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Abstract— This paper develops a framework for differen-
tiating sparse optimal control inputs with respect to cost
parameters. The difficulty lies in the non-smoothness induced
by a sparsity-enhancing regularizer. To avoid this, we identify
the optimal inputs as a unique zero point of a function using
the proximal technique. This enables us to characterize the
differentiability and employ the implicit function theorem. We
also demonstrate the effectiveness of our approach using a
numerical example of inverse optimal control.

I. INTRODUCTION

Sparse control, in which smaller supports for control
inputs are preferred, has many industrial applications, e.g.,
engine idling in hybrid vehicles and battery charging. How-
ever, it is often implemented using if-then rules and other
heuristic methods, which are difficult to interpret. One rem-
edy to this is to identify a control problem for which the
manually-tuned inputs are optimal. Such techniques, called
inverse optimal control1 (IOC) in the control field and inverse
reinforcement learning (IRL) in the machine learning field,
require a sensitivity of optimal inputs with respect to (wrt.)
cost parameters. Conventional frameworks apply the implicit
function theorem to the first-order optimality equation, such
as Karush-Kuhn-Tucker (KKT) condition [1], [2] or Euler-
Lagrange equation [3].

However, sparse optimal control enhances sparsity via a
nonsmooth penalty, e.g., ℓ1 norm [4]. Thus, conventional
IOC/IRL frameworks cannot be applied—the nonsmooth-
ness changes the first-order optimality condition from an
equation to an inclusion relation, as discussed in Section
II. A widely used approach to address the nonsmoothness of
sparsity involves using a proximal operator [4]. [5] conducted
sensitivity analysis using a fixed point equation of proximal
gradient descent but is limited to unconstrained optimization
and its extension to constrained problem is nontrivial.

This paper develops a framework for differentiating sparse
optimal control wrt. the parameters of the cost function. To
overcome the difficulty of nonsmoothness induced by the
sparsity enhancing regularizer, we focus on the fact that
the proximal operator transforms an inclusion relation into
an equation. This technique enables us to characterize the
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1In the nonlinear control theory, IOC represents designing the controller
such that it corresponds to a solution of some optimal control problem. This
paper does not use the term IOC in this sense.

sparse optimal input as a unique zero point of a function.
Additionally, we conclude that the function satisfies the
nonsingularity assumption required for the implicit function
theorem under a practical constraint qualification and a
convexity assumption.

The remainder of this paper is organized as follows.
Section II presents problem setting of this paper and prelim-
inary contents related to nonsmooth optimization. Section
III presents our framework for implicit differentiation of
sparse optimal control. We also provide sufficient conditions
to ensure differentiability. Section IV provides certain impli-
cations of the sufficient conditions. Section V demonstrates
a numerical example of IOC which verifies the effectiveness
of our approach.

A. Notation

Let us denote the set of all positive real numbers by R>;
the i-th element of a vector v ∈Rn by vi; the (i, j)-th element
of a matrix A ∈ Rn×m by Ai j; the transpose of A by AT;
Hadamard product by ⊙; the identity function by id; and
the ℓ1 norm of x ∈ Rn by ∥x∥1 := ∑

n
i=1 |xi|. Moreover, let

the diagonal matrix whose i-th element is ai be denoted by
diagi(ai) and a soft threshold function with threshold a be
sa(v) := sgn(v)max{|v|−a,0}. Let Zn := {1, . . . ,n}⊂Z. We
denote [aT1 · · · aT

k ]
T by [a1; · · · ;ak]. Sa acts on v ∈ Rn via

Sa(v) = [sa(v1); · · · ;sa(vn)]. For I ⊂ Zm, J ⊂ Zn, A ∈ Rn×m

and v ∈ Rn, we denote the sub-matrix consisting of Ai j, i ∈
I, j ∈ J by AIJ and the sub-vector consisting of vi, i∈ J by vJ .
Given the partitions, Zm = I1+ · · ·+ Ik and Zn = J1+ · · ·+Jl ,
we express A and v as follows:

A =

AI1J1 · · · AI1Jl
...

. . .
...

AIkJ1 · · · AIkJl

=

A:J1
...

A:Jl

 , v =

vI1
...

vIk

 .

