A REGULARITY STRUCTURE FOR THE QUASILINEAR GENERALIZED
KPZ EQUATION
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ABSTRACT. We prove the local well-posedness of a regularity structure formulation of the
quasilinear generalized KPZ equation and give an explicit form for a renormalized equation in
the full subcritical regime. This is an abstract of author’s work [4].

1. INTRODUCTION

We consider the one dimensional quasilinear generalized KPZ equation
O — a(w)Zu = F)E + g(w) (@), (ta) € R x T, (1.1)

with an initial condition uy € C*(T) for o € (0,1), where Ry := (0,00), T := R/Z, £ is the
spacetime white noise, and a, f, and g are regular enough functions on R. We assume that a
takes values in a compact interval of Ry. This equation is an example of singular stochastic
partial differential equations (SPDEs) of parabolic type. Recall that the spacetime white noise &
has a (parabolic) regularity o — 2 almost surely, for 0 < ap < 1/2. It is then natural to expect
a solution u to the equation (1.1) to have a regularity ap. However, the nonlinear terms f(u)€
and g(u)(9,u)? do not make sense unless cvg > 1.

Hairer [14] introduced a groundbreaking theory called regularity structures and opened the
door to the study of semilinear singular SPDEs. For quasilinear equations, Otto and Weber [16]
introduced a variant of regularity structures to study the equation

Opu — a(u)u = f(u)é (1.2)

in the regime oy > 2/3. Otto, Sauer, Smith, and Weber [15] deepened their framework to study
the equation with an additive noise

Opu — a(u)diu = ¢ (1.3)

in the full-subcritical regime o € (0, 1) and obtained an explicit form of a renormalized equation.
Meanwhile, Gerencsér and Hairer [12] provided an infinite dimensional regularity structure for
the study of the equation (1.1) and obtained a renormalized equation in the regime o > 1/2. By
implementing some integration by parts-type formulae, Gerencsér [11] obtained a renormalized
equation for the equation (1.3) with the spacetime white noise £ when the mollification of noise
is symmetric with respect to x. In the present work, we introduce another variant of regularity
structure formulation of the equation (1.1) and give an explicit form for a renormalized equation
in the full subcritical regime. Convergences of stochastic objects are left for future, but we expect
that a simple modification of Chandra and Hairer’s general proof 9] works well.

We mention another approach to singular SPDEs called paracontrolled calculus introduced
by Gubinelli, Imkeller, and Perkowski [13]. Furlan and Gubinelli [10] and Bailleul, Debussche,
and Hofmanova [2] investigated the equation (1.2) on the two dimensional torus with the space
white noise £, which has a regularity ap — 2 for 2/3 < ap < 1. These two works are variants
of paracontrolled calculus based on different methods: the paracomposition operator in [10] and
the initial form of paracontrolled calculus in [2]. In the present work, we reformulate the latter
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approach in the framework of regularity structures. Bailleul and Mouzard [5] extended the high
order paracontrolled calculus based on [2] to deal with the equation (1.1) in the regime ag > 2/5.

This paper is organized as follows. In Section 2, we describe the main results of [4] without
stating some precise definitions. In Section 3, we briefly review the locall well-posedness result
of the regularity structure formulation for (1.1). In Section 4, we outline the sketch of the proof
of main results.

Notations. We represent by z = (t,z) € R? a generic spacetime variable, for which we set
Izl = 1112 + Jol.
We also set for any multiindex k = (k;, k) € N2,
2K = highe [k|s := 2k; + k.

2. MAIN RESULTS

2.1. Regularity structure formulation of (1.1). Following [2, 5], we set L") := a(v)d2 for
an appropriate spacetime function v and rewrite the equation (1.1) under the form

(@ — L 4 Ju = f(u)é + g(u)(@pu)? + cu+ (a(u) — a(v))Pu (2.1)
for a large positive constant c.

Remark 2.1. The choice of v depends on the initial condition ug. Typically, we choose a
. . to? . . 502 . .
spacetime function v(t,x) = e'%zug or a t-independent function v(x) = e°%zug with sufficiently

small 0 > 0. See [4, Section 2.1] for other possible choices.

