Smoothness of Directed Chain Stochastic Differential Equations and its Applications

TOMOYUKI ICHIBA Department of Statistics & Applied Probability University of California Santa Barbara

1 Introduction

On a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbb{P})$, we shall consider the following system of stochastic differential equations for a pair $(X^{\theta}, \widetilde{X}^{\theta})$ of N-dimensional stochastic processes:

$$X_t^{\theta} = \theta + \int_0^t V_0(s, X_s^{\theta}, \operatorname{Law}(X_s^{\theta}), \widetilde{X}_s) \mathrm{d}s + \sum_{i=1}^d \int_0^t V_i(s, X_s^{\theta}, \operatorname{Law}(X_s^{\theta}), \widetilde{X}_s) \mathrm{d}B_s^i$$
(1)

for $t \ge 0$ with the distributional constraint

$$[X_t^{\theta}, t \ge 0] := \operatorname{Law}(X_t^{\theta}, t \ge 0) = \operatorname{Law}(\widetilde{X}_t, t \ge 0) =: [\widetilde{X}_t, t \ge 0],$$
(2)

where $V_i: [0,T] \times \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N) \times \mathbb{R}^N \to \mathbb{R}^N$, $i = 0, 1, \ldots, d$ are some smooth coefficients, $B := (B^1, \cdots, B^d)$ is the standard d-dimensional Brownian motion. We assume the initial value $\theta \in \mathcal{P}_2(\mathbb{R}^N)$ is independent of B and \widetilde{X}_0 , and \widetilde{X}_0 is independent of B. Here, $\mathcal{P}_2(\mathbb{R}^N)$ is the set of probability measures on \mathbb{R}^N with finite second moments. We equip $\mathcal{P}_2(\mathbb{R}^N)$ with the 2-Wasserstein metric, W_2 . For a general metric space (M, d), we define the 2-Wasserstein metric on $\mathcal{P}_2(M)$ by $W_2(\mu, \nu) := \inf_{\Pi \in \mathcal{P}_{\mu,\nu}} (\int_{M \times M} d^2(x, y) \Pi(\mathrm{d}x, \mathrm{d}y))^{1/2}$, where $\mathcal{P}_{\mu,\nu}$ denotes the class of probability measures on $M \times M$ with marginals μ and ν . Note that the law $[X^{\ell}]$ of X^{ℓ} depends on the law $[\widetilde{X}]$ of \widetilde{X} and they are the same marginal law. Setting $B^0_t \equiv t, t \ge 0$, the above equation is rewritten as

$$X_t^{\theta} = \theta + \sum_{i=0}^d \int_0^t V_i(s, X_s^{\theta}, [X_s^{\theta}], \widetilde{X}_s) dB_s^i; \quad t \ge 0,$$

$$[\widetilde{X}_t, \ge 0] = \operatorname{Law}\left(\widetilde{X}_t, t \ge 0\right) = \operatorname{Law}\left(X_t^{\theta}, t \ge 0\right) = [X_t^{\theta}, t \ge 0].$$
(3)

We call the system (1) with the constraint (2) the system of directed chain stochastic differential equation.

For example, with N = 1, $u \in [0, 1]$, and some smooth functions $b_{0,i} : \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, for $i = 0, 1, \dots, d$, we define the coefficients

$$V_i(t, x, \mu, y) := u \, b_{0,i}(t, x, y) + (1 - u) \int_{\mathbb{R}} b_{0,i}(t, x, z) \mathrm{d}\mu(z)$$

as a linear combination of two terms. When u = 0, the equation becomes a McKean-Vlasov equation; When u = 1, there is no contribution from the distribution $[X_{\cdot}^{\theta}]$.

Proposition 1 (Uniqueness of weak solution). Let $\mu_0 \in \mathcal{P}_2(\mathbb{R}^N)$ be a fixed reference measure. Suppose that V_i , i = 0, 1, ..., d are Lipschitz continuous and grow at most linearly in the sense that for every T > 0, there exists a constant c_T such that for every $0 \le t \le T$, $x_1, y_1, x, y \in \mathbb{R}^N$, $\mu_1, \mu_2 \in \mathcal{P}_2(\mathbb{R}^N)$,

$$\sup_{i} |V_i(t, x_1, \mu_1, y_1) - V_i(t, x_2, \mu_2, y_2)| \le c_T (|x_1 - x_2| + |y_1 - y_2| + W_2(\mu_1, \mu_2),$$
(4)

$$\sup_{i} \sup_{0 \le t \le T} |V_i(t, x, \mu, y)| \le c_T (1 + |x| + |y| + W_2(\mu, \mu_0)).$$
(5)

Then there exists a unique weak solution $(X^{\theta}_{\cdot}, \widetilde{X}_{\cdot}, B)$ $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ to the system (1) of stochastic differential equations with the distributional constraint (2).

