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1. ABSTRACT 

This research is a joint work with Professor Shinya Nishibata, Souhei Sugizaki 
of Tokyo institute of technology and Akitaka Matsumura of Osaka university. The 
present talk is concerned with the existence and asymptotic behaviors of radially 
symmetric stationary solutions for the compressible N avier-Stokes equation, describ­
ing the motion of viscous barotropic gas without external forces, where boundary 
and far field data are prescribed on the exterior domain in ]Rn, n 2': 3. We clear that 
for both inflow and outflow problems, there exist non trivial stationary solution, 
and for outflow problem we show that the stationary wave are asymptotic stable in 
a suitably small neighborhood of the initial data. Furthermore, detailed decay rate 
of the stationary solutions are derived. 

2. INTRODUCTION 

In this talk, we consider the compressible N avier-Stokes equation which describes 
a barotropic motion of viscous gas in the exterior domain S1 to a ball in ]Rn (n 2': 2): 

{ Pt + div(pU) = 0, 
(pU)t + div(pU ® U) + "v'p = v 6. U + (v + A)"v(divU), t > 0, x En, (l) 

where O = {x E ]Rn (n 2': 2); lxl > 1}, p = p(t, x) > 0 is the mass density, U = 
( u1 ( t, x), · · · , Un ( t, x)) is the fluid velocity, and p = p(p) is the pressure given by a 
smooth function of p satisfying p'(p) > 0 (p > 0). Furthermore, v and A are the 
viscosity coefficients. In this talk, we focus our attention on the radially symmetric 
solutions, which have the form 

X 
p(t, .T) = p(t, r), U(t, .T) = - u(t, r), r = lxl, (2) 

r 
where u(t, r) is a scalar function. By plugging (2) to (1), we can rewrite (1) as in 
the form 

{ 
(rn-1P)t + (rn-lpu)r = 0, 

pu2 (rn-lu) (3) 
(pu)l + (pu2 + p(p))r + (n - 1)7 = µ( rn-l rt, t > 0, r > l, 

whereµ= 2v +A> 0. Now, we consider the initial boundary value problems to (3) 
under the initial condition 

(p,u)(0,r) = (Po,uo)(r), r > l, (4) 
the far field condition 

lim (p, u)(t, r) = (P+, u+), t > 0, 
r➔oo 

(5) 
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and also the following two types of boundary conditions depending on the sign of 
the velocity on the boundary 

{ 
(p,u)(t,-ro) = (Pb,ub), t > 0, (ub > 0), 

u(t, ro) - ub, t > 0, (ub:::; 0), 
(6) 

where Pb, P+ > 0, ub and u+ are given constants. 
The case ub > 0 is known as "inflow problem", the case ub = 0 as "impermeable 

wall problem", and the case ub < 0 as "outflow problem". 
When the problems are multi-dimensional (n 2: 2), Jiang [2] and Nakamura­

Nishibata-Yanagi [8] studied the case U± = 0. They study more general compress­
ible N avier-Stokes equation, describing the motion of viscous polytropic ideal gas. 
Jiang [2] first showed the global asymptotic stability of the constant states, and 
later Nakamura-Nishibata-Yanagi [8] extended the results to the case with external 
potential forces. Recently, Hashimoto-Matsumura [4] treated the multi-dimensional 
problems in more general cases ub =/- 0 and they showed the existence of the radially 
symmetric stationary solution in a suitably small neighborhood of the far field state. 

3. MAIN RESULT 

In this talk, we consider the asymptotic stability of the radially symmetric sta­
tionary solution obtained in Matsumura-H [5]. The stationary solution (p, u) is a 
solution to (3)-(6) which is independent of the time variable. Thus, (p, u) satisfy 
the equations written as 

(rn-lpu)r = 0, 

( n-1 ~) 
{JUUr + P(P)r = µ( r n ~ r)r, r 2': 1, 

r - (7) 
lim (p, u)(r) = (P+, U+ ), 

r--+oo 

(p, u) (ro) = (Pb, Ub) ( Ub > 0), u(ro) = Ub ( Ub :::; 0). 