II. PRELIMINARIES

A. Sparse optimal control and its sensitivity

This paper considers a discrete-time control system repre-
sented by the following state space model:

x(t+1) = f (x(t),u(t)), y(t) = h(x(t),u(t)), x(0) = x0 (1)

where x(t) ∈ Rn denotes a state, u(t) ∈ Rr denotes an input,
y(t) ∈ Rm denotes an output, t ∈ {0,1, . . . ,T − 1}, f (x,u) ∈
Rn, and h(x,u) ∈ Rr. Let U = [u(0); · · · ;u(T−1)] ∈ RN ,Y =
[y(0); · · · ;y(T−1)] ∈ RT m, and N := Tr. The model (1) can
then be rewritten as Y = M(U,x0) where M consists of
recurrent composition of f and h. We consider the following
ne equality constraints and ni inequality constraints:

LU +b = 0, ĝ(U,M(U,x0))≤ 0,



where L ∈Rne×N , b ∈Rne , and ĝ(U,Y )∈Rni . We denote the
cost function by ℓ̂(U,Y,θ)∈R with a parameter θ ∈Rp. The
sparse optimal control problem is given as follows:

U∗(θ ,x0) = arg min
U∈C (x0)

ℓ(U,θ ,x0)+λ r(U), (2)

C (x0) :=
{

U ∈ RN | LU +b = 0, g(U,x0)≤ 0
}
, (3)

ℓ(U,θ ,x0) := ℓ̂(U,M(U,x0),θ), (4)
g(U,x0) := ĝ(U,M(U,x0)), (5)

where r(U) := ∥U∥1 and λ ∈ R>. We assume that f , h, ℓ̂,
and ĝ are of class C2. The aim of this paper is to calculate
the derivative of U∗(θ) wrt. θ .

Example 1 (inverse optimal control): Consider Nd sets of
initial values {xd

0}
Nd
d=1 and expert’s inputs {Ue

d}
Nd
d=1. The

replication of the expert’s inputs using the sparse optimal
control (2) is then formulated as follows:

θ
∗ = arg min

θ

Nd

∑
d=1

∥U∗(θ ,xd
0)−Ue

d∥2. (6)

Gradient-based algorithms, such as stochastic gradient de-
scent, require ∂U∗

∂θ
(θ) as well as U∗(θ). ◁

Remark 1: Because the dependency on x0 is irrelevant, we
omit x0 from arguments such as U∗(θ), C , and g(U) if not
confusing. Although only the cost function ℓ̂ depends on θ

in (2)–(5), one can trivially extend our method to make f ,
h, L, b, ĝ, and λ dependent on θ , as in [3]. ◁

B. KKT condition for sparse optimal control problem

Because r(U) is nondifferentiable, we extend its gradient
to a subgradient [6], which is a set-valued function defined as
∂ r(U) :=

{
g ∈ RN | r(V )≥ gT(V −U), ∀V ∈ RN

}
. Under a

certain constraint qualification, such as the linear indepen-
dence constraint qualification (LICQ) [7], the KKT condition
states that U∗ satisfies

0 ∈ ∇Uℓ(U∗,θ)+λ∂ r(U∗)+ z∗, (7)

z∗ =
(

∂g
∂U

(U∗)
)T

η
∗+LT

ν
∗, LU∗+b = 0, (8)

g(U∗)⊙η
∗ = 0, g(U∗)≤ 0, η

∗ ≥ 0 (9)

for some z∗ ∈ RN , η∗ ∈ Rni , and ν∗ ∈ Rne . We emphasize
that the condition (7) is an inclusion relation, and not an
equation. If r(U) is differentiable at U∗, then ∂ r(U∗) =
{∇r(U∗)} and the relation (7) can be expressed by an
equation. Unfortunately, this is not the case because U∗

contains many zeros in sparse optimal control for any θ .
This implies conventional IOC frameworks are not applicable
to sparse optimal control because they apply the implicit
function theorem to the KKT equation.

C. Proximal technique [6]

Consider a convex function f : Rn → R and let γ ∈ R>.
The proximal operator prox f

γ is defined as follows:

prox f
γ (v) := arg min

x∈Rn

|x− v|2
2γ

+ f (x) (10)

When f (x) = ∥x∥1, the operator can be rewritten in closed
form as prox∥·∥1

γ (v) = Sγ(v).
Let x∗ := prox f

γ (v). Then, the optimality of x∗ in (10)
implies 0 ∈ x∗− v+ γ∂ f (x∗), which reduces to

v ∈ (id+ γ∂ f )(x∗). (11)

This implies that the inclusion relation (11) can be trans-
formed into an equation x∗ = prox f

γ (v) using the proximal
operator.

