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General remarks on the propagation of chaos in wave turbulence 
and application to the incompressible Euler dynamics 

1 Introduction 

Anne-Sophie de Suzzoni 

February 17, 2023 

Propagation of chaos in the context of wave turbulence is the fact that when considering the solution 
to a Cauchy problem whose initial datum is random and presents independent Fourier coefficients, the 
Fourier coefficients of the solution at later times remain asymptotically independent. 

Consider the Cauchy problem for the incompressible Euler equation on the torus of size L > 0, 

(1) 

where u has values in ]Rd_ The initial datum aL depends on a function a that is even, bounded, compactly 
supported and with values in ]Rd_ To ensure that V • aL = 0, we also ask that g • a(t) = 0 for all g E ]Rd_ 

The randomness of the initial datum comes from the (gk)k which are centred normalised jointly Gaussian 
variables such that lE(gkgz) = Ok+l, which means gk = g_k but otherwise they are independent. The fact 
that gk = g_k ensures that aL has values in JR.d. 

Notice that initially Fourier coefficients are independent Gaussian variables. Indeed, 

The issue at stake is to understand in which sense the Fourier coefficients at later times, namely 

remain independent Fourier coefficients at fixed time t, but when L goes to infinity. If we do not con
sider the asymptotic regime L --+ oo, because the equation is nonlinear, the Fourier coefficients are not 
independent a priori. 

The reason why one thinks that propagation of chaos is verified is that as L goes to infinity, each 
Fourier coefficient of the initial datum has less and less weight, and thus the probability to take two that 
are independent goes to 0. This is what we will explain in the sequel. 

1.1 Motivations 

One motivation is the derivation of kinetic equations in the Physics literature. Kinetic equations are the 
equations that characterise the evolution of the correlations of Fourier coefficients of solutions to Cauchy 
problems with random initial data. When one derives formally the moments of order 2, one involves 
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moments of higher order depending on the order of the nonlinearity of the equation. To get a closed 
system, one uses propagation of chaos. The reasons justifying propagation of chaos are combinatory. 
The more independent Gaussian variables you have, the less probable it becomes to pick two that are 
not independent. This is what we follow here. We mention the following works about wave turbulence, 
[22, 4, 18, 19, 25, 24, 2, 21]. 

On the mathematical treatment of these type of issues, we mention the works by Deng and Rani, 
[10, 11, 12, 13] on quantum equations: they derive kinetic equations for Schri:idinger equations and then 
deduce propagation of chaos. The tools that are used are oscillating integrals and dispersion. 

We also mention the following works [23, 8, 7, 5, 20, 17, 14, 16, 15]. 

1.2 Wick formula 

Our goal is thus to quantify how Fourier coefficients at ulterior time differ from independent centred 
Gaussian variables. We quantify this by estimating how well Fourier coefficients of the solution at later 
times satisfy the Wick formula. 

Centred jointly Gaussian variables satisfy the Wick formula : 

R 

E( n g1) = L n E(g1gcr(l)) 
l=l SR /ES"/;. 

where 6R is the set of involutions of [11, RI] := [l, R] n N without fixed points and 

s; = {l E [I1,RIJ I l < er([)}. 

An involution without fixed point is simply a way to pair each of the elements of [I1,RI]. In particular, 
if R is odd, then 6R = (i) and 

R 

E(n g1) = 0. 
l=l 

The fact that we restrict the product to S; is not to repeat the expectation of the pairs twice. 

Remark 1.1. If R even, and g1 = ... = gR = g are normalized and centred real Gaussian variables, we 
find 

R! 
E(?) = #6R = 2Rf2(R/2) ! 

which is indeed the R moment of a normalized and centred real Gaussian variable that one can compute 
by integration by parts. To count the cardinal of 6R, we take R/2 elements of[ll,RI], that is 

R! 
(R/2!)2 • 

Then, we map each of these elements to elements of the complementary in [I1,RI] that makes 

R! 
(R/2)! 

