
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:11534 | https://doi.org/10.1038/s41598-023-38254-y

www.nature.com/scientificreports

Simple algorithm
for judging equivalence
of differential‑algebraic equation
systems
Shota Kato *, Chunpu Zhang  & Manabu Kano 

Mathematical formulas play a prominent role in science, technology, engineering, and mathematics
(STEM) documents; understanding STEM documents usually requires knowing the difference between
equation groups containing multiple equations. When two equation groups can be transformed into
the same form, we call the equation groups equivalent. Existing tools cannot judge the equivalence of
two equation groups; thus, we develop an algorithm to judge such an equivalence using a computer
algebra system. The proposed algorithm first eliminates variables appearing only in either equation
group. It then checks the equivalence of the equations one by one: the equations with identical
algebraic solutions for the same variable are judged equivalent. If each equation in one equation group
is equivalent to an equation in the other, the equation groups are judged equivalent; otherwise, non-
equivalent. We generated 50 pairs of equation groups for evaluation. The proposed method accurately
judged the equivalence of all pairs. This method is expected to facilitate comprehension of a large
amount of mathematical information in STEM documents. Furthermore, this is a necessary step for
machines to understand equations, including process models.

The volume of scientific literature has been increasing exponentially, and this trend continues with an average
doubling period of 15 years1 and is expected to continue. When writing a report on a particular topic, such as a
review of previous studies, it is necessary to survey the increasing amount of literature. The key to understanding
multiple documents and organizing the information is to recognize the difference among the documents, which
requires much toil. Automatically judging the equivalence of the information would be helpful for efficiently
processing a large number of documents.

Equations representing the relationships between variables play a central role in understanding documents of
science, technology, engineering, and mathematics (STEM). Multiple equations are often used as a single entity to
describe the relationship between variables. It is, therefore, crucial to recognize the difference between equation
groups consisting of two or more equations when understanding STEM documents. A physical model is a typical
example of an equation group. For example, suppose a researcher wants to build a physical model. Before building
the model, the researcher surveys previous studies and identifies the differences among the multiple models in
the previous studies, which is an arduous task. Several studies have dealt with a text in the chemical engineering
field using natural language processing techniques2–4, but no studies have aimed to reduce this kind of effort.

Since a variable is sometimes expressed by different symbols among documents, we have to extract variable
definitions5–7 and unify the variable symbols’ representations8 before judging the equivalence of equation groups.
Such a method can be developed independently of the equivalence judgment; thus, we assume that different
symbols do not represent the same variable in this study.

In order to judge the equivalence of equation groups, computers must grasp the meanings of mathematical
formulas. Converting natural language into vectors is one of the methods for computers to handle the meanings
of natural language, and recent studies utilize neural network models, such as Word2Vec9, Transformer10, and
Bidirectional Encoder Representations from Transformers (BERT)11. Similarly, several studies represent math-
ematical formulas with neural network models12–14. Mansouri et al.12 defined a similarity between two formulas
based on their appearances, but similar-looking formulas do not necessarily perform the same calculation. For
example, the similarity between a+ b = 0 and a− b = 0 is higher than that between a+ b = 0 and a = −b

OPEN

Department of Systems Science, Kyoto University, Yoshida‑honmachi, Sakyo‑ku, Kyoto 606‑8501, Japan. *email:
shota@human.sys.i.kyoto-u.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-38254-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:11534 | https://doi.org/10.1038/s41598-023-38254-y

www.nature.com/scientificreports/

based on the models by Mansouri et al.12. The existing neural network models, which focus on the appearance
of formulas, do not work for the equivalence judgment of equation groups.

Another approach for handling the meanings of mathematical formulas in computers is encoding the formu-
las with special markup languages such as Content Mathematical Markup Language (MathML)15 and OMDoc16.
However, such markup is rarely used to publish mathematical knowledge17. The commonly used methods for
notating mathematical expressions are LaTeX for papers and Presentation MathML15 for the Web.

The most effective way for computers to comprehend formulas’ meanings is to use computer algebra systems
(CASs). Formula transformations, for example, from LaTeX to the format usable in CASs, are well-studied in the
CASs literature18,19. Further, CASs, such as Mathematica and Maple, have LaTeX input support.

