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A note on virial method for decay estimates 

Masaya Maeda 

January 18, 2023 

Abstract 

In this note, we show how to prove decay estimates for Schrodinger equations by virial 
methods. The virial method used in this note are based on the series of work by Kowalczyk, 
Martel, Munoz and Van Den Bosch [10, 11, 12, 13, 14]. 

1 Virial method 

We start from a well-known formal argument in quantum mechanics. Consider 

where H is a self-adjoint operator. Let A be another self-adjoint operator and set 

1 
J(u) = 2 (u,Au). 

Then, assuming u solves (1.1), by informal computation, we have 

d 1 . 1 . 
dtJ(u) = 2 (u,Au) + 2 (u,Au) 

= ~ (-iHu,Au) + ~ (u,A(-iHu)) 

1 . = 2 (u, [1H, A]u). 

(1.1) 

(1.2) 

Here, it= 8tu, (·, ·) is a real inner-product and [A, B] = AB - BA. By (1.2), J(u) is conserved if 
[iH,A]=O. 

Example 1.1. Let H = -8';, and A= (i8x) 28 for s E JR, where (x) = (l+x2) 112 • Then, by [iH,A] = 0, 
we have llu(t) 111s = llu(O) 111" for all t E JR, where u(t) = eito~u(O). 

If [iH,A] 2'. 0 (i.e. (u, [iH,A]u) 2'. 0 for all u), then, by (1.2), J(u(t)) is non-decreasing. 

Example 1.2. Let H = -8';, and A= ½ (x(-Wx) - Wx (x•)) = -i (½ + x8x). Then, 

[iH,A] = [i(-8;),-i G +x8x)l = -[8;,x8x] = -28; 2'. 0. 

Thus, 
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Remark 1.3. The operator A = ½ (x(-Wx) - Bx (x·)) is the generator of scaling, i.e. iAu = 
d1 l,\=l ,\112u(,\x). Notice that A is the quantum counter part of the quantity ~; x;p; appearing in 
the proof of virial theorem in classical mechanics, where x; and Pi are the position and momentum 
of ith particle. 

From a different perspective, suppose we know supt IJ(u(t))I < oo for u(t) = e-itHuo . For 
example, if A is bounded, we have J(u(t)) ;S llu(t)lli2 = lluolli2• Then, integrating (1.2), we have 

r= (u(t), [iH,A]u(t)) dt <'.'. 2sup IJ(u(t))I < 00. lo t 
(1.3) 

One can view (1.3) as a decay estimate, i.e. the nonnegative quantity (u(t), [iH, A]u(t)) converges 
to O subsequently because it is integrable. This will be the estimate which we will be using in this 
note. 

An obvious obstacle for the above estimate are the eigenvalues of H. Suppose H has an 
eigenvalue EE JR with the associated eigenfunction¢. Then, setting u0 =¢,we have u(t) = e-iEt¢, 
which have no decay. Thus, we have to somehow exclude eigenvalues from the above argument. In 
this note, based on the idea of Kowalczyk-Martel-Munoz and Van Den Bosch [10, 11, 12, 13, 14] 
followed by [1, 4, 5, 6, 7, 15], we explain several ideas to use virial estimates when the Schri:idinger 
operator -8; + V posses eigenvalues. 

The organization of this note is as follows: In section 2, we explain how to show the decay 
estimate for Schri:idinger equation with repulsive potential, which have no eigenvalues. In section 3, 
we explain two ways to show the decay estimate for the continuous part of the solution when the 
potential has eigenvalues (and in particular not repulsive). 

For a ;S b, we mean a <'.'. Cb for some constant C. By a ;S,\ b, we mean a <'.'. C,\b for some 
constant C,\ depending on ,\. Also, by a ~ b we mean a ;S b and b ;S a. 

2 Decay of solutions of Schrodinger equation with repulsive 
potential 

In the following, we use the norm 

and the following elementary lemma. 

