislabeled as parts of the GM 
because of the relatively low and high intensities of WMHs in T1w and 
T2w MRIs, and the WM surface was incorrectly estimated. The WM 
surfaces often invaded the WMHs, which was accompanied by pial 
surface errors (Fig. 3A, B). Across the participants, the WM surface er-
rors often led to overestimation and sometimes underestimation 
(Fig. 3C) of the cortical thickness. Consequently, the bias-corrected 
myelin maps, which were calculated based on an inadequate defini-
tion of the cortical ribbon, often yielded a mosaic of exceptionally high/ 
low myelin signals (Fig. 3D) in the vertices near the WMHs (Fig. 3B). 
SDM clearly revealed these cortical surface abnormalities (Fig. 3E). 

The ML-predicted WMH masks reasonably overlapped with the 
WMHs (yellow outline in Fig. 3B, lower panel). After re-estimating the 
surfaces using either the manual or ML pipeline, the pial and WM sur-
faces were corrected (Fig. 3A and B, lower panels). Subsequently, the 
abnormalities in the myelin and thickness maps, as well as the SDM 
surface defect, disappeared (Fig. 3C-E, lower panels). Overall, at the 
individual level, the existence of WMHs increased errors in the estima-
tion of both WM and pial surfaces in some cases, resulting in abnor-
malities in the myelin and thickness maps and SDM. Both the manual 
and ML pipelines appeared to reduce estimation errors. 

3.3. Effects of WMH-adapted pipelines in surface QC 

Two raters (T.O. and T.A.) blindly performed visual QC for the 
cortical surfaces across the three pipelines using the stereological 
method (Figs. 2 and 4). We assessed the inter-rater reliability of ste-
reological QC by independently treating each grid-wise rating. The 
result showed a fair agreement between the two raters; Cohen’s kappa 
was 0.27 and 0.34 in the WM and pial surface, respectively. Moreover, 
when the error count was pooled in a grid across the error types, the 
agreement reached Cohen’s kappa of 0.57. 

In the default pipeline, at least one surface error was found in either 
the WM or the pial surface in 100 % of the cases by rater 1 (median= 25, 
IQR= 20) and 88 % by rater 2 (median= 7, IQR= 14.5). ANOVA with 
rater, pipeline, and surface (WM or pial) as factors revealed significant 
effects of these factors on the error count: rater (F(1,42)=212.7, p=2.2 
× 10− 16), pipeline (F(2,41)=17.3, p=3.7 × 10− 6) and surface (F(1,42)=
4.1, p=0.048). There were also significant interactions between all three 
factors: the rater-by-pipeline interaction (F(2,41)=13.0, p=4.1 × 10− 5), 
pipeline-by-surface interaction (F(2,41)=7.7, p=1.5 × 10− 3), and 
surface-by-rater interaction (F(1,42)=28.9, p=3.1 × 10− 6). Overall, the 
quantitative results of stereological QC indicated that the proposed 
pipeline significantly reduced the estimation errors in both the WM and 
pial surfaces. A post hoc pairwise comparison of the error count between 
the pipelines was performed for each rater (Fig. 4). For the WM surface 
error, significant differences were found between the default and ML 
pipelines in both raters (corrected p = 1.6 × 10− 5 and 9.7 × 10− 3 for 
rater 1 and 2, respectively). Between the manual and ML pipelines, rater 
1 (corrected p = 2.5 × 10− 6) but not rater 2 (corrected p = 0.33), found 
differences. No differences were noted between the default and manual 
pipelines for either rater. For the count of pial error, rater 1 found a 
significant difference between the default and ML pipelines (corrected p 
= 4.2 × 10− 4) and between the manual and ML pipelines (corrected p =
8.6 × 10− 4), but not between the default and manual pipelines (cor-
rected p = 0.31). In addition, we did not find any difference in the pial 
error count between the pipelines for rater 2. 

