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A Bayesian method to forecast the occurrence time of a large-scale earthquake utilizing temporal information on
earthquakes with smaller magnitudes was proposed in our recent study for a marked point process that simulates seismic
activity. In this paper, we show the extension of this Bayesian approach in the spatiotemporal marked point process,
aiming to yield a forecasting method for both the occurrence time and location of the next large earthquake. We
particularly discuss the contribution of the correlations between the spatial position and the inter-event time interval at
different magnitude scales to probabilistic forecasting.

Probabilistic evaluation of future large-scale earthquake
occurrence is one of the important issues for disaster
prevention. One approach is to model seismic activity as a
nonstationary Poisson process and evaluate the risk using the
conditional intensity function.1–3) The Epidemic Type After-
shock Sequence (ETAS) model2,4–6) gives one such prominent
modeling; its model parameter values are estimated from past
seismic data including information about small-scale earth-
quakes.2,4–7) The conditional intensity function with those
determined parameter values allows us to quantitatively
evaluate the risk of earthquake occurrence at a certain time,
spatial position, and magnitude1–5,8) and to recognize deviating
seismic activity.6) The conditional intensity function is mostly
expressed as the product of two functions; a function that
depends only on time and spatial position, and another function
only on magnitude.1–3,8) This is based on the assumption that
a seismicity pattern does not affect the spatiotemporal occur-
rence of its subsequent large-size earthquake. Considering
correlations between a significant shock and seismicity ahead
of it6,8–11) is important for improving forecasting.8)

Another approach without such an assumption and targeting
large earthquakes is to evaluate the timing of a major
earthquake using the inter-event time distribution at a high
magnitude threshold; the risk of large earthquake occurrence
timing is evaluated by hazard function based on the inter-event
time distribution obtained from seismic history.1,3,12) Although
this approach is a basis for actual forecasting,13) to the authors’
knowledge, this method has not been able to utilize the
information on smaller earthquakes than the threshold
magnitude, which is used in the first approach.

Thus, we previously suggested a new Bayesian approach
for forecasting the occurrence time of a significant earth-
quake, which improves the second approach by utilizing the
information on such small-scale earthquakes.7) This method
focuses on the relationship between the inter-event time
intervals (hereafter referred to simply as time intervals) in the
point processes at two threshold magnitudes set in a marked
point process that represents seismic activity [Fig. 1(a)].7,14)

Bayes’ theorem has been considered for such time intervals;7)

its extension, Bayesian updating, has also been considered.7)

Bayesian updating provides a method to forecast the timing
of the next event whose magnitude exceeds the upper
threshold by utilizing the information of time intervals at the
lower magnitude threshold.7) Thus, this extended method
provides a framework for forecasting that can take into

account the effect of temporal patterns on the subsequent
major event.7) In this paper, we further extend the scope of
this Bayesian approach to the spatiotemporal marked point
process [Figs. 1(a) and 1(b)] to forecast not only the
occurrence time but the spatial position of a significant
future event incorporating the spatial pattern of epicenters.
The main objective of this study is to propose a mathematical
framework for the Bayesian approach in spatiotemporal
marked point processes, which yields an alternative Bayesian
method to the preceding study using the Bayesian network.15)

Based on the theory, we discuss possible contributions of
spatiotemporal interactions for forecasting.16)

First, the conditional probability for the spatiotemporal
marked point process is defined (Fig. 1). Let �M (�m) represent
the length of an inter-event time interval at upper magnitude
threshold M [lower magnitude threshold m ð< M;M :¼ m þ
�mÞ]. Further, let Xð2 SÞ (xð2 SÞ) represent the spatial
position of the event at the right (left) end of an upper (lower)
inter-event time interval (Fig. 1). Here S is a closed region on
the earth’s surface. Although there is no restriction on its size,
we assume that S encompasses seismogenic zones as centrally
as possible; if a seismogenic zone lies on the edge of S, only
a limited portion of aftershocks following a mainshock at X
can be considered, potentially impeding precise probabilistic
evaluation within this theory. Hereafter, the pair of the above-
defined spatial position and time interval is referred to as the
(spatiotemporal) pair; fX; �Mg is referred to as the upper
(spatiotemporal) pair, and fx; �mg the lower (spatiotemporal)
pair. When the upper pair fX; �Mg includes the lower pair
fx; �mg as shown in Fig. 1(a), these constitute the combina-
tion of the upper and lower spatiotemporal pairs
fx; �m;X; �Mg. The magnitude of the event at x is exception-
ally greater than M when the lower pair is located at the
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Fig. 1. (Color online) Schematic of a spatiotemporal seismic activity
represented by (a) a marked point process with a magnitude as a mark,
and (b) corresponding jumps of events in the spatial area S. The upper and
lower spatiotemporal pairs fX; �Mg and fx; �mg are shown, and these form
the combination fx; �m;X; �Mg.
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leftmost in an upper pair, though otherwise, it is always less
than or equal to M. Thus, pmMðx; �mjX; �MÞ represents the
spatiotemporal conditional probability density that a lower
spatiotemporal pair is fx; �mg under the condition that it is
included in the upper spatiotemporal pair fX; �Mg.