III. PROPOSED FRAMEWORK

This section establishes a new framework for differenti-
ating sparse optimal inputs. To apply the implicit function
theorem, the inclusion relation (7) is transformed into an
equation using the proximal technique. Sufficient conditions
for differentiability are also provided.

A. Implicit differentiation of sparse optimal input

Let γ ∈ R> and d(U,z,θ) := ∇Uℓ(U,θ) + z. Using the
proximal technique, we reduce the inclusion relation (7) to
an equation as follows:

−d(U∗,z∗,θ) ∈ λ∂ r(U∗)

⇔U∗− γd(U∗,z∗,θ) ∈ (id+ γλ∂ r)(U∗)

⇔U∗ = Sγλ (U
∗− γd(U∗,z∗,θ)).

A function ϕ : R2 →R is called a complementarity function
if ϕ(a,b) = 0 ⇔ a ≥ 0,b ≥ 0,ab = 0. A typical example is
the Fischer–Burmeister function:

ϕfb(a,b) := a+b−
√

a2 +b2. (12)

We transform the complementarity condition (9) using a
complementarity function ϕ as follows:

φ(g(U∗),η∗) = 0,
φ(g,η) := [ϕ(−g1,η1); · · · ;ϕ(−gni ,ηni)].

Let χ := [U ;z;η ;ν ] ∈ RK where K := 2N +ni +ne. Finally,
we obtain a system of K equations which determines χ∗ for
each θ :

F(χ∗,θ) = 0, (13)

F(χ,θ) :=


U −Sγλ (U − γd(U,z,θ))

−z+
(

∂g
∂U (U)

)T
η +ATν

φ(g(U),η)
LU +b

 ∈ RK . (14)

Now we apply the implicit function theorem and bridge
the derivative of χ∗ wrt. θ and that of F wrt. (χ,θ). Because
F contains nondifferentiable points, we introduce the concept
of the subderivative, i.e., a set-valued extension of the
derivative. A subderivative is constructed in several ways.
In this paper, ∂F ⊂ RK×(K+p) denotes the Clarke Jacobian
of F at (χ∗,θ), which is a widely used subderivative; see
[8] for its definition and Remark 3 for an explicit expression
of ∂F in a special case. If F is continuously differentiable



at (χ∗,θ), its Clarke Jacobian ∂F is a singleton consisting
of its ordinary derivative:

∂F =

{[
∂F
∂ χ

(χ∗,θ)
∂F
∂θ

(χ∗,θ)
]}

.

Assumption 1: For every element [Jχ Jθ ]∈ ∂F , the matrix
Jχ ∈ RK×K is nonsingular. ◁

Proposition 1: Consider the sparse optimal control prob-
lem (2). Suppose Assumption 1 holds. Then, the matrix set

∂ χ
∗ :=

{
−(Jχ)−1Jθ ∈ RK×p

∣∣∣ [Jχ Jθ ] ∈ ∂F
}

(15)

is a subderivative of χ∗(θ) wrt. θ . ◁
Proof: Corollary 1 in [9] directly implies the claim.

More specifically, the subderivative in (15) is the so-called
conservative Jacobian, which is applicable to stochastic
gradient descent (see Theorem 3 in [9]).

Remark 2: Even if U∗ is sparse, we can show that ∂ χ∗

in (15) is a singleton except in the following special cases:
• The inequality constraints do not satisfy strict comple-

mentarity, i.e., (gi(U∗),η∗
i ) = (0,0) for some i ∈ ZN .

• The support of U∗ changes around θ , i.e.,
di(U∗,z∗,θ) =±λ for some i ∈ ZN .

It should be remarked that our method is useful not only
in the aforementioned special cases but also whenever U∗ is
sparse. More specifically, even if ∂ χ∗ is a singleton, the KKT
condition is still an inclusion relation, and consequently,
conventional IOC/IRL methods are not applicable. ◁

B. Sufficient conditions for differentiability

This subsection provides sufficient conditions for the non-
singularity assumption. The proof of the theorem is presented
in Appendix I.