The SDS5 analysis indicated that both the manual and ML pipelines 
significantly reduced outliers compared with the default pipeline 
(Fig. 5). The median SDS5 values were 11 (44.5 IQR), 4 (14), and 4 
(15.5) in the default, manual, and ML pipelines, respectively (Fig. 5A). 
For reference, the median (IQR) of SDS5 computed from the 1113 

Fig. 3. A representative of white matter (WM) hyperintensity (WMH) in T1w and T2w FLAIR MRI and cortical surface errors. The top row shows the default findings 
in a representative case in whom the left frontal subcortical WMH (yellow arrows) caused errors of WM surfaces (lime line) and pial surfaces (blue line) overlain on 
T1w MRI (A) and T2w MRI (B). The surface analysis yields errors at the corresponding surface vertex (white arrows in C, D, E). Cortical thickness of the corre-
sponding vertex is likely underestimated as compared with those in the surrounding vertices (C), whereas bias-corrected myelin (myelin BC) is likely over- and 
underestimated (D). The surface defect map (SDM) detects outliers (red areas in E). The middle and bottom rows show the corrected WM and pial surfaces after the 
reanalysis with the manual pipeline and the machine learning (ML) pipeline, respectively. The yellow line in (B) shows the contour of WMH defined by manually or 
estimated by ML. The corrected thickness (C) and myelin BC (D) maps, and SDM (E). The white spheres in C, D, E show the identical vertex corresponding to the tip of 
the yellow arrow in panel A and B. 
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participants of the YA-HCP dataset was 0 (3). The ANOVA results 
showed significant differences in SDS5 across the pipelines (p = 0.001). 
Wilcoxon signed-rank tests with Bonferroni correction revealed a sig-
nificant reduction in SDS5 (p<0.001) in both the manual and ML 
pipelines compared to the default pipeline. 

The manually defined WMH volume was positively correlated with 
SDS5 in the default pipeline (corrected p = 3.6*10− 5, rho = 0.61) 
(Fig. 5B). Notably, the correlation of the WMH volume with SDS5 was no 
longer significant in either the manual pipeline (corrected p = 0.39, rho 
= 0.23) or ML pipeline (corrected p = 0.45, rho =0.23). 

The difference in SDS5 between the default and ML pipelines was not 
normally distributed (see method 2.3.7); hence, we used a value of 42.5, 
corresponding to the upper inner fence (Q3+1.5*IQR of the data) as the 
criterion for improvement with the proposed pipeline. With this crite-
rion, eight individuals showed improvement. In the ROC curve analysis, 
the detection of the improved cases was maximum with a cutoff WMH 
volume of 5.6 cm3 with an AUC of 0.85 (Supplementary Fig. S2). We 
identified twelve individuals with WMH volumes greater than this cut-
off, among which seven showed a reduction in SDS5 with the ML 
pipeline. 

When we compared the group-wise surface defect frequency map 

between the default and ML pipelines, it was obvious that the applica-
tion of the proposed pipeline substantially reduced the outliers likely 
caused by WMHs (Supplementary Fig. S3a). However, there might also 
be other types of surface errors, which were not reduced even after the 
application of our proposed pipeline, in the medial surface of the brain 
(cingulate areas) and pre- and post-central gyri. Although such non- 
WMH causes of the surface error were outside the scope of the present 
study, we examined individual cases caused by apparently non-WMH 
causes to explore the future application of the SDS method. The sur-
face errors in the pre- and post-central gyri were potentially because of 
the residual B1 bias (Supplementary Fig. S3b) as suggested by the 
hemispheric asymmetry (Glasser et al., NeuroImage 2022). To summa-
rize, the SDS seemed useful to detect non-WMH-related surface errors as 
well, but its potential should be addressed in future studies. 