From the first equation in (7), we easily see it holds 

rn- 1p(r)u(r) = m, r 2: 1, (8) 

for some constant m, and it also holds from the boundary conditions that 

m = PbUb (ub > 0), m = p(l)ub (ub:::; 0), 
where note that in the case ub :::; 0, m includes the unknown p(l) which should be 
determined later. The formula (8) implies that if n 2: 2, 

m 
u+ = lim u(r) = lim _1 = 0. 

r--+oo r--+oo rn P+ 
Hence, we need to assume u+ = 0 for the existence of multi-dimensional stationary 
solutions. Now we state the statement of existence Theorem. 

Theorem 3.1. Let n 2: 2 and u+ = 0. Then, for any P+ > 0, there exist positive 
constants Eo and C satisfying the following: 
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(I) Let 'U_ > 0. If lu- I+ IP- - P+ I :S Ea, there exists a unique smooth solution (p, u) 
of the problem (7) satisfying 

lp(r) - P+I s cr-2(n-l)(lu-l 2 + IP- - P+I), 

c-lr-(n-l)lu-1 s lu(r)I s cr-(n-l)lu-1, r 2 ra. 

Furthermore, for any positive constant h, there exists a positive constant Ch such 
that it holds 

sup lp(r) - P+I S Chlu-1 2 - (9) 
r::,,:ro+h 

(II) Let u_ :S 0. If lu- I :S Ea, there exists a unique smooth solution (p, u) of the 
problem (7) satisfying 

lp(r) - P+I s cr-2(n-l)lu-l 2 , 

r 2 ro. 

Now we are ready to state the result for the asymptotic stability of stationary 
solution obtained for outflow problem in the following Theorem. 

Theorem 3.2. Let ub < 0, n 2 2 and u+ = 0. We assume that II be an arbitrary 
constant satisfying O < II < 1. Assume that the initial data (4) belongs to the 
function space 

Po E Cl+<T[l, oo), ua E C2+0"[1, oo). 

Then there exists a constant Ea such that if lu- I, llr n2\po - p, ua - ii) IIH1 :S Ea, then 
the initial boundary value problem (3)-(6) has a unique solution (p, u)(t, r) satisfying 

(p,u) E Cl+<T/2,1+0" x Cl+<T/2 ,2+0"([0,T] x [1,oo)), 

for an arbitrary T > 0 and (p - P+, u - u+) E C([0, oo); H 1 (ffi.)). Moreover, the so­
lution (p, u) ( t, r) converges to the stationary wave (p, ii) (r) as time tends to infinity. 
Precisely, it holds that 

lim sup l(P, u)(t, r) - (,a, ii)(r)I = 0. 
t➔+00 rElR+ 

In the proof on the Theorems, we use spacial weighted energy method proposed 
by Nakamura-Nishibata-Yanagi [8] and decay rate of stationary solution. Ck+lT de­
notes the Holder space of continuous functions which have the kth order derivatives 
of Hoolder continuity with exponent II. 

Remark 1. When u_ = 0, by (3)-(5), we easily see the solution is the trivial constant 
state (p, u) = (P+, 0). Therefore, when u_ > 0 and P- =/- P+, the estimate (11) shows 
a boundary layer for mass density does appear as u_ -+ +0. 