We consider the equation (2.1) as a ‘perturbation’ of the semilinear equation. We reformulate
(2.1) as a system of equations for modelled distributions (see Definition 3.2) as follows.

u =P 5(Q*ug) + KM (v + w),
v = Q<o [f(w)Z1 + {g(u)(Du)® + cu}=,], (2.2)
w = Q<o [{a(u) — a(P<ov) H{D*P<(Q*ug) + DKM (v + w) } ],

where Q") is the Green function of the parabolic operator 9, — L%¥) 4 ¢. See Section 3 for
the definition of all notations. One of the key parts of the work [4] is the well-posedness for the
equations (2.2) (see Theorem 3.4) up to a positive time tg = to(up, M) > 0 depending on the
initial value ug and the model M (see Definition 3.1), which consists of all stochastic objects to
be renormalized. This analytical statement holds in the full subcritical regime ag € (0,1). Note
that, our regularity structure consists of the infinite dimensional model space with Banach norms,
in contrast to that only finite dimensional model spaces were used in the previous researches
[14, 8,9, 7, 1] of semilinear equations. Additionally, our model space is different from the infinite
dimensional spaces considered in [12].

2.2. Main results. We consider a family of smooth spacetime functions &° indexed by € € (0, 1]
which approximates the white noise £ as ¢ — 0. We can define the naive interpretation model
Me associated with &, but we cannot expect the convergence of M® as ¢ — 0 in general. By
following the general procedure by Bruned, Hairer, and Zambotti [8], we can find some spacetime
functions ¢¢[7P](z) called a renormalization character indexed by basis elements of the model
space and define the associated BPHZ renormalized model Me. See Section 4.1 for details.

Assumption 1. There exists a renormalization character ¢ such that the BPHZ renormalized
model M converges to some model M as € — 0.
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While the convergence of ME is stated as an assumption in [4], we expect to be able to prove
it by a modification of Chandra and Hairer’s proof for semilinear cases [9]. Then, by following
[1, 7], we can state the first main result of [4]. Below, T[7P] is a smooth function on R? indexed
by basis elements of the model space, which has a role of coefficients of Butcher series. Moreover,
S[7P] is a positive integer determined by the graph structure of 7P. See Section 4.2 for details.

Theorem 2.2. Let ug € C*(T) with « > 0 and choose any appropriate function v on Ry x T
as in Remark 2.1. Under Assumption 1, the solution u® to the renormalized equation

00t — alu?) 020 = FIE + 9N O + 3

T[rP)(u®, Ozu®,v) (2.3)

starting from ug converges in C([0,t9) x T) for a random time ty = to(ug, M) in probability as
e — 0. In the last term, TP in the sum runs over infinitely many symbols and Y[TP] is at most
linear with respect to Oyu®.

It should be noted that the renormalization character ¢¢[7P] depends on the choice of v. In
general, its dependence is nonlocal in the sense that ¢°[7P](z) is not of the form f(v(z)) with
some function f on R. Nevertheless, we assume that £°[7P] can be traded off with a local function
of a(v) up to an e-uniform remainder and we get the second main result of [4]. See Section 4.3
for the definition of the analytic function A — I§[7P].

Assumption 2. There exist e-independent constants C(1) and m > 0 such that

E[TP)(2) = Loz [7P]] < C(r) mlP!

a(v

holds for any p € NPr and z € Ry x T.

Theorem 2.3. Under Assumptions 1 and 2, there exist smooth functions Yo[r] on R? indezed
by only finitely many symbols T such that the last term of (2.3) is of the form

e, T
3 S e, 0,0) + 011, @)

for an e-uniform O(1) term.

Assumption 2 is too strong to believe that it holds in the full subcritical regime, but we can
prove it for some particular cases studied by [2, 12, 11].

3. LOCAL WELL-POSEDNESS OF THE SYSTEM (2.2)
3.1. Construction of the regularity structure. Our model space is generated by the family
of symbols B = |J?_, Bi UJ>_, B! recursively defined as follows.
e For each i € {1,2,3}, the primitive symbol =; is contained in Bi.
o Ifr,m,....,7 € B, = U§:1 B?, then

XkHIO(Ti) c Bz, )(kl_/[zo(’l',‘)7 XkIl(Tl)HIO(Ti)y XkIl(Tl)Il(TQ)HI()(Ti) S BE,

i=1 1=2 1=3
n n
XkHI()(Ti), XkIQ(Tl)HIo(Ti) EBE
i=1 =2

for any k € N2, where the multiplications are commutative and [licy == 1 by the
convention.