Lemma 2.1. Let WE L 1•1 :={WE L1 I (x) WE L 1 } and W(x) 2 0. Then, 

J Wlul 2 dx :S11w11L1,1 lluK 

Moreover, if W =p 0, then 

llull~ :S11w11L1,IIWIIL1,1 llu'lli2 + J Wlul2 dx. 

Proof. It suffices to show the claim for smooth function u. First, let xo E [-1, 1] s.t. lu(xo)I 

minxE[-1,1] lu(x)I- Then, since since t 1 (x)-4 dx 2 1/2 we have 
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Thus, by 

which follows from the fundamental theorem of calculus, we have 

W(x)lu(x)l2::,; 4W(x) (x) llu'lli2 + 4W(x) 1 (x)-4 lu(x)l 2 dx. 

Therefore, integrating, we have 

j Wlul 2 dx::,; 4 j (x) W(x) dxllulli;-

(2.1) 

We next show the latter claim, which is basically follows by the same argument. Let R := 

11 wt, J (x) W(x) dx > 0. Let X1 E [-R,R] s.t. lu(x1)I = minxEI-R,RI lu(x)I- By 

1 W(x) dx::; -R1 j lxlW(x) dx::; !IIWllu, 
lxl::>R 2 

we see 

Then, as before, we have 

2 2 r 2 lu(xi)I ::; IIWllu J.JR W(x)lu(x)I dx. 

So, using (2.1), we have 

J (x)-4 lu(x)l2 dx::,; 2 / (x)-4 (lxl + R) dxllu'lll2 + 4IIWIIr} J (x)-4 dx 1 W(x) dx 

:S11w11L1,R llu'lli2 + / Wlul 2 dx. 

Therefore, we have the conclusion. 

We next consider the Schrodinger equation with a potential V E S(JR, JR): 

Computing the commutator, we have 

Thus, we say Vis repulsive if V' is not identically 0 and -xV'(x) 2' 0. 
Following [14] we set 

( lxl ) (A(x) = exp -A (1- x(x)) , 11-1,11::; X::; 11-2,21, 

□ 

(2.2) 

(2.3) 
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and 

Notice that if A 2'. 4, which we always assume, then e-lxl/A::; (A(x)::; 2e-lxl/A. For the solution of 
Schriidinger equation (2.2) with repulsive potential, we have the following decay estimate. 

Theorem 2.2. Let V E S be repulsive. Then, there exists Ao > 0, such that for A 2'. Ao uo E H 1 , 

we have 

lxo ll(Ae-i(-a;+v)uolli dt ;S Alluollt,, (2.4) 

Remark 2.3. If V = 0, then (2.4) do not hold. Indeed, let uo E H 1 with lllxl 2"ullL2 < oo for some 
o > 1/2 and Fu0 (0) # 0, where Fis the Fourier transform. Then, by eita; = M(t)D(t)FM(t) and 

where M(t)u = ei 1
:\

2 u, D(t)u = (2it)-112u(x/2t), we have 

llei8;uollL2([1,=);L2(1xl:c;R)) 2: IIM DFuollL2([1,=).L2(1xl:c;R)]) - GIi IW" II lxl 2"uo IIL2 IIL2([l,=)) • (2.5) 

Now, since the 2nd term of the r.h.s. of (2.5) is finite, it suffices to show the 1st term of the r.h.s. of 
(2.5) becomes infinite. By the definition of Mand D, we have 

IMDFuo(x)I = (2t)-112 1Fuo(x/2t)I, 

Thus, for t 2'. 1, we have 

which imply 

The quantity u0 (0) appears because -8; has a resonance at 0. 

Remark 2.4. Estimate (2.4) is KOT the best estimate we can prove for the linear Schriidinger 
equation. Indeed, the classical Kato smoothness results [9] imply 

for s > 1. This inequality can be extended to H 1 setting easily and also holds even if -~ + V posses 
eigenvalues provided uo is orthogonal to the eigenfunctions. However, the real strength of virial type 
inequalities are the ability to handle nonlinearities which is impossible for the linear estimates like 
(2.6). We will discuss the effect of nonlinearity in section 2.1. 