Because the pairs are not ordered, we divide by 2Rf2 and get the result. 
In the same way, if g1 = ... = gR/2 = g, gR/2+1 = ... = gR = g where g is a complex centred 

normalized Gaussian variable, we find 
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Indeed, lE(g2) = JE((g)2) = 0 and 1E(lgl2) = 1. Therefore, 

if3l E [ll,R/21], a-(l) E [ll,R/21] 
ifVl E [ll,R/21], a-(l) E [IR/2 + 1,RI] 

There are indeed R/2! involutions contributing, and we get the result, which corresponds indeed to the R 
moment of a normalized and centred complex Gaussian variable. 

Remark 1.2. This formula characterises the law of a family of jointly Gaussian variables ( real or com
plex). In particular, we see that the law of jointly Gaussian variables is characterised by the correlations 

1.3 Framework 

We recall that we consider the incompressible Euler equation (1). 
Let P be the Leray projector, that is the 0 order differential operator 

Pu= u - V f'..- 1 (V · u). 

Note that P(VpL) = 0 and that V • P = 0, P2 = P. In other words, P projects on the divergence free 
functions. 

Commuting with P, the equation becomes 

This equation is invariant under the action of spatial translations. 
We consider the Cauchy problem : 

{ 
81uL + P(uL · VuL) = 0 

uL(t = 0) = aL := Lz~ (;;:;~12gka(k/ L) 

Remark 1.3 (Remark on the initial datum). The reason why we sum on Z1 = zd, {0} instead ofzd is 
the following. We remark that .£,'Jfd u is a priori conserved by the flow for periodic solutions and thus we 
choose it null. 

Remark 1.4 (Remark on invariance). The law of aL is invariant under the action of spatial translations, 
so is the law of UL(t). This is due to the fact that the law of a Gaussian variable is invariant under the 
action of U ( 1) ( it can be multiplied by a phase). 

This implies that for all 6, ... , gR, xo E JR.d, writing T xo the translation T x0u(x) = u(x - xo), 

R R 

lE( n llL(t, gz)) = lE( n Q"t(t, gz)) 
bl bl 

and thus 
R R 

lE( n llL(t, gz)) = eixoCE1 f1lJE( n llL(t, gz) ). 
bl bl 

We deduce 
R 

lE( n llL(t, gz)) * 0 ⇒ I gz = 0. 
l=l l 
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We specify the normalisation of the Fourier coefficients : we set 

llL(t,D = ~/2 ( UL(x)e-ifxdx 
(2,rL) J[-,rL,,rL]d 

such that 
llL(O,f) = gLfa(f). 

Our goal is to estimate, for a given R (at least locally in time), 

R 

sup IE( n uf1l(t,f1))- ~ n E(uf1l(t,f1)uf~c,))(t,fCT(l)))I 
(f1)1,(J1)1,I l=I CTE6R /ES-:, 

and prove that it goes to Oas L ➔ oo. We precise that we consider uf'l(t, fz) the jz coefficient of uL(t, fz) 
because the solution has values in JR.d. Namely, if XE JR.d we write 

X = (X(l), ... , X(dl). 

One problem is that aL is a Gaussian variable so any norm of aL might be big on a set with positive 
measure and thus the time of existence of the flow may be very small on non-negligible sets. Therefore, 
for a given t, the solution UL(t) is not necessarily well-defined. The first result we state is not on the full 
solution but on what is sometimes referred to in the literature as quasi-solutions. 

2 Results 

2.1 Quasi-solutions 

We define the sequence (uL,n)n in the following way 

UL,0 = aL, UL,n+I = - ~ t P(UL,n1 (T) · "iluL,n,(T))dT. 
n1+n2=n Jo 

If the series Ln UL,n converges, then the sum is equal to the full solution, that is 

~UL,n = U£. 

Remark 2.1. One may see this last equality as an expansion in the size of the initial datum. 

Notation 2.1 (Quasi-solution). We set 
N 

UL,,;,N = ~ UL,n· 
n=0 

This last function is said to be a quasi-solution. 

On quasi-solutions, we prove the following theorem. 