e For each i € {1,2,3}, if 7 € BL then 7Z; € B’.
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The noise symbol Z; represents the noise. The other noise symbols =5 and =3 represent the
constant function 1, but they are not useful until the definition of Y[7P] (Section 4.2). The
symbol XX represents the basis of Taylor series. The operator Z represents the inverse operator
(0 — Lo 4 ¢)~ ', and Z; and Z, represents its first and second derivatives with respect to z,
respectively. We can see that each element of B, above are used to represent the right-hand
side of the equation (2.1). As usual, each symbol of B can be represented as a rooted tree with
node decorations {Z, X*} and edge decorations {Zy,Z;,Z>}. We define the homogeneity of each
element 7 € B by setting |Z;| := ap — 2 for any fixed o € (0,1), |Z2| = |=3] := 0, and
n
X4 [[ 20, ()

i=1

n
= |k|s + [Zi] + Y (I +2 = n;),
j=1

for k € N?, i € {1,2,3,4}, 7; € B,, and n; € {0,1,2}, where we set =, := 1. In the previous
studies on semilinear equations, it is important that the subset {r; |7| < 7} is finite for any
~v € R. While this property does not hold in the present case because the operator Z, preserves
the homogeneity, we have the following.

Proposition 3.1 ([4, Proposition 8]). The set A := {|7P|; 7P € B} is locally finite and bounded
from below.

To classify infinitely many trees into finitely many classes, we contract consecutive operators
=375 into one operator with an additional edge decoration. Precisely, we perform the contraction

. ((E3L2)°" (1)) — IP(7)
for any 7 € B, \ Z375(B,) at each branch of the tree. After the contraction, we can represent
each element of B by the unique minimum form
TP,
where p : F; — N is an edge decoration given for the edge set £, of 7. Therefore, there exists a
finite set B and we can write B = {7P; 7 € B®, p: E, — N}.

We pick a positive number m and define Tém) for each 8 € A as the completion of the linear
space spanned by 7P € B with |7P| = 8 under the /2 norm

2
E CTpr = Z ‘C-,—p|2m2|p|,

|[TP|=p8 B.m |TP|=8
where |p| =} cp p(e). We define the model space as an algebraic sum

(m) _ (m)
T 7@% )
BeA

The following statement is proved by a general procedure as in [8].

Proposition 3.2 ([4, Section 2.2]). There exists a group G™) of continuous automorphisms on
T such that (T, G is a regularity structure.

The number m is to be determined after the estimates of stochastic objects are fixed. The
existence of such m is implicitly stated in Assumption 1. For simplicity, we omit the letter ‘m’
and write T instead of 7™ in what follows.

The following notations are used in what follows.

e A sector is a closed subspace S of T such that (S,G|g) is a regularity structure. In
particular, sectors T, and U spanned by B, and {X¥}icn2 U Zy(B) respectively are
important.
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o A regularity of a sector S is a minimum number S such that SN 7Tg # {0}.
e Denote by Qg : T' — T the canonical projection map and write Q. := Z/B<’>’ Qgp-

3.2. Well-posedness of the system (2.2). To consider regularities of spacetime distributions,
we introduce a spacetime elliptic operator £L4¥) := (8, — L*"))(8, + 82) and the associated heat
semigroup QZ(U) = e (6 > 0). It is important that Qg(v) satisfies the anisotropic Gaussian
estimate ([4, Proposition 4]). For 5 < 0, we define the space C&(a(v)) as the completion of the
set of bounded continuous functions on R? under the norm

I

— —B8/4) 0a(®)
a(oyy = sup 0 Qy [l Lo m2)-
c?(a(v)) 0<o1 ” 0 HL (R2)

Let K™ (-,.) be a ‘main part’ of the Green function of (9, — L**) + ¢)~1 (see [4, Section 2.1]
for a precise definition) and write

[(@ K@) (1)} (2) = /

PR (2, 2 () dz
Jr2

for any spacetime functions/distributions 7. Note that 0, acts on the first variable of K%,

Definition 3.1 ([4, Definitions 9 and 13]). An admissible model M = (II,T) consists of con-
tinuous operators 11, : T — C;%(a(v)) and L'y, € G indexed by 2,2’ € R? with the following
properties.

e (Chen’s relations) T, =M., T,, =1d, T,u T, =T.n, forall z,2', 2" € R2.

o (Regularity) For any 7 € Ty, v < 3, 2,2/ € R?, and 6 € (0,1],

1Q T o7 llim S 12— 2 1T lgms Q5 (LT)(2)] S 05741l 6.m-

o (Admissibility) For any T € T[gm) with 8 <0, z € R, and n € {0,1,2},

)k
(MLEN}0) = @KL} ) - Y D o k@) (z).

k!
k<B+2—n

° (Periodicity) F(z'+(071))(z+(0,1)) = Fz'z and {Hz-&-(o,l)(’)}(zl + (0,1)) = {Hz()}(z’) m
distributional sense for all z, 2" € R2.