Proof. We set 

(2.7) 
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Remark 2.5. From -i ( * + 1PA0x) = ½ (-iox (1/JA·) + 1PA(-iox)), we see -i ( * + 1PA0x) is self

adjoint. This operator is a modification of -i (½ + xox) and is defined on H 1 . 

Then, for u(t) = e-it(-a~+v)u0 and w = (Au, we have 

d II '112 1/1/JA I I 12 1 1-1 12 dt JA(u(t)) = w £2 - 2 (i V (x) w dx + 2A V w dx, (2.8) 

where 

V(x) = 21: 1x'(x) + lxlx"(x). 

We give the proof of (2.8) below. 
Notice that 'ff V'(x) converges to xV'(x) locally uniformly. Thus, taking A sufficiently large, 

from Lemma 2.1, we have 

where the implicit constant depends on V but not on A nor u. Again, from Lemma 2.1, we have 

2~ J Vlwl2 dx ;S ½ llwllt 

where the implicit constant is independent of A, u. Thus, we have 

(2.9) 

for A sufficiently large. Since supx 11/JA(x)I ~ A, we have IJA(u)I ;S AllullH'- Further, using the 
energy and mass conservation, we have llu(t) IIH' ~ llu(O) IIH'- Thus, integrating (2.9), we have the 
conclusion. □ 

Proof of (2.8). First, we have 

We compute each terms. Recall w = (Au and 1PA = Ci. 

(2.10) 

(2.11) 
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Adding, (2.10) and (2.11), we have 

Now, recall (2.3) and notice ( §-)' = (log (A)". Since 

we have 

(2.12) 

Finally, for the potential term, 

\ Vu, ( '¢2A + '¢A8x) u) = ( Vu, '¢2Au) + (Vu, '¢Au')= ( Vu, '¢2Au) + ~ J V'¢A(lul 2 )' dx 

=\Vu, '¢2Au )- ~ j(v'¢A)'lul 2 dx = -~ j '¢AV'lul 2 dx 

=-~f~fV'(x)lwl2 dx. (2.13) 

Combining (2.12) and (2.13), we have (2.8). □ 

Remark 2.6. It is natural to ask if we can improve the exponential weight (A(x) ~ e-lxl/A to a 
polynomial weight like lxl-N- At this moment I do not now how to do this (by a computation 
similar to below, it seems to be possible use polynomial weights if (say) for x > 1, -V'(x);::; x-a_ 
However if one wants this tool to be used for asymptotic stability analysis of solitons or kinks, the 
corresponding potential usually decay exponentially so we will not use such condition), but by a 
slight generalization of (A, it is possible to make (A(x) ~ exp(-1(logx)a) for any a> 1. Notice 
that if a= 1, it is a polynomial order and if a > 1, we have 

e-olxl « exp(-(logx)a) « lxl-', 

for any 6,"f > 0, where for two positive functions f,g, we mean f(x) « g(x) by limx➔oo f(x)/g(x) = 
0. To show this, we start from a general (A- That is, let 

for some positive increasing function f. Notice that if f is an increasing function, (A -+ 1 locally 
uniformly (and so 'l/JA(x)-+ x locally uniformly). 

The first condition we need is 'l/JA E £ 00 (for each A). This is simply restated as (A E L2. Now, 
suppose f(x);::; (logxf for some a> 0. Then, 
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Thus, we see that if a> 1 then (A E L2 (of course limx--+oo 1PA(x) depends on A). On the other hand, 
if f(x) ~ logx, it is clear from the same computation that for sufficiently large A, 1PA(x)-+ oo. 

Now, by replacing 1PA by the above, Vin (2.8) is replaced by 

v1(x) = A(log(A)" = -(1- x)f" + (2x'!' + x"J). 

The contribution of (2x' f' + x" J) in the virial computation can by bounded by A- 1 llwlli just as 
the proof of Theorem 2.2. On the other hand, if f"(x) ::; 0 for lxl :?: 1, then the contribution of 
-(1 - x)f" in the virial estimate will have a good sign. In the case, f(x) = (logx)a, we have 

So, slightly modifying f such as f(x) = (log(ea- 1x)r, we have f"(x) :S: 0 for x > 1. 

