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A REGULARITY STRUCTURE FOR THE QUASILINEAR GENERALIZED 

KPZ EQUATION 

ISMAEL BAILLEUL, MASATO HOSHINO, AND SEIICHIRO KUSUOKA 

ABSTRACT. We prove the local well-posedness of a regularity structure formulation of the 
quasilinear generalized KPZ equation and give an explicit form for a renormalized equation in 
the full subcritical regime. This is an abstract of author's work [4]. 

1. INTRODUCTION 

We consider the one dimensional quasilinear generalized KPZ equation 

8四ーa(u)8;u= f(u)~ + g(u)(8xu)2, (t, x) E罠十 X11', (1.1) 

with an initial condition u0 E C"'(11') for a E (0, 1), where股+:=（0, oo), 11':＝罠／Z,~ is the 
spacetime white noise, and a, f, and g are regular enough functions on股． Weassume that a 
takes values in a compact interval of良+.Thisequation is an example of singular stochastic 
partial differential equations (SPDEs) of parabolic type. Recall that the spacetime white noise~ 
has a (parabolic) regularity ao -2 almost surely, for O < a。<1/2.It is then natural to expect 
a solution u to the equation (1.1) to have a regularity a。.However,the nonlinear terms f(u)~ 
and g(u)(8四戸 donot make sense unless a。>1.
Hairer [14] introduced a groundbreaking theory called regularity structures and opened the 
door to the study of semilinear singular SPDEs. For quasilinear equations, Otto and Weber [16] 
introduced a variant of regularity structures to study the equation 

如L- a(u)洸u= j(u), (1.2) 

in the regime a。>2/3.Otto, Sauer, Smith, and Weber [15] deepened their framework to study 
the equation with an additive noise 

釦L- a(u)洸U=~ (1.3) 

in the full-subcritical regime a0 E (0, 1) and obtained an explicit form of a renormalized equation. 
Meanwhile, Gerencser and Hairer [12] provided an infinite dimensional regularity structure for 
the study of the equation (1.1) and obtained a renormalized equation in the regime a。>1/2.By 
implementing some integration by parts-type formulae, Gerencser [11] obtained a renormalized 
equation for the equation (1.3) with the spacetime white noise e when the mollification of noise 
is symmetric with respect to x. In the present work, we introduce another variant of regularity 
structure formulation of the equation (1.1) and give an explicit form for a renormalized equation 
in the full subcritical regime. Convergences of stochastic objects are left for future, but we expect 
that a simple modification of Chandra and Hairer's general proof [9] works well. 
We mention another approach to singular SPDEs called paracontrolled calculus introduced 
by Gubinelli, Imkeller, and Perkowski [13]. Furlan and Gubinelli [10] and Bailleul, Debussche, 
and Hofrnanova [2] investigated the equation (1.2) on the two dimensional torus with the space 
white noise e, which has a regularity a。-2for 2/3 < a。<1.These two works are variants 
of paracontrolled calculus based on different methods: the paracomposition operator in [10] and 
the initial form of paracontrolled calculus in [2]. In the present work, we reformulate the latter 
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approach in the framework of regularity structures. Bailleu! and Mouzard [5] extended the high 
order paracontrolled calculus based on [2] to deal with the equation (1.1) in the regime a0 > 2/5. 
This paper is organized as follows. In Section 2, we describe the main results of [4] without 
stating some precise definitions. In Section 3, we briefly review the locall well-posedness result 

of the regularity structure formulation for (1.1). In Section 4, we outline the sketch of the proof 
of main results. 

Notations. We represent by z = (t, x) E配 ageneric spacetime variable, for which we set 

llzlls == ltl112 + lxl-

We also set for any multiindex k = (k1，松） €即，

Zk := tk1砂2, lkl,. := 2k1 + k2. 

2. MAIN RESULTS 

2.1. Regularity structure formulation of (1.1). Following [2, 5], we set La(v) := a(v)8~ for 
an appropriate spacetime function v and rewrite the equation (1.1) under the form 

(8t -La(v) + c)u = f(u)(+ g(u)(8xuげ＋cu+(a(u) -a(v))8~u (2.1) 

for a large positive constant c. 