The analysis of the special case with N = d = 1, $V_1 \equiv 1$ is considered in [DFI]. The name, directed chain, is coined from the fact that the joint distribution of $(X_{\cdot}^{\theta}, \widetilde{X}_{\cdot})$ in (1) can be approximated by the limit of the joint distribution of $(X_{\cdot}^{1}, X_{\cdot}^{2})$ from a finite particle system on the vertexes $i = 1, \ldots, n$, where the process X_{\cdot}^{i} at vertex i depends on X_{\cdot}^{i+1} at vertex i+1 via the equation $dX_{t}^{i} = V_{0}(t, X_{t}^{i}, \overline{\mu}_{t}, X_{t}^{i+1})dt + dB^{i}(t)$ with the empirical measure $\overline{\mu}_{t} := n^{-1} \sum_{i=1}^{n} \delta_{X_{t}^{i}}$ of the particle system for $i = 1, \ldots, n-1$ and $dX_{t}^{n} = V_{0}(t, X_{t}^{n}, \overline{\mu}_{t}, X_{t}^{1})dt + dB^{n}(t)$, $t \ge 0$. Here, δ_{x} is the Dirac measure at the point x. Under some reasonable assumptions, the joint distribution of $(X_{\cdot}^{1}, X_{\cdot}^{2})$ converges weakly to that of $(X_{\cdot}^{\theta}, \widetilde{X}_{\cdot})$ in (1), as $n \to \infty$.

The motivation of studying (1) comes from the interacting particles of sparse network [2], [10], [16] as well as the mean field games [5], [7], [11], [13], [18], particularly on the infinite random graph. In this short note, we discuss the smoothness of the joint distribution. Smoothness of solution to MCKEAN-VLASOV equation has been studied by [1], [8], [9].

2 Smoothness

2.1 LION's derivatives in the Wasserstein space \mathcal{P}_2

Let us recall the Wasserstein distance between two measures $\mu, \nu \in \mathcal{P}_2(\mathbb{R})$ is written as

$$W_2(\mu,\nu) := \inf\{\|X - Y\|_2 : [X] = \mu, [Y] = \nu\}.$$

For a function $u: \mathcal{P}_2 \to \mathbb{R}$, we denote by U "extension" (or lift) to $L^2(\Omega', \mathcal{F}', \mathbb{P}')$ defined by

$$U(X) = u(\text{Law}(X)), \quad \text{Law}(X) = [X] = \mu.$$

Here, $(\Omega', \mathcal{F}', \mathbb{P}')$ is an atomless Polish space. Following [6], we say u is differentiable at $[X] \in \mathcal{P}$, if there exists X' such that [X'] = [X] and the lift U is Fréchet differentiable at X'.

For example, when $u: \mathcal{P}_2(\mathbb{R}^N) \to \mathbb{R}$ is given by

$$u(\mu) := \prod_{i=1}^n \int_{\mathbb{R}^N} \varphi_i(x) \mathrm{d}\mu(x)$$

for some smooth functions $\varphi_i \in C_c^{\infty}(\mathbb{R}^N)$, then U(X) and its gradient $\mathcal{D}U(X)$ are given by

$$U(X) := \prod_{i=1}^{n} \mathbb{E}[\varphi_i(X)]; \quad [X] = \mu, \quad \mathcal{D}U(X) = \sum_{i=1}^{n} \big(\prod_{j \neq i} \mathbb{E}[\varphi_j(X)]\big) D\varphi_i(X),$$

and hence, for every $v \in \mathbb{R}^N$, $\mu \in \mathcal{P}_2(\mathbb{R}^N)$,

$$\mathcal{D}_{\mu}u(\mu)(v) = \sum_{i=1}^{n} \Big(\prod_{j \neq i} \int_{\mathbb{R}^{N}} \varphi_{j}(z) \mathrm{d}\mu(z) \Big) D\varphi_{i}(v)$$

which does not depend on the random vector X.

2.2 Smoothness of coefficients

We say $V : \mathbb{R}_+ \times \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N) \times \mathbb{R}^N \to \mathbb{R}^N$ belongs to $\mathcal{C}_{b,\text{Lip}}^{1,1,1}$, if each component V^i of $V = (V^1, \ldots, V^N)$ has bounded, Lipschitz continuous derivatives $\partial_x V^i$, $\tilde{\partial} V^i$ in the second and fourth variables, respectively, in the sense of P.L. LIONS [6] with at most linear growth property, i.e., there exists a constant c > 0 such that

$$|\partial_x V^i(t,x,\mu,y,v)| + |\widetilde{\partial} V^i(t,x,\mu,y,v)| + |\partial_\mu V^i(t,x,\mu,y,v)| \le c,$$

$$|\partial_{\mu}V^{i}(t,x,\mu,y,v) - \partial_{\mu}V^{i}(t,x',\mu',y',v)| \le c(|x-x'|+|y-y'|+|v-v'|+W_{2}(\mu,\mu'))$$

for $(t, x, \mu, y, v), (t, x', \mu', y', v') \in [0, T] \times \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N) \times \mathbb{R}^N$. Moreover, we say V belongs to $\mathcal{C}_{b,\text{Lip}}^{k,k,k}$, if it has bounded, Lipschitz, k times derivatives $\partial_x^{\gamma} \partial^{\widetilde{\gamma}} \partial_v^{\beta} \partial_u^{\alpha} V^i$ in multi-indexes $(\alpha, \beta, \gamma, \widetilde{\gamma}), |\alpha| + |\beta| + |\gamma| + |\widetilde{\gamma}| \leq k$ with at most linear growth property.