Theorem 2.2 (dS, [9]). For all R E N*, all t E JR and all NE N, there exists C = C(a, R, N, t) such that 

for all L, all (jz)1,;,1,;,R, all (fzh,;,z,;,R, we have 

R 

IE( n uf,'lN(t, f1) )- ~ n E( uf,'lN(t, fz)uf:u;J (t, f CT(l)) )I :S:: L~2 · 
I= I CTE6R IES + 

Remark 2.2. One can prove a finer estimate which depends on the parity of R and algebraic relations 

satisfies by the (fz)z, see Proposition 3.1. 

Remark 2.3. The constant C is explicit, but it depends badly on N, as in (NR) !. 
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2.2 Result on the full solution 

Because the above constant behaves badly in N, to get a result on the full solution one must get the 
convergence of the sequence (uL,.c,N)N before considering expectations, which means that we have to 
resort to classical and deterministic arguments. 

The problem is that the typical size of any usual norm of the initial datum aL behaves badly with L 
because it is not localised, indeed : 

llaLIIL2(LT'1) ~ Ld12 , 

llaLllv(L'lI'd) ~ Ld/p 

llaLIIL00 ~ YJ.ni. 

By this, we mean that there exists aµ,/3p, Yp > 0 such that for all L, 

lP'(llaLllv E [aµLd/p,/3pLd/p]) ?: Yp, 

lP'(lla£IIL00 E [aoo Yl.nL,/300 YJ.nL]) ?: Yoo, 

This might not be true for all functions a defining the initial datum, but there exists examples of a where 
this is the typical behaviour of the norms. 

The idea for the last estimate is that there are circa Ld independent Gaussian variables forming aL, 
In some cases, for instance, if a is explicit or smooth enough, this implies that there exist circa L d space 
coordinates x E LTd are such that the aL(x) are independent Gaussian variables. 

We change the framework and set 

with s(L) = O(_b,). 
vmL 

Theorem 2.3 (dS, [9]). Let 0 > 0. There exists c(0) > 0 such that for all L, there exists a set 8L,0 such 

that 
lP'(8L,0) ?: 1 - e-ce(L)-2 ➔ 1 

and such that the flow of the Euler equation is well-defined on [ -0, 0] when the i.d. is taken in 8L,0· 

What is more,for all REN*, there exists 0o = 0o(R, a) and C = C(a, R) such that for all t E [-0o, 0o], 

for all L, all (jz)t.c,l.c,R, all (tzh.c,1.c,R, we have 

llE( leL,0o Ii UL (j,)(t, tz)) - ~ n lE( leL,lio UL (j,)(t, tz)UL (jo-<nl(t, tcr(l)) )I :', c;~~t, 
l=l CTE6R IES;; 

Remark 2.4. If s(L) = o( . b,) then the result is global in the sense that the second part of the theorem 
vmL 

remains true for any 0o. In other words, it can be replaced by "What is more, for all R E N*, there exists 

C = C(a, R, 0) such that for all t E [-0, 0], for all L, all (jzh.c,l<e,R, all (tz)1.c,l.c,R, we have 

llE( leL,0 Ii UL (j,)(t, tz) )- ~ n lE( leL,0UL (j,)(t, tz)UL Uo-<nl(t, tcr(l)) )I :', c;~~t ." 
l=I crE6R IES1; 
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3 Strategy of proof 

The proof of the first theorem is purely combinatory. 
We give an example. The number of Fourier coefficients we consider is R = 6. We have 

and 

with 

l/t(6,6) = f aCkl(g1)g~k)a(l)(g2) - f (6 + 6)<1)(6: gz)<1) a(k)(g1)g~k)a(j)(6). 
k=l k,j=l 16 + gzl 

Note that the expression of ,ft does not depend on L. 
We deduce 

6 6 

lE(narl(t,g1))= ;3d I n,jt(fo,fo)lE(nufogLf,.2)-
l=l fo+l;1,2=l;1 l l 

A priori, we sum on 6 parameters, which makes the sum of order L3d but the (gk)k satisfy the Wick 
formula, and thus we can pair them which means that we sum on at most 3 parameters and thus the sum 
is a priori of order 1. 

