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Some explicit formulae for the distributions of words * 

Hayato Takahashi (Random Data Lab. Inc.）↑ 

1 Introduction 

The distributions of the number of the appearances of words (distributions of words for short) play 

important role in statistics, DNA analysis, information theory, see Balakrishnan et.al [1], Jacquet 

et.al [13], Lothire et.al [15], Robin et.al [21], Wald et.al [25], Waterman [26], and Zehavi et.al [27]. 
Generating functions of the distributions of words are given as rational functions, see Bassino 

et.al [2], Berthe et.al [3], Blom et.al [4], Chrysaphinou et.al [5], Feller [6], Flajolet et.al [7], Goulden 
et.al [10], Guibas et.al [11], and即 gnieret.al [20]. From generating functions, we have approxima-

tions and recurrence formulae for the distributions of words. However except for simple cases, we 

neither expand rational functions into power series nor obtain their coefficients by differentiation, 
see Chapter 11 Section 4 pp. 275 Feller [6]. In other words, we cannot obtain explicit formulae for 

the distributions of words from rational generating functions in general. 
In this article we show explicit formulae for 1. the joint distributions of nonoverlapping words 

for independent and identically distributed (i.i.d.) finite alphabet random variables and 2. the 
distributions of runs for i.i.d. binary random variables. 

2 Joint distributions of nonoverlapping words 

Let N(w1,..., w1; Xf) be the number of the appearances of the words w1,..., w1 in an arbitrary 

position of xr'i.e. 

n-lw1l+l n-lwd+l 

N(w1,...,w1;Xf) :=（ L lw,(X[')，．．．， L lw1(X[')), 
i=l 9=1 

where Xf =Xi・・・ Xn and Iw; (Xf) = 1 if X; ・ ・ ・ Xi+lw正1= Wj else O for all i,j. 
For exaII1ple N(lO, 11; 1011101) = (2, 2). A word xis called overlapping if there is a word z such 

that x appears at least 2 times in z and lzl < 2lxl otherwise xis called nonoverlapping. A pair of 
words x, y is called overlapping if there is a word z such that x and y appear in z and lzl < lxl + IYI• 
A finite set of words Sis called nonoverlapping if every pair (x, y) for x, y E Sare not overlapping, 

otherwise, S is called overlapping. For example, sets of words, {11 }, {10, 01 }, and {00, 11} are 
overlapping, and {10} and {00111, 00101} are nonoverlapping. 

*Parts of the paper have been presented in [23, 24]. 
tEmail: hayato.takahashi@ieee.org 
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Theorem 2.1 Let Xふ・ • • Xn be i.i.d. finite alphabet mndom variables. Let w1,..., Wz be the set 
of nonoverlapping words. Let mi = lwil be the length of w; and P(w;) the probability of w; for 
i = 1,..., l. Let 

Then 

and 

l 

A(k1,...，幻） ＝ （n-江mふ＋区，k;
k1,..., kz 
) II茫（叫），
i=l 

n 

B(k1,..., kz) = P（区Ix;十=,-'=w;= kj, j = l,..., l), 
i=l 

FA(Z1,...，叫＝区 A(kぃ．．．，Kl)仕1..．少， and
k,,...,ki 

FB(z1,...，叫＝ LB(k1,...,kz)zk'... zki. 
K1,…，Kl 

FA(z1, z2,..., zz) = F瓜z1+ 1,硲＋ 1,...,Z[ + 1), 

P(N(w1,...,wz;X門＝ （s1,..,,s1)) 

(1) 

l 

= I: (-1)こぷ—s,(e. n-こ,m,K，＋こ，K， II茫（w;). (2) 
k1,．．．ふ： （81,．．．，Sl, K1 -S1,．．．Kl -Sl) 9=1 
s1 :Sk1,…，sl5kl 
~,mふ:Sn

Proof) For simplicity, we prove the theorem for l = 1. The proof of the general case is similar. Let 
m = lwl. Since w is nonoverlapping, the number of possible allocations such that w appears k-times 
in the string of length n is 

(n-:k+ k) 

This is because if we replace each w with additional extra symbol a in the string of length n then 

the problem reduces to choosing k a's among the string of length n -mk + k. Let 

A(k) := (n-:k+k)戸(w) (3) 

The function A is not the probability of k w's occurrences in the string, since we allow any letters 

in the remaining place except for the appearance of w. The function A may count the event that 

w appears more than k times. Let B(t) be the probability that w appears k times. We have the 

following identity, 

A(k) = ~B(t) じ）．

Let FA(z)：＝江A(k)抄 and仰 (z)：＝江B(k)zk.Then 

叫＝と言B(t)じ）
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＝区B(t)区；竺
t k<t （） 
＝区B(t)(z+ l)t 
t 

＝和(z+ 1). 