The impact of WMHs on surface estimation can be extended even to 
the HCP-style group-level parcellation analysis that is widely performed 
in the field. We compared cortical thickness and myelin maps before and 
after consideration of WMHs. In the paired t-test of the parcellation-wise 
thickness map the differences between the default and ML pipelines 
reached statistical significance after the correction for multiple com-
parisons (PALM, p < 0.05, family wise error corrected) in several surface 

Fig. 4. Effects of WMH-adapted pipelines on 
the visual QC by the two raters in the rain cloud 
plots. The number of errors at the WM surface 
(A) and the pial surface (B) per participant is 
shown for each rater across the default (red), 
manual (green) and ML (blue) pipelines (see 
also Fig. 2). Shown are data points (each 
participant), box plot (w/ median (Q2), Q1 and 
Q3 with whiskers showing the largest and 
smallest data point excluding outliers), and 
smoothed histogram (gray). **Corrected P <
0.01 and *corrected P < 0.001 in Wilcoxon 
Signed rank test.   

Fig. 5. Effects of WMH-adapted pipelines in the 
automatic QC of cortical surfaces. 
A Comparison of surface defect scores (SDS5) 
between three groups of default, manual and 
ML pipeline. SDS5 in 3 pipelines are shown by 
the datapoint, boxplot and histogram in the rain 
cloud plots. Wilcoxon signed rank test,**cor-
rected p < 0.001. 
B A scatter plot of the SDS5 against the manu-
ally defined WMH volume at the individual 
level (filled circles). In many cases, the SDS5 
decreased in the manual (green) and ML (blue) 
pipeline compared with the default pipeline 
(red). The three data points of the same indi-
vidual are connected with colored lines so that 
the line color corresponds to the color of the 
data symbol with a higher SDS5 value. The 
WMH volume had a correlation with SDS5 only 
in the default pipeline (corrected p = 3.6*10− 5, 
rho = 0.61), but this correlation disappeared in 
the manual (corrected p = 0.39, rho = 0.23) 
and ML pipeline (corrected p = 0.45, rho =
0.23).The surface estimation errors due to 

WMH and their improvement by the proposed pipeline were found mainly in the cases with WMH volume > 5.6 cm3 when the improvement of SDS5 of > 42.5 
(Q3+1.5IQR) was adopted as a criterion (sensitivity of 0.80, specificity of 0.86 and accuracy of 0.84). Among twelve individuals with WMH volume greater than this 
cutoff, seven showed the reduction of SDS with the ML pipeline. Among eight individuals showing the reduction of SDS5 with the ML pipeline, seven individuals 
showed WMH volume greater than this cutoff.   
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areas (R_6a, R_46, R_9-46d, R_9a, R_8BL, R_9m, R_p32, R_p32pr, R_v2, 
R_PIT, R_IFSa, R_a47r, R_a10p, R_11l, R_10pp, R_OFC, R_FOP4, L_10r, 
L_VMV1, Supplementary Fig. S4-a). As for the myelin BC map, there was 
no statistically significant difference between the default and ML 
pipelines. 

4. Discussion 

Herein, we report that cortical surface estimation errors are algo-
rithmically caused by age-related WMHs and propose automated 
correction and QC methods for cortical surface errors due to WMHs. 
Surface estimation errors occurred because WMHs were mislabeled as 
parts of the GM because of the relatively low and high intensities of 
WMHs in T1w and T2w MRIs, respectively. We used previously pro-
posed ML algorithms (BIANCA and LOCATE) to automatically generate 
WMH masks to correct mislabeled WM segments and re-estimate 
cortical surfaces. The correlation between age and the logarithm of 
WMH volume is consistent with previous reports in which the WMH 
volume increased monotonically as a function of age (Atwood et al., 
2004; Silbert et al., 2008). Two blinded raters (T.O. and T.A.) warranted 
a decrease in the surface estimation errors in the proposed pipeline. 
Furthermore, SDS5, a novel surface QC metric, sensitively detected a 
reduction in outliers in the proposed pipeline compared with the default 
pipeline. Finally, the adverse effects of WMHs on the surface estimation 
accuracy can be observed even in HCP-style group-level parcellation 
analysis, which is widely performed in the field. The proposed pipeline 
improves the reliability of surface-based MRI analyses in middle-aged to 
older people with WMHs and may contribute to disentangling the effects 
of WMHs and cortical abnormalities following aging and pathological 
processes. The present methodology may help researchers find reliable 
imaging markers for aging and age-related neuropsychiatric disorders. 