CASs can solve equations and judge the equivalence of two equations by comparing their solutions for one
variable. Similarly, if two equation groups are solvable for one variable, CASs can judge their equivalence by
comparing their solutions. However, when one of two equation groups to be compared is not solvable for one
variable, CASs alone cannot correctly judge their equivalence. Physical models are commonly represented by
combinations of differential equations and algebraic equations, called differential-algebraic equation (DAE)
systems. Therefore, it is essential to address this issue for machines to compare equation groups contained in
documents related to chemical engineering.

In this study, we propose a method for solving this problem. The proposed method uses a computer algebra
system to eliminate variables contained only in either equation group and judge whether each equation in one
equation group is equivalent to an equation in the other. We generate 50 equivalent and non-equivalent pairs of
equation groups and evaluate the performance of our proposed method.

Methods
Equivalence judgment methods.  Figure 1 schematically presents our proposed method for judging the
equivalence of two equation groups. The algorithm 1) eliminates variables, 2) checks whether two equation
groups have the same set of variables, and 3) judges the equivalence between each equation in one equation
group and each equation in the other equation group. If two equation groups share the same set of variables
after variable elimination and each equation in one equation group is equivalent to an equation in the other, the
equation groups are judged equivalent; otherwise, they are judged non-equivalent.

Our algorithm utilizes a CAS to (1) solve equations, (2) substitute formulas into variables to eliminate the
variables, and (3) judge whether two formulas are equivalent.

In this study, we assume that two equivalent equations are solvable for any variable, and each number of
solutions for the variable is one, that is, the solution for the variable is unique.

Equivalence judgment of equations.  Two equivalent equations have to satisfy the following requirements:

•	 The equations have the same set of variables.
•	 The solutions of the equations for any variable are the same.

Figure 1.   A schematic illustration of the algorithm for judging the equivalence of two equation groups. EG
represents an equation group.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:11534 | https://doi.org/10.1038/s41598-023-38254-y

www.nature.com/scientificreports/

We propose Algorithm 1 to sequentially check the above points and judge the equivalence of two equations,
eA and eB . In Algorithm 1, the sets of variables of eA and eB , VeA and VeB , are compared at first (Lines 1 and 2).
The algorithm then checks whether eA and eB are solvable for any variable, and each number of solutions for the
variable is one (Line 6). Here, ‘solvable’ means that a variable can be explicitly expressed by the other variables.
If the solutions of eA and eB , sA and sB , are the same, the two equations are judged equivalent (Lines 7–10). The
judgment was conducted by converting sA and sB to simple forms by conversion rules implemented in CAS,
such as Sympy’s simplify20 and Mathematica’s Simplify21, and determining if the obtained two formulas are the
same. The equations are judged non-equivalent if any variable’s solutions are different (Lines 11 and 12), either
equation cannot be solved, or the number of solutions is more than one (Line 17).

Variable elimination in equation group.  Before judging the equivalence of two equation groups, we eliminate
variables in each equation group so that the equation groups have the same set of variables. For example, equa-
tion groups {x + y = 0} and {x = t, y = −t} are easily judged to be equivalent when the variable t is removed
from the latter equation group. A variable is eliminated by solving an equation for the variables and substituting
its solution to the other equations with the variable as shown in Algorithm 2.

To eliminate a variable v in an equation group E, the algorithm first obtains the equations including v in E, Ev
(Line 1). If the ith equation in Ev , ei , is solvable for v and has only one solution for v, the solution of ei for v, s, is
computed (Lines 3–5). Then, s is substituted into v in all equations in Ev except ei , and the set of the substituted
equations E′v is obtained (Lines 6 and 7). Finally, the set of equations E∗ that does not include v is derived by
replacing Ev in E with E′v (Line 8).

Equivalence judgment of equation groups.  We judge not only the equivalence between two equations but also
the equivalence between two equation groups consisting of multiple equations. Equivalent two equation groups
after variable elimination need to satisfy the following two conditions:

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:11534 | https://doi.org/10.1038/s41598-023-38254-y

www.nature.com/scientificreports/

•	 The two equation groups share the same set of variables.
•	 Each equation in one equation group is equivalent to an equation in the other equation group.

Based on these conditions, we propose Algorithm 3 for equivalence judgment of two equation groups EA and
EB , whose sets of variables are VEA and VEB , respectively.