Now we consider the pathwise-unique, strong solution to auxiliary stochastic equation

$$X_t^{x,[\theta]} = x + \sum_{i=0}^d \int_0^t V_i(s, X_s^{x,[\theta]}, [X_s^{\theta}], \widetilde{X}_s) \mathrm{d}B_s^i,$$
(6)

given the solution pair $(X^{\theta}_{\cdot}, \widetilde{X}_{\cdot})$ in (1). More specifically, we set $\widetilde{X}_0 =: \widetilde{\theta}$ and

$$X^{x,[\theta],\widetilde{\theta}} = x + \sum_{i=0}^{d} \int_{0}^{t} V_{i}(s, X_{s}^{x,[\theta],\widetilde{\theta}}, [X_{s}^{\theta}], \widetilde{X}_{s}) \mathrm{d}B_{s}^{i}.$$

$$\tag{7}$$

Then by the pathwise uniqueness, we have $X_s^{x,[\theta],\widetilde{\theta}}|_{x=\theta} = X_s^{\theta}$; $0 \le s \le T$.

2.3 Flow property

For different initial points $x, x' \in \mathbb{R}^N$, the corresponding solutions $X^{x,[\theta],\tilde{\theta}}$ and $X^{x',[\theta],\tilde{\theta}}$ in (7) satisfy that for every T > 0, there exists a constant $c_T > 0$ such that

$$\mathbb{E}[\sup_{t \le s \le T} |X^{x,[\theta],\widetilde{\theta}} - X^{x',[\theta],\widetilde{\theta}}|^2] \le c_T |x - x'|^2$$

by Lipschitz continuity and Burkholder-Davis-Gundy inequality. With a slightly abuse of notation, we write $X_{\cdot}^{t,x,[\theta],\widetilde{\theta}}$ for the process $X_{\cdot}^{\cdot,[\theta],\widetilde{\theta}}$ with $X_{t}^{t,[\theta],\widetilde{\theta}} = x$, and $(X_{\cdot}^{t,\theta}, \widetilde{X}_{\cdot}^{t,\widetilde{\theta}})$ for the process $(X_{\cdot}^{\cdot,\theta}, \widetilde{X}_{\cdot}^{\cdot,\widetilde{\theta}})$ with $(X_{t}^{t,\theta}, \widetilde{X}_{t}^{t,\widetilde{\theta}}) = (\theta, \widetilde{\theta})$, we have the flow property

$$(X_r^{s,X_s^{t,s,[\theta],\tilde{\theta}},[X_s^{t,\theta}],\tilde{X}_s^{t,\tilde{\theta}}},X_r^{s,X_s^{t,\theta}},\tilde{X}_r^{s,\tilde{X}_s^{t,\tilde{\theta}}}) = (X_r^{t,x,[\theta],\theta},X_r^{t,\theta},\tilde{X}_r^{t,\tilde{\theta}}); \quad 0 \le t \le s \le r \le T.$$

2.4 Partial Malliavin Calculus

Let us consider the Malliavin derivative operator D and its adjoint operator δ . Let σ be the $N \times d$ matrix with columns V_1, \ldots, V_d . If there is **no** interaction with the neighborhood process \widetilde{X} , the McKean-Vlasov equation in (6) has the derivative

$$\partial_x X_t^{x,[\theta]} = \mathbf{D}_r X_t^{x,[\theta]} \sigma^\top (\sigma \sigma^\top)^{-1} (r, X_r^{x,[\theta]}, [X_r^{\theta}] \quad) \partial_x X_r^{x,[\theta]}; \quad r \le t$$

however, because of the interaction with \widetilde{X} , in general,

$$\partial_x X_t^{x,[\theta]} \neq \mathbf{D}_r X_t^{x,[\theta]} \sigma^\top (\sigma \sigma^\top)^{-1} (r, X_r^{x,[\theta]}, [X_r^{\theta}], \widetilde{X}_r) \partial_x X_r^{x,[\theta]}; \quad r \le t$$

To overcome this difficulty, we shall apply the following partial Malliavin derivatives from [15], [19].

Let us take the rational numbers $\mathbb{Q}_T := \mathbb{Q} \cap [0, T]$ in [0, T] and define the σ -field $\mathcal{G} := \sigma(\{X_t, t \in \mathbb{Q}_T\})$ (countably generated) and the family of subspaces defined by the orthogonal complement

$$K(\omega) := \langle \boldsymbol{D}\widetilde{X}_t(\omega), t \in \mathbb{Q}_T \rangle^{\perp}$$

$$\|F\|_{\mathbb{D}^{k,p}_{\mathcal{H}}} := (\mathbb{E}[|F|^{p}] + \sum_{j=1}^{k} \mathbb{E}[\|D^{\mathcal{H},(j)}F\|_{\mathcal{H}}^{p}])^{1/p}$$

where $D^{(j)}$ is the *j*-th order derivative and $D^{\mathcal{H},(j)}F := \operatorname{Proj}_{\mathcal{H}}(D^{(j)}F) = \operatorname{Proj}_{K(\omega)}(D^{(j)}F)(\omega)$.

Similar to the Malliavin calculus, there is an adjoint operator $\delta_{\mathcal{H}}(u) := \delta(\operatorname{Proj}_{\mathcal{H}}(u))$ of $D^{\mathcal{H}}$ if $\operatorname{Proj}_{\mathcal{H}} u \in \operatorname{Dom}(\delta)$, as well as the integration by parts formula $\mathbb{E}[\langle u, D^{\mathcal{H}}F \rangle] = \mathbb{E}[\langle \operatorname{Proj}_{\mathcal{H}} u, DF \rangle] = \mathbb{E}[F \delta_{\mathcal{H}} u]$ for any $u \in \operatorname{Dom}(\delta_{\mathcal{H}})$, $F \in \mathbb{D}^{1,2}$.

