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for judging equivalence 
of differential‑algebraic equation 
systems
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Mathematical formulas play a prominent role in science, technology, engineering, and mathematics 
(STEM) documents; understanding STEM documents usually requires knowing the difference between 
equation groups containing multiple equations. When two equation groups can be transformed into 
the same form, we call the equation groups equivalent. Existing tools cannot judge the equivalence of 
two equation groups; thus, we develop an algorithm to judge such an equivalence using a computer 
algebra system. The proposed algorithm first eliminates variables appearing only in either equation 
group. It then checks the equivalence of the equations one by one: the equations with identical 
algebraic solutions for the same variable are judged equivalent. If each equation in one equation group 
is equivalent to an equation in the other, the equation groups are judged equivalent; otherwise, non‑
equivalent. We generated 50 pairs of equation groups for evaluation. The proposed method accurately 
judged the equivalence of all pairs. This method is expected to facilitate comprehension of a large 
amount of mathematical information in STEM documents. Furthermore, this is a necessary step for 
machines to understand equations, including process models.

The volume of scientific literature has been increasing exponentially, and this trend continues with an average 
doubling period of 15  years1 and is expected to continue. When writing a report on a particular topic, such as a 
review of previous studies, it is necessary to survey the increasing amount of literature. The key to understanding 
multiple documents and organizing the information is to recognize the difference among the documents, which 
requires much toil. Automatically judging the equivalence of the information would be helpful for efficiently 
processing a large number of documents.

Equations representing the relationships between variables play a central role in understanding documents of 
science, technology, engineering, and mathematics (STEM). Multiple equations are often used as a single entity to 
describe the relationship between variables. It is, therefore, crucial to recognize the difference between equation 
groups consisting of two or more equations when understanding STEM documents. A physical model is a typical 
example of an equation group. For example, suppose a researcher wants to build a physical model. Before building 
the model, the researcher surveys previous studies and identifies the differences among the multiple models in 
the previous studies, which is an arduous task. Several studies have dealt with a text in the chemical engineering 
field using natural language processing  techniques2–4, but no studies have aimed to reduce this kind of effort.

Since a variable is sometimes expressed by different symbols among documents, we have to extract variable 
 definitions5–7 and unify the variable symbols’  representations8 before judging the equivalence of equation groups. 
Such a method can be developed independently of the equivalence judgment; thus, we assume that different 
symbols do not represent the same variable in this study.

In order to judge the equivalence of equation groups, computers must grasp the meanings of mathematical 
formulas. Converting natural language into vectors is one of the methods for computers to handle the meanings 
of natural language, and recent studies utilize neural network models, such as  Word2Vec9,  Transformer10, and 
Bidirectional Encoder Representations from Transformers (BERT)11. Similarly, several studies represent math-
ematical formulas with neural network  models12–14. Mansouri et al.12 defined a similarity between two formulas 
based on their appearances, but similar-looking formulas do not necessarily perform the same calculation. For 
example, the similarity between a+ b = 0 and a− b = 0 is higher than that between a+ b = 0 and a = −b 
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based on the models by Mansouri et al.12. The existing neural network models, which focus on the appearance 
of formulas, do not work for the equivalence judgment of equation groups.

Another approach for handling the meanings of mathematical formulas in computers is encoding the formu-
las with special markup languages such as Content Mathematical Markup Language (MathML)15 and  OMDoc16. 
However, such markup is rarely used to publish mathematical  knowledge17. The commonly used methods for 
notating mathematical expressions are LaTeX for papers and Presentation  MathML15 for the Web.

The most effective way for computers to comprehend formulas’ meanings is to use computer algebra systems 
(CASs). Formula transformations, for example, from LaTeX to the format usable in CASs, are well-studied in the 
CASs  literature18,19. Further, CASs, such as Mathematica and Maple, have LaTeX input support.

CASs can solve equations and judge the equivalence of two equations by comparing their solutions for one 
variable. Similarly, if two equation groups are solvable for one variable, CASs can judge their equivalence by 
comparing their solutions. However, when one of two equation groups to be compared is not solvable for one 
variable, CASs alone cannot correctly judge their equivalence. Physical models are commonly represented by 
combinations of differential equations and algebraic equations, called differential-algebraic equation (DAE) 
systems. Therefore, it is essential to address this issue for machines to compare equation groups contained in 
documents related to chemical engineering.