We have 

疇）＝凡(z-1) 

＝と (n-:K+k)（z-l)k戸(w)
k: mk::;n 

= k,t己(n-:k+k) じ）占—1)K-t戸(w)
t::;k 

＝苫Z口互<n(-1)k-t『;9::：k)戸(W)，
and (2). 

．
 

For the moments of the distributions of nonoverlapping word and the distributions of partial 

nonoverlapping words, see [22]. 

3 Runs 

Words that consists of the same letter are called run. For example 111 and 00 are runs. In the 

following, we consider the distributions of runs of Os for independent and identically distributed 

(i.i.d.) binary trials. 

Let n be the sample size. Fu et.al [8] showed the distributions of the following five statistics of 

runs by Markov imbedding method. 

For x E {O, l}n, let 

(i) En,m(x), the number of om。fsize exactly m in x (Mood [17]), 
(ii) Gn,m(x), the number of om。fsize greater than or equal tom in x (Makri et.al [16]), 
(iii) Nn,m(x), the number of nonoverlapping om in x (Feller [6], God bole [9], Hirano [12], Muselli [18], 

and Phillipou et.al [19]), 

(iv) Mn,m(x), the number of overlapping om in x (Ling [14]), and 

(v) Ln(x), the size of the longest run of Os in x (Makri et.al [16]). 

For example, consider a run 00 in x = 0010000100. Then n = 10, m = 2 and E10,2(x) = 2, 
G10,2(x) = 3, N10,2(x) = 4, M10,2(x) = 5, and L10(x) = 4. 
An explicit formula for the distribution of Ln is given by that of G and 

P(Ln = t) = P(Gn,t+l = 0) -P(Gn,t = 0), 

see [8]. For other studies on runs see [1] and the references therein. In particular, explicit formulae 

for the distributions of En,m(x) were not known before except for those given by Markov imbedding 

method [8]. In this article, we show new simple explicit formulae for the distributions of statistics 

(i)-(iv) by a unified manner. 
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3.1 Explicit formulae for the distributions of runs 

Let {O, 1}* be the set of finite binary strings and入theempty word. Let元＝ lwfor x = 0勺wwhere 
w E {O, 1 }* and tis a non-negative integer. If x = on for some n then歪＝入． Forx E {O, l}n, define 
島，m(x):=恥，m(元）， Gn,m(x):= Gほl,m（元）， Nn,m(x):= Nlxl,m（元）， and恥，m(x):= M固，m（元）． For
example,元＝ 10000100if x = 0010000100 and E10,2(x) = 1, G10,2(x) = 2，凡o,2(x)= 3, and 
M10,2(x) = 4. 
To prove Theorem 3.1, we first enumerate E, G, N, and M by inclusion-exclusion principles 
(Lemma 3.2) then we enumerate runs E,G,N, and M (Lemma 3.3). 

Theorem 3.1 Let X1, X2,..., be i.i.d. binary random variables from P(X; = 1) = P(l) and 
P(Xi = 0) = P(O) for all i. Let Xf = X1 ・ ・ ・ Xn for all n. Then for all t, 

(i) 

P(En,m(Xf) = t) = こ
k1,kが

(m+l)k叶 (m+2)k2:Sn,
t:Sk1 +k2 

(-l)k,-t (n -(m + l)k1 -k~:: 2)k2 + k1 + k2) 

X el: k2)己 1加）P臼10m+1)and 

P(En,m(Xr) = t) = (P(En+1,m(X1+1) = t) -P(O)P（尻，m(Xf)= t))/P(l), 

伍） P（叫(X1)= t) = k: t岱ど＋l)k~n(-ll-t (n -（：こ］k+k)戸(10叫 and
P(Gn,m(Xf) = t) = (P(Gn+1,m(X戸）＝t) -P(O)P(Gn,m(Xf) = t))/P(l), 
(iii} Let T be the maximum integer such that闘＋ 1 ：：：： n.Then 

P（兄，m（Xf)＝ t) ＝区,（mt喜〗［三k, （-1)r(n ー区:1[t+9[)nk-tm十江 k,) （巳k,)

T 

XIIだ (lO'm)and 
i=l 

P(Nn,m(Xf) = t) = (P(Nn+1,m(Xf+1) = t) -P(O)P（心，m(Xf)= t))P-1(1), 
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{iv) 

P（恥，m(X1)= t) = ▽
 

r,k1,…，Kn-m : 
I;,(m+i)k,:on, O:or:oI;心i
t＝区iki-T

(-1r(n―誓げ't;nk:m＋区iki)（竺ki)

n-m 
X II茫（10m+i-l) and 
i=l 

P(Mn,m(Xf) = t) = (P(Mn+1,m(Xf+l) = t) -P(O)P(Mn,m(Xf) = t))P-1(1). 