Let E be a separable Hilbert space. For $r \in \mathbb{R}, q, M \in \mathbb{N}$ let us define the family $\mathbb{K}^{q}_{r}(E, M)$ of processes $\Psi : [0,T] \times \mathbb{R}^{N} \times \mathcal{P}_{2}(\mathbb{R}^{N}) \to \mathbb{D}^{M,\infty}(E)$ satisfying the following:

$$[t, x, [\theta]) \mapsto \partial_x^{\gamma} \partial_v^{\beta} \partial_u^{\alpha} \Psi(t, x, [\theta], v) \in L^p(\Omega)$$

exists and continuous for all $p \ge 1$ and multi-indexes (α, β, γ) with $|\alpha| + |\beta| + |\gamma| \le M$, and

$$\sup_{v \in (\mathbb{R}^N)^{\sharp\beta}} \sup_{t \in [0,T]} \frac{1}{t^{r/2}} \|\partial_x^{\gamma} \partial_v^{\beta} \partial_u^{\alpha} \Psi(t,x,[\theta],v)\|_{\mathbb{D}^{m,p}_{\mathcal{H}}(E)} \le C(1+|x|+\|\theta\|_2)^{q}$$

for every $p \ge 1$, $m \in \mathbb{N}$ and multi-indexes (α, β, γ) with $|\alpha| + |\beta| + |\gamma| + m \le M$. This is a modification of \mathbb{K}_r^q in [9] for the smoothness of the density function of $X^{x,[\theta]}$.

Proposition 2. Assume $V_i \in C^{1,1,1}_{b,Lip}(\mathbb{R}_+ \times \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N) \times \mathbb{R}^N; \mathbb{R}^N)$. There exists a modification of $X^{x,[\theta]}$ such that the map $x \mapsto X^{x,[\theta]}_t$ is almost surely differentiable, and for $t \ge 0$,

$$\partial_x X_t^{x,\theta} = Id_N + \sum_{i=0}^d \int_0^t \partial V_i(s, X_s^{x,[\theta]}, [X_s^\theta], \widetilde{X}_s) \partial_x X_s^{x,[\theta]} \mathrm{d}B_s^i$$

The maps $\theta \mapsto X_t^{\theta}$, $\theta \mapsto X_t^{x,[\theta]}$ are Fréchet differentiable in $L^2(\Omega)$ with gradients $\mathcal{D}X_t^{x,[\theta]}$ and $\mathcal{D}X_t^{x,[\theta]}$ satisfying

$$\mathcal{D}X_{t}^{x,[\theta]}(\gamma) = \sum_{i=0}^{d} \int_{0}^{t} [\partial V_{i}\mathcal{D}X_{s}^{x,[\theta]} + \widetilde{\partial}V_{i}\mathcal{D}\widetilde{X}_{s}(\gamma) + \mathcal{D}V_{i}'(\mathcal{D}X_{s}^{\theta}(\gamma))] dB_{s}^{i},$$

$$\mathcal{D}X_{t}^{\theta}(\gamma) = \gamma + \sum_{i=0}^{d} \int_{0}^{t} [\partial V_{i}\mathcal{D}X_{s}^{\theta}(\gamma) + \widetilde{\partial}V_{i}\mathcal{D}\widetilde{X}_{s}(\gamma) + \mathcal{D}V_{i}'(\mathcal{D}X_{s}^{\theta}(\gamma))] dB_{s}^{i},$$

for $\gamma \in L^2(\Omega)$, $t \ge 0$.

Moreover, the map $[\theta] \mapsto X_t^{x,[\theta]}$ is differentiable with the derivative $\partial_\mu X_t^{x,[\theta]}$ satisfying

$$\begin{split} \partial_{\mu}X_{t}^{x,[\theta]}(v) &= \sum_{i=0}^{d} \int_{0}^{t} \left\{ \partial V_{i}\left(s,X_{s}^{x,[\theta]},[X_{s}^{\theta}],\widetilde{X}_{s}\right) \partial_{\mu}X_{s}^{x,[\theta]}(v) \right. \\ &\quad + \widetilde{\partial}V_{i}\left(s,X_{s}^{x,[\theta]},[X_{s}^{\theta}],\widetilde{X}_{s}\right) \partial_{\mu}\widetilde{X}_{s}(v) \\ &\quad + \mathbb{E}' \left[\partial_{\mu}V_{i}\left(s,X_{s}^{x,[\theta]},[X_{s}^{\theta}],\widetilde{X}_{s},(X_{s}^{v,[\theta]})'\right) \partial_{x}(X_{s}^{v,[\theta]})'\right] \\ &\quad + \mathbb{E}' \left[\partial_{\mu}V_{i}\left(s,X_{s}^{x,[\theta]},[X_{s}^{\theta}],\widetilde{X}_{s},(X_{s}^{\theta'})'\right) \partial_{\mu}(X_{s}^{\theta',[\theta]})'(v) \right] \right\} \mathrm{d}B_{s}^{i} \,, \end{split}$$