Definition 3.2 ([4, Definition 11]). Let S be a sector and pick n <~ and tg > 0. Denote by
DT1(0,t0; .S) the set of functions w : (0,t9) X T — S<y := Qe (S) equipped with the norm

el .n0,60:8) = max sup {(5 A 1){B=mVO}/2 sup HQBU(Z)”B.m}
>s

<7 0<s<to
1 T.,
+max sup {(s A1)=M/2 gup 1Qs{u(z) z zz"[gz)}uﬁ,m }
B<y 0<s<tq it >s |z — z||d

Each element of DY"(0,tg;S) is called a modelled distribution. We also define the space
D71 =DV (R x T;T) in the same way and state the famous reconstruction theorem.

Theorem 3.3 ([4, Theorem 12]). Let n < v and v > 0. For any admissible model M, there

exists a unique continuous linear operator RM : DY — CQA(O‘O*Q)((L(U)) such that the bound

125 (RMu — Tu(2)) (2)] < (1t v 8/4)" D77 g/l

holds uniformly over for any uw € D", z € R?, and 0 € (0,1]. Moreover, RMu is a spatially
periodic distribution.
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To apply Theorem 3.3 to u € D7"(0,to; T'), we consider a whole time extension u € DV (R x
T;T) such that w|(_ 0jxt = 0 and define the reconstruction RMaz. Although such an extension
is not unique, the value of RM% on the subset (0,) x T is unique because of the locality of RM.
See [3, Section 4.3] for details. We can define the following operations on modelled distributions
and make sense of the right-hand sides of (2.2).

e (Multilevel Schauder [4, Theorem 15]) Recall that o € (0, 1] is a regularity of the initial
condition ug. Pick v € (0,a), n € (a — 2,7], and v/ < v+ 2. Then there exists a
continuous linear map

KM D0, t; To) — DY (1200 (0, 4, U)

such that u = RM K:L/E/‘])’Mv solves (0 — L@ 4 ¢)u = RMw on (0, to) with ufi—o.

e (Multiplication) Let Sy and Sy are sectors of regularities ay and ao respectively, and
such that the product S; x Sy — T is defined. Then for any u; € D7 (S;) (i € {1,2}),
we have

Qy(ur - uz) € D
with v = (y1 + a2) A (2 + a1) and n = (m1 + a2) A (92 + 1) A (71 + 172). Moreover, the
mapping (w1, u2) — Q< (w1 - u2) is locally Lipschitz continuous.

e (Composition) For any u € D¥"(U) and a function h € C*(R) with £ > max{y/a, 1},

we define
o~ 1) (uo) n
h(u) := Qey ( ZO T(u —up X @0 )
where ug denotes the X(©9_component of w. Then h(u) € DV, and the mapping
wu +— h(u) is locally Lipschitz continuous.

o (Differentiation) Define D as a linear operator on T" such that
DX Wkrk) i oy x k=D, o0 DZ,(1) = Zng1 (7)Lnco-

Let n € {1,2}. If v > n, then the map D" (U) 3 w — D"u € DY """ i3 continuous
and satisfies R"D"u = 97"RMu for any u € DV"(U).

e (Lift of regular functions [4, Lemma 16]) Let w be either of v as chosen in Remark 2.1

or Q*yy. Then
k X
(Poyw)(z)i= Y (OFw)o) 5y
‘kls <y
belongs to D77 for any v € (1,2 + a) \ {2} and n < a.

Theorem 3.4 ([4, Theorem 17]). Let « € (0, ). For any ug € C*(T), we choose an appropriate
functionv on Ry X T as in Remark 2.1. Then for any admissible model M, there exists sufficiently
small to = to(ug, M) such that system (2.2) has a unique solution (u,v,w) in the class

D”’a(07 to; U) X D”/+a072,2a72 (0, to; To) X D’y+a072,a72(07 to; To)

forany vy € (2—ap,2—ap+a). The time ty can be chosen to be a lower semicontinuous function
of (uog, M) and the solution map from (ug, M) to (u,v,w) is locally Lipschitz continuous.