Remark 2.1. The choice of v depends on the initial condition uo. Typically, we choose a 

spacetime function v(t, x) = eta;u。。rat-independent function v(x) = e88;u0 with sufficiently 
small 8 > 0. See [4, Section 2.1] for other possible choices. 

We consider the equation (2.1) as a'perturbation'of the semilinear equation. We reformulate 
(2.1) as a system of equations for modelled distributions (see Definition 3.2) as follows. 

{ ::：二りこ）三u:）＋十二））（M;；ご'u}三叶， (2.2) 

w = Q:<:o[{a(u) -a(Pく2v)}{ D2P9(Qa(v)uo) + D2K~~虚り (v+w) ｝三叶，

where Qa(v) is the Green function of the parabolic operator 8t -La(v) + c. See Section 3 for 

the definition of all notations. One of the key parts of the work [4] is the well-posedness for the 
equations (2.2) (see Theorem 3.4) up to a positive time t。=to(uo,M) > 0 depending on the 
initial value u0 and the model M (see Definition 3.1), which consists of all stochastic objects to 
be renormalized. This analytical statement holds in the full subcritical regime a0 E (0, 1). Note 
that, our regularity structure consists of the infinite dimensional model space with Banach norms, 
in contrast to that only finite dimensional model spaces were used in the previous researches 
[14, 8, 9, 7, 1] of semilinear equations. Additionally, our model space is different from the infinite 
dimensional spaces considered in [12]. 

2.2. Main results. We consider a family of smooth spacetime functionsぐindexedby c E (0, 1] 
which approximates the white noise l as c→0. We can define the naive interpretation model 
M0 associated with名 butwe cannot expect the convergence of M0 as c→0 in general. By 
following the general procedure by Bruned, Hairer, and Zambotti [8], we can find some spacetime 
functions £0[Tり(z)called a renormalization character indexed by basis elements of the model 
space and define the associated BPHZ renormalized model研． SeeSection 4.1 for details. 

Assumption 1. There exists a renormalization character £0 such that the BPHZ renormalized 
model M0 converges to some model M as E→0. 
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While the convergence of M0 is stated as an assumption in [4], we expect to be able to prove 
it by a modification of Chandra and Hairer's proof for semilinear cases [9]. Then, by following 
[1, 7], we can state the first main result of [4]. Below, T［ザ]is a smooth function on配 indexed
by basis elements of the model space, which has a role of coefficients of Butcher series. Moreover, 
S[T門isa positive integer determined by the graph structure of 7P_ See Section 4.2 for details. 

Theorem 2.2. Let Uo E ca(']['）with a: > 0 and choose any appropriate function v on股十 X']['
as in Remark 2.1. Under Assumption 1, the solution u0 to the renormalized equation 

£e[T叫
如 e:-a(ue:)吃Ue:= f（か）ぐ＋g（か）（如C戸＋区 T［伊］（Ue:丸 u0,v) (2.3) 

S[T叫
TP 

starting from uo converges in C([O, to) x 11') for a random time t。=to(uo,M) in probability as 
C →0. In the last te'f"'m, 7P in the sum runs over infinitely many symbols and T［伊］ isat most 
linear with respect to 8丑E

It should be noted that the renormalization character £門伊]depends on the choice of v. In 
general, its dependence is nonlocal in the sense that £戸](z)is not of the form f(v(z)) with 
some function f on恥． Nevertheless,we assume thatだ［ザ］ canbe traded off with a local function 
of a(v) up to an c:-uniform remainder and we get the second main result of [4]. See Section 4.3 
for the definition of the analytic function入→ l〖［叫

Assumption 2. There exist c:-independent constants C(T) and m > 0 such that 

叶門(z)-l~(v(z)）戸l I <::: C(T) mlvl 

holds for any p E NET and z E股十 X11'. 

Theorem 2.3. Under Assumptions 1 and 2, there exist smooth functions T。[T]on配 indexed
by only finitely many symbols T such that the last te'f"'m of (2.3) is of the fo'f"'m 

l~国） [7]
区 T。[T］（此如り＋0(1), (2.4) 
~ S[T] 

for an c-uniform 0(1) term. 

Assumption 2 is too strong to believe that it holds in the full subcritical regime, but we can 
prove it for some particular cases studied by [2, 12, 11]. 