Hunting imaging markers have become increasingly important in the 
clinical application of neuroimaging for neurodegenerative and psy-
chiatric disorders. Recent studies have used cortical-surface analysis to 
identify neurobiological changes in the cortex during health and disease 
(Bethlehem et al., 2022; Cho et al., 2013; Lemaitre et al., 2012; Salat 
et al., 2004, 2009). WM often affects various brain disorders related to 
aging; however, it has been difficult to uncover the contribution of 
WMHs to their pathophysiology. Alzheimer’s disease and Parkinson’s 
disease accompanying WMHs likely form a continuum with vascular 
dementia and vascular parkinsonism, respectively, making it difficult to 
disentangle the effects of WMHs on pathophysiology. Future neuro-
imaging studies in neurodegenerative disorders should consider the ef-
fects of vasculopathy, including the disconnecting effects of WMHs, 
overlain by those of proteinopathy and neurocircuitopathy (Wakasugi 
and Hanakawa, 2021). WMHs are frequently found on brain MRIs in 
older populations (Sachdev et al., 2007; Ylikoski et al., 1995; Atwood 
et al., 2004; Silbert et al., 2008). Therefore, a detailed investigation of 
WM and cortical integrity and their relationship with WMHs is impor-
tant for a mechanistic understanding of the pathophysiology of cognitive 
and motor disturbances, which are cardinal symptoms of Alzheimer’s 
disease and Parkinson’s disease, respectively. 

In this study, the current ML algorithm for predicting WMH worked 
reasonably well, and the validation was comparable to those in the 
literature. Furthermore, we created a WMH probability map using 
BIANCA and adopted LOCATE for threshold optimization, yielding ML- 
predicted WMHs. The ML-predicted WMH volume correlated with the 
manually defined WMH volume, supporting the hypothesis that BIANCA 
plus LOCATE reasonably predicted WMHs. In a previous study, the 
performance (SI) of BIANCA plus LOCATE varied across the datasets 
(from 0.64±0.23 to 0.73 ± 0.13) (Sundaresan et al., 2019). The present 
BIANCA plus LOCATE showed poorer sensitivity (0.63) and better 
specificity (0.99) than the sensitivity (0.81) and specificity (~0.98) of 
the Vrije Universiteit Amsterdam dataset (Sundaresan et al., 2019) 
which showed WMH volumes similar to ours. A reason behind the 
relatively low performance of BIANCA plus LOCATE in our setting may 

be that we were not able to fully optimize the BIANCA plus LOCATE 
mainly because the WMHs in our MRI dataset were limited. Still 
ML-generated WMHs were effective in reducing surface errors, thereby 
fulfilling our study purpose. Therefore, although ML performance can 
further be improved, we were able to demonstrate the utility of the 
proposed method to reduce errors in cortical surface estimation. 

