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EVOLUTION OF GAUSSIAN MEASURES AND APPLICATION TO THE ONE 
DIMENSIONAL NONLINEAR SCHRODINGER EQUATION 

LAURENT THOMANN 

ABSTRACT. In this note, we give an overview of some results obtained in [3], written in collaboration 
with Nicolas Burq. This latter work is devoted to the study of the one-dimensional nonlinear 
Schri:idinger equation with random initial conditions. Namely, we describe the nonlinear evolution of 
Gaussian measures and we deduce global well-posedness and scattering results for the corresponding 
nonlinear Schri:idinger equation. 

1. INTRODUCTION 

The motivation of this work is to study the long time behaviour of the nonlinear Schrodinger 
equation with random initial conditions 

We will be able to prove: 

{w.u + a;u = 1u1p-1u, 
U(O) = Uo E L2(JR). 

► almost sure global existence results (p > 1) 

► almost sure scattering results (p > 3). 

(s,y) E JR X JR, 

To prove these results, we will first construct measures on the space of initial data for which 
we can describe precisely the non trivial evolution by the linear Schrodinger flow. Then we prove 
that the nonlinear evolution of these measures is absolutely continuous with respect to their linear 
evolutions, with quantitative estimates on the Radon-Nikodym derivative. To the best of our 
knowledge, these results are the first ones giving insight, in a non compact setting on the time 
evolution of the statistical distribution of solutions of a nonlinear PDE. They also are the first ones 
providing scattering for NLS for large initial data without assuming decay at infinity: our solutions 
are in a slighly larger space than L2 (JR). 

1.1. On invariant measures. To begin with, let us recall the definition of a measure left invariant 
by a one parameter group. 

Definition 1.1. Consider a space X and a one parameter group (<I>(t, .))tEll!. with 

<I>(t, .) : X---+ X. 

A measure µ defined in the space X is called invariant with respect to (<I>(t, .))tEll!. if for any 
µ-measurable set A one has 

µ(<I>(t,A)) = µ(A), t ER 

In the case where µ is a probability measure, the Poincare theorem applies: 

Theorem 1.2 (Poincare theorem). Let (X, B, µ) be a probability space and let <I>(t, .) : X---+ X be 
a one parameter group which preserves the probability measure µ. 



41

LAURENT THOMANN 

(i) Let A EB be such that µ(A) > 0, then there exists k ~ 1 such that 

µ(An<I>(k,A)) >0. 

( ii) Let B E B be such that µ(B) > 0, then for µ-almost all x E B, the orbit ( <I>( n, x)) nEN enters 
infinitely many times in B. 

In the case of ordinary differential equations, the Liouville theorem provides a condition so that 
the Lebesgue measure (possibly with a density) is invariant by the flow of the system. Namely, 
let O C ]Rd be an open set and F : 0 --+ ]Rd a C 00 function. Consider the ordinary differential 
equation 

{
x(t) = !: (t) = F(x(t)), 

x(O) = xa. 

We assume that for all xo E JR the system has a unique solution <I>(t, xo), such that <I>(O, xo) = xo and 
which is defined for all t E JR. The family (<I>(t, .)tElR is a one parameter group of diffeomorphisms 
such that <I>(O, .) = id, <I>(t, <I>(s, .)) = <I>(t + s, .) for alls, t ER 

Theorem 1.3 (Liou ville theorem). Denote by dx the Lebesgue measure on O and let g : 0 --+ [O, +oo) 
a C00 function. The fiowmap <I>(t, .) preserves the measure gdx if and only if 

d 8 L 8 (gFk) = o. 
k=l Xk 

An important class of examples is given by finite dimensional Hamiltonian systems of equations. 

1.2. Invariant measures for the Schrodinger equation on compact manifolds. Let M a 
compact manifold. Then there exists a Hilbert basis (hn)n?.O of L2(M), composed of eigenfunctions 
of l::,. M and we write 

-l::,.Mhn = >-.;hn for all n ~ 0. 

Next, consider a probability space (0, F, p) and let (gn)n>O be a sequence of independent complex 
standard Gaussian variables Nc(O, 1) -

1 . 
9n = y2(91,n + ig2,n), 91,n,92,n E NJR(0, 1). 

Finally, let (an)n?.O and define the probability measureµ via the map 

+oo 
W --+ 1 (w) = L O:n9n(w)hn, µ=po ,-1 = r#P, 

n=O 

in other words: for all measurable set A, the measure µ is defined by 

(1.1) µ(A)= p(w E O: ,(w) EA). 