Assumption 2: ℓ is strongly convex2 wrt. U and g is
convex wrt. U . ◁

Assumption 3: Denote the index set of active constraints
by I := {i ∈ Zni | gi(U∗) = 0} and the support of U∗ by
S := { j ∈ ZN | U∗

j ̸= 0}. Then, a matrix
[
(Jg)I S ;L:S

]
is

column full rank where Jg := ∂g
∂U (U∗). ◁

Theorem 1: Consider the sparse optimal control problem
(2) under Assumptions 2 and 3. Then, χ∗ satisfying (13) is
unique. Furthermore, if ϕ is the Fischer–Burmeister function
ϕfb defined as (12), then Assumption 1 holds true. ◁

Remark 3: We denote the Clarke Jacobian of Sγλ (·) at
ξ :=U∗− γd(U∗,z∗,θ) by ∂S and that of φ at (g(U∗),η∗)
by ∂φ . If ϕ is ϕfb, as in Theorem 1, [Jχ Jθ ] ∈ ∂F is fully
parameterized by D ∈ ∂S and [φ g φ η ] ∈ ∂φ as follows:

Jχ =


I −D+ γDHℓ γD 0 0

Hg −I JTg LT

φ gJg 0 φ η 0
L 0 0 0

 , (16)

Jθ =

[
γD

∂ (∇Uℓ)

∂θ
; 0 ; 0 ; 0

]
(17)

2The function f : Rn →R is strongly convex if, for some ε ∈R>, f (x)−
ε∥x∥2

2 is convex wrt. x.

Algorithm 1 Calculate U∗(θ) and ∂U∗
∂θ

(θ)

Require: x0,θ
1: obtain χ∗ satisfying (13)
2: select D ∈ ∂S, [φ g φ η ] ∈ ∂φ and get Jχ ,Jθ by (16)–(17)
3: calculate Jχ∗ = −(Jχ)−1Jθ and partition it as Jχ∗ =

[JU∗ ;Jz∗ ;Jη∗ ;Jν∗ ] where JU∗ ∈ RN×p

4: return U∗,JU∗

where Hℓ,Hg
i denote Hessian matrices of ℓ,gi at (U∗,θ) wrt.

U and Hg := ∑i η∗
i Hg

i . Moreover, ∂S and ∂φ are expressed
as follows:

∂S =
{

diagi(vi) ∈ RN×N∣∣vi ∈ ∂ s(ξi)
}
,

∂ s(v) :=


{1} if |v|> γλ ,

{0} if |v|< γλ ,

{a ∈ R|0 ≤ a ≤ 1} if |v|= γλ ,

∂φ =

{[
diagi(−ai)
diagi(bi)

]T∣∣∣∣∣[ai bi] ∈ ∂ϕfb(−gi(U∗),η∗
i )

}
,

∂ϕfb(a,b) :=


{[0 1]} if a > 0,b = 0,
{[1 0]} if a = 0,b > 0,
D if a = b = 0,

D :=
{
[a b] ∈ R1×2∣∣(a−1)2 +(b−1)2 ≤ 1

}
.

See Proposition 3.1 in [10] for the expression of ∂ϕfb. ◁

C. Framework of differentiable sparse optimal control

Proposition 1 provides a method for obtaining the sensi-
tivity of sparse optimal inputs. We propose Algorithm 1 to
calculate the sparse optimal input U∗(θ) and its sensitivity
∂U∗
∂θ

(θ). χ∗ satisfying (13) can be determined numerically
using the Newton-Raphson method [11] or by solving (2) us-
ing the alternating direction method of multipliers (ADMM)
[4]. The computational burden of obtaining (Jχ)−1 can be
reduced by eliminating z using the equation

z =
(

∂g
∂U

(U)

)T

η +LT
ν .

The implications of Assumptions 2 and 3 are investigated in
the following section.