2.1 Handling nonlinearity 

As noted in Remark 2.4, the real benefit of the virial inequality comes from considering nonlinearities. 
Let G E C 1 (JR, JR) with G(0) = 0 and 

(2.14) 

for some p > 0. We set g = G' and consider the following nonlinear Schri.idinger equation: 

(2.15) 

As the linear case, we try to obtain a decay estimate for the solution of (2.15) by investigating the 
time derivative of JA given by (2.7). For u satisfying (2.15), we have 

Since the contribution of the first term in the r.h.s. of (2.16) is given by the r.h.s. of (2.8), it remains 
to study the second term. By the relation G' = g and 1PA = (1, 

Thus, 

(2.17) 

We say the nonlinearity g is repulsive if for all s :?: 0, g(s)s - G(s) :?: 0. Since for the repulsive 
nonlinearity, the contribution of the nonlinear term has a good sign, we can immediately have the 
following theorem. 

Theorem 2. 7. Let V and g be repulsive. Then, there exists A0 > 0 s. t. for A :?: A0 and u 0 E H 1 , 

we have 

where u is the solution of (2.15) with u(O) = u 0 . 
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When the nonlinearity is not repulsive, Theorem 2.7 do not hold in general because there can 
be a nonlinear bound state, i.e. solution of the form eiwt</J(x) for some w E JR. However, restricting 
ourselves to small (in H 1) solutions we can recover the above theorem for general nonlinearity 
satisfying (2.14). 

Theorem 2.8. Let V be repulsive. Then, there exists Ao > 0 s.t. for A:::: Ao, there exists 8A > 0 
s.t. for uo E H 1 with lluollH' < 8A, we have 

where u is the solution of (2.15) with u(0) = uo. 

For the proof of Theorem 2.1, we need the following lemma (taken from [1, 4, 11]): 

Lemma 2.9. For any co > 0. There exists A0 > 0 s.t. for A :::: A0 , there exists 8A > 0 s.t. for 
llullH' :S 6A we have 

Proof of Theorem 2.8. Let Ao be the constant given given in Lemma 2.9 for co= 1/2. Take A> Ao 
and let 8A be the constant given in Lemma 2.9. By standard argument using energy and mass 
conservation, it is easy to show that there exists 6A > 0 s.t. we have llu(t)IIH' :S 8A if lluollH' :S 6A. 
Then, by Lemma 2.9, taking Ao larger if necessary, we have 

d l 1 / '1/JA 2 1 1- 2 2 -d JA(u(t)) > -llw'llu - - 72V'(x)lwl dx + -A Vlwl dx ~ llwlb t - 2 2 '>A 2 

Therefore, we have the conclusion. □ 

It remains to prove Lemma 2.9. 

Proof of Lemma 2.9. From (2.17) and (2.14), we have 

Let q = ¥ > 0. Then, by the embedding H 1 (JR) c...+ L00 (1R), we have 

Therefore, it suffices to prove 

L dlul 2(p+l)-q dx ;S llw'lli2- (2.18) 
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lxl . 
Recall (A~ e-T. Smee 2(2(p - q) + 1) = 2(p + 1) - q, 

L dlul2(p+l)-qdx = L c,:;-(2p-q)lwl2(p+l)-qdx 

;S {00 e 2pAqxlwl2(p+I)-qdx + 10 e-~xlwl2(p+l)-qdx 
la -oo 

«:: -~lw(O)l2(p+l)-q + ~ r e~lxl l(lwl2(p+l)-q)'I dx 
2p- q 2p- q JR 

;SAL G2p+qlwl2p-q+1lw'I dx =AL (Alul2p-q+llw'I dx 

;S Allullif, L (Alul 2(v-q)+llw'I dx 

«:: 111ullif, (L dlul2Cv+1)-q dx) ½ llw'IIL2 

«:: llw'lli2 + 4~2A2llull~, L dlul2(v+l)-q dx. 