where $(X_s^{\theta'})'$ is a copy of X_s^{θ} , $\partial_x (X_s^{v,[\theta]})'$ is a copy of $\partial_x X_s^{v,[\theta]}$ and $\partial_\mu (X_s^{\theta',[\theta]})' = \partial_\mu (X_s^{x,[\theta]})'_{x=\theta'}$ on a probability space with $\mathcal{D}X_t^{x,[\theta]}(\gamma) = \mathbb{E}'[\partial_\mu X_t^{x,[\theta]}(\theta')\gamma']$. Furthermore, $X_t^{x,[\theta]}, X_t^{\theta} \in \mathbb{D}^{1,\infty}$, and $\mathcal{D}_r^{\mathcal{H}} X^{x,[\theta]} = (\mathcal{D}_r^{\mathcal{H},j}(X^{x,[\theta]})^i)_{1 \leq j \leq N, 1 \leq i \leq d}$ satisfies, for $0 \leq r \leq t$

$$\boldsymbol{D}_{r}^{\mathcal{H}}X_{t}^{x,[\theta]} = \sigma\left(r, X_{r}^{x,[\theta]}, [X_{r}^{\theta}], \widetilde{X}_{r}\right) + \sum_{i=0}^{d} \int_{r}^{t} \left(\partial V_{i}(s, X_{s}^{x,[\theta]}, [X_{s}^{\theta}], \widetilde{X}_{s})\boldsymbol{D}_{r}^{\mathcal{H}}X_{s}^{x,[\theta]}\right) \mathrm{d}B_{s}^{i},$$

where $\sigma(r, X_r^{x,[\theta]}, [X_r^{\theta}], \widetilde{X}_r)$ is the $N \times d$ matrix with columns V_1, \ldots, V_d .

2.5 Characterization of the auxiliary process

Assume $V_i \in C_{b,\mathrm{Lip}}^{k,k,k}([0,T] \times \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N) \times \mathbb{R}^N; \mathbb{R}^N)$ for $i = 1, \ldots, d$. Then the map satisfies $(t, x, [\theta]) \mapsto X_t^{x, [\theta]} \in \mathbb{K}_0^1(\mathbb{R}^N, k)$.

If, in addition, V_i are uniformly bounded, then $(t, x, [\theta]) \mapsto X_t^{x, [\theta]} \in \mathbb{K}_0^0(\mathbb{R}^N, k)$. Proof is based on the first order derivatives (cf. [9]).

Now we define operators $I_{(i)}^j$, j = 1, 2, 3, $\mathcal{I}_{(i)}^1$, $\mathcal{I}_{(i)}^3$ on $\Psi \in \mathbb{K}_r^q(\mathbb{R}, n)$ with $\alpha = (i)$, $(t, x, [\theta]) \in [0, T] \times \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N)$,

$$\begin{split} I_{(i)}^{1}(\Psi)(t,x,[\theta]) &:= \frac{1}{\sqrt{t}} \delta_{\mathcal{H}} \left(r \mapsto \Psi(t,x,[\theta]) (\sigma^{\top} (\sigma \sigma^{\top})^{-1} (r,X_{r}^{x,\theta},[X_{r}^{\theta}],\tilde{X}_{r}) \partial_{x} X_{r}^{x,\mu})_{i} \right), \\ I_{(i)}^{2}(\Psi)(t,x,[\theta]) &:= \sum_{j=1}^{N} I_{(j)}^{1}((\partial_{x} X_{t}^{x,\mu})_{j,i}^{-1} \Psi(t,x,[\theta])), \\ I_{(i)}^{3}(\Psi)(t,x,[\theta]) &:= I_{(i)}^{1}(\Psi)(t,x,[\theta]) + \sqrt{t} \partial^{i} \Psi(t,x,[\theta]) \\ \mathcal{I}_{(i)}^{1}(\Psi)(t,x,[\theta],v_{1}) &:= \frac{1}{\sqrt{t}} \delta_{\mathcal{H}} \left(r \mapsto (\sigma^{\top} (\sigma \sigma^{\top})^{-1} (r,X_{r}^{x,\mu},[X_{r}^{\theta}],\tilde{X}_{r}), \\ \partial_{x} X_{r}^{x,\mu} (\partial_{x} X_{t}^{x,\mu})^{-1} \partial_{\mu} X_{t}^{x,[\theta]}(v_{1}))_{i} \Psi(t,x,[\theta]) \right), \end{split}$$
(8)
$$\mathcal{I}_{(i)}^{3}(\Psi)(t,x,[\theta],v_{1}) &:= \mathcal{I}_{(i)}^{1}(\Psi)(t,x,[\theta],v_{1}) + \sqrt{t} (\partial_{\mu} \Psi)_{i}(t,x,[\theta],v_{1}). \end{split}$$

2.6 Integration-by-parts formulae

Assume $V_i \in C_{b,\mathrm{Lip}}^{k,k,k}([0,T] \times \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N) \times \mathbb{R}^N; \mathbb{R}^N)$ and also the uniform ellipticity of the diffusion coefficients. For $f \in C_b^{\infty}(\mathbb{R}^N, \mathbb{R})$, $\Psi \in \mathbb{K}_r^q(\mathbb{R}, n)$, we have