4. PRELIMINARY AND PROPERTY OF THE STATIONARY SOLUTION 

In this section we translate the problem (7) and we use the symbol u(r) and 
p( r) as the stationary solution of ii( r) and ,a( r) for less confusion. We introduce the 
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specific volume v by v = l/ p (accordingly, denote V± by 1/ P±)- Then, by (8)), the 
velocity u is given in terms of v as 

m 
u(r) = rn-l v(r), r 2: 1, (10) 

where m = ub/vb (ub > 0), and m = ub/v(l) (ub ~ 0). Substituting (10) into the 
second equation of (7), we have 

rrr:~l c:-lt + p(v)r = mµ c~~lt' (ll) 

where p(v) := p(l/v), and it holds p'(v) < 0 (v > 0) by the assumption on p(v). 
Now, we further introduce a new unknown function 77, as the deviation of v from 
the far field state v+, by 

77(r) = v(r) - v+, 

Plugging (12) into (11), we have 

r 2: 1. (12) 

( 77r ) _ mv+ ( 1 ) m 2 
( 77 ) 

mµ rn-1 r = p(v+ + 77)r + -2- r2(n-1) r + rn-1 rn-1 r, (13) 

where m = ub/v_ (ub > 0), and m = ub/(v+ + 77(1)) (ub < 0). Under the far field 
condition 77( oo) = 0, the equation (13) is also equivalent to 

( 77r _ m2v+ m277 2 100 77( s) ) 
mµ rn-1 - p(v+ + 77) - 2r2(n-1) - r2(n-1) + m (n - 1) r s2n-1 ds r = 0, (14) 

which implies that the function in the parenthesis in the left hand side of (14) is 
identically equals to a constant c0 for r > l. Then, it follows from the far field 
condition that 

which concludes c0 = -p( V+), otherwise it contradicts the far field condition again. 
Thus, we finally have the following reformulated problem in terms of 77: 

n-1 
77r=-r -(p(v++77)-p(v+)) 

mµ 

+ mv+ _l_ + m77 _ m(n - l)rn-l 100 77(s) ds, r > l, 
2µ rn-1 µrn-1 µ r 8 2n-l (15) 

lim 77(r) = 0, 
r--+oo 

77(1) = 17b := vb - V+ (ub > 0), no boundary condition (ub < 0), 

where m = ub/v_ (ub > 0), and m = ub/(v+ + 77(1)) (ub < 0). Once the desired 
solution 77 of (15) is obtained, the velocity u is immediately obtained by (10) as 

u(r) = ub(v+ + 77(r)) (ub > 0), u(r) = ub(v+ + 77(r)) (ub < 0). 
v_rn-1 (v+ +77(l))rn-1 

The existence theorem for the reformulated problem (15) is the following. 
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Theorem 4.1 (Hashimoto-Matsumura [5]). Let n 2: 2. Then, for any v+ > 0, there 
exist positive constants Eo and C satisfying the following: 

(I) Let ub > 0. If lubl + l77bl ~ Eo, there exists a unique smooth solution 17 of the 
problem (15) satisfying 

l11(r)I ~ cr-2<n-l)(lubl 2 + l77bl), r 2: 1. 

(II) Let ub < 0. If lubl ~ Eo, there exists a unique smooth solution 17 of the problem 
(15) satisfying 

r 2: 1. 

Theorem 4.1 ensures that if lubl is sufficiently small, then it holds that 

V+ 3 
2 ~ V+ + 17(1) ~ :?+· 

In addition to the Theorem 4.1, we obtain the following lemma for the property of 
stationary solution. 

Lemma 4.2. Let u_ ~ 0 and n 2: 2. Then, for any V+ > 0, if lubl « 1 we obtain 
the following properties. 

17(r) > 0 , 17r(r) < 0, 17rr(r) > 0 (1 ~ r < oo), 

u(r) < 0 , Ur> 0 , Urr < 0 (l ~ r < oo) 

C31r-n+llubl ~ lu(r)I ~ C3r-n+ 1 1ubl, 

lurl ~ C4r-nlubl, lurrl ~ C5r-n-llubl, 

lp(r) - P+I ~ C5r-2n+2 1ubl 2 , 

1:r(p(r)- P+)I ~ C1r-2n+llubl 2 , 1::2 (p(r)- P+)I ~ Csr-2nlubl 2 , 

where,C1 , • • • ,C8 are positive constants independent of r and lubl. 