At first, the algorithm compares VEA and VEB to transform them into the same (Lines 1–19). Here, we define
between-shared variables Vbs as the variables shared between EA and EB , and within-shared variables Vws,Ei as
the variables shared between the equations within an equation group Ei (Lines 1–3). VEA and VEB are transformed
into the same by eliminating the variables appearing only in either equation group. Besides, variables that can be
eliminated in an equation group are included in its within-shared variables. Hence, the variables to be eliminated
in EA and EB , which are denoted by V∗

EA
 and V∗

EB
 , are the set difference of Vws,EA and Vbs and that of Vws,EB and

Vbs , respectively (Lines 4 and 5). When the variables appearing only in either equation group are not equal to
the variables to be eliminated, VEA and VEB cannot be transformed into the same. In such a case, EA and EB are
judged non-equivalent (Lines 6 and 7). Otherwise, the variables in V∗

EA
 and V∗

EB
 are eliminated one by one until

the two equation groups share the same set of variables (Lines 8–18).
After the variable elimination, the algorithm checks whether each equation in EA is equivalent to an equation

in EB and each number of the equations is the same. If all the equations in EA and EB have a one-to-one relation-
ship, the two equation groups are judged to be equivalent; otherwise, non-equivalent (Lines 20–24).

Figure 2 shows an example of two equivalent equation groups and their within-group shared variables and
between-group shared variables. Our proposed algorithm eliminates the variable k to transform the sets of the
variables in these equation groups into the same, checks whether each equation in EA is equivalent to an equa-
tion in EB , and judges they are equivalent.

Experimental settings.  We created 50 equivalent and non-equivalent pairs of equations and equation
groups based on physical models in the textbook about process control22 to evaluate the proposed method.
Tables 1 and 2 present 7 cases, and the entire cases can be found as Supplementary Information. The equations
used in the experiments are DAEs consisting of four arithmetic operations, elementary functions, and deriva-
tives.

We implemented our proposed algorithm in Python using a Python-based CAS, Sympy23. We prepared TeX-
formatted equation groups and parsed them using the ‘parse_latex’ function. Although the ‘parse_latex’ function
is incomplete, we confirmed that all equations were converted correctly to Sympy expressions.

Results and discussion
The proposed method correctly judged the equivalence of all 50 pairs. This section describes how the proposed
algorithm realized the correct judgment in each case.

Cases of equation equivalence judgment.  In Case 1, the sets of variables of the two equations were
different; thus, Algorithm 1 returned false (Lines 1 and 2).

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:11534 | https://doi.org/10.1038/s41598-023-38254-y

www.nature.com/scientificreports/

The two equations in Case 2 had the same set of variables and the same solutions for one variable, for example,
w1 ; thereby, Algorithm 1 returned true (Lines 9 and 10).

In Case 3 where the two equations had the same set of variables but the solutions for one variable were dif-
ferent, Algorithm 1 returned false (Lines 11 and 12).

Algorithm 1 fails to accurately judge the equivalence of equations in the following two cases: 1) when the
number of the solutions for one variable is more than one and 2) when either equation cannot be solved. The
first case occurs when all variables in an equation appear in a second or higher-order form. Since such equations
have been rarely seen in describing physical models, they would not be a problem in practice. The second case
appears when an equation consists only of partial derivatives of variables, where it is impossible to solve for a
single variable without information other than the equation. Developing a method to deal with such cases is a
subject for future work.

Cases of equation group equivalence judgment.  In Case 4, the sets of variables of the two equation
groups VA and VB were different. Algorithm 3 first derived the between-shared variables and within-shared vari-
ables of the two equation groups as follows (Lines 1–3):

Then, the variable appearing only in EB , V∗
EB

= {k} was obtained (Line 5), and k in EB was eliminated by substitut-
ing k = k0 exp (−E/(RT)) into −rA = kCA (Lines 13–15). After this variable elimination, VA and VB became the
same, and all equations in EA were equivalent to those in EB ; thus, Algorithm 3 returned true (Lines 20 and 21).

In Case 5, EA and EB had different sets of variables, and variable elimination was required in both equation
groups. As the same method in Case 4, Algorithm 3 eliminated the variables in two equation groups (Lines 9–18)
and returned true (Lines 20 and 21).

(1)Vbs = {rA, k0,E,R,T ,CA,V , t, q,C0, ρ,C,w,Ti ,Hr,U ,Tc},

(2)Vws,EA = {rA,T ,CA,V , t},

(3)Vws,EB = {rA, k,T ,CA,V , t}.