• If $|\alpha| \leq n \wedge k$, then

$$\mathbb{E}\left[\partial_x^{\alpha}\left(f\left(X_t^{x,[\theta]}\right)\right)\Psi(t,x,[\theta])\right] = t^{-|\alpha|/2}\mathbb{E}\left[f\left(X_t^{x,[\theta]}\right)I_{\alpha}^1(\Psi)(t,x,[\theta])\right] = t^{-|\alpha|/2}\mathbb{E}\left[f\left(X_t^{x,[\theta]}\right)I_{\alpha}^1(\Psi)(t,x,[\theta])\right]$$

• If $|\alpha| \leq n \wedge (k-2)$, then

$$\mathbb{E}\big[(\partial^{\alpha}f)\big(X_{t}^{x,[\theta]}\big)\Psi(t,x,[\theta])\big] = t^{-|\alpha|/2}\mathbb{E}\big[f\big(X_{t}^{x,[\theta]}\big)I_{\alpha}^{2}(\Psi)(t,x,[\theta])\big]\,;$$

• If $|\alpha| \leq n \wedge k$, then

$$\partial_x^{\alpha} \mathbb{E} \left[f \left(X_t^{x, [\theta]} \right) \Psi(t, x, [\theta]) \right] = t^{-|\alpha|/2} \mathbb{E} \left[f \left(X_t^{x, [\theta]} \right) I_{\alpha}^3(\Psi)(t, x, [\theta]) \right];$$

• If
$$|\alpha| + |\beta| \le n \land (k-2)$$
, then
 $\partial_x^{\alpha} \mathbb{E} \left[(\partial^{\beta} f) \left(X_t^{x, [\theta]} \right) \Psi(t, x, [\theta]) \right] = t^{-(|\alpha| + |\beta|)/2} \mathbb{E} \left[f \left(X_t^{x, [\theta]} \right) I_{\alpha}^3 \left((I_{\beta}^2 \Psi) \right)(t, x, [\theta]) \right].$

For $f \in C_b^{\infty}(\mathbb{R}^N, \mathbb{R})$ and $\Psi \in \mathbb{K}_r^q(\mathbb{R}, n)$, we have • If $|\beta| \le n \land (k-2)$, then

$$\mathbb{E}\big[\partial_{\mu}^{\beta}\big(f\big(X_{t}^{x,[\theta]}\big)\big)(\boldsymbol{v})\Psi(t,x,[\theta])\big] = t^{-|\beta|/2}\mathbb{E}\big[f\big(X_{t}^{x,[\theta]}\big)\mathcal{I}_{\beta}^{1}(\Psi)(t,x,[\theta],\boldsymbol{v})\big] = t^{-|\beta|/2}\mathbb{E}\big[f\big(X_{t}^{x,[\theta]}\big)\mathcal{I}_{\beta}^{1}(\Psi)(t,x,[\theta],\boldsymbol{v})\big]$$

• If $|\beta| \le n \land (k-2)$, then

$$\partial_{\mu}^{\beta} \mathbb{E} \big[f \big(X_t^{x, [\theta]} \big) \Psi(t, x, [\theta]) \big](\boldsymbol{v}) = t^{-|\beta|/2} \mathbb{E} \big[f \big(X_t^{x, [\theta]} \big) \mathcal{I}_{\beta}^3(\Psi)(t, x, [\theta], \boldsymbol{v}) \big] \,;$$

• If $|\alpha| + |\beta| \le n \land (k-2)$, then

$$\partial_{\mu}^{\beta} \mathbb{E}\big[(\partial^{\alpha} f) \big(X_t^{x, [\theta]} \big) \Psi(t, x, [\theta]) \big](\boldsymbol{v}) \ = \ t^{-(|\alpha| + |\beta|)/2} \mathbb{E}\bigg[f\big(X_t^{x, [\theta]} \big) \mathcal{I}_{\beta}^3 \big(I_{\alpha}^2(\Psi) \big)(t, x, [\theta], \boldsymbol{v}) \bigg] \ .$$

For every $f \in C_k^\infty(\mathbb{R}^N;\mathbb{R})$, multi-index α on $\{1,\ldots,N\}$ with $|\alpha| \le k-2$,

$$\partial_x^{\alpha} \mathbb{E}[f(X_t^{x,\delta_x})] = \frac{1}{t^{|\alpha|/2}} \mathbb{E}[f(X_t^{x,\delta_x}) \cdot J_{\alpha}(1)(t,x)],$$

where δ_x is a Dirac point mass at $x \in \mathbb{R}^N$, and

$$J_{(i)}(\Phi)(t,x) := I^{3}_{(i)}(\Phi)(t,x,\delta_{x}) + \mathcal{I}^{3}_{(i)}(t,x,\delta_{x}); \quad t \ge 0$$

with $J_{\alpha}(\Phi) := J_{\alpha_n} \circ J_{\alpha_{n-1}} \circ \cdots \circ J_{\alpha_1}(\Phi)$. Particularly, there exists a constant c > 0 such that

$$|\partial_x^{\alpha} \mathbb{E}[f(X_t^{x,\delta_x})]| \le c ||f||_{\infty} \cdot \frac{(1+|x|)^{4|\alpha|}}{t^{|\alpha|/2}}$$

for $0 \leq t \leq T$, $x \in \mathbb{R}^N$. Moreover, with $|\alpha| + |\beta| \leq k - 2$,