Remark 4: A widely used alternative of φ(g(U∗),η∗) = 0
is g(U∗)⊙ η∗ = 0 [2]. Let F̃(χ,θ) denote the function
obtained when φ(g(U),η) in (14) is altered by g(U)⊙η .
Additionally, let the Clarke Jacobian of F̃ at (χ∗,θ) be
denoted by ∂ F̃ . Then, [J̃χ J̃θ ] ∈ ∂ F̃ is fully parametrized
by D ∈ ∂S, and the relation between [Jχ Jθ ] ∈ ∂F and
[J̃χ J̃θ ] ∈ ∂ F̃ is given as follows:

J̃θ = Jθ , J̃χ = Diag(I, I,Λ, I)Jχ ,

Λi j :=


gi(U∗) if i = j, gi(U∗)< 0, η∗

i = 0,
−η∗

i if i = j, gi(U∗) = 0, η∗
i > 0,

0 otherwise,



where Diag(I, I,Λ, I) denotes a block diagonal matrix whose
diagonal block elements are I ∈RN×N , I ∈RN×N , Λ∈Rni×ni ,
and I ∈Rne×ne in order from the upper left to the lower right.
Λ is nonsingular if and only if the inequality constraints
satisfy strict complementarity. Thus, if F̃(χ∗,θ) = 0 is used
instead of (13), the strict complementarity of inequality
constraints is required for differentiability as well as the
assumptions in Theorem 1. ◁

Remark 5: Smoothing via slack variables [12], [13] also
enables us to differentiate sparse optimal control. However,
this increases the number of variables by 3N, which increases
the computational load of finding the resulting KKT point
and matrix inversion. ◁

IV. IMPLICATIONS OF THE ASSUMPTIONS

This section discusses the implications of the previously
introduced sufficient conditions for differentiability.

A. Convexity of optimal control problem

This subsection provides two situations in which ℓ and g
satisfy Assumption 2.

1) Linear plant case: Suppose that the plant model is
linear, i.e., represented by f (x,u) = Apx+Bpu and h(x,u) =
Cpx+Dpu in (1). In this case, the function M is linear, i.e.,
M(U,x0)= Āpx0+B̄pU for appropriate matrices, Āp ∈RT m×n

and B̄p ∈ RT m×N . Thus, Assumption 2 is fulfilled when the
following two conditions hold true:

• ℓ̂ is convex wrt. (U,Y ) and strongly convex wrt. U .
• ĝ is convex wrt. (U,Y ).
2) Nonlinear plant case: Even when the plant model is

nonlinear, we can ensure convexity by adding a nondecreas-
ing property, as in ICRNN [14]. Specifically, Assumption 2
is fulfilled when the following three conditions hold true:

• f and h are convex wrt. (x,u) and nondecreasing wrt.
x.

• ℓ̂ is convex wrt. (U,Y ), strongly convex wrt. U , and
nondecreasing wrt. Y .

• ĝ is convex wrt. (U,Y ) and nondecreasing wrt. Y .

B. Constraint qualification and local equivalence

This subsection discusses an implication of Assumption
3 as well as investigates the theoretical properties of the
equation system (13).

Consider the solution (χ ′,θ ′) to (13). Because −1≤ vi ≤ 1
for every element v ∈ ∂ r(U) and i ∈ ZN , the KKT condition
(7) implies −λ ≤ di(U ′,z′,θ ′) ≤ λ . Let us divide the index
set ZN into the following three subsets:

I + :=
{

i ∈ ZN | di(U ′,z′,θ ′)+λ = 0
}
, (18)

I − :=
{

i ∈ ZN | di(U ′,z′,θ ′)−λ = 0
}
, (19)

I 0 :=
{

i ∈ ZN | −λ < di(U ′,z′,θ ′)< λ
}
. (20)

We define two vectors ρ,σ ∈ RN as follows:

ρi =


1 if i ∈ I +,

−1 if i ∈ I −,

0 if i ∈ I 0,

σi =


0 if i ∈ I +,

0 if i ∈ I −,

1 if i ∈ I 0.

Consider a smooth optimization problem

Û∗(θ) = arg min
U∈C∩Ĉ

ℓ(U,θ)+λρ
TU, (21)

Ĉ :=
{

U ∈ RN | ρ ⊙U ≥ 0, σ ⊙U = 0
}
. (22)

Compared with (2), the ℓ1-regularization term is relaxed to
the affine function; instead, the feasible set is limited to Ĉ .