3. LOCAL WELL-POSEDNESS OF THE SYSTEM (2.2) 

3.1. Construction of the regularity structure. Our model space is generated by the family 

of symbols JR= Uf=l瓦uUf=l弐recursivelydefined as follows. 
• For each i E {1, 2, 3}, the primitive symbol己iscontained in醗

• If T□2,...，冗 EJR。:＝ u;=l配， then

xk II Io（巧） E以 XkIIエo （巧）， X江（巧） rr~。に）， X吐1(71）工心） IIZ。に） E JR;, 
i=l i=l i=2 i=3 

xk IT Io(T;), xk石(Tl)W。に） €耐
i=l i=2 

for any k E即， wherethe multiplications are commutative and Tiicc0 := iE0 
convention. 

• For each i E {1, 2, 3}, if T E訊 thenTBi E配・

1 by the 
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The noise symbol 31 represents the noise. The other noise symbols三2and三3represent the 
constant function 1, but they are not useful until the definition of T［ザ］ （Section 4.2). The 
symbol Xk represents the basis of Taylor series. The operator Ii。representsthe inverse operator 
(at -La(v) + c)-1, and五 and'I2represents its first and second derivatives with respect to x, 
respectively. We can see that each element of JIB。aboveare used to represent the right-hand 
side of the equation (2.1). As usual, each symbol of JIB can be represented as a rooted tree with 

node decorations {S，灼｝ andedge decorations｛五，1心｝． Wedefine the homogeneity of each 
element TE JIB by setting IB1 I := a。— 2 for any fixed a。E(0,1),1詞＝国：＝ 0,and 

xksi II 五（□ ：=|kl,.+|到＋ I:(IT』 +2 —叫，
j=l I j=l 

fork EN汽iE {1,2,3,4}, Tj E JIB。,andnj E {O, 1, 2}, where we set三4:= 1. In the previous 
studies on semilinear equations, it is important that the subset { T; ITI < 1} is finite for any 
ァ€股． While this property does not hold in the present case because the operator五 preserves
the homogeneity, we have the following. 

p roposition 3.1 ([4, Proposition 8]). The set A ==｛|ザ|;TP E匝｝ islocally finite and bounded 
from below. 

To classify infinitely many trees into finitely many classes, we contract consecutive operators 

三3'I2into one operator with an additional edge decoration. Precisely, we perform the contraction 

五（（己辺）op(T)） → 冗(T)
for any T E JIB。＼三3石（恥） ateach branch of the tree. After the contraction, we can represent 
each element of JIB by the unique minimum form 

丸

where p: E7→N is an edge decoration given for the edge set E7 of T. Therefore, there exists a 
finite set JIB0 and we can write JIB =｛伊； TE匝o,p: ET→N}. 

(m) We pick a positive number m and define TX"1 for each /3 E A as the completion of the linear /3 
space spanned by TP E JIB with|ザ|＝ /3under the佐 norm

2 

L C7PTP:=L lc-r出m21vl,
1-rPI=/3 /3，m 1-rPI=/3 

where IPI：＝区eEETp(e). We define the model space as an algebraic sum 

T(m)= 〶 T;m)·
/3EA 

The following statement is proved by a general procedure as in [8]. 

p roposition 3.2 ([4, Section 2.2]). There exists a group c(m)。fcontinuous automorphisms on 
r(m) such that (T(m), c(m)) is a regularity structure. 

The number m is to be determined after the estimates of stochastic objects are fixed. The 
existence of such m is implicitly stated in Assumption 1. For simplicity, we omit the letter'm' 
and write T instead of r(m) in what follows. 
The following notations are used in what follows. 