In this study, we propose a method for solving this problem. The proposed method uses a computer algebra 
system to eliminate variables contained only in either equation group and judge whether each equation in one 
equation group is equivalent to an equation in the other. We generate 50 equivalent and non-equivalent pairs of 
equation groups and evaluate the performance of our proposed method.

Methods
Equivalence judgment methods. Figure 1 schematically presents our proposed method for judging the 
equivalence of two equation groups. The algorithm  1) eliminates variables, 2) checks whether two equation 
groups have the same set of variables, and 3) judges the equivalence between each equation in one equation 
group and each equation in the other equation group. If two equation groups share the same set of variables 
after variable elimination and each equation in one equation group is equivalent to an equation in the other, the 
equation groups are judged equivalent; otherwise, they are judged non-equivalent.

Our algorithm utilizes a CAS to (1) solve equations, (2) substitute formulas into variables to eliminate the 
variables, and (3) judge whether two formulas are equivalent.

In this study, we assume that two equivalent equations are solvable for any variable, and each number of 
solutions for the variable is one, that is, the solution for the variable is unique.

Equivalence judgment of equations. Two equivalent equations have to satisfy the following requirements:

• The equations have the same set of variables.
• The solutions of the equations for any variable are the same.

Figure 1.  A schematic illustration of the algorithm for judging the equivalence of two equation groups. EG 
represents an equation group.
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We propose Algorithm 1 to sequentially check the above points and judge the equivalence of two equations, 
eA and eB . In Algorithm 1, the sets of variables of eA and eB , VeA and VeB , are compared at first (Lines 1 and 2). 
The algorithm then checks whether eA and eB are solvable for any variable, and each number of solutions for the 
variable is one (Line 6). Here, ‘solvable’ means that a variable can be explicitly expressed by the other variables. 
If the solutions of eA and eB , sA and sB , are the same, the two equations are judged equivalent (Lines 7–10). The 
judgment was conducted by converting sA and sB to simple forms by conversion rules implemented in CAS, 
such as Sympy’s  simplify20 and Mathematica’s  Simplify21, and determining if the obtained two formulas are the 
same. The equations are judged non-equivalent if any variable’s solutions are different (Lines 11 and 12), either 
equation cannot be solved, or the number of solutions is more than one (Line 17).

Variable elimination in equation group. Before judging the equivalence of two equation groups, we eliminate 
variables in each equation group so that the equation groups have the same set of variables. For example, equa-
tion groups {x + y = 0} and {x = t, y = −t} are easily judged to be equivalent when the variable t is removed 
from the latter equation group. A variable is eliminated by solving an equation for the variables and substituting 
its solution to the other equations with the variable as shown in Algorithm 2.

To eliminate a variable v in an equation group E, the algorithm first obtains the equations including v in E, Ev 
(Line 1). If the ith equation in Ev , ei , is solvable for v and has only one solution for v, the solution of ei for v, s, is 
computed (Lines 3–5). Then, s is substituted into v in all equations in Ev except ei , and the set of the substituted 
equations E′v is obtained (Lines 6 and 7). Finally, the set of equations E∗ that does not include v is derived by 
replacing Ev in E with E′v (Line 8).

Equivalence judgment of equation groups. We judge not only the equivalence between two equations but also 
the equivalence between two equation groups consisting of multiple equations. Equivalent two equation groups 
after variable elimination need to satisfy the following two conditions:
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• The two equation groups share the same set of variables.
• Each equation in one equation group is equivalent to an equation in the other equation group.

Based on these conditions, we propose Algorithm 3 for equivalence judgment of two equation groups EA and 
EB , whose sets of variables are VEA and VEB , respectively.

At first, the algorithm compares VEA and VEB to transform them into the same (Lines 1–19). Here, we define 
between-shared variables Vbs as the variables shared between EA and EB , and within-shared variables Vws,Ei as 
the variables shared between the equations within an equation group Ei (Lines 1–3). VEA and VEB are transformed 
into the same by eliminating the variables appearing only in either equation group. Besides, variables that can be 
eliminated in an equation group are included in its within-shared variables. Hence, the variables to be eliminated 
in EA and EB , which are denoted by V∗

EA
 and V∗

EB
 , are the set difference of Vws,EA and Vbs and that of Vws,EB and 

Vbs , respectively (Lines 4 and 5). When the variables appearing only in either equation group are not equal to 
the variables to be eliminated, VEA and VEB cannot be transformed into the same. In such a case, EA and EB are 
judged non-equivalent (Lines 6 and 7). Otherwise, the variables in V∗

EA
 and V∗

EB
 are eliminated one by one until 

the two equation groups share the same set of variables (Lines 8–18).
After the variable elimination, the algorithm checks whether each equation in EA is equivalent to an equation 

in EB and each number of the equations is the same. If all the equations in EA and EB have a one-to-one relation-
ship, the two equation groups are judged to be equivalent; otherwise, non-equivalent (Lines 20–24).