It is then easy to observe that for any choice of (an)n?.O the measure µ is invariant by the flow 
of the linear Schrodinger equation: 

Proposition 1.4. The measure µ defined in (1.1) is invariant under the flow of the equation 

i88 U +!::,.MU= 0, (s, y) E JR X M. 
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Considering the nonlinear equation, it is then natural to look for invariant measures (invariant 
Gibbs measures, see [2] for example) or quasi-invariant measures (measures for which the nonlinear 
evolution is absolutely continuous with respect to µ. In this direction, we refer to the works 
[17, 15, 13, 14]). 

Let us sketch the proof of Proposition 1.4, since it is elementary. 

Proof. For all t E JR, the random variable 

+oo 
eit~M,(w) = LO:ne-it>.;;tgn(w)hn 

n=O 

has the same distribution as I since for all t E JR 

e-it>.;;tgn(w) ~ Nrc(0, 1), 

hence the measureµ defined in (1.1) is invariant by the linear flow. □ 

1.3. The non compact case. Let us now turn to the case of the Schrodinger equation posed on R 
Here the situation is dramatically different, since one has: 

Proposition 1.5 ([3], Proposition 3.1). Let u E JR and consider a probability measureµ on H,,.(JR). 
Assume that µ is invariant under the flow Elin of equation 

Thenµ= 80. 

{w.u + ~;u = o, 
U(0,·) - Uo. 

(s,y) E JR X JR, 

By [3, Proposition 3.2 and Proposition 3.3], similar results hold true for the nonlinear equation 

w.u + a;u = 1u1p-1u. 
Proof. Let us give the main lines of the argument. Let u E JR and considerµ an invariant probability 
measure on H,,.(JR). Let x E C0 (JR). By invariance of the measure, 

r llxullHu dµ(u) = r llxEun(t)ullw dµ(u), 
lwc.i.) 1 + llullHu lwc~) 1 + IIElin(t)ullHu 

and by unitarity of the linear flow in H,,.(JR), we get 

(1.2) 

Assume that the r.h.s. of (1.2) tends to 0 when t ➔ +oo. This implies that llxullw = 0, µ-a.s., 
and thus µ = 80 since x is arbitrary. 

By continuity of the product by X in H,,.(JR) and unitarity of the linear flow in H,,.(JR), we have 

llxEun(t)ullHu < C IIEun(t)ullHu = c~llu~ll~H~u - :s; C. 
1 + llullHu - 1 + llullHu 1 + llullHu 

If v E C0 (JR) is smooth, by the Leibniz rule and dispersion 

llxEun(t)vllHu :s; llxllwu,411Eun(t)vllwu,4 :s; cr114 llvllwu,4/3-➔ 0, 

when t -➔ +oo. We can conclude with an approximation argument. □ 
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1.4. Some functional analysis. Define the harmonic oscillator 

H = -8~ +x2 . 

There exists a Hilbert basis (en)n:20 of L2 (1R), composed of eigenfunctions of Hand we write 

Hen= >..;,en= (2n+ l)en for all n ~ 0. 

We define the harmonic Sobolev space wo-,p by the norm (a-> 0) 

1.5. Definition of the Gaussian measure µo. Let E > 0, we define the probability Gaussian 
measure µo on 1{-<(JR) as the distribution of the random variable 1 

+oo 1 
w >------+ ,(w) = L An 9n(w)en, 

n=O 

-1 µo = P O , = ,,Y#P· 

Notice that we can interpret µo as the Gibbs measure of the equation iotu - Hu= 0. 

We denote by 

XQ(JR) = n 1{-E(JR). 
<>0 

Thus L2(1R) C x 0(JR) C 1{-<(JR). One can show that the measure µo satisfies µo(L 2(1R)) = 0 and 
µ0(X0(JR)) = 1, since µ0(1-i-<(JR)) = 1 for all E > 0. This shows that the support of µ0 is essentially 
composed of L2 functions. However, one can prove that the support of µo is actually smoother in 
other LP scales. For instance, we have the bound: 

µo({uo E x 0(JR): 11e-itHuollLoo((-,r,1r);W'/6-,ooJ ~ R}) ~ ce-cR2
• 

1.6. Equivalence of Gaussian measures. Let µ and v be two measures. We say that µ << v 
(µ is absolutely continuous with respect to v) if v(A) = 0 ===} µ(A) = 0. Now let us consider 
the particular case of Gaussian measures. Let Oen, f3n > 0 and define the measures µ = po ,-1 and 
v =po 'lj;-1 with 

Then the measuresµ and v are absolutely continuous with respect to each other (this means that 
they have the same zero measure sets) if and only if 

+oo 
(1.3) Ltn - 1)2 < +oo. 

n=O /3n 

This criterion shows that it is very restrictive for two infinite-dimensional Gaussian measures to be 
absolutely continuous with respect to each other: the condition (1.3) says in some sense that the 
map which I sends on 1/J has to be close to the identity. We refer to [3, Appendix B.3] for more 
details. 