4. PROOF OF MAIN RESULTS

4.1. BPHZ renormalized model. First we define a naive interpretation model M® = (115, 1°9)
associated with the smooth approximation £°. An important point of [8] is that all models we
consider take the form

O, =NoF !, T,,=F,oF !
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with some continuous operators M : 7" — C;?(a(v)) and F, € G, and it is sufficient to define I to
construct the model M. See [8, Section 6.2] and [4, Definition 9] for details. For each ¢ € (0, 1],
we define the linear map MN° : T — C>(R?) by
(MFXM)(2) =2, NEy=¢, M5 =1 (ie{23}),
M, = (@RK“)(Fr),  No(ry ) = () - (o7,
We call the associated admissible model M® = (I1%,I'®) a naive interpretation.
Since we cannot expect the convergence of naive interpretations as ¢ — 0, we try to find a
natural convergent transform M® of M¢. It is known that such a transform is unique in some
sense ([8, Theorem 6.18]) and called a BPHZ renormalized model. We follow Bruned’s recursive

formulae [6] to define this transform. Let A, : T — T ® T be a splitting map defined as in [6,
Section 4.1] and define the linear map Ry : T — T by

Ry(2)T = (f[](z) Q Id)AT_T = Z [[7(1)1(2)7(2)
e

for some spacetime functions £[7](z) indexed by 7 € B, where we use Sweedler’s notation A, 7 =
> 7 @ 73 for simplicity. (The letter ‘r’ means that R, cancels divergences occurring at the
root of the tree.) We call such a map (satisfying some additional conditions — see [4, Section
4.3.1]) a renormalization character. For any £, we can define linear maps M and I_IEX’E as follows.

(M='7)(2) = {N%* (Re(2)7) }(2),

NS (r e m) = (NY07) - (NY'7), MY, = (ORK“™)(N=4r).

Proposition 4.1 ([6, Proposition 3.16]). The map N=¢ defines a model M=,
For example, we consider the symbol 7 = (Z;(Z))?. Since R¢(z)7 = 7 + £[7](2) X (> in this

case, by choosing

7)(z) = —/ e KW (2, 21)0, KW (2, 20)E[€° (21)€° (22)]dz1 d 2, (4.1)

(R2)2

we have

HE’ZT(Z) = / 8zKa<”)(z,zl)axK“(v)(z,zg) 1 €5(21)E%(22) : dz1dza,
(R%)2

where : () : means Wick product. It is not difficult to show the convergence of the above quantity
by a similar way to [14, Section 10]. Assumption 1 says that we can choose an appropriate
renormalization character £¢ for M® := M= to converge as € — 0.

4.2. Proof of Theorem 2.2. We can see the action of the character ¢ on the equation by
following Bailleul and Bruned’s simple approach [1]. Note that each tree 7 € B can be written
as

m
T = XkEZ :l_[l—,,nu(()',,)ﬁ"7
v=1

where (my,o0,) # (m,,o0,) for any p # v uniquely up to the order of multiplications. By using
this representation, we inductively define S : B — N by

Sir] =k [ [ {Slow)* 8.1}
v=1
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Moreover, we define smooth functions Y[7](u,v) of u = (ux)kenz and v = (vi)xen2 for each 7 € B

as follows.
T[E1](u,v) = f(u(0,0));
T[=2](u,v) = 9(u0,0))ufo,1) + (0,05
T[=3](u,v)

n

T(Xk:lHI (15 > i= (0*D(o,ny) - Do.ni) TIZ4]) HTT
J=1

= (a(u,0)) = a(v(0,0)))u(0,2);
(

where Dy = D, is the differential operator with respect to u, and 9% is the differential operator
defined by

9° 1= Z (UkteDyy + VireDy,) (e € {(1,0),(0,1)})
keN?
and 9% := (9(1:0))k1((0.1) k2

Theorem 4.2 ([4, Proposition 24]). Let (u®¢ v w*) be the solution to (2.2) with respect to
the model M®¢. Then one can choose th € (0,t9) small enough for us* := RM™ 45t to solve
E[r”]

el ely92, el _ rr, &0\ ¢E el £,0\2

|7P|<0

T[7P] (us’z, &cue’g, v) (4.2)

on (0,t) x T, with initial condition ug. In the last term, T[TP] depends only on u(o,0), U0,1)sV(0,0)
and at most linear with respect to u(g 1)