5. THE ENERGY ESTIMATES 

In this section, we derive the a priori estimate. u(r) and p(r) stand for the 
stationary solution for (7) here. In order to prove the stability result in Theorem 
3.2, it is convenient to regard the solution (p, u) as a perturbation from the stationary 
solution (p, u). Thus, we define new unknown functions as 

¢(r, r) := p(t, r) - p(r), 1/J(t, r) := u(t, r) - u(r). 

Subtracting (7) from (3) yields that 

{ <Pt + U<Pr + P1/Jr = F, (16) 
p( 1/Jt + u1/Jr) + P' (p) <Pr - µ1/Jrr = G, 

where 

{ F := -f5r1/J - Ure/>- n;1 (¢u + p'ljJ) 
G := -(¢1/J +ii¢+ ro'ljJ)ur - (P'(p) - P'(p))Pr + µ(n - l)(*)r (l 7) 
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The initial and boundary conditions to the system (16) are derived from ( 4) and 
(6), 

¢(0, r) = ¢o(r) := p(r) - p(r), 

1/J(t, 0) = 0. 

1/J(0, r) = 1/Jo(r) := u0 (r) - u(r) 
(18) 

The local existence of the solution ( ¢, 1/J) to the initial boundary value problem (16) 
and (18) is stated as follows.(Tani, [9]) 

Lemma 5.1. Assume that the same conditions in Theorem 3.2 hold. Then there 
exists a positive constant To, depending only on l¢ol1+u and l'I/Jol2+u, such that the 
initial boundary value problem (3) - (6) has a unique solution(¢, 1/J) in the space: 

(¢,1/J) E c1+u/2,1+u x c1+u/2,2+u([0,To] X [l,oo)), 

r n;-l ¢, r n2 11jJ, r n21 <Pr, r n 21 1Pr E G([0, To]; L 2 (ll~+)), 

r n 21 1Pr E £ 2 (0, To; L2 (ffi+)). 

Next, we proceed to the a priori estimate in the Sobolev space, which is stated 
in Proposition 5.2. To show this estimate, it is convenient to use notation 

N(t) := sup 11(¢,1/J)(T)lli-
O'.:'.r::::t 

Proposition 5.2. Let(¢, 1/J) be a solution to (16), (17) and (18) in a time interval 
[0, T], which has the same regularity as in Lemma 5.1. Then there exist positive 
constants Eo and G, such that if N(T) ::; Eo, then the following estimate holds for 
an arbitrary t E [O, T]: 

11(¢, 1/J)(t)lli + 1t 11¢r(T)ll 2 + 111/Jr(T)lli + 1(¢, <Pr)(T, l)l 2dT 
(19) 

Proof. The proof is divided into three steps, which are stated in Lemmas 5.3, 5.4 
and 5.5. Combining the uniform estimates proved in these three Lemmas gives the 
desired estimate (19). □ 

The smallness assumption on N(T) in Proposition 5.2 ensures that if Eo is suff­
ciently small, then there exist certain positive constants cp and Gp such that 

0::; cp::; p(t, r) ::; Gp for t E [0, T]. 
Next, we introduce an energy form by 

C •= !n/,2 lp P(TJ) - P(p) 
(,,. 'f/ + 2 . 

2 i5 TJ 
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By using (16), (17) and (18), we see that p£ satisfies the equation by the straight­
forward computation. 

t/;2 
(p£)t + {pu£ + ( P(p) - P(j5) )t/J - µt/Jt/Jr - µ( n - 1) 2r }r 

2 n - 1 ( pu 2 t/;2) 
+ µt/Jr + -2- ----:;:-t/J + µ7i 

+ (n -1) {pu [P P(ry) - P(j5) dry+ P(p) - P(j5) (¢u + pt/;)} 
r JP 772 rp 

+ (n - 1/il (P(ry) - P(j5) - P'(p)P-= j5) 
r p p 

= - (pt/J2 + P(p) - P(p) - P'(p)(p - p)) Ur - ~</Jt/J ( (r~:~~)r) r 

We are in a position to state the basic energy estimate. 