To prove the theorem, we need some definitions and lemmas. 

Let 

N'(w1,..., w1; Xi') := (s1 -s2, s2 -s3,..., s1) 

where N(w1,..., wz; X1) = (s1,..., s1). For example N(lOO, 1000; 1010001) = (1, 1) and 

N'(lOO, 1000; 1010001) = (0, 1). Note that if w1 is a prefix of w2 and (k1ふ） ＝N(w1,w2;Xr) then 
k1 ~ k2. 

Lemma 3.2 Let X1, X公...,be i.i.d. bina内 randomvariables from P（ふ＝ 1)= P(l) and P(X; = 
0) = P(O) for all i. Let w1亡w2・・・亡 w1be an increasing sequence of nonoverlapping words. Let 

A(K1,．．．，Kl) ：= （n -E,m,K，十江ki l 
k1,..., kz 
) IIだ (wi),
i=l 

B(k1,...,kl) := P(N'(w1,...,wz;Xf) = (k1,k公...,kリ），

応 (z1,...,k1) := L A(k1,..., kz)少．．．zk',and 
k1,...,k,: 
こ，mふ：：：：n

玲 (z1,...，叫：＝区 B(k1,...,kりzk1..・Z虹
k1,...,k,: 
~,mふ：：：：n

Then 

応 (z1,...，刃） ＝玲(z1+ 1, z1 + z2 + 1,..., ~シ＋ 1) and1 

FA(Y -1, (Y -l)Y,..., (Y -l)Y1-1) = FB(Y, Y2,..., Yり．

Proof) We show (4) for l = 2. The proof of the general case is similar. Observe that 

)
、
‘
,
'
／

4

5

 

’
 

A(k占）＝ど B(t1,t2) 位）と（わ：り (k1t~s). (fi) 
k2::;l2, k1 +k2::;t1十わ o::;s::;t2-k2 

1(4) is presented at Mathematical Society Japan, Okayama 2018. 
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Then 

叫 1，吟） ＝こ印z魯 と B(t1,t2)[)~,. c2 ~ k2) (k1t~ 
k1,k2 知<t2,k1＋朽＜t1+t2 k2 ~ti+t2 B(ti, t2) G:) O~s~-k2 C2 ~ k2) (kit~ s) 

芦B（い）芦2G:)z魯忍t2-k苔岱1-s~t1(ゎ：り (k/~ s)か
= ~B(t凸）K苔2位）字(z1+ l)t1十t2-k2
t1,t2 

＝ ~B(t叫）（z1 + 1)ti+t2(¾, + 1)わ
t1,t2 

＝和(z1+ 1，勾十吟＋ 1).

Next set z1 = X, z2 = X(X + 1),..., z1 = X(X + 1)1-1 in (4). Then 

FA(X, X(X + 1),...,X(X + 1ii-1) = FB(X + 1, (X + 1)叫．．．，（X+1)り．（7)

By setting Y = X + 1 in (7), we have (5)． ■ 

Lemma 3.3 Let 

En,m,t = {x E {O, l}n I En,m(x) = t} and En,m,t = {x E {O, l}n I En,m(x) = t}. 

Then 

P(En+I,m,t) = P(O)P(En,m,t) + P(l)P(En,m,t)- (8) 

The sets (Gn,m,t心，m,t),(Nn,m,tふ，m,t),and (Mn,m,t，恥，m,t)are defined by similar manner and 
{8) is true for them respectively. 

Proof) Let E~+I,m,t = {Ox E {O, l}n+l I En+I,m(Ox) = t} and亙；＋l,m,t:= {lx E {O, 1 }n+l I 
En+1,m(lx) = t}. Then 

屁+1,m,t= {Ox E {O, l}n+l IX E恥，m,t}and方;.+1,m,t= {lx E {O, l}n+l I X E En,m,t}-

s ince En+l,m,t = E~+l,m,t U尻＋l,m,t,we have 

P(iうn+l,m,t)= P(iう~+1,m,t) + P(iう;汁-l,m,t)= P(O)P(iうn,m,t)+ P(l)P(En,m,t)・ 

The proof of the I e latter part is similar. ■ 
Proof of Theorem 3.1 (i). Let l = 2, w1 = 10叫 andw2 = 10m+1 in Lemma 3.2. By (4), we have 

応 (z□2)= FB(z1 + 1, z1 + z2 + 1). 