More generally, in [3, Section 2.2] we construct a four-parameter family of Gaussian measures 
based on the symmetries of the Schrodinger equation. 
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2. MAIN RESULTS 

Consider the problem 

(2.1) {
iosU + o;U = IUIP-1U, 

U(0) = Uo E x0(JR). 

(s,y) E JR X JR, 

2.1. Global existence result. We are now able to state our global existence result: 

Theorem 2.1 ([3], Theorem 2.4). Let p > 1. 

(i) For µa-almost every initial data Uo E x 0(JR), there exists a unique, global in time, solution 

U = W(s,0)Uo 

to (2.1). 
(ii) The measures W(s, 0)#µ0 and Wlin(s, 0)#µ0 are equivalent: 

(2.2) Wlin(s, 0)#µ0 « W(s, 0)#µ0 « Wlin(s, 0)#µ0. 

(iii) For all s1 =I= s, the measures W(s,0)#µO and W(s',0)#µO are mutually singular. 

It is interesting to compare this result with the case where NLS is posed on a compact manifold. 
In this latter case, the linear flow satisfies ~lin(s, 0)#µ0 = µo, Hence, in this context it is natural 

to try to prove a quasi-invariance result of the form ~(s, 0)#µ0 « µo. But for NLS on the real line, 
we are able to prove, using criterion (1.3) that Wzin(s, 0)#µO and µo are mutually singular, hence 
W(s, 0)#µ0 should not be compared to µo but to W(s, 0)#µ0 as in (2.2). 

2.2. The scattering result. 

Theorem 2.2 ([3], Theorem 2.4). 

(i) Assume that p > 1. Then for µa-almost every initial data Uo E X 0 (JR), there exists a constant 
C > 0 such that for all s E JR 

II ( ) II (s)'Z-PTT 
if 1 < p < 5 

{ 
C (1 +log(s) )1/(p+l) 

W s, 0 Uo LP+'(JR) s c 
ifp?.5. 

(s)2-:;,:n: 

(ii) Assume now that p > 3. Then there exist T/ > 0 and W± E L2 (JR) such that for alls E JR 

IIW(s,0)Uo - eisa;(Uo + W±)IIL2(1R) S C(s)-ri. 

For all r.p E Co"(JR) we have the dispersion bound 

lleisB;'-PIILP+1 (1R) S 1~_1_ 11'-PlbP+i)'(lR)' 
1s12 p+i 

therefore, the power decay in s is optimal in the case p?. 5 (we do not know if the log is necessary 
in the case 1 < p < 5). We also stress that the condition p > 3 is optimal in our scattering result, 
by [l]. 

We conclude this section by giving a few references on scattering results for NLS. 

• Deterministic scattering results for NLS: 

Barab [1] ---+ never scattering when p s 3 
Tsutumi-Yajima [18] ---+ scattering in L2 with H 1 data 
Nakanishi [11] ---+ scattering in H" 
Dodson [8] ---+ scattering in L2 when p = 5 
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• Probabilistic scattering results for NLS: 

Burq-Thomann-Tzvetkov [4] 
Poiret-Robert-Thomann [16] 
Dodson-Liihrmann-Mendelson [9] 
Killip-Murphy-Visan [10] 
Latocca [12] 

-----+ case d = 1 and p 2'. 5 
-----+ case d 2'. 2 and p 2'. 3 
-----+ case d = 4 and p = 3 
-----+ case d = 4 in the radial setting 
-----+ case d 2'. 2 in the radial setting 

For results on the Gross-Pitaevskii equation with random perturbations we refer to the works of 
de Bouard, Debussche and Fukuizumi [5, 6, 7] and references therein. 

3. SOME KEY INGREDIENTS OF THE PROOF 

3.1. The lens transform: compactification in time and space. There is an explicit transform, 
called the lens transform, which maps the solutions of NLS to solutions of NLS with harmonic 
potential. Namely, if U(s, y) is a solution of the problem (2.1), then the function u(t, x) defined for 
ltl < i and x E JR by 

1 tan(2t) X _ ix2 tan(2t) 
u(t, x) = .Z(U)(t, x) := , U(--, -(-) )e 2 

COS2 (2t) 2 COS 2t 

solves the problem 

(3.1) { 
l'c::Ji. 1 

iBtu - Hu= cos 2 (2t)lulp- u, 

u(O, ·) = Uo. 

11' 
ltl < 4' x E JR, 

We define the corresponding energy 

(3.2) 
l'c::Ji. 

_ 1 ~ 2 COS 2 (2t) p+l 
E(t, u(t)) - 2 llv H u(t) IIL2(JR) + P + 1 llu(t) 11£v+'(JR) , 

which is not conserved. For -i < t < i, we define the measure 

cos9(2t) p+l 

dvt = e-f(t,u)duau = e v+I llullLP+'o•Jdµo 

which is therefore not invariant by the flow of (3.1). 