• A sector is a closed subspace S of T such that (S, Gls) is a regularity structure. In 
particular, sectors T,。andU spanned by JIB。and｛炉｝kEN2U'Io(lIB) respectively are 
important. 
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• A regularity of a sector Sis a minimum number (3 such that Sn T13 i= {O}. 
• Denote by Q13: T→T13 the canonical projection map and write Qぐ：＝区f3<TQf3・ 

3.2. Well-posedness of the system (2.2). To consider regularities of spacetime distributions, 
we introduce a spacetime elliptic operator,ea(v) := (8t -La(v))仇＋洸） andthe associated heat 

semigroup Q~(v) := e0c,a(v) (0 > 0). It is important that Q~(v) satisfies the anisotropic Gaussian 

estimate ([4, Proposition 4]). For (3 < 0, we define the spaceば(a(v))as the completion of the 
set of bounded continuous functions on配 underthe norm 

11111⑰(a(V)） ：＝ sup o-f3/4|| Q戸f||L疇）・
0<0:<ol 

Let Ka(v)(・, ・) be a'main part'of the Green function of (8t -La(v) + c)-1 (see [4, Section 2.1] 
for a precise definition) and write 

｛（洸Ka(v))(ri)}(z):= 1洸Ka(v)(z, z')ry(z')dz' 
良2

for any spacetime functions/distributions rJ. Note that Dx邸 tson the first variable of Ka(v). 

Definition 3.1 ([4, Definitions 9 and 13]). An admissible model M = (II, r) consists of con-
tinuous operators止： T →C_;2(a(v)) and r五 EG indexed by z, z'E配 withthe following 
properties. 

• {Chen's relations) II江四＝ IIz,,fzz = Id, fz"z'fz'z = fz"z for all z,z',z" E配．
• {Regularity) For any TE T13, 1 ~ (3, z, z'E JR汽and0 E (0, 1], 

IIQ"(rz'zrll"/,m乏llz'-z||：一"/llrllf3,m, Q戸(II汀）（z）|乏 0131411Tllf3,m・

• {Admissibility) For any TE T~m) with(3 ＜0, z E配， andn E {O, 1, 2}, 

{IIz(I戸）｝（・） ＝ ｛（的Ka(v))(IT汀）｝（・）ーと
(・ -x)k 
K! ｛（8;＋kka(V))（II汀）｝（z).

k<f3+2-n 

• (Periodicity) r（が＋（O,l))(z+(0,1))= rがzand {Ilz+(o,1J(・)}(z'+ (0, 1)) =｛叫•)｝（z') in 
distributional sense for all z, z'E記

Definition 3.2 ([4, Definition 11]). Let S be a sector and pick rJ ~'Y and t。>0.Denote by 
か叫o,t。;S)the set of functions u : (0, t0) x 11'→況：＝ Q<-y(S)equipped with the norm 
lllulllか "(O,to;S)：＝附翌。翌ど。 {(s/¥l){(f3-7l)vo}/2~~~ 11Qf3u(z)llf3,m} 

t:2'.s 

+ max sup {(s /¥ 1)(7-n)／2 Sup 
11Qf3{u(z') -r五 U(z)｝||o,m

B<7 0<s<to t,t12s ||Z'-Z||s7-，}． 
Each element ofか叫0,t。;S)is called a modelled distribution. We also define the space 
切 'T/=か叫股 x11'; T) in the same way and state the famous reconstruction theorem. 

Theorem 3.3 ([4, Theorem 12]). Let rJさ'Yand'Y > 0. For any admissible model M, there 

exists a unique continuous linear operator RM : V詞→CJA(ao-2l(a(v))such that the bound 

心叫RMu-IIzu(z)) (z)乏(ltlV gl/4f/¥(ao-2)→。714lllulllか
holds uniformly over for any u E V訊， zE配， and0 E (0, 1]. Moreover, RMu is a spatially 
periodic distribution. 
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To apply Theorem 3.3 to u E正 (0,t0; T), we consider a whole time extension ii E切嘔 X
1I';T) such that iilc-=,O]x'Ir = 0 and define the reconstruction R幅． Althoughsuch an extension 

is not unique, the value of R幅 onthe subset (0, t0) x 11'is unique because of the locality of RM. 

See [3, Section 4.3] for details. We can define the following operations on modelled distributions 
and make sense of the right-hand sides of (2.2). 