The KKT condition states that, for the optimal input Û∗,
there exist µ∗, η̂∗, and ν̂∗ such that χ̂∗ = [Û∗; ẑ∗; η̂∗; ν̂∗]
satisfies the following equation:

F̂(χ̂∗,µ∗,θ) = 0, (23)

F̂(χ,µ,θ) :=


d(U,z,θ)+λρ +(σ −ρ)⊙µ

ψ(U,µ)

−z+
(

∂g
∂U (U)

)T
η +ATν

φ(g(U),η)
LU +b

 , (24)

ψi(U,µ) =

{
ϕ(ρiUi,µi) if i ∈ I +∪I −,

Ui if i ∈ I 0.
(25)

Theorem 2: Consider (χ ′,θ ′) satisfying (13), and consider
the smoothed optimization problem (21). We define I +,
I −, and I 0 by (18)–(20) and N ⊂ RK+p as follows:

N :=

[χ∗;θ ]

∣∣∣∣∣∣∣
di(U,z,θ)< λ (i ∈ I +)

di(U,z,θ)>−λ (i ∈ I −)

−λ < di(U,z,θ)< λ (i ∈ I 0)

 .

Then, if [χ∗;θ ] ∈ N and F(χ∗,θ) = 0, there exists µ∗

satisfying F̂(χ∗,µ∗,θ) = 0. Conversely, if [χ̂∗;θ ] ∈ N and
F̂(χ̂∗,µ∗,θ) = 0, then F(χ̂∗,θ) = 0. ◁
The proof is given in Appendix II. This theorem indicates
that the equation (13) is locally equivalent to the KKT
condition (24) for the smooth optimization problem (21),
which is equivalent to the sparse optimal control problem (2).
The LICQ for (21) requires that the matrix

[
(Jg)I : ;L; IS :

]
is column full rank. In fact, this requirement is equivalent to
Assumption 3.

V. NUMERICAL EXAMPLE

This section demonstrates the IOC of sparse control using
our framework of differentiable sparse optimal control.

A. Mimicking sparse control via IOC

We apply the proposed method to Example 1 for the
following linear time-invariant system with r = m = 2

f (x,u) = Ax+Bu, h(x,u) =Cx, t = 0, . . . ,30

A =


1 0.1 0.0 0.0

−0.12 0.9 0.08 0.04
0 0 1 0.1

0.1 0.05 −0.1 0.95

 , B =


1 0
0 0
0 0.8
0 0

 ,

C =

[
0 1 0 0
0 0 0 1

]
with inequality constraints −1 ≤ u(t)i ≤ 1 (i = 1,2, t =

0, . . . ,30) and equality constraints ∑i ∑t u(t)i = 0, λ = 1.
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Fig. 1. Expert’s sparse control. The expert’s trajectory and uncontrolled
trajectory are depicted on the left, and the expert’s input is depicted on the
right.
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Let the parameter θ = [r1;r2;q1;q2] be nonnegative weights
(implemented using absolute values) and ℓ̂ as follows:

ℓ̂(U,Y,θ) =
30

∑
t=0

2

∑
i=1

ri

(
u(t)i

)2
+

2

∑
i=1

qi

(
y(30)

i

)2
. (26)

This cost function expresses the trade-off relationship be-
tween reducing the input power and bringing the final output
closer to the origin using the control input. It also determines
the degree of sparsity of the input because the scale of ri and
qi determines the ratio of ℓ̂(U,Y,θ) to r(U). We sampled
100 initial states {xd

0}100
d=1 from a uniform distribution over a

rectangular region [−10,10]4.
The expert’s actions are prepared using Ue

i :=U∗(θ e,xi
0)

with the expert’s parameter θ e := [2;1;60;30] so that the
optimal solution to (6) is θ e. Fig. 1 illustrates the expert’s
sparse optimal control U∗(θ e,x0) for the initial state x0 =
[−9;5;9;−8], as well as the controlled output Y e and the
uncontrolled output Y zero. The final value of the controlled
output is much closer to the origin than that of the uncon-
trolled output.

We expect that the parameter θ converges to the expert’s
parameter θ e using the gradient-based optimization algo-
rithm which solves (6). We calculate the sensitivity ∂U∗

∂θ
(θ)

as well as sparse optimal control U∗(θ) using Algorithm

1. Note that ℓ satisfies Assumption 2 if r1,r2 ̸= 0, and that
Assumption 3 holds true if U∗

i /∈ {0,1,−1} for some i ∈ ZN .
Let the initial parameter be set to θ = [1;1;10;10]. Mini-

batch learning using the Adam optimizer results in the acqui-
sition of the parameter value θ = [2.00;1.00;59.7;30.3]. Fig.
2 illustrates that the parameter θ asymptotically approaches
the expert’s parameter θ e. Fig. 3 depicts the logarithmic
scale plot of the imitation error in (6) for each batch,
demonstrating that the loss is reduced from approximately
101 to approximately 10−4, thereby proving the successful
replication of sparse control.