3.1 Orbits 

We have that, using the Wick formula 

lE( n gLl;,.1gLl;,.2) = I n lE(gLl;,.jgLl;<T(,.11):::; 6! 
l <rE6(6,2) (l,J)ES";,-

where 6(6, 2) is the set of involutions without fixed points of [11, 61] x {1, 2}. 
If this quantity is not null, then there exists an involution er without fixed points of [11, 61] x {1, 2} 

such that for all (/, j), we have gl,j = -g<r(l,j)· 

Note that since gl -:f- 0, we have for all/ E [11, 61], cr(l, 1) -:f- (l, 2). 
We set for I~ [11, 61], 

a-(I) = {/ E [11,61] 13!' E I,j,j', cr(l',j') = (l,j)} 

and for/ E [11,61], 
o(l) = LJ a-"({l}). 

n 

We call o(l) the orbit of l. Of course, l is not an element of [11, 61] x {l, 2} hence this is is an abuse 
of vocabulary. The set o(l) is the set of all elements l' E [11, 61] that one can reach by applying er several 
times. 

The orbits form a partition of [11,61]. Since cr(l, 1) -:f- (/,2), each orbit has at least 2 elements. 
Therefore, there are at most R/2 = 3 orbits. 
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3.2 Examples of orbits and involutions 

Involution with 3 orbits 

---5 6 

A typical involution of [11, 61] x (1, 2} whose orbits are (1, 2}, (3, 4} and (5, 6} as in the above picture 
is CT1 given by 

Therefore, if 

then, we have 

CT1(l, 1) = (2, 2), 
CT1(2, 1) = (1, 2), 

CT[ (3, 1) = (4, 2), 
CT[ (4, 1) = (3, 2), 

CT1(5, 1) = (6, 2), 
CT1(6, 1) = (5, 2). 

n E(g1.,q,,jg1.,qa-1(,.11) * 0 (= l) 
(l,j)ES!;.1 

~+/;z,2=0, 

6,2 +/;z,1 = 0, 

l6,1 l+g4,2 = o, 
6,2 + g4,1 = 0, 

I 6.1 1 + g6,2 = o, 
g5,2 + g 6,1 = 0, 

We deduce by summing the equalities, since gz = gz,1 + g/,2, that 

What is more, only three parameters g 1,1, 6,1 and g5,1 determine all the gl,j· We deduce 

t6 
£3d I n i{t(gz,1,gz,2) n E(g1.,q,,jg1.,qa-1(l,) 

fo+fo=f1 l (/,j)ES!;.1 

is a sum on three parameters in fz~, is null if gl + 6 * 0 or 6 + g4 * 0 or g5 + g6 * 0 and otherwise 

t6 
£3d I n i{t(gz,l,gl,2) n E(g1.,q,,jg1.,qa-1(/,ji> :$ 1. 

fo +f1,i=f1 l (/,J)ES t,1 

Involution with 2 orbits 

-5 6 

A typical involution of [11, 61] X {1, 2} whose orbits are {l, 2, 3, 4} and {5, 6} as in the above picture is 
CT2 given by 

CT2(l, 1) = (2, 2), 
CT2(2, 1) = (3, 2), 
CT2(3, 1) = (4, 2), 
CT2(4, 1) = (1, 2), 

CT2(5, 1) = (6, 2), 
CT2(6, 1) = (5, 2), 
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Therefore, if 

then, we have 

n E(gz,gl.jgz,g,,.2(/,j)) * 0 (= 1) 
(/,j)ES1;.2 

l6,1 l+6.2 = o, 
6,1 +6,2 = 0, 
6,1 + ,4,2 = 0, 
,4,1 + ,,,2 = 0, 

16,1 l+,6,2 = o, 
6,2 + ,6,1 = 0. 

We deduce by summing the equalities, since gz = g1,1 + g/,2, that 

What is more, only two parameters g1,1 and gs,1 determine all the gl,j· We deduce that 

t6 
L3d I n i/t(,1,1,,1,2) n E(gz,g,_jgz,g,,.2(/.J)) 

fo +fo=f1 I (/,j)ES1;.2 

is a sum on two parameters in f z~, is null if gl + 6 + 6 + g4 * 0 or g5 + g6 * 0 and otherwise 

t6 
L3d I n i{t(g1,1,,1,2) n E(gz,gl_jgz,g,,.2(/,J)) ;$ ed. 