$$\partial_x^{\alpha} \mathbb{E}\big[\big(\partial^{\beta} f\big) \big(X_t^{x, \delta_x} \big) \big] = \frac{1}{t^{\frac{|\alpha| + |\beta|}{2}}} \mathbb{E}\big[f\big(X_t^{x, \delta_x} \big) I_{\beta}^2(J_{\alpha}(1))(t, x) \big]$$

and $I_{\beta}^{2}(J_{\alpha}(1)) \in \mathbb{K}_{0}^{4|\alpha|+3|\beta|}(\mathbb{R}, k-2-|\alpha|-|\beta|)$. Thus, $X_{t}^{x,\delta_{x}} = X_{t}^{\theta}|_{\theta=x}$ has a probability density function p(t, x, z) such that $(x, z) \mapsto \partial_{x}^{\alpha} \partial_{z}^{\beta} p(t, x, z)$ exists and is continuous.

2.7 Smoothness of the joint density

Proposition 3. Let α, β be multi-indices on $\{1, \ldots, N\}$ and $k \ge |\alpha| + |\beta| + N + 2$. Under these assumptions of the uniform ellipticity of σ and the smoothness of coefficients $V_i \in C_{b,Lip}^{k,k,k}$, the solution X_t^{θ} to the directed chain SDE (1) with $\theta \equiv x \in \mathbb{R}^N$ at time $t \ge 0$ has a density $p(t, x, \cdot)$ such that $(x, z) \mapsto \partial_x^{\alpha} \partial_z^{\beta} p(t, x, z)$ exist and is continuous. Moreover, there exists a constant C which depends on T, N and bounds on the coefficients, such that

$$|\partial_x^{\alpha} \partial_z^{\beta} p(t, x, z)| \le C(1+|x|)^{4|\alpha|+3|\beta|+3N} t^{-(N+|\alpha|+|\beta|)/2}$$
(9)

for $t \in (0,T]$, $x, z \in \mathbb{R}^N$. Furthermore, if V_i , i = 0, ..., d are bounded, then

$$\left|\partial_x^{\alpha}\partial_z^{\beta}p(t,x,z)\right| \le Ct^{-(N+|\alpha|+|\beta|)/2} \exp\left(-\frac{C|x-z|^2}{t}\right)$$
(10)

for $t \in (0,T]$, $x, z \in \mathbb{R}^N$.

The above existence and smoothness results on the marginal density p(t, x, z) of a single particle can be extended to the joint distribution of adjacent particles. That is, We extend the pair $(X^{\theta}, \widetilde{X})$ to consider the system $(\widetilde{X}^0, \widetilde{X}^1, \ldots, \widetilde{X}^m)$, such that the joint distribution of adjacent pair is determined by the directed chain stochastic differential equation 1, namely, $[\widetilde{X}^{k-1}, \widetilde{X}^k] = [X^{\theta}, \widetilde{X}]$ for $k = 1, \ldots, m$.

Corollary. Under the same assumptions on the coefficients, the joint density of $(\widetilde{X}_t^0, \widetilde{X}_t^1, \dots, \widetilde{X}_t^m)$ exists and is continuous for $t \ge 0$. Particularly, the joint density of (X_t^0, \widetilde{X}_t) exists and is continuous.

The applications of the smoothness of the joint distribution are the recursive factorization of the first order Markov random field [16], some connection to a class of non-linear partial differential equations, smoothness of the filtering equation and the analysis of master equation of the mean-field game and the mean-field control problems on the directed chain graph.

2.8 Relation to PDE

Let us consider time-homogeneous coefficients. For the function $U(t, x, [\theta]) := \mathbb{E}[g(X_t^{x, [\theta]}, [X_t^{\theta}])]$, $t \in [0, T]$, $x \in \mathbb{R}^N$, by the flow property, we have

$$U(t+h, x, [\theta]) = \mathbb{E}[g(X_{t+h}^{x, [\theta]}, [X_{t+h}^{\theta}])] = \mathbb{E}[U(t, X_{h}^{x, [\theta]}, [X_{h}^{\theta}])]$$

for $t \ge 0$, $0 \le t \le T - h$. Then we come up with a PDE of the form

$$\begin{aligned} (\partial_t - \mathcal{L})U(t, x, [\theta]) &= 0, \quad (t, x, [\theta]) \in (0, T] \times \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N), \\ U(0, x, [\theta]) &= g(x, [\theta]), \quad (x, [\theta]) \in \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N), \end{aligned}$$

for some function $g : \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N) \to \mathbb{R}$, where the operator \mathcal{L} acts on smooth enough functions $F : \mathbb{R}^N \times \mathcal{P}_2(\mathbb{R}^N) \times \mathbb{R}^N$ defined by

$$\mathcal{L}F(x,[\theta]) := \mathbb{E}\bigg[\sum_{i=1}^{N} V_{0}^{i}(x,[\theta],\tilde{\theta})\partial_{x_{i}}F(x,[\theta]) + \frac{1}{2}\sum_{i,j=1}^{N} [\sigma\sigma^{\top}(x,[\theta],\tilde{\theta})]_{i,j}\partial_{x_{i}}\partial_{x_{j}}F(x,[\theta])\bigg] \\ + \mathbb{E}\bigg[\sum_{i=1}^{N} V_{0}^{i}(\theta,[\theta],\tilde{\theta})\partial_{\mu}F(x,[\theta],\theta)_{i} + \frac{1}{2}\sum_{i,j=1}^{N} [\sigma\sigma^{\top}(\theta,[\theta],\tilde{\theta})]_{i,j}\partial_{v_{j}}\partial_{\mu}F(x,[\theta],\theta)_{i}\bigg]$$

$$(11)$$

cf. [4], [9] for MCKEAN-VLASOV SDE.