Here, notice that in the third line, we have used 

[~e~xlw(x)l2(p+l)-q] oo = -~lw(O)l2(p+l)-q, 
2p - q x=O 2p - q 

which follows from the fact w = (A(x)u(x), u E H 1 c...+ L00 and 

lim e~xlw(x)l2(p+l)-q = lim e-¾xlu(x)l2(v+1)-q = 0. 
x➔CXJ x➔CXJ 

Thus, taking 4!2 A25!q « 1, we have (2.18). □ 

Remark 2.10. It is not clear how to show Lemma 2.9 for subexponential weight like the one considered 
in Remark 2.6. 

3 How to handle the eigenvalues? 

For the case that the Schrodinger operator -8~ + V has an eigenvalue it seems difficult to obtain 
decay estimate by virial method. This is because the spectral information of the Schrodinger operator 
is somewhat abstract but virial method is based on a concrete calculation. Indeed, we got the 
inequalities mainly from integration by parts. On the other hand, decay estimate will only hold 
for the continuous spectral part of the solution. However, there are several ways to obtain decay 
estimates for the continuous part as we will see below. Below, we only consider linear Schrodinger 
equations, but both method we introduce can be extended for the nonlinear case. 

3.1 Delta potential 

We start from a "solvable" potential [2], which is the delta potential. We set 

where 60 is the Dirac delta function. 
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Remark 3.1. For the rigorous definition, see [2] or [4]. 

We know the eigenvalue and eigenfunction of Ha explicitly. Indeed, fid(Ha) = {-a2 /4} and 
ker(Ha + a2 / 4) = span{ e-'i lxl} for a > 0. Therefore, the continuous spectral part of the solution is 
given explicitly taking the projection to the orthogonal complement of the eigenfunction. Restricting 
the initial data to the continuous space 1-l~ := { e-½ lxl }.L n H 1, we have the desired decay. 

Theorem 3.2. There exists Ao > 0 s.t. for A 2" Ao and uo E HJ, (2.4) holds with -8';, + V replaced 
by H1. 

Remark 3.3. One can also show similar estimate in the nonlinear case, see [4]. 

Proof. First, we note 

see (2.11) of [4]. 
Next, we compute ftJA(u). Then, we have 

(3.1) 

(3.2) 

see Lemma 2.3 of [4]. Of course, the r.h.s. of (3.2) is not positive (recall H 1; 2 has negative delta 
potential, also if it is positive, it means that the bound state decays, which is an absurd). However, 
the crucial observation is that H1; 2 is less negative compared to H1. 

By decomposing H1; 2 = ¼H-1 + ¾H1 and using (3.1), we have 

Now, we use the condition u l_ e-lxl/2 • Notice that since w =(Au-+ u locally uniformly as A-+ oo, 
w is almost orthogonal to e-lxl/2 • In particular, we have 

liminf(H1w,w) ;::> 0. 
A-+oo 

Therefore, taking A sufficiently large, we have 

For more details, see [4]. □ 

3.2 Darboux transform 

Another way to handle the eigenvalues is to use Darboux transform. 

Remark 3.4. Darboux transform has a long history, which can date back at least to Darboux in 
18th century. In the context of virial inequality, Darboux transform was first used by Kowalczyk, 
Martel, Munoz and Van Den Bosch [14]. We also refer [3] and [8]. 

Consider H = -8';, + V with VE S(JR,JR) and ud(V) #- 0. Let minu(H) = w < 0 and¢ be the 
ground state (eigenfunction of H w.r.t. w. Recall that we can take¢ to be positive). Set 
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Then, 

Proposition 3.5. We have 

Ai,Av = H-w, 

and 

where Vi= V - 2 (log¢)" ES. Further, we have O"d(H1) = O"d(H) \ {w}. 

Proof. We start from the formal computations. First, 

Ai,Avu = -r1ax (¢28x(¢-1u)) = -cp-18x (u'cp- ucp') 

= -¢-1 ( u" cp - ucp") = -u" + ¢- 1¢". 