• (Multilevel Schauder [4, Theorem 15]) Recall that a E (0, 1] is a regularity of the initial 
condition uo. Pick'Y E (0, a), ri E (a -2，,y], and,y'S'Y + 2. Then there exists a 
continuous linear map 

K塁v),M: 1)'Y,TJ(O, t。;T。） →可(ri+2)/¥ao(0, to; U) 
such that u =茫K塁v),Mvsolves⑰ -La(v) + c)u = RMv on (0, to) with ult=O・ 

• (Multiplication) Let 81 and 82 are sectors of regularities a1 and a2 respectively, and 
such that the product 81 xふ→ Tis defined. Then for any Ui Eか叫ふ） （iE{l,2}), 
we have 

Q叫 U1・四） E1)'Y,TJ 

with'Y = (,y1 + a叫/¥b2 + a1) and rJ = (ri1 + a叫I¥(ri2 + a1) /¥ (ri1 + T/2)-Moreover, the 
mapping (u1，匹）→Q<-y(u1 ・四） islocally Lipschitz continuous. 

• (Composition) For any u E 1)研 (U)and a function h E C吋戦） with"'2max{'Y/a, 1}, 
we define 

h(u) == Q<"i （旦~(u -uaX(O,O)r), 
where u0 denotes the x(o,o)_component of u. Then h(u) E 1J訂， andthe mapping 

u →h(u) is locally Lipschitz continuous. 
• (Differentiation) Define D as a linear operator on T such that 

DX(K山） ：＝松X知，k,-1)1柘＞O, D五（7):=エ;_,,+1(T)lnく2・
is continuous Let n E {1, 2}. If 1 > n, then the map 1)詞 (U)3 u→かUE 1)T-n,n-n. 

and satisfies RM Dnu = a四氾ufor any u E 1J研 (U).
• (Lift of regular functions [4, Lemma 16]) Let w be either of v as chosen in Remark 2.1 
or Qa(v)uo, Then 

Xk 
(P qw)(z)：＝区（か）（z）面

lkl,<'Y 

belongs to D向 forany IE (1, 2 +a)¥ {2} and 7/-::= a. 

Theorem 3.4 ([4, Theorem 17]). Leta E (O,ao)-For anyuo EC可11'),we choose an appropriate 
function v on股十x'II'asin Remark 2.1. Then for any admissible model M, there exists sufficiently 
small t0 = t0(u0, M) such that system (2.2) has a unique solution (u, v, w) in the class 

か，"'(O,to; U) X v-y+ao-2,2et-2(0, to; T,。)XD-Y+eto-2,a-2(0, to; T,。)

for any1 E (2-a。,2-a0+a).The time t。canbe chosen to be a lower semicontinuous function 
of (uo, M) and the solution map from (uo, M) to (u, v, w) is locally Lipschitz continuous. 

4. PROOF OF MAIN RESULTS 

4.1. BPHZ renormalized model. First we define a naive interpretation model M0 = (II尺re)
associated with the smooth approximation ~c. An important point of [8] is that all models we 
consider take the form 

Ilz=noFz-1, f戸＝ Fz,o pz-1 
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with some continuous operators n : T→ C戸(a(v))and Fz E G, and it is sufficient to define n to 
construct the model M. See [8, Section 6.2] and [4, Definition 9] for details. For each EE (0, 1], 
we define the linear map n° : T→COO国） by

(nc炉）（z)=zk, n国＝ぐ， n芦＝ 1 (iE{2,3}), 

n°'InT =閲Ka(vl)(n牙）， n石・..Tn) = (n冗）・・ •(nc冗）．

We call the associated admissible model M0 = (II尺『） anaive interpretation. 
Since we cannot expect the,convergence of naive interpretations as E→0, we try to find a 
natural convergent transform ME of ME. It is known that such a transform is unique in some 
sense ([8, Theorem 6.18]) and called a BPHZ renormalized model. We follow Bruned's recursive 
formulae [6] to define this transform. Letふ： T →T R T be a splitting map defined as in [6, 
Section 4.1] and define the linear map Rf : T→Tby 

Rf(z)T = (C[-](z) R Id)△戸＝ L£[T(ll](z)T(2) 
7(1),7(2) 

for some spacetime functions £[T](z) indexed by TE匝wherewe use Sweedler's notation△戸＝
区7(l)R 7(2) for simplicity. (The letter'r'means that Rf cancels divergences occurring at the 
root of the tree.) We call such a map (satisfying some additional conditions -see [4, Section 

4.3.1]) a renormalization character. For any£, we can define linear maps ns,f and n~f as follows. 