B. Accuracy and computational burden

To supplement the aforementioned IOC result, we com-
pare the sensitivity obtained using Algorithm 1 with that
obtained via numerical difference. Let θ = [2;1;60;30] and
x0 = [−9;5;9;−8]. The optimal input is the same as that
depicted in the right column of Fig. 1, which is sparse. The
sensitivity ∂U∗

∂θ
(θ) is calculated using Algorithm 1 as well

as using centered difference around θ with perturbation ε =
1.0× 10−2. When both values are compared elementwise,
the absolute value of the difference is observed to be at
most 4.0× 10−5. This verifies that the sensitivity of U∗(θ)
is calculated correctly. Note that the centered difference
requires solving the sparse optimal control problem 2p times,
where p denotes the dimension of θ , while the proposed
framework requires it to be solved only once.

VI. CONCLUSIONS

In this paper, a framework for differentiable sparse optimal
control was developed. Our method establishes new avenues
to differentiating nonsmooth optimal control. Future work in-
cludes extending our method to general nonsmooth problems
and deriving their differentiability conditions.

APPENDIX I
PROOF OF THEOREM 1

Proof: Consider the smoothed optimization problem
(21) around θ ′ = θ , where [χ∗;θ ] ∈ N . We take α ∈ R>

and modify the expression for the feasible set Ĉ as follows:

Ĉ =
{

U ∈ RN | αρ ⊙U ≥ 0, ασ ⊙U = 0
}
.

The KKT condition can be expressed as F̂(α)(χ̂∗,µ∗,θ) = 0,
where F̂(α) is a function replacing ψ with ψ(α) in (24) and
ψ(α)(U,µ) is given as follows:

ψ
(α)
i (U,µ) =

{
ϕ(αρiUi,µi) if i ∈ I +∪I −,

αUi if i ∈ I 0.

Let P̂ := αdiagi(ρi +σi). Note that P̂ is nonsingular. Then,
Assumptions 2 and 3 indicate that the smoothed problem
admits a unique KKT point. By the equivalence, the solu-
tion χ∗ of F(χ∗,θ) = 0 is unique. Theorem 2 implies the
existence of µ∗ satisfying F̂(α)(χ∗,µ∗,θ) = 0.

We now proceed to the proof of the latter claim. We denote
the Clarke Jacobian of ψ(α) at (χ∗,µ∗) by ∂ψ(α) and that



of F̂(α) at (Û∗,µ∗,θ) by ∂ F̂(α). ∂ψ is expressed as follows:

∂ψ
(α)=

{[
diagi(α(ρi +σi)ai)
diagi(α(ρi +σi)bi)

]T∣∣∣∣∣[ai bi] ∈ ∂ψi(ρiUi,µi)

i ∈ ZN

}
,

∂ψi(a,b) =

{
∂ϕfb(a,b) if i ∈ I +∪I −,

{[1 0]} if i ∈ I 0.

[Ĵχ Ĵθ ] ∈ ∂ F̂(α) is fully parameterized by [ψg ψµ ] ∈ ∂ψ(α)

and [φ g φ η ] ∈ ∂φ , and Ĵχ is expressed as follows:

Ĵχ =


P̂ Hℓ I 0 0

ψµ P̂ψg 0 0 0
0 Hg −I JTg LT

0 φ gJg 0 φ η 0
0 L 0 0 0


︸ ︷︷ ︸

=:Ĵ′


0 0 0 0 I
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0

 .

The 3rd diagonal block element of Ĵ′ is −I, and via ap-
propriate permutations, the Schur complement matrix of −I
corresponds to the KKT matrix of the smoothed optimization
problem (21), which is nonsingular by Theorem 3.4 in [10].
Therefore, Ĵ′ is nonsingular. The upper-left matrix of Ĵ′ is P̂,
and we have nonsingularity of its Schur complement matrix,
which is denoted by S. The straightforward calculation
reveals that S comprises the same components as Jχ , except
for the 1st-row block. Because ψg, ψµ , and P̂ are diagonal,
the 1st-row block of S, denoted by S1, is given as follows:

S1 = P̂
[
R −α−2ψµ 0 0

]
, R = ψ

g −α
−2

ψ
µ Hℓ.