Overall, the stereological visual assessment successfully detected a 
reduction in cortical surface errors using the ML-assisted HCP pipeline 
relative to the default pipeline. To date, many attempts have been made 
to establish a QC workflow of cortical surfaces estimated by surface 
reconstruction algorithms. Most have proposed QC workflows based on 
visual information, for which many documents are available online 
(Supplementary Table S1). Visual QCs rely on the visual inspection of 
preprocessed outputs through graphical user interfaces and are consid-
ered to be the gold standard for surface-based analysis of neuroimaging 
data. These visual QC approaches allow assessment by qualitative 
grading (Backhausen et al., 2016) subject to raters’ experience and time 
limitations (Monereo-Sánchez et al., 2021). Visual QCs have obvious 
limitations in terms of inter-rater variability and quantification diffi-
culty. Several studies have proposed semi-quantified visual QCs. A QC 
rating framework, the ‘VisualQC’ (Raamana et al., 2021; Raamana et al., 
2018), by creating a visualization system that allows easy assessment of 
cortical parcellations by raters. However, the ‘VisualQC’ uses relatively 
small numbers and orientations of image slices (two rows by six slices by 
default), which can be customizable by the users; thus, visual input in-
formation is not necessarily standardized. In addition, the rater’s 
assessment in VisualQC is not based on stereology; thus, rater responses 
are recorded for each individual’s subject of interest. Therefore, previ-
ous visual QC methods may not be fully quantitative, and no previous 
QC methods provide specific types of surface errors (e.g., errors in the 
WM, pial matter, or both). With this background, we applied a stereo-
logical approach for quantitative estimation of the surface errors and 
validation of the WMH-adapted pipeline. 

The present stereological techniques allow for visual QC with a 
reasonable level of quantification and standardization. Stereological 
assessment is an unbiased quantification method for neuroanatomy 
(Saper 1996; Zhao and van Praag 2020). It allows the standardized 
evaluation of microscopic neurobiological units (e.g., the number of 
neurons, synapses, and axons) to be compared across a large tissue 
space. However, if the stereological approach is not well-standardized, 
the quantified results may be highly variable across laboratories or 
raters by as much as 300 % (Herculano-Houzel et al., 2015). The bias is 
caused by various factors, including differences in sampling strategies 
across raters. Therefore, we developed a stereological QC system by 
standardizing the evaluation units across different MRIs, reducing 
arbitrariness, and increasing the spatial uniformity of the error counts. 
Unexpectedly, however, the results from the stereological QC showed 
only a fair level of inter-rater agreement of the error count when 
analyzed separately for the white and pial surfaces (kappa = ~0.3) or a 
moderate level of agreement when both error types were pooled (kappa 
= 0.57). In addition, we found a significant interaction effect among the 
rater, pipeline, and surface type factors. This means that error detect-
ability is influenced by many factors known for radiological diagnosis, 
such as spectrum bias and misclassification bias (Pavlou et al., 2021). 
The low agreement between the two raters can be attributed to the 
limitation of subjective visual assessment, and our stereological QC 
method should be further validated in terms of intra-rater agreement. 
Together, our results indicate that the stereological method applies to 
the visual QC of cortical surface errors, but further elaboration is needed 
to achieve fully reliable stereological QC. 

Furthermore, in this study, we developed an alternative automated 
QC algorithm that calculates the SDM and derived score (SDS5) for 
vertex-wise surface error detection. We found that SDM/SDS5 was 
useful for assessing the presence of surface errors and their reduction 
using the elaborated pipelines. There has been an attempt to automate 
quantifiable QC for cortical surface errors using quality metrics, such as 