Thus, using ¢" = V cp - wcp, we have (3.3). Next, 

( cp'u + u' ¢) 
AvAi,u = -¢ox (¢- 28x(¢u)) = -¢ox ¢ 2 

( cp"u + 2¢' u' + cpu")cp2 - 2( cp'u + u' cp )¢¢' 
= -¢ cp4 

= -cp- 1cp"u - u" + 2¢-2 (¢') 2 u 

2(¢') 2 - ¢¢" ¢¢" - 2(¢cp" - (¢')2) = -u" + -----u = -u" + --------u cp2 cp2 
= -u" + (V - w)u - 2(log cp)"u. 

From the definition of Vi, we have the conclusion. 

Having in mind of Proposition 3.5, we define another notion of repulsivity. 

(3.3) 

□ 

Definition 3.6. We say V is repulsive in the sense of Darboux if V - 2 (log¢)" is repulsive. 

Remark 3.7. The above definition is for the case -8~ + V has exactly one negative eigenvalue. It is 
clear that one can define more general notation of repulsivity by iterating Darboux transform, see 
[5]. 

We use the norm 11 · III;A defined by 

Theorem 3.8. Assume VE S(JR:.,JR:.) with maxj=0,1,2supxElRea,lxl1V(j)(x)I < oo for some a1 > 0. 
Assume -8~ + V has exactly one negative eigenvalue with the eigenpair ( w, cp) and V is repulsive in 
the sense of Darboux. Then, there exists Ao> 0 s.t. for A;:,: Ao and uo E H 1 satisfying uo ..l ¢, we 
have 
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Remark 3.9. For nonlinear case, see [5]. 

Sketch of the proof of Theorem 3.8. We set "'= t6o min(a1, y'=w). As Theorem 2.2, we start from 

computing -[kJA(u(t)), where u(t) = e-it(-a~+V)u0 • Then, we have (2.8). However, this time we do 
not have '1/J AV' 2". 0 so we only have the estimate 

At this point we have not used the fact that u0 l_ ¢. Thus, it is natural to have some term in the 
right hand side. By the estimate (see (19) of [10] or (6.5) of [7]), 

llullL ;S ll((Au)'lli,2 + A-1lle-"lxlullf2, 

we have 

(3.4) 

We now use Darboux transformation and set v = (iEBx)-1 Avu for E > 0 to be chosen. By the 
estimate (see Lemma 7.4 of [7]), 

(3.5) 

our task will be to estimate lle-'ilxlvllL2. The transformed function v satisfies 

Thus, for B > l to be chosen, we have 

~JB(v) = \ (-8; + Vi)v, ( 'IP: + 'I/JB8x) v) + \ [(iEBx)-1 , Vi]Avu, ('IP~,B + 'IPA,Bax) v) 

= II ((Bv)' lli2 - ~ J ~: V'(x)l(Bvl 2 dx + ~ 1 Vl(Bvl 2 dx 
2 ~B 2B 

+ \ [(iEBx)-1 , Vi]Avu, ( '!p2~ + 'I/Jn8x) V). 
Now, for 1 « B « A, we have (see (8.5) of [7]), 

lle-'ilxlv'lli2 + lle-'ilxlvlli,2 :SIi ((Bv)' lli,2 - ~ J ~IV'(x)l(Bvl 2 dx 

+ 2~ J Vl(Bvl 2 dx + A-1 llullL • 

Further, by the estimate (see Lemma 7.6 of [7]), 

lle-"lxl [(ic8x)-1 , Vi]AvullL2 ;S Elle-"lxlvllL2, 

and Schwartz inequality, we have 
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Thus, we arrive to 

lle-'ilxlv'lli2 + lle-'ilxlvlli2 ;S :t JB(v) + A- 1 llullL · 

Combining (3.4), (3.5) and (3.6), we have 

2 d llull~A ;S dt (JA(u) + JB(v)). 

(3.6) 

By IJA(u)I ;S Allullt, and IJB(v)I ;S BC 1 llullt,, we have the conclusion by taking 1 « c 1 « B « 
A. □ 
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