We select α = γ−
1
2 . For simplicity, we denote d(U∗,z∗,θ)

by d. The claim follows from the existence of [ψg ψµ ]∈ ∂ψ

which satisfies D = I −ψg =−ψµ . To prove this existence,
we consider four cases, (A)–(D). (A) Ui − γdi > γλ , where
Dii = 1. In this case, the equivalence indicates that i ∈ I +,
U∗

i > 0, and µ∗
i = 0. Thus, [ψg

ii ψ
µ

ii ] = [0 − 1]. Therefore,
Dii = 1−ψ

g
ii =−ψ

µ

ii = 1 holds. (B) Ui − γdi <−γλ , where
Dii = 1. It follows that i ∈ I −, U∗

i < 0, and µ∗
i = 0. Thus,

[ψg
ii ψ

µ

ii ] = [0 −1]. Therefore, Dii = 1−ψ
g
ii =−ψ

µ

ii = 1 holds.
(C) |Ui − γdi| < γλ , where Dii = 0. We have U∗

i = 0 and
i ∈ I 0. Therefore, [ψg

ii ψ
µ

ii ] = [1 0] holds, which implies
Dii = 1−ψ

g
ii = −ψ

µ

ii = 0. (D) U∗
i − γdi = ±γλ , where 0 ≤

Dii ≤ 1. In this case, U∗
i = 0 and µ∗

i = 0. Thus, [ψg
ii ψ

µ

ii ]∈D .
Since {[1− a a] | 0 ≤ a ≤ 1} ⊂ D , we have [ψg

ii ψ
µ

ii ] such
that Dii = 1−ψ

g
ii =−ψ

µ

ii holds.

APPENDIX II
PROOF OF THEOREM 2

Lemma 1: ζ (γ)(a,b) := a−max{a−γb,0} is the comple-
mentarity function for any γ > 0. ◁

Proof: The relationship ζ (γ)(a,b) = 0 ⇔ a ≥ 0,b ≥
0,ab = 0 can be derived in a straightforward manner by
considering the two cases, b > 0 and b = 0.

Lemma 2: If v + a > x, then x = sa(v) ⇔ x = max{v −
a,0}. If v−a < x, then x = sa(v)⇔ x = min{v+a,0}. ◁

Proof: v+a > x = sa(v) implies sa(v)≥ 0 and v+a > 0.
Thus sa(v) =max{v−a,0}. Conversely, v+a> x=max{v−
a,0} implies x ≥ 0 and thus v+ a > 0. Therefore sa(v) =

max{v− a,0}. The former implies the latter because −v+
a >−x and sa(v) =−sa(−v).

We now proceed to the proof of Theorem 2.
Proof: If i ∈ I +, then [χ̂∗;θ ] ∈ N implies Û∗

i −
γdi(Û∗, ẑ∗,θ)+ γλ > Û∗

i . Thus, by Lemma 2, we have

Û∗
i = sγλ

(
Û∗

i − γdi(Û∗, ẑ∗,θ)− γλ
)

⇔ ζ
(γ)

(
Û∗

i ,di(Û∗, ẑ∗,θ)+λ
)
= 0

⇔ ζ
(γ)(Û∗

i ,µ
∗
i ) = 0, di(Û∗, ẑ∗,θ)+λ −µ

∗
i = 0.

Additionally, Lemma 1 implies ζ (γ)(Û∗
i ,µ

∗
i ) = 0 ⇔

ϕ(Û∗
i ,µ

∗
i ) = 0. If i ∈ I −, in a similar manner as before,

we have

Û∗
i = sγλ

(
Û∗

i − γdi(Û∗, ẑ∗,θ)− γλ
)

⇔ −ζ
(γ)

(
−Û∗

i ,−di(Û∗, ẑ∗,θ)+λ
)
= 0

⇔ ζ
(γ)(−Û∗

i ,µ
∗
i ) = 0, di(Û∗, ẑ∗,θ)−λ +µ

∗
i = 0

⇔ ϕ(−Û∗
i ,µ

∗
i ) = 0, di(Û∗, ẑ∗,θ)−λ +µ

∗
i = 0.

If i ∈ I 0, then both the aforementioned equivalences hold,
and thus Û∗

i = 0. In this case, the converse is trivial.
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