Y. Oi et al.                                                                                                                                                                                                                                       

https://paperpile.com/c/q7YcqF/NxjTU


NeuroImage 281 (2023) 120377

9

FreeSurfer’s topological defect count and curvature smoothness 
(Ségonne et al., 2007; Tian et al., 2021). However, these topological 
errors are counted during the initial estimation of WM surfaces; thus, it 
is not clear whether such errors at an intermediate process are directly 
associated with the errors in the final results, including the thickness or 
myelin maps. Moreover, all thickness or myelin errors may not neces-
sarily accompany topological defect count. The SDM in our study allows 
the joint assessment of thickness and myelin maps quantitatively based 
on the reference values of cortical metrics in the YA-HCP1200 database. 
The vertices on the abnormally estimated cortical surfaces often have 
extreme outlier values in both thickness and myelin values; thus, we 
defined the statistical threshold of SDS5 in reference to the SDS5 
computed from the thickness and myelin maps of YA-HCP1200. Both 
SDM and SDS5 can be calculated automatically as long as an adequate 
structural MRI dataset is analyzed using HCP pipelines. The positive 
correlation of SDS5 with the WMH volume in the default pipeline 
indicated that SDS5 indeed reflected errors in the presence of WMHs 
(see Fig. 4b). Moreover, this correlation was abolished after the appli-
cation of WMH-adapted pipelines (see Fig. 4d). The SDM also proved 
useful for visualizing the location of the surface errors and their 
reduction using the proposed WMH-adapted pipelines. Accordingly, SDS 
and SDM5 provide useful information for automatic and quantitative 
estimation of surface QC. 

Mapping the surface estimation error by SDM is also likely useful for 
identifying the various error sources. SDM detected errors related to not 
only WMHs but also B1 transmission bias contamination in spin echo- 
based T2-weighted images. The errors in the pre- and post-central gyri 
would primarily be explained by the residual B1 bias. The B1 trans-
mission bias remains even though T1w- and T2w-based B1 biasfield 
corrections are applied in the PreFreeSurfer pipeline. This is primarily 
because T1w- and T2w-based B1 biasfield correction removes the bias of 
the B1 receive field rather than the transmission field (Glasser and Van 
Essen, 2011; Glasser et al., 2022). The presence of hemispheric asym-
metry supports the possibility of B1 transmission bias (Glasser et al., 
NeuroImage 2022). Future studies may be required to address this issue 
by estimating the B1 transmission field in volume space from add-on 
scanning sequences such as Sa2RAGE (Eggenschwiler et al., 2012) and 
spin-echo and gradient-echo EPI (Glasser et al., 2022) and by feeding 
them into the FreeSurfer-based re-estimation of the cortical surface. We 
also note that we could not exclude the possibility that the surface errors 
in the pre- and post-central gyri reflected, at least in part, age-related 
changes in the cortical thickness and myelin maps because of the 
age-gap between the HCP-YA and the current dataset. 

The present study had some limitations. First, the generalizability of 
the proposed WMH-adapted pipeline is limited. The current method was 
built on a small amount of data; thus, further investigation using a larger 
dataset may be required. Current MRI data were collected using a legacy 
MRI protocol (spatial resolution of 1 mm isovoxel), which was not 
optimized for surface reconstruction; thus, the results of the surface 
errors might have been overestimated. Future studies with MRIs ac-
quired with a higher spatial resolution, such as the HCP-style protocol 
(spatial resolution of 0.8 mm), would be less likely to have surface 
estimation errors. 

Second, the differences in scanning protocol and populations may 
bias the results of SDS5 because SDS calculation is based on the YA-HCP 
dataset. Recent studies indeed suggest that even using identical scanning 
protocols, measured cortical thickness and myelin map are affected by 
the differences in the sites and MRI scanners (Koike et al., 2021). We also 
found SDS5 was sensitive to the B1 biasfied in the pre- and post-central 
gyri, which remained unchanged by the proposed pipeline. Further 
elaboration is needed for qualifying surface metrics and their errors in a 
more generalized manner, for example, by implementing harmonization 
methods across the MRI protocols and scanners (Maikusa et al., 2021 
and Sun et al., 2022) and by using an age-matched MRI database. The 
parameters and threshold of SDS5/SDM may need to be adjusted 
depending on the future optimization for each study. That being said, we 

consider that the SDS5/SDM providing a relative yet quantitative 
vertex-by-vertex QC value is a useful method among the currently 
available surface QC methods. The proposed pipeline can be applied to 
HCP-style MRI protocols in the Brain/MINDS-beyond project (Koike 
et al. 2021) to test the adverse effects of WMHs. That said, our proposed 
pipeline should be valid because the reconstruction algorithm itself is 
subject to segmentation errors due to altered contrast in WMH (see 
Section 3.2) and is not directly related to the spatial resolution. The 
validity of the training of the WMH discriminator machine (BIANCA) 
may be evaluated more rigorously using independent datasets. 