Lemma 5.3. There exist positive constants c:1 and C such that if N(T) + lubl :::; c:1, 
then it holds that 

loo rn-1¢2 + rn-1t/J2dr + lubl 1t ¢(1, T)2dT 

+ 1t loo rn-3t/J2 + rn-lt/J; + lublr-1t/J2drdT 

:=; C 100 rn-1¢6 + rn-ltj;Jdr + Clubl 31t 11¢r(T)ll 2dT, 

for an arbitrary t E [O, T]. 

Next, we state the L2-estimates for the first derivatives, <Pr and t/Jr- To derive 
this, we use a difference quotient of a function <p with respect to r defined as 

- ( ) ·- <p(r + h) - <p(r) for 
1Ph - l.f)h r .- h , h > 0. 

In addition, the following identity holds 

(1.pw)h = i.()hWh + l.f)Wh, 

where we have defined <ph := cp(r + h). The statement of the L2-estimates for the 
first derivatives, <Pr is the following. 
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Lemma 5.4. There exist positive constants c:2 and C such that if N(T) + l'ubl ::::; c:2, 
then the following estimate holds for any t E [0, T]: 

100 
rn-1¢;dr + lubl 1t <Pr(T, l)2dT 

1tfoo ¢2 + lubl---2:. + rn-1¢; + rn-lur¢;drdT 
o 1 r 

'.SC loo rn-1¢6 + rn-lt/J&dr + loo rn-1¢6,rdr + Clubl31t 11¢r(T)ll2dT 

+ N(t) 1t lubl 2</J(T, l)2dT + CN(t) 1t llt/JrllidT 

+ C(lubl + N(t)) 1t loo rn-1¢; + rn-3t/J2 + rn-lt/J;drdT. 

The statement of the £ 2-estimates for the first derivatives, t/Jr is the following. 

Lemma 5.5. There exist positive constants c:3 and C such that if N(T) + lubl ::::; c:3 , 

then it holds that for t E [0, T]: 

loo rn-lt/J;dr + 1t loo rn-lt/J;rdrdT 

'.SC loo rn-1¢6 + rn-lt/J6dr + loo rn-1(¢6,r + W6,r)dr + Clubl31t 11¢r(T)ll2dT 

+ C(lubl + N(t)) 1t loo rn-1¢; + rn-3t/J2 + rn-lt/J;drdT 

+ CN(t) 1t rn-lt/J;rdT. 

Once the Sobolev estimates are obtained, we can proceed to derive the Holder 
estimates. A priori estimate in the Sobolev space (19) in Lemma 5.2 ensure the first 
step of the Hi::iolder estimate: 

IPlf/4,1/2 , lulf/4,1/2 < C(Eo), (20) 
where E0 is defined by 

Eo := 100 rn-1(¢6 + W6 + ¢6,r + t/J&,r)dr. 

Once we obtain the basic estimate (20), the higher order estimate in Hi::iolder space 
is derived by the same strategy as in Kawashima-Nishibata-Zhu [3], Nakamura­
Nishibata-Yanagi [8]. The higher order estimate in Hi::iolder space is described as 
the following proposition. 

Proposition 5.6. Let O < a < l. Under the same assumptions in Lemma 5.1, it 
holds 

IPli+p+a-, lulf+p+a- < C(T), 

where C(T) is a constant depending only on T, IPoli+a-, luol2+a- and 11(¢,t/J)lli-
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We can derive the above estimate by using shauder estimate in Lagrangean 
coordinate. (See [3] and [8] for details.) Finally, combining Lemma 5.1, Proposition 
5.2 and Proposition 5.6, we obtain the Theorem 3.2. 
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