Theorem 2.2 is immediately obtained from Theorems 3.4 and 4.2.
4.3. Proof of Theorem 2.3. The edge decoration p has the following two important roles.
e [4, Lemma 25] There exist v-independent smooth functions Yo[7] such that
T[77)(4(0,0), U0.1)» V(0.0) = (alto,0) — a(v(0,0)) ™ Lol (U0,0), u(o.1))-

e [4, Lemma 26] For each A > 0, let Z* (¢, z) be the Green function of (0; — A\92 +¢)~*, and
define the renormalization character [5[7P] by replacing K®®) in the definition of ¢¢[7P]
(as in (4.1)) with Z*. Then I5[7P] is analytic in A and

1
—OR = Y Bl
' Ipl=n

Proof of Theorem 2.3. Under Assumption 2, we can trade off the character ¢¢[7P](-) in the
last term of (2.3) by li(v(‘))[ﬂ’} up to an e-uniform remainder and have

I [7P
Z a(v)[p ]T[Tp](us,axus,v): Z % Z la @) [TPILolTP](uf, Opu®, v)
S[rP] S[ro]

[TP|<0 |T0]<0 peENET
oo
n

= S[ o]TOM » Ozt® Z —a@)" Y Ll

|70|<0 n=0 [p|=n
= Z TO[T] U, 0y )l5 e [7°).

ks °\<0

In the first equality, we use [4, Lemma 18]. O

Finally, we show some examples satisfying Assumption 2. See [4, Section 4.5] for details.
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4.3.1. Two dimensional generalized PAM. We consider the equation
Ou — a(u)Au = f(u)é, (t,r) € Ry x T?

with the space white noise £&. Although the spatial dimension is two, similar arguments to above
work well. In this case we can choose 2/3 < «p < 1. For example, we consider the renormalization
character of the symbol

T = 511-0(51).

Similarly to (4.1), we can choose the character

EClr)(t z) = . KM ((t,2), (s, ) EIE° (2)€° () dsdy.

By using the classical Levi’s parametrix method, we can trade off K*(*) with Zf_(z(t’z)>(

(see [4, Proposition 28]) and have that

)

Clr(t2) = /( g 2 WELE @€ ()dsdy + O(1) = L[] +O(1).

We can perform a similar calculation for the symbol Z3Zy(=Z;)Z2(Z1) and have the following.
Corollary 4.3 ([2, Theorem 1]). There exists a diverging constant ¢& such that the solution to

L 28w

a a
4.3.2. One dimensional generalized KPZ equation with regularized noise. Let £ be a stationary
Gaussian noise on R x T which is slightly more regular that the white one (e.g. let 7 be a white
noise and consider £ = (1 — A)~*y with a > 0). In this case we can choose 1/2 < ay < 2/3. We
can perform similar calculations to above for the equation

du — a(u)d?u = f(u)€ + g(u)(dyu)?, (t,z) eRy x T

and obtain the following result.

Ou® — a(u®)Au® = f(u®)E® — ce(

converges locally in time as € — 0.

Corollary 4.4 ([12, Equation (1.2)]). There exists a smooth function C(, such that the solution
to

00— alu)0u = J(uIE + ()0 — Ci (17 + 2~ L))
converges locally in time as € — 0.
4.3.3. One dimensional quasilinear stochastic heat equation. We consider the equation
A — a(u)d?u = €, (t,z) e Ry x T
with the spacetime white noise £ on R x T. In this case we can choose 2/5 < ap < 1/2. The

only difference with above cases is that we cannot trade off the function K%*) in the integral

CEHENLENE) = [ KO0 6B e 4

with Zf_(q,’(t’z))(:c — ) up to an integrable remainder. Instead, we choose a time-independent
smooth function v(z) and derive that

KW (z,2) = Zfizzfm))(x — ')+ d (@) (@)Y  p(w =)+
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by continuing the decomposition based on Levi’s parametrix method. Here Y;*(z’) is an odd
function with respect to 2’ ([4, Proposition 29]). Because of symmetries of Z and Y, the integral

/ . Zfﬁifw)>(x — x')@in_tu (x — 2E[eE (', 2" (", 2" dt da' dt” dz"”
((—o0,t)xXR)

is equal to zero, if we approximate the noise by &° = p® x & with a spatially even mollifier p°.
Therefore, we can trade off K¢() in (4.3) by Z(*(*)) and obtain the following result.

Corollary 4.5 ([11, Theorem 1.1]). There exist smooth functions C£(-) for each i € {1,2,3}
such that the solution to

0wt — a(u)ju® = €° — {Cf(a(u®))a’ (u") + C5(a(u))(a'a") (u%) + C5 (a(u®))(a’ (u)) "}

converges locally in time as € — 0.
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