3.2. Monotonicity of the measure Vt• We are able to bound the nonlinear evolution of v0 by Vt, 

More precisely, we have: 

Proposition 3.1. 

(3.3) 
if 1::; p::; 5 

if p 2'. 5. 

These quantitative estimates will be in the core of our argument. In particular, they allow to 
extend the globalisation argument of Bourgain relying on invariant measures ( see Section 3.4). They 
are also crucial in the proof of the scattering result. The monotonicity estimate (3.3) has already 
been used in [4] in the case p 2'. 5 in order to prove global well posedness results for NLS. Notice that 
in the case 1 ::; p ::; 5, the estimates (3.3) are quite accurate for small times, but they deteriorate 
when ltl is close to 11'/4: in this regime we recover the trivial bound vo(<I>(t,o)-1A)::; 1. 
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We give here an outline of the proof of Proposition 3.1. Recall the definition (3.2), then a direct 
computation shows that 

. ~ 

!!_ ("( ( ))) = (5 - p) sm(2t) cos 2 (2t) II ( )llp+l 
d c., t, U t ~-~-~--~- U t £P+l(JR). 
t p+l 

Next, set F(t) = Vt ( <I>(t, 0)A). Then we have to prove that for all 0 :S: ltl < ;f 
9 

{ 
[F(t)] (cos(2t)) 

F(0) :S: 
F(t) if p ~ 5. 

We compute 

! F(t) = (p - 5) tan(2t) i a(t, u(t) )e-£(t,u(t))du0 , 

where a(t, u) = cos;pt) llull1:,!11 (IR)" Using the Holder inequality, we can check that for all k ~ 1 

!F(t) :S: (p-5)tan(2t)~(F(t)) 1-½. 

Next, optimizing with k = -log (F(t)) yields 

d 
dt F(t) :S: -(p - 5) tan(2t) log (F(t) )F(t). 

Finally the result follows from the integration of the previous differential inequality. 

3.3. On Radon-Nikodym derivatives. The bounds obtained in Proposition 3.1 say much more 
than just an absolute continuity result between two measures. In fact, they provide integrability 
results on the Radon-Nikodym density, since one has the following general result: 

Proposition 3.2 ([3], Proposition 3.5). Letµ, v be two finite measures on a measurable space (X, T). 
Assume that 

µ « v, 

and more precisely 

(3.4) :30 < a :S: 1, :JC> 0, \IA ET, µ(A) :S: Cv(A)°'. 

By the Radon-Nikodym theorem, there exists a f E L 1 (dv) with f ~ 0, such that dµ = fdv, and we 
. dµ 

write f = dv. 

(i) The assertion (3.4) is satisfied with 0 <a< 1 iff f E L{;,(dv) n L 1 (dv) with p = 1L,. In other 

words, f E L 1 (dv) and 

\f). > 0. 

(ii) The assertion (3.4) is satisfied with a= 1 iff f E L'x'(dv) n L 1(dv). 
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3.4. The Bourgain argument revisited. Let us now show how local in time solutions can be 
extended, using the bound (3.3). In order to simplify the presentation of the following argument, 
we assume that p ~ 5. Moreover, we do not give details on the norm II · II below, since it does not 
really play a role in the method. Thus, let us assume the three following facts: 

► There exists a flow ii'> such that the time of existence T on the ball 

BR= { U E x 0 (JR) : llull <:: R1l2 }, 

is uniform and such that T ~ R-1< for some "' > 0. 

► For all ltl <:: T 

► We have the large deviation estimate µ0(X0(JR)\BR) <:: ce-cR_ 

Then for T <:: ecR/2 fixed, we define the set of the good data 

By Proposition 3.1 we have 

[T/r] 

ER= n il'>(kT,0)-1 (BR)
k=-[T/r] 

[T/r] 

vo(X0 (JR)\ER) <:: L vo(il'>(kT,0)-1 (X0 (JR)\BR)) 
k=-[T/r] 

[T/T] 

<:: L llkr(X0(1R)\BR)-
k=-[T/r] 

In his original argument, Bourgain [2] considered invariant measures, so that the previous estimate 
was an indeed equality in his case. We observe here that the monotonicity property (3.3) is sufficient. 
Next, by definition of lit, we have llt(A) <:: µo(A), so that 

vo(X0 (JR)\ER) < (2[T/T] + l)µo(X 0 (JR)\BR) 
<:: ce-cR/2 

which shows that ER is a big set of X 0 (JR) when R--+ +oo. 
We deduce that for all ltl <:: T and 'U E ER 

lli!'>(t,O)(u)II <:: (R+ 1)112 . 

In particular, for ltl = T ~ ecR/2 

lli!'>(t, O)(u)II <:: C(ln ltl + 1)112 . 
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