Third, it has not yet been investigated whether the proposed pipe-
lines can be generally used for other neurological conditions accompa-
nying hyperintensities in the WM, such as multiple sclerosis (Wattjes 
et al., 2015), progressive multifocal leukoencephalopathy, neuro-
myelitis optica spectrum disorder (Pache et al., 2016), cerebral amyloid 
angiopathy (Subotic et al., 2021), cerebral autosomal dominant arte-
riopathy with subcortical infarcts and leukoencephalopathy (CADASIL) 
(De Lucia et al., 2022), Binswanger disease (Yin et al., 2014), schizo-
phrenia, and mood disorders (Zanetti, et al 2018; Serafini et al., 2014; 
Lyoo et al., 2002). Indeed, some of these studies applied cortical surface 
analysis to understand cortical pathophysiology, but its association with 
WMHs has not been well characterized. The WMH discriminator ma-
chine and surface re-reconstruction algorithm may need to be optimized 
for each disease population because the pattern of the spatial distribu-
tion of WMH is often different between diseases, for example, those 
related to small vasculopathy vs. leukoaraiosis (Rosenberg et al., 2016). 

Fourth, the application of our proposed method to the medial tem-
poral regions was outside the scope of this study. Indeed, the medial 
temporal regions were excluded from both stereological QC (by means 
of the instructions) and SDS evaluations (by means of the “medial wall”) 
due to potential inaccuracies in the estimation of cortical surfaces in 
these regions, regardless of the WMHs. Poor segmentation performance 
is especially problematic in aged patients with medial temporal atrophy. 
To address the effects of WMHs on the surface analysis of the medial 
temporal lobe, one possible approach would be to incorporate a 
correction for volumetric measures for, both WMHs and atrophy (Grif-
fanti et al., 2022 Neuroimage:Clinical). Therefore, this combined 
correction method should be tested in the future to address the surface 
analysis of the medial temporal lobe in aged patients with WHMs and 
atrophy. 

Given the ensured generalizability, the proposed pipeline will allow 
for reliable assessment of cortical indices in large-scale lifespan cohort 
studies. Although recent literature suggests that aging is an independent 
factor affecting cortical thickness (Salat et al., 2004; Bethlehem et al., 
2022) and myelin (Grydeland et al., 2013), it remains unclear how such 
age-related cortical structural changes perturb cortical functions and the 
resultant behaviors. Structural disconnection in WM might be more 
specifically linked to the disorganization of functional connectivity 
responsible for behavioral deficits than the disruption of GM areas 
(Griffis et al., 2019). Disintegrity in WM may disconnect cortico-cortical 
and subcortical fiber bundles, thus causing dysfunction of the connected 
brain structures (Thiebaut de Schotten, Foulon, and Nachev 2020). 
Therefore, future studies are needed to investigate the effects of 
age-related WMHs on functional activity or connectivity in cortical and 
subcortical brain areas. In such studies, it may be worth testing the 
usefulness of the proposed pipeline for segregating subcortical from 
cortical views and refining the pathophysiology of neuropsychiatric 
disorders. 

5. Conclusion 

In conclusion, the current study revealed that surface-based analysis 
is prone to surface estimation errors due to WMHs and that these errors 
can be corrected by automated WMH prediction followed by surface re- 
estimation based on multimodal MRI datasets. The expected correction 
was confirmed by both stereological visual QC and automated surface 
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QC with SDM/SDS5; however, the latter seemed more sensitive to subtle 
changes in quality. Validation of the proposed WMH-adapted pipeline 
warrants further investigation into its usefulness and refinement in a 
larger population study. 
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