−rA = kCA

k = k0 exp (−E/(RT))

V
dCA

dt
= q(C0 − CA) + rAV

V ρC
dT
dt

= wC(Ti − T) +HrV rA + UA(Tc − T)

−rA = k0 exp (−E/(RT))CA

V
dCA

dt
= q(C0 − CA) + rAV

V ρC
dT
dt

= wC(Ti − T) +HrV rA + UA(Tc − T)

Vws,EA = {rA, T, CA, V, t}

Vws,EB = {rA, k, T, CA, V, t}

Vbs ={rA, k0, E,R, T,CA, V, t, q, C0,

ρ, C,w, Ti, Hr, U, Tc}

EA

EB

Figure 2.   An example two equivalent equation groups EA and EB . Vws,EA and Vws,EB are the within-shared
variables of EA and EB , and Vbs is the between-shared variables of the two equation groups.

Table 1.   Pairs of equations used in experiments.

Case Equation Equivalent

1 EA ρ
dV

dt
= w1 + w2 − w No

EB ρ
dVx

dt
= w1x1 + w2x2 − wx

2 EA ρ
dV

dt
= w1 + w2 − w Yes

EB w1 + w2 − w − ρ
dV

dt
= 0

3 EA ρ
dV

dt
= w1 + w2 − w No

EB ρ
dV

dt
= w1 − w2 − w

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:11534 | https://doi.org/10.1038/s41598-023-38254-y

www.nature.com/scientificreports/

Case 6 had two equation groups with different variables. However, the variables appearing only in either
equation group were not equal to the variable to be eliminated: for example, k0 appearing only in EA could not
be eliminated. Hence, EA and EB were judged non-equivalent (Lines 6 and 7).

In Case 7, the equation groups had different variables, and the sets of variables became the same after variable
elimination. The first equation in EA was not equivalent to any equation in EB ; thereby Algorithm 3 returned
false (Lines 22 and 23).

Algorithm 3 sometimes fails to precisely judge the equivalence when an equation group does not lead to a
single form after variable elimination. Assuming that we have an equation group as follows and k1 needs to be
eliminated.

The number of the solutions for k1 is three, and the equation groups after eliminating k1 depend on the solution
used for the substitution. Although such examples will need to be addressed in the future, the proposed method
is useful for judging the equivalence of many types of physical models as shown in Supplementary Information.
(Table S1)

(4)

k1 = k10 exp (−E1/(RT)),

k2 = k20 exp (−E2/(RT)),

dx1

dt
= −k1x1,

dx2

dt
= −k1x1 − k2x2.

Table 2.   Pairs of equation groups used in experiments.

Case Equation group Equivalent

4 EA

−rA = k0 exp (−E/(RT))CA

V
dCA

dt
= q(C0 − CA)+ rAV

VρC
dT

dt
= wC(Ti − T)+HrVrA + UA(Tc − T)

Yes

EB

−rA = kCA

k = k0 exp (−E/(RT))

V
dCA

dt
= q(C0 − CA)+ rAV

VρC
dT

dt
= wC(Ti − T)+HrVrA + UA(Tc − T)

5 EA
A
dh

dt
= qi − Cv

√
h

Cv = C0

√

g/gc

Yes

EB

P = Pa + ρgh/gc

q = C0

√

(P − Pa)/ρ

A
dh

dt
= qi − q

6 EA

−rA = k0 exp (−E/(RT))CA

V
dCA

dt
= q(C0 − CA)+ rAV

VρC
dT

dt
= wC(Ti − T)+HrVrA + UA(Tc − T)

No

EB
A
dh

dt
= qi − Cv

√
h

Cv = C0

√

g/gc

7 EA

−rA = kCA

k = k0 exp (−E/(RT))

V
dCA

dt
= q(C0 − CA)+ rAV

VρC
dT

dt
= wC(Ti − T)+HrVrA + UA(Tc − T)

No

EB

−rA = kC2
A

k = k0 exp (−E/(RT))

V
dCA

dt
= q(C0 − CA)+ rAV

VρC
dT

dt
= wC(Ti − T)+HrVrA + UA(Tc − T)

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:11534 | https://doi.org/10.1038/s41598-023-38254-y

www.nature.com/scientificreports/

Conclusion
We proposed a simple rule-based method for equation group equivalence judgment. The proposed method elimi-
nates variables that appear only in either equation group and checks whether all equations in the two equation
groups have a one-to-one relationship. The method was implemented in Python and a Python-based CAS, Sympy,
and 50 equivalent and non-equivalent pairs of equations and equation groups were used for experiments. The
results have shown that the proposed method can accurately judge whether two equation groups are equivalent.