We consider Bayes’ theorem for the above-defined
spatiotemporal conditional probability. Let dNmMðx; �m;
X; �MÞ represent the number of the combinations of the
upper and lower spatiotemporal pairs such that the upper pair
falls within ½X;X þ dXÞ and ½�M; �M þ d�MÞ, and the lower
pair included in it falls within ½x; x þ dxÞ and ½�m; �m þ d�mÞ,
in the time series. For simplicity, dNmMðx; �m;X; �MÞ is
referred to as the number of the combination fx; �m;X; �Mg
without mentioning the infinitesimal intervals, and hereafter,
other numbers of spatiotemporal pairs or combinations
denoted by dN are referred to in the same way.
dNmMðx; �m;X; �MÞ can be expressed in two ways:

dNmMðx; �m;X; �MÞ=dx d�m dX d�M

¼ NMpMðX; �MÞ �M
hh�miiX;�M

pmMðx; �mjX; �MÞ

¼ Nmpmðx; �mÞpMmðX; �Mjx; �mÞ: ð1Þ
Here, NM (Nm) represents the total number of upper (lower)
spatiotemporal pairs in the time series. pMðX; �MÞ (pmðx; �mÞ)
yields the joint probability density that the upper (lower) pair
is fX; �Mg (fx; �mg). pMmðX; �Mjx; �mÞ yields the inverse
probability density that the upper pair is fX; �Mg under the
condition that the lower pair fx; �mg is found within it.
hh�miiX;�M represents the average time interval of the
spatiotemporal conditional probability:

hh�miiX;�M :¼
Z
S

dx

Z 1

0

d�m�mpmMðx; �mjX; �MÞ:

From Eq. (1), Bayes’ theorem is derived as:
pMmðX; �Mjx; �mÞ

¼ 10�b�m
�M

hh�miiX;�M
pmMðx; �mjX; �MÞ

pmðx; �mÞ pMðX; �MÞ; ð2Þ

where the GR law17) (NM=Nm ¼ 10�b�m) is used.
The normalization condition of the inverse probability

in Eq. (2) can be checked using the integral equation with
the spatiotemporal conditional probability in its kernel, which
is derived below. Let dNmðx; �mÞ represent the number of
the spatiotemporal pairs fx; �mg in the time series, then
dNmðx; �mÞ can be expressed in two ways:

dNmðx; �mÞ=dx d�m ¼ Nmpmðx; �mÞ

¼ NM

Z
S

dX

Z 1

0

d�M
�MpmMðx; �mjX; �MÞ

hh�miiX;�M
pMðX; �MÞ:

Thus, the integral equation that connects the probability
density functions of the upper and lower pair is derived as:

pmðx; �mÞ ¼ 10�b�m

�
Z
S

dX

Z 1

0

d�M
�MpmMðx; �mjX; �MÞ

hh�miiX;�M
pMðX; �MÞ: ð3Þ

The inverse probability density function for only upper and
lower time intervals or only upper and lower spatial positions
can be derived from the joint probability for the combination
of an upper and a lower spatiotemporal pair. Let pmMðx; �m;
X; �MÞ represent the joint probability density of the
combination fx; �m;X; �Mg. The total number of the

combinations of an upper and a lower spatiotemporal pair
in the time series is Nm, and therefore, pmMðx; �m;X; �MÞ can
be expressed in two ways using Eq. (1) as follows:

pmMðx; �m;X; �MÞ ¼ dNmMðx; �m;X; �MÞ
Nmdx d�m dX d�M

¼ 10�b�m
�M

hh�miiX;�M
pmMðx; �mjX; �MÞpMðX; �MÞ

¼ pmðx; �mÞpMmðX; �Mjx; �mÞ: ð4Þ
Thus, Bayes’ theorem for time intervals already obtained in
the previous study7) can be derived by marginalizing the joint
probability in Eq. (4) for x and X as:

pMmð�Mj�mÞ ¼ 10�b�m
�M

hh�mii�M
pmMð�mj�MÞ
pmð�mÞ pMð�MÞ:

Further, the integral equation for time intervals introduced in
the previous study7,14) can also be derived by marginalizing
Eq. (3) for x and X, noting that the integrand of the r.h.s. of
Eq. (3) is the joint probability in Eq. (4), as:

pmð�mÞ ¼ 10�b�m
Z 1

0

d�M
�M

hh�mii�M
pmMð�mj�MÞpMð�MÞ:

Bayes’ theorem for spatial positions can also be derived.
First, we define the following quantity:

hnðx; �mÞiX;�M :¼ �M
hh�miiX;�M

pmMðx; �mjX; �MÞ: ð5Þ

This is the average number of specific lower spatiotemporal
pairs fx; �mg included in the upper pair fX; �Mg. Bayes’ theo-
rem for the spatial position is obtained by marginalizing the
joint probability in Eq. (4) for �m and �M while using Eq. (5).

pMmðXjxÞ ¼ 10�b�m
hnðxÞiX
pmðxÞ pMðXÞ: ð6Þ

Here, hnðxÞiX is the average number of such events with
magnitude 2 ðm;M� that occur at x and are in between two
consecutive large events with magnitudes > M, the latter of
which occurs at X. The integral equation for the spatial
position can be derived by marginalizing Eq. (3) for �m and
�M using Eq. (5) and noting again that the integrand in
Eq. (3) is the joint probability in Eq. (4), as follows.

pmðxÞ ¼ 10�b�m
Z
S

dXhnðxÞiXpMðXÞ: ð7Þ

The normalization condition for the inverse probability in
Eq. (6) can be checked using Eq. (7). In particular, consider
the case where spatial positions and time intervals are
independent. In this case, the average number of lower
intervals in an upper interval is 10b�m according to the
GR law, and therefore, hnðxÞiX ¼ 10b�mpmMðxjXÞ. Thus,
Eqs. (6) and (7) are simplified as:

pMmðXjxÞ ¼ pmMðxjXÞ
pmðxÞ pMðXÞ;

pmðxÞ ¼
Z
S

dXpmMðxjXÞpMðXÞ:

We extend Bayes’ theorem to Bayesian updating. Here-
after, for simplicity, the sequence of consecutive lower
spatiotemporal pairs fx1; �ð1Þm ; . . . ; xn; �

ðnÞ
m g, such that all the

pairs are included in the same upper pair, is denoted by
fx1:n; �ð1:nÞm g (Fig. 2). When this sequence is included in
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the upper pair fX; �Mg, these constitute the combination
of the upper and lower pairs fx1:n; � ð1:nÞm ;X; �Mg. Let
dNmMðx1:n; �ð1:nÞm ;X; �MÞ represent the total number of such
combination in the time series. Thus, dNmMðx1:n; � ð1:nÞm ;

X; �MÞ can be expressed in two ways:

dNmMðx1:n; �ð1:nÞm ;X; �MÞ=dX d�M dxn d�nm

¼ NMpMðX; �MÞhnðx1:n; � ð1:nÞm ÞiX;�M
¼ NmRnpmðx1:n; � ð1:nÞm ÞpMmðX; �Mjx1:n; � ð1:nÞm Þ: ð8Þ

Here, Rn represents the proportion of the number of sequences
of consecutive n lower pairs such that all these pairs are
included in the same upper pair in the time series to the total
number of sequences of consecutive n lower pairs in the time
series. Thus, NmRn represents the total number of consecutive
n lower pairs belonging to the same upper pair and the total
number of combinations of an upper and consecutive n lower
pairs in a time series. For example, in the time series of the
background seismicity generated with a constant occurrence
rate in the ETAS model, Rn ¼ ð1 � h�mi=h�MiÞn�1 by the GR
law.7) Further, pmðx1:n; �ð1:nÞm Þ represents the joint probability
density that a sequence of consecutive n lower pairs
belonging to the same upper interval takes fx1:n; �ð1:nÞm g.
pMmðX; �Mjx1:n; �ð1:nÞm Þ represents the inverse probability
density that the upper pair is fX; �Mg when fx1:n; � ð1:nÞm g is
found within it. hnðx1:n; �ð1:nÞm ÞiX;�M represents the average
number of the sequence fx1:n; �ð1:nÞm g in the upper pair
fX; �Mg. From Eq. (8), the inverse probability density is:

pMmðX; �Mjx1:n; �ð1:nÞm Þ

¼ 10�b�mR�1
n

hnðx1:n; � ð1:nÞm ÞiX;�M
pmðx1:n; � ð1:nÞm Þ pMðX; �MÞ: ð9Þ

We derive the inverse probability density for only time
intervals or only spatial positions. Let pmMðx1:n; �ð1:nÞm ;X; �MÞ
represent the joint probability density that the combination
of an upper and consecutive lower spatiotemporal pairs is
fx1:n; �ð1:nÞm ;X; �Mg, which can be expressed as:

pmMðx1:n; � ð1:nÞm ;X; �MÞ ¼ dNmMðx1:n; � ð1:nÞm ;X; �MÞ
NmRndX d�M dxn d�nm

¼ 10�b�mR�1
n hnðx1:n; � ð1:nÞm ÞiX;�MpMðX; �MÞ

¼ pmðx1:n; �ð1:nÞm ÞpMmðX; �Mjx1:n; �ð1:nÞm Þ: ð10Þ
Thus, the inverse probability density function for time inter-
vals is derived by marginalizing Eq. (10) for X; x1; . . . ; xn,

pMmð�Mj� ð1:nÞm Þ ¼ 10�b�mR�1
n

hnð� ð1:nÞm Þi�M
pmð�ð1:nÞm Þ pMð�MÞ: ð11Þ

This is consistent with the result obtained in the previous
study.7) On the other hand, the inverse probability density for

spatial positions can be derived by marginalizing Eq. (10) for
�M; �

ð1Þ
m ; . . . ; � ðnÞm ,

pMmðXjx1:nÞ ¼ 10�b�mR�1
n

hnðx1:nÞiX
pmðx1:nÞ pMðXÞ: ð12Þ

Finally, we examine how spatiotemporal correlations
appear in Bayesian updating by comparing two cases of
correlations among spatial positions and time intervals as
shown in Fig. 3. Variables connected by an arrow in Fig. 3
are assumed to be correlated (meaning neither independent
nor conditionally independent given other variables), and
variables not connected are assumed to be not only
independent, but conditionally independent given other
variables. However, the conditional independence between
the lower time intervals (�ðiÞm ’s) in the same upper time
interval is not assumed given the length of their upper time
interval �M. In the first case, space-time correlations are not
assumed [Fig. 3(a)], whereas in the second case, correlations
between spatial position and time interval indicated with the
green dotted arrows in Fig. 3(b) are added. For the first case,
Eq. (8) is rewritten as:18)

dNmMðx1:n; � ð1:nÞm ;X; �MÞ=dX d�M dxn d�nm

¼ NMpMðXÞpMð�MÞhnð�ð1:nÞm Þi�M
Yn
i¼1

pmMðxijXÞ

¼ NmRnpMmðXjx1:nÞpMmð�Mj� ð1:nÞm Þ
Yn
i¼1

pmðxiÞpmð�ðiÞm Þ:

ð13Þ
Therefore, the Bayesian updating is expressed as the product
of the following two respective updates for the time interval
and the spatial position.

pMmð�Mj� ð1:nÞm Þ ¼ 10�b�mR�1
n

hnð� ð1:nÞm Þi�MYn
i¼1

pmð�ðiÞm Þ
pMð�MÞ; ð14Þ

pMmðXjx1:nÞ ¼

Yn
i¼1

pmMðxijXÞ
Yn
i¼1

pmðxiÞ
pMðXÞ: ð15Þ

For the second case, Eq. (8) is rewritten as:18)