(ns,f7)(z) = {n~f(Jむ (z)7)}(z), 

neメ£（町・・・ 7n) = (n~f巧）・・ •(n~f7n), n~f'In7 =（{乃~Ka(vl)(ns，仔）．

p roposition 4.1 ([6, Proposition 3.16]). The map no,£ defines a model M』.

For example, we consider the symbol 7 =（石（三））2.Since R土）7= 7 + £[7](z)x(o,o) in this 
case, by choosing 

徊 (z)＝-J 8ぷ a(v)に尋Ka(v)(z,吟）lE［ぐ（喜（硲）]dz1d吟， （4.1) 
（即）2

we have 

II叫 (z)＝ J 8ぷ a(v)に這Ka(v)(z，吟） ：ぐ（喜（砂）： dz1dz2,
（即）2

where: (・) : means Wick product. It is not difficult to show the convergence of the above quantity 
by a similar way to [14, Section 10]. Assumption 1 says that we can choose an appropriate 

renormalization character £0 for M0 := M0,f to converge as E→0. 

4.2. Proof of Theorem 2.2. We can see the action of the character £ on the equation by 
following Bailleul and Bruned's simple approach [l]. Note that each tree 7 E lll¥ can be written 
as 

m 

7=Xk三illェ叫侶）尻
v=l 

where (m炉％）ヂ (m"'四） forany μ =J v uniquely up to the order of multiplications. By using 
this representation, we inductively define S : lll¥→Nby 

m 

S[T] := k! II {S加］f3況！｝．
v=l 
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Moreover, we define smooth functions T[T](u, v) of u = (uk)kEN2 and v = (vk)kEN2 for each TE JIB 
as follows. 

T［三叶(u,v) := f(u(o,o)), 

芦 ](u,v) := g(u(o,o))u『o,1)+ cu(o,o)' 
芦 ](u,v) == (a(u(o,o)) -a(v(o,oJ))u(o,2), 

r(x刈五（乃））：＝ （沙D(o,n,)・ ・ ・ D(o,n,）戸l)I1訊],
j=l 

where Dk = Duk is the differential operator with respect to Uk and沖 isthe differential operator 
defined by 

伊：＝区 (UK+e広＋Vk+e広） （e E {(l, 0), (0, l)}) 
kEN2 

and ak := (a(l,O)杓(a(o,1)）校

Theorem 4.2 ([4, Proposition 24]). Let (u久vc,f,w州 bethe solution to (2.2) with respect to 
the model M豆 Thenone can choose t~ E (0, t0) small enough for u0,£ := RM'・'u0,£ to solve 

臼ザ］
如 “-a(U0'£)恐戸＝ f（Ue,£定＋g（砂り（如“戸＋区 T[T門(uc,£立U0'£,v) (4.2) 

S[T叫
|？|＜O 

on (0, t~) x 11', with initial condition uo. In the last term, T［ザ］ dependsonly on LI(o,o), LI(o,1), V(o,o) 
and at most linear with respect to LI(o,1)・

Theorem 2.2 is immediately obtained from Theorems 3.4 and 4.2. 

4.3. Proof of Theorem 2.3. The edge decoration p has the following two important roles. 

• [4, Lemma 25] There exist v-independent smooth functions T。[T]such that 
T［ザ］（LI(o,o),LI(o,1), V(o,o)) = (a(LI(o,o)) -a(V(o,o))) lvl To [T] (LI(o,o), LI(o,1)). 

• [4, Lemma 26] For each入＞ 0,letか(t,x) be the Green function of (8tー入洸＋c)-1,and 
define the renormalization character l約［ザ］ byreplacing Ka(v) in the definition of£汀ザl
(as in (4.1)) with Z入． Thenl~ ［ザ] is analytic in入and

1 
-8訊 [T゚］ ＝L lAげ].
n! 

lvl=n 

Proof of Theorem 2.3. Under Assumption 2, we can trade off the character だ［ザ］（•） in the 

last term of (2.3) by l~(v(•) ）［ザ］ up to皿 c:-uniformremainder and have 

l~(v) ［ザ］ 1 
区 S[T叫 T[T門（か，馴， V) ＝区 S[T°] と l~(v) げ］T。げ］（此馴， v)
|TP|＜O |T°|＜0 p€N糾