Figure 2 shows an example of two equivalent equation groups and their within-group shared variables and 
between-group shared variables. Our proposed algorithm eliminates the variable k to transform the sets of the 
variables in these equation groups into the same, checks whether each equation in EA is equivalent to an equa-
tion in EB , and judges they are equivalent.

Experimental settings. We created 50 equivalent and non-equivalent pairs of equations and equation 
groups based on physical models in the textbook about process  control22 to evaluate the proposed method. 
Tables 1 and 2 present 7 cases, and the entire cases can be found as Supplementary Information. The equations 
used in the experiments are DAEs consisting of four arithmetic operations, elementary functions, and deriva-
tives.

We implemented our proposed algorithm in Python using a Python-based CAS,  Sympy23. We prepared TeX-
formatted equation groups and parsed them using the ‘parse_latex’ function. Although the ‘parse_latex’ function 
is incomplete, we confirmed that all equations were converted correctly to Sympy expressions.

Results and discussion
The proposed method correctly judged the equivalence of all 50 pairs. This section describes how the proposed 
algorithm realized the correct judgment in each case.

Cases of equation equivalence judgment. In Case 1, the sets of variables of the two equations were 
different; thus, Algorithm 1 returned false (Lines 1 and 2).
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The two equations in Case 2 had the same set of variables and the same solutions for one variable, for example, 
w1 ; thereby, Algorithm 1 returned true (Lines 9 and 10).

In Case 3 where the two equations had the same set of variables but the solutions for one variable were dif-
ferent, Algorithm 1 returned false (Lines 11 and 12).

Algorithm 1 fails to accurately judge the equivalence of equations in the following two cases: 1) when the 
number of the solutions for one variable is more than one and 2) when either equation cannot be solved. The 
first case occurs when all variables in an equation appear in a second or higher-order form. Since such equations 
have been rarely seen in describing physical models, they would not be a problem in practice. The second case 
appears when an equation consists only of partial derivatives of variables, where it is impossible to solve for a 
single variable without information other than the equation. Developing a method to deal with such cases is a 
subject for future work.

Cases of equation group equivalence judgment. In Case 4, the sets of variables of the two equation 
groups VA and VB were different. Algorithm 3 first derived the between-shared variables and within-shared vari-
ables of the two equation groups as follows (Lines 1–3):

Then, the variable appearing only in EB , V∗
EB

= {k} was obtained (Line 5), and k in EB was eliminated by substitut-
ing k = k0 exp (−E/(RT)) into −rA = kCA (Lines 13–15). After this variable elimination, VA and VB became the 
same, and all equations in EA were equivalent to those in EB ; thus, Algorithm 3 returned true (Lines 20 and 21).

In Case 5, EA and EB had different sets of variables, and variable elimination was required in both equation 
groups. As the same method in Case 4, Algorithm 3 eliminated the variables in two equation groups (Lines 9–18) 
and returned true (Lines 20 and 21).

(1)Vbs = {rA, k0,E,R,T ,CA,V , t, q,C0, ρ,C,w,Ti ,Hr,U ,Tc},

(2)Vws,EA = {rA,T ,CA,V , t},

(3)Vws,EB = {rA, k,T ,CA,V , t}.

−rA = kCA

k = k0 exp (−E/(RT ))

V
dCA

dt
= q(C0 − CA) + rAV

V ρC
dT
dt

= wC(Ti − T ) +HrV rA + UA(Tc − T )

−rA = k0 exp (−E/(RT ))CA

V
dCA

dt
= q(C0 − CA) + rAV

V ρC
dT
dt

= wC(Ti − T ) +HrV rA + UA(Tc − T )

Vws,EA = {rA, T, CA, V, t}

Vws,EB = {rA, k, T, CA, V, t}

Vbs ={rA, k0, E,R, T,CA, V, t, q, C0,

ρ, C,w, Ti, Hr, U, Tc}

EA

EB

Figure 2.  An example two equivalent equation groups EA and EB . Vws,EA and Vws,EB are the within-shared 
variables of EA and EB , and Vbs is the between-shared variables of the two equation groups.