Set z1 = x -1 and z2 = 1 -x in (9). We have 

FA(X -1, 1 -x) = FB(x, 1) 

L P(N'(w1,w2) = (k心））炉1
柘，Kが(m+l)k1+(m+2)k2Sn 

(9) 
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＝区 >] 
P(N'(w1,w叫＝ （K占））砂1

k1松：（m+l)柘十(m+2)k2:S:n

= LP(En,m = k1)位1.
k1 

(10) 

On the other hand, 

凡 (x-1, 1 -x) = ▽/] 

(n -(m + l)k1 -k~~; 2)k2 + k1 + k2)戸 (w1)戸 (w2)

k1,kが
(m+l)k1 +(m+2)k廷n

X (x -1杓(1-xl2 

区 (-l/2 (n -(m + l)k1 -k~~; 2)松＋柘十k2)砂 (w1砂（四）

k1,kが
(m+l)k1 +(m+2)k廷n

X (x -1?叶 k2

>] 

(-ll1+2k,-t (n -(m + l)k1 :1::: 2)k2 + k1 + k2)（柘 :k2)
k1,k2,t: 

(m+l)k1 +(m+2)k2:0:n 
t:<;柘十k2

X pk, (w1)Pk2 (w2)砂 (11) 

By (10) and (11), we have the first part of (i). The latter part of (i) follows from Lemma 3.3. 
Proof of Theorem 3.1 (ii). Let l = l, w1 = 10m in Lemma 3.2. Then凡 (z)= FB(z + 1). 

疇）＝ FA(z-1) 

= k (m苔にn(n-(m:l)k+k)戸(w)(z-ll 

= k,t:(m十苔<::n,t<::k(-lt-t(n-(m:l)k+k) じ）戸(w)zt
＝区 (-1)k-t(n-（m+1)K+K 

k,t: (m+ 1)k<::n,t<::k 
t, K -t)戸(w)zt.

On the other hand, FB(z)＝江P(Gn,m= k)zk and we have the first part of (ii). The latter part 
of (ii) follows from Lemma 3.3. 
Proof of Theorem 3.1 (iii). Let w1 = 10庄w2= 102m,..., wr = 10Tm where T is the m邸 imum
integer such that lw州＝ Tm+l ::::; n in Lemma 3.2. Since 

和 (Y,Y汽．．．，Yり＝ L B(k1,..., kr)Y匹 k,'

k1,…，Kか
こ'(mi+1)K，<::n
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P(Nn,m = t) = P（L iki = t) is the coefficient of yt in FB, On the other hand, by expanding the 
left-hand-side of (5), we have 

応 (Y-1, (Y -l)Y,..., (Y -l)Y1-1) 

=,_L,_ (n- 茫．I~~: Lki)(Y-l)~k,rr 砂—l)k,芦（Wi)
k1,．．．，Kl 

＝区（n- 茫．I~~: Lki) IIだ (wi）こ円）（ー1)rY区出ーr_ (12) 
幻，．．．，Kl

By setting l = T and lwil =mi+ 1 for i = 1,..., Tin (12), we have the first part of (iii). The latter 

part of (iii) follows from Lemma 3.3. 

Proof of Theorem 3.1 (iv). Let w1 = 10叫匹＝ 10m+1,...,Wn-m = 10n-l in Lemma 3.2. Since 

和 (Y,Y汽．．．，yn-m)＝ L B(k1,..., kn-m)Y訊，

k1,...,kn-m: 
江(m+i)ki<'.n

P（恥，m= t) = P（こ仇＝t)is the coefficient of yt in FB. By setting l = n -m and lwil = m + i 
for i = 1,..., n -m in (12), we have the first part of (iv). The latter part of (iv) follows from 

Lemma 3.3. ■ 

Remark 3.4 In theorem 3.1 (ii), P(Gn,m = t) is an explicit formula for the distribution ofnonover-
lapping word 10m, which is a special case given in [22]. 

Remark 3.5 It is straightforward to extend Theorem 3.1 to i.i.d. random variables that take in-

finitely many values. Let Pj, j = 0, 1,... be a sequence of non-negative reals such that ~j Pj = 
l. Let Y1, Y2,... Yn E {O, 1, 2,... } be i.i.d. trials from Q(Y; = j) = Pj for all i, j. Then the 
distributions of runs of zeros for infinitely many alphabets are given by Q(En,m(Yt) = t) = 

P(En,m(X「)＝t), Q(Gn,m（庁）＝t) = P(Gn,m(Xf) = t), Q(Nn,m(Yt) = t) = P(Nn,m(Xf) = t), 
and Q(Mn,m(Yt) = t) = P(Mn,m(Xf) = t) for all t, where X1,..., Xn are binary i.i.d. trials with 

P（ふ＝ 1)= 1 -Po andP（ふ＝ 0)= Po for all i and P(En,m), P(Gn,m), P(Nn,m), and P(Mn,m) 
are given by Theorem 3.1 with P. 
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