=,~nsFDJT。日 (u囁ぉ心 (a(u0) -a(v)r'~ l~(v) ［ザl
|T°|＜O n=0 |p|=n 

＝区 —To[T] （炉，如E)l：位）［判］．
lr01<0 
S[T0] 

In the first equality, we use [4, Lemma 18]. 口

Finally, we show some examples satisfying Assumption 2. See [4, Section 4.5] for details. 
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4.3.1. Two dimensional generalized PAM. We consider the equation 

如— a(u)△u= f(u)も (t, x) E股十 X1['2 

with the space white noise e. Although the spatial dimension is two, similar arguments to above 
work well. In this case we can choose 2/3 < a。<1.For example, we consider the renormalization 
character of the symbol 

T = B1Io（三1).

Similarly to (4.1), we can choose the character 

釘T]（t,x) ＝J戸）（（t,x),(s,y)）露(x)ぐ(y)]dsdy.
配

By using the classical Levi's parametrix method, we can trade off Ka(v) with Z 
a(v(t,x)) 
t-s (x -Y) 

(see [4, Proposition 28]) and have that 

だ[T](t,x)= 1 窃竺(t,x))(x, y)霰（誓(y)]dsdy+ 0(1) = l~和（t,x))[T]+ 0(1). 
(-(X)，t)x即

We can perform a similar calculation for the symbol琴 o（三匹（三1)and have the following. 

Corollary 4.3 ([2, Theorem 1]). There exists a diverging constant c" such that the solution to 

f'f a'j2 
如 "-a国）凶＝馴）ざーc"（了― a2)国）

converges locally in time as E→0. 

4.3.2. One dimensional generalized KPZ equation with regularized noise. Let e be a stationary 
Gaussian noise on恥 x11'which is slightly more regular that the white one (e.g. let T/ be a white 
noise and consider e = (1―△)-"'TJ with a> 0). In this case we can choose 1/2 < a。<2/3.We 
can perform similar calculations to above for the equation 

OtU -a(u)cか＝ f(u)e+ g(u)(cい）汽 (t, x) E股十 x11'

and obtain the following result. 

Corollary 4.4 ([12, Equation (1.2)]). There exists a smooth function CC-) such that the solution 

to a叫— a国）亨＝ f国）ぐ＋g（い（馴）2-Cい (ff+丁-a'af2)国）
converges locally in time as E→0. 

4.3.3. One dimensional quasilinear stochastic heat equation. We consider the equation 

如— a(u)心＝ e, (t,x)E股十 x11'

with the spacetime white noise e on瞑 x11'. In this case we can choose 2/5 < a。<1/2.The 
only difference with above cases is that we cannot trade off the function Ka(v) in the integral 

戸亨）1年）］（z)= 11R212 Ka(v)(z,z'）洸Ka(v)(z,Z”)認 (z'）ぐ(z")]dz'dz" (4.3) 
図）2

with z:~~(t,x)) (x -・) t―.x  -・) up to an integrable remainder. Instead, we choose a time-independent 
smooth function v(x) and derive that 

Ka(v) (z, z') = z:~悶x))(x -x') + a'(v(x))v'(x)~"'_t,(x -x') + ・ ・ ・ 
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by continuing the decomposition based on Levi's parametrix method. Here庁 (x')is an odd 
function with respect to x'([4, Proposition 29]). Because of symmetries of Zand Y, the integral 

J z芯叫X- x1)8加瓜(x-x")JE［ぐ（t',x'）ぐ(t",x")]dt'dx'dt" dx" 
((-oo,t)x良）2

is equal to zero, if we approximate the noise by ぐ＝が＊~ with a spatially even mollifier p見
Therefore, we can trade off Ka(v) in (4.3) by za(v(x)) and obtain the following result. 

Corollary 4.5 ([11, Theorem 1.1]). There exist smooth functions C託） foreach i E {1, 2, 3} 
such that the solution to 

8ttげー a(uE:)8~iド＝ ~E: -{Cf(a(uり）a'(uE:)+ q(a(uE:))(a'a")(uE:) + Gs(a(uり）（a'(uり）3}
converges locally in time as E→0. 
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