2.9 Relation to Mimicking problem

The mimicking problem is to obtain the marginal distribution of some non-Markovian process by a unique strong solution to the stochastic differential equation

$$dY_t = b_0(Y_t)dt + b_1(Y_t)dB^y(t); \quad t \ge 0, \quad Y_0 := \xi$$
(12)

for Y with some smooth functions $b_0 : \mathbb{R}^N \to \mathbb{R}^N, b_1 : \mathbb{R}^N \to \mathbb{R}^{N \times N}$. B^y is the *n*-dimensional standard Brownian motion. cf. [3], [12], [17].

Conversely, it follows from the smoothness of the solution in Proposition 3 that there exist (X_i, \tilde{X}_i) and functions V_i , i = 0, 1, such that (X_0, \tilde{X}_0) are independent and

$$[Y_{\cdot}] = [X_{\cdot}] = [X_{\cdot}],$$

where the pair $(X_{\cdot}, \widetilde{X}_{\cdot})$ satisfies the directed chain equation

$$dX_t = V_0(X_t, X_t)dt + V_1(X_t, X_t)dB_t; \quad t \ge 0,$$
(13)

driven by another standard Brownian motion B independent of \tilde{X} .

Research supported in part by the National Science Foundation under grant DMS-20-08427. Part of research is joint work [14] with M. MIN.

Bibliography

[1] BAÑOS, D. (2018). The Bismut-Elworthy-Li Formula for Mean-Field Stochastic Differential Equations. *Annales de l'Insitut Henri Poincaré* **54** 220-233.

[2] BAYRAKTAR, E. & WU, R. (2021). Graphon particle system: Uniform-in-time concentration bounds. *arXiv:* 2105.11040.

[3] BRUNICK, G. & SHREVE, S. (2010). Mimicking an Itô process by a solution of a stochastic differential equation. *Annals of Applied Probability* **23** 1584–1628.

[4] BUCKDAHN, R., LI, J., PENG, S., & RAINER, C. (2017). Mean-field stochastic differential equations and associated PDEs. *Annals of Probability* **45** 824–878.

[5] CAINES, P.E. & HUANG, M. (2019). Graphon Mean Field Games and the GMFG Equations: ε -Nash Equilibria. In 2019 IEEE 58th Conference on Decision and Control (CDC) 286–292.

[6] CARDALIAGUET, P. (2010). Notes on Mean Field Games. From P.-L. Lions lecture at College de France.

[7] CARMONA & DELARUE (2015). Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics. *Annals of Probability* **43** 2647–2700.

[8] CHAUDRU DE RAYNAL, P.-E. (2020). Strong Well-Posedness of McKean-Vlasov Stochastic Differential Equation with Hölder Drift. *Stochastic Process and their Applications* **130** 79–107.

[9] CRISAN, D. & MCMURRAY, E. (2018). Smoothing properties of McKean-Vlasov SDEs. *Probability Theory* and Related Fields **171** 97–148.

[10] DETERING, N, FOUQU, J.-P. & ICHIBA, T. (2020). Directed chain stochastic differential equations. *Stochastic Processes and their Applications* **130** 2519–2551.

[11] FENG, Y., FOUQUE J.-P., & ICHIBA, T. (2021). Linear-quadratic stochastic differential games on directed chain networks. *Journal of Mathematics and Statistical Science* **7** 25–67.

[12] GYÖNGY, I. (1986) Mimicking the one-dimensional marginal distributions of processes having an Itô differential. *Probab. Theory Related Fields* **71** 501–516.

[13] HUANG, M., MALHAMÉ, R.P., & CAINES, P.E. (2006). Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. *Commun. Inf. Syst.* 6 221–251.
[14] ICHIBA, T. & MING, M. (2022). Smoothness of Directed Chain Stochastic Differential Equations. *arXiv:* 2202.09354.

[15] KUSUOKA, S. & STROOCK, D. W. (1984). The partial Malliavin calculus and its application to non-linear filtering. *Stochastics* **12** 83–142.

[16] LACKER, D., RAMANAN, K. & WU, R. (2021). Locally interacting diffusions as Markov random fields on path space. *Stochastic Processes and their Applications* **140** 81–114.

[17] LACKER, D., SHKOLNIKOV, M. & ZHANG, J. (2022). Superposition and mimicking theorems for conditional McKean-Vlasov equations. to appear in *Journal of European Mathematical Society*.

[18] LASRY, J. & LIONS, P. (2007). Mean field games. Jpn. J. Math. 2, 229-260.

[19] NUALART, D. & ZAKAI, M. (1989). The partial Malliavin calculus. *Séminaire de Probabilités XXIII* 362–381.

Department of Statistics and Applied Probability, South Hall University of California, Santa Barbara, CA 93106 E-mail address: *ichiba@pstat.ucsb.edu*

カリフォルニア大学サンタバーバラ 一場 知之