Table 1.  Pairs of equations used in experiments.

Case Equation Equivalent

1 EA ρ
dV

dt
= w1 + w2 − w No

EB ρ
dVx

dt
= w1x1 + w2x2 − wx

2 EA ρ
dV

dt
= w1 + w2 − w Yes

EB w1 + w2 − w − ρ
dV

dt
= 0

3 EA ρ
dV

dt
= w1 + w2 − w No

EB ρ
dV

dt
= w1 − w2 − w
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Case 6 had two equation groups with different variables. However, the variables appearing only in either 
equation group were not equal to the variable to be eliminated: for example, k0 appearing only in EA could not 
be eliminated. Hence, EA and EB were judged non-equivalent (Lines 6 and 7).

In Case 7, the equation groups had different variables, and the sets of variables became the same after variable 
elimination. The first equation in EA was not equivalent to any equation in EB ; thereby Algorithm 3 returned 
false (Lines 22 and 23).

Algorithm 3 sometimes fails to precisely judge the equivalence when an equation group does not lead to a 
single form after variable elimination. Assuming that we have an equation group as follows and k1 needs to be 
eliminated.

The number of the solutions for k1 is three, and the equation groups after eliminating k1 depend on the solution 
used for the substitution. Although such examples will need to be addressed in the future, the proposed method 
is useful for judging the equivalence of many types of physical models as shown in Supplementary Information. 
(Table S1)

(4)

k1 = k10 exp (−E1/(RT)),

k2 = k20 exp (−E2/(RT)),

dx1

dt
= −k1x1,

dx2

dt
= −k1x1 − k2x2.

Table 2.  Pairs of equation groups used in experiments.

Case Equation group Equivalent

4 EA

−rA = k0 exp (−E/(RT))CA

V
dCA

dt
= q(C0 − CA)+ rAV

VρC
dT

dt
= wC(Ti − T)+HrVrA + UA(Tc − T)

Yes

EB

−rA = kCA

k = k0 exp (−E/(RT))

V
dCA

dt
= q(C0 − CA)+ rAV

VρC
dT

dt
= wC(Ti − T)+HrVrA + UA(Tc − T)

5 EA
A
dh

dt
= qi − Cv

√
h

Cv = C0

√

g/gc

Yes

EB

P = Pa + ρgh/gc

q = C0

√

(P − Pa)/ρ

A
dh

dt
= qi − q

6 EA

−rA = k0 exp (−E/(RT))CA

V
dCA

dt
= q(C0 − CA)+ rAV

VρC
dT

dt
= wC(Ti − T)+HrVrA + UA(Tc − T)

No

EB
A
dh

dt
= qi − Cv

√
h

Cv = C0

√

g/gc

7 EA

−rA = kCA

k = k0 exp (−E/(RT))

V
dCA

dt
= q(C0 − CA)+ rAV

VρC
dT

dt
= wC(Ti − T)+HrVrA + UA(Tc − T)

No

EB

−rA = kC2
A

k = k0 exp (−E/(RT))

V
dCA

dt
= q(C0 − CA)+ rAV

VρC
dT

dt
= wC(Ti − T)+HrVrA + UA(Tc − T)
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Conclusion
We proposed a simple rule-based method for equation group equivalence judgment. The proposed method elimi-
nates variables that appear only in either equation group and checks whether all equations in the two equation 
groups have a one-to-one relationship. The method was implemented in Python and a Python-based CAS, Sympy, 
and 50 equivalent and non-equivalent pairs of equations and equation groups were used for experiments. The 
results have shown that the proposed method can accurately judge whether two equation groups are equivalent.

The proposed method still has some limitations. The method has two assumptions to be removed: (1) any 
equation is solvable for one variable, and (2) the number of solutions for each equation is one. Furthermore, the 
equivalence judgment algorithm for equation groups (Algorithm 3) cannot correctly judge the equivalence of 
some equation groups that do not lead to a single form after variable elimination as explained in Section 3.2. Our 
future work will address these limitations by extending the method in this paper. Furthermore, we plan to expand 
the scope to more types of calculations, such as summation symbol � , integral symbol 

∫

 , vectors, and matrices.
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