fo+fo=f1 I (l,j)ES1;.2 

Involution with 1 orbit 

A typical involution of [11, 61] x {1, 2} whose only orbit is [11, 61] as in the above picture is CT3 given 
by 

Therefore, if 

then, we have 

CT3(l, 1) = (2, 2), 
CT3(2, 1) = (3, 2), 
CT3(3, 1) = (4, 2), 
CT3(4, 1) = (5, 2), 
CT3(5, 1) = (6, 2), 
CT3(6, 1) = (1, 2). 

n E(gz,g1Jgz,g,,.3u,11 )-/. 0 (= 1) 
(l,j)ES1;.3 

1,1.1 1 + 6,2 = o, 
6,1 + ,3,2 = 0, 
6,1 + ,4,2 = 0, 
g4,1 +6,2 = 0, 
g5,1 + ,6,2 = 0, 
,6,1 + 6,2 = 0. 
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We deduce by summing the equalities, since tz = t1,1 + t1,2, that 

What is more, only one parameter 6,1 determine all the tI,j· We deduce that 

t6 
L3d ~ n i/t(t1,1, t1,2) n E(gl{,,Jgl{u3(l,) 

f;1,1+fo=l;1 l (l,j)ES-:;_3 

is a sum on one parameter in t,Z~, is null if 6 + 6 + 6 + t4 + 6 + t6 * 0 and otherwise 

t6 
L3d ~ n i/t(t1,1,t1,2) n 'E(gl{,,Jgl{u3u,1,) :5 C 2d. 

fo +/;1,2 =/;1 / (l,j)ES d3 

In general, the order in L of 

t6 
L3d ~ n i/t(t1,1,t1,2) n 'E(gl{1,1gl{uu,D) 

fo +fo =/;1 I (l,j)ES-:;_ 

depends only on the number of orbits of er. 
However, the involutions fix conditions on the (tz)i. Namely, if ti+ 6 = 0, 6 + t4 = 0, ts+ t6 = 0 

then cr1, cr2 and cr3 will contribute to the expectation. However, if we have only 6 + 6 + 6 + t4 = 0 and 
ts + t6 = 0, then only cr2 and cr3 will contribute. 

This is summed up in the following proposition. 

Proposition 3.1. Given (t1, ... , t R), consider all the partitions of [11, RI] : 

[I1,Rll = lJo; 
iEI 

such that for all i E I, 

One has maximal cardinal #I. Then 

R 

E( n uf'~N(t,t1)) = O(Ld(#I-~)). 

l=l 

As we have already seen #I:<::: ~ and in case of equality the leading order is 

3.3 Idea of proof for the result of the full solution 

A traditional way to solve the Cauchy problem for the incompressible Euler equation (or similar equa
tions) is to perform a contraction argument for analytic data or for a regularized problem and extend the 
result to Sobolev spaces by exploiting the conservation laws of the equation. This is based on compact
ness and bootstrap arguments. We mention [l]. 
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Here, we solve the problem for analytic data and exploit the Cauchy-Kowalevskaia theorem. 
For problems on the torus, see [3], one may consider the following norms 

llullp = L lu(k)lel'1k1, or llullp = 

kEZ~ 

I lu(k)l2eplkl_ 

kEZi 

However, they behave badly as L ➔ oo, hence this framework has to be slightly modified. 
We define 

llullp = L ePlnlllunllL00 

nEZd 

where Un is u but localised in frequencies around n E zd and such that I: Un = u. The norm II · llp is the 
norm for the initial datum. Indeed, taking po > 0, we have the following probabilistic property 

lP'(llaLllpo :2: A) :5 e-c(po)A2e(L)-z. 

As in [6], we define for f3 E (0, 1), 0 > 0, 0(p) = 0(po - p), 

llullPO,s,e = sup sup (llu(t)llp + 11Vu(t)llp(0(p)- t:f3). 
pE(O,po) IE[O,0(p)) 

This is the norm in which we perform the contraction argument. 
We have bilinear estimates 

which allows to perform the contraction argument. 
We deduce that there exists A(0) such that on 

we have 
lluL,nllpo,8,0 :5 rn A(0). 

Since we know the dependence of the constant in N in the first theorem, it remains to optimize. 
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