dNmMðx1:n; �ð1:nÞm ;X; �MÞ=dX d�M dxn d�nm

¼ NMpMðX; �MÞhnð� ð1:nÞm ÞiX;�M
Yn
i¼1

pmMðxijX; �MÞ

¼ NmRnpMmðX; �Mjx1:n; �ð1:nÞm Þ
Yn
i¼1

pmðxiÞpmð� ðiÞm Þ: ð16Þ

Thus, the inverse probability is:
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Fig. 2. (Color online) Schematic of spatiotemporal seismic activity
showing time intervals and spatial positions of events considered in the
Bayesian updating; the upper pair fX; �Mg and the consecutive lower pairs
fx1:n; � ð1:nÞm g (n ¼ 3 in the figure) included in it are indicated. These form the
combination of upper and lower pairs fx1:n; � ð1:nÞm ;X; �Mg.
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Fig. 3. (Color online) Two cases of correlations assumed between time
intervals and spatial positions. Colored arrows represent correlations between
(red, solid) spatial positions, (blue, dot-dash) time intervals, and (green,
dotted) a time interval and a spatial position, respectively.
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pMmðX; �Mjx1:n; �ð1:nÞm Þ ¼ 10�b�mR�1
n

� hnð� ð1:nÞm ÞiX;�MYn
i¼1

pmð�ðiÞm Þ

Yn
i¼1

pmMðxijX; �MÞ
Yn
i¼1

pmðxiÞ
pMðX; �MÞ:

The joint probability is obtained by taking the ratio of
Eq. (16) to NmRn, in the same way as Eq. (10).

pmMðx1:n; �ð1:nÞm ;X; �MÞ ¼ 10�b�mR�1
n

� hnð� ð1:nÞm ÞiX;�MpMðX; �MÞ
Yn
i¼1

pmMðxijX; �MÞ

¼ pMmðX; �Mjx1:n; �ð1:nÞm Þ
Yn
i¼1

pmðxiÞpmð� ðiÞm Þ: ð17Þ

Marginalizing Eq. (17) with respect to X or �M, the inverse
probability density functions for �M and X are obtained as
follows.

pMmð�Mjx1:n; � ð1:nÞm Þ ¼ 10�b�mR�1
n

� hnð�ð1:nÞm Þi�MYn
i¼1

pmð� ðiÞm Þ

Yn
i¼1

pmMðxij�MÞ
Yn
i¼1

pmðxiÞ
pMð�MÞ; ð18Þ

pMmðXjx1:n; �ð1:nÞm Þ ¼ 10�b�mR�1
n

� hnð�ð1:nÞm ÞiXYn
i¼1

pmð� ðiÞm Þ

Yn
i¼1

pmMðxijXÞ
Yn
i¼1

pmðxiÞ
pMðXÞ: ð19Þ

Equations (18) and (19) show that the terms representing the
correlations between spatial position and time interval are
multiplied explicitly to the closed updates for time and space
in Eqs. (14) and (15), respectively.

In summary, we proposed a Bayesian inference method of
the occurrence time and location of the next significant event
in a spatiotemporal marked point process using occurrence
patterns of smaller events. In seismic activity, temporal
quiescence, spatial gap, or activation (foreshocks) is some-
times recognized to precede major earthquakes.6,19) The
question of whether the conditional probability can quanti-
tatively treat such qualitative spatiotemporal characteristics of
seismic activity and whether the Bayesian updating method
can be used for better probabilistic forecasting in actual
seismic activity is one for the future.

This study only presents a theoretical framework. To
verify the effectiveness of this framework for forecasting,
numerical examination, as performed in the previous study,7)

with a sufficient number of synthetic seismic data that
stochastic models (e.g., the hierarchical space-time ETAS
model5)) or physical models (e.g., the Olami–Feder–
Christensen model20)) can generate is necessary. Further-
more, for forecasting actual earthquakes, it is required to
examine the framework with seismic catalog data. The
preliminary analysis16) using a seismic catalog in Southern
California21) does not show apparent improvement in
forecasting by adding spatial information (x) to the inverse
probability. The cause of this seems to be in setting the

spatial domain S and the way to subdivide it. Improving this
point is important in future detailed analysis.

In this paper, the spatiotemporal pair is defined in a way that
builds upon previous work,7) and Bayesian updating is
considered based on it. However, this definition includes
exceptional events whose magnitude exceeds M in the lower
pair. Further, the information of the lower pair immediately
before the next large event is not used in real-time Bayesian
updating.7) Therefore, in the practical use of the Bayesian
approach, it may be better to define the lower pair as a lower
time interval and the spatial position of its subsequent event
whose magnitude � M, in the same way as the upper pair.
Bayesian updating based on this definition should be
considered excluding the rightmost lower pair in an upper pair.
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