The proposed method still has some limitations. The method has two assumptions to be removed: (1) any
equation is solvable for one variable, and (2) the number of solutions for each equation is one. Furthermore, the
equivalence judgment algorithm for equation groups (Algorithm 3) cannot correctly judge the equivalence of
some equation groups that do not lead to a single form after variable elimination as explained in Section 3.2. Our
future work will address these limitations by extending the method in this paper. Furthermore, we plan to expand
the scope to more types of calculations, such as summation symbol � , integral symbol

∫

 , vectors, and matrices.

Data availability
The datasets used in the current study are available at https://​github.​com/​human​sys-​lab/​dae-​equiv-​judge.

Code availability
The code used in the current study is available at https://​github.​com/​human​sys-​lab/​dae-​equiv-​judge.

Received: 7 December 2022; Accepted: 5 July 2023

References
	 1.	 Fortunato, S. et al. Science of science. Science 359, eaao0185. https://​doi.​org/​10.​1126/​scien​ce.​aao01​85 (2018).
	 2.	 Ho, D., Shkolnik, A. S., Ferraro, N. J., Rizkin, B. A. & Hartman, R. L. Using word embeddings in abstracts to accelerate metallocene

catalysis polymerization research. Comput. Chem. Eng. 141, 107026. https://​doi.​org/​10.​1016/j.​compc​hemeng.​2020.​107026 (2020).
	 3.	 Kumar, A., Ganesh, S., Gupta, D. & Kodamana, H. A text mining framework for screening catalysts and critical process parameters

from scientific literature - a study on hydrogen production from alcohol. Chem. Eng. Res. Design 184, 90–102. https://​doi.​org/​10.​
1016/j.​cherd.​2022.​05.​018 (2022).

	 4.	 Zaki, M., Jayadeva, & Krishnan, N. M. A. Extracting processing and testing parameters from materials science literature for
improved property prediction of glasses. Chem. Eng. Process. Process Intensif. 180, 108607. https://​doi.​org/​10.​1016/j.​cep.​2021.​
108607 (2022).

	 5.	 Lin, J., Wang, X., Wang, Z., Beyette, D. & Liu, J.-C. Prediction of mathematical expression declarations based on spatial, semantic,
and syntactic analysis. In Proceedings of the ACM Symposium on Document Engineering 2019, DocEng ’19, 1–10, https://​doi.​org/​
10.​1145/​33425​58.​33453​99 (Berlin, Germany, 2019).

	 6.	 Jo, H., Kang, D., Head, A. & Hearst, M. A. Modeling mathematical notation semantics in academic papers. In Findings of the
Association for Computational Linguistics: EMNLP 2021, 3102–3115, https://​doi.​org/​10.​18653/​v1/​2021.​findi​ngs-​emnlp.​266 (Punta
Cana, Dominican Republic, 2021).

	 7.	 Kang, D. et al. Document-level definition detection in scholarly documents: Existing models, error analyses, and future direc-
tions. In Proceedings of the First Workshop on Scholarly Document Processing, 196–206, https://​doi.​org/​10.​18653/​v1/​2020.​sdp-1.​
22 (Online, 2020).

	 8.	 Kato, S., Kanegami, K. & Kano, M. ProcessBERT: A pre-trained language model for judging equivalence of variable definitions in
process models*. IFAC-PapersOnLine 55, 957–962. https://​doi.​org/​10.​1016/j.​ifacol.​2022.​07.​568 (2022).

	 9.	 Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space. Preprint at arxiv:​1301.​
3781 (2013).

	10.	 Vaswani, A. et al. Attention is all you need. In Advances in neural information processing systems, 5998–6008 (2017).
	11.	 Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understand-

ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), 4171–4186, https://​doi.​org/​10.​18653/​v1/​N19-​1423 (Minneapolis, Min-
nesota, 2019).

	12.	 Mansouri, B. et al. Tangent-CFT: An embedding model for mathematical formulas. In Proceedings of the 2019 ACM SIGIR Inter-
national Conference on Theory of Information Retrieval, ICTIR ’19, 11–18, https://​doi.​org/​10.​1145/​33419​81.​33442​35 (Santa Clara,
CA, USA, 2019).

	13.	 Peng, S., Yuan, K., Gao, L. & Tang, Z. MathBERT: A pre-trained model for mathematical formula understanding. Preprint at arxiv:​
2105.​00377 (2021).

	14.	 Lewkowycz, A. et al. Solving quantitative reasoning problems with language models. Preprint at arxiv:​2206.​14858 (2022).
	15.	 Ausbrooks, R. et al. Mathematical markup language (MathML) version 3.0 2nd edn (W3C recommendation). Tech. Rep., W3C

(2014).
	16.	 Kohlhase, M. OMDoc – An open markup format for mathematical documents [version 1.2]: Foreword by Alan Bundy (Springer,

2006).
	17.	 Kamali, S. & Tompa, F. W. Improving mathematics retrieval. In DML 2009. Towards digital mathematics library, 37–48 (Grand

Bend, Ontario, Canada, 2009).
	18.	 Greiner-Petter, A., Schubotz, M., Cohl, H. S. & Gipp, B. Semantic preserving bijective mappings for expressions involving special

functions between computer algebra systems and document preparation systems. Aslib J. Inf. Manag.https://​doi.​org/​10.​1108/​
AJIM-​08-​2018-​0185 (2019).

	19.	 Greiner-Petter, A., Schubotz, M., Aizawa, A. & Gipp, B. Making presentation math computable: Proposing a context sensitive
approach for translating latex to computer algebra systems. Math. Softw.- ICMShttps://​doi.​org/​10.​1007/​978-3-​030-​52200-1_​33
(2020).

	20.	 Simplification - sympy 1.12 documentation. https://​docs.​sympy.​org/​latest/​tutor​ials/​intro-​tutor​ial/​simpl​ifica​tion.​html (2023).
Accessed: 03-June-2023].

	21.	 Simplify - Wolfram Language & System Documentation Center. https://​refer​ence.​wolfr​am.​com/​langu​age/​ref/​Simpl​ify.​html (2014).
[Accessed: 03-June-2023].

	22.	 Seborg, D. E., Edgar, T. F., Mellichamp, D. A. & Doyle, F. J. III. Process dynamics and control (John Wiley & Sons, 2010).
	23.	 Meurer, A. et al. SymPy: Symbolic computing in Python. PeerJ Comput. Sci. 3, e103. https://​doi.​org/​10.​7717/​peerj-​cs.​103 (2017).

https://github.com/humansys-lab/dae-equiv-judge
https://github.com/humansys-lab/dae-equiv-judge
https://doi.org/10.1126/science.aao0185
https://doi.org/10.1016/j.compchemeng.2020.107026
https://doi.org/10.1016/j.cherd.2022.05.018
https://doi.org/10.1016/j.cherd.2022.05.018
https://doi.org/10.1016/j.cep.2021.108607
https://doi.org/10.1016/j.cep.2021.108607
https://doi.org/10.1145/3342558.3345399
https://doi.org/10.1145/3342558.3345399
https://doi.org/10.18653/v1/2021.findings-emnlp.266
https://doi.org/10.18653/v1/2020.sdp-1.22
https://doi.org/10.18653/v1/2020.sdp-1.22
https://doi.org/10.1016/j.ifacol.2022.07.568
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3341981.3344235
http://arxiv.org/abs/2105.00377
http://arxiv.org/abs/2105.00377
http://arxiv.org/abs/2206.14858
https://doi.org/10.1108/AJIM-08-2018-0185
https://doi.org/10.1108/AJIM-08-2018-0185
https://doi.org/10.1007/978-3-030-52200-1_33
https://docs.sympy.org/latest/tutorials/intro-tutorial/simplification.html
https://reference.wolfram.com/language/ref/Simplify.html
https://doi.org/10.7717/peerj-cs.103

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:11534 | https://doi.org/10.1038/s41598-023-38254-y

www.nature.com/scientificreports/

Acknowledgements
This work was supported by JSPS KAKENHI Grant Number JP21K18849 and JP23K13595.

Author contributions
All authors contributed to the study conception and design. S.K. and C.Z. performed data collection and experi-
ments. The first draft of the manuscript was written by S.K. and all authors commented on previous versions of
the manuscript. All authors read and approved the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​38254-y.

Correspondence and requests for materials should be addressed to S.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-38254-y
https://doi.org/10.1038/s41598-023-38254-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Simple algorithm for judging equivalence of differential-algebraic equation systems
	Methods
	Equivalence judgment methods.
	Equivalence judgment of equations.
	Variable elimination in equation group.
	Equivalence judgment of equation groups.

	Experimental settings.

	Results and discussion
	Cases of equation equivalence judgment.
	Cases of equation group equivalence judgment.

	Conclusion
	References
	Acknowledgements

