Scaling limits for random processes from the point of view of group cohomology

Makiko Sasada

The University of Tokyo

September 7, 2022, Online Women in Mathematics Based on joint work with Kenichi Bannai and Yukio Kametani

1 Introduction

2 Hydrodynamic limit from geometric approach and main results

Motivation

Problem : Derive macroscopic dynamics from a microscopic stochastic process

General story

- $(S_t)_{t\geq 0}$: Microscopic stochastic process
- (S^ε_t)_{t≥0}: Properly scaled stochastic process in space and time with scaling parameter ε > 0
- $(\bar{S}_t)_{t\geq 0} = \lim_{\varepsilon\downarrow 0} (S_t^{\varepsilon})_{t\geq 0}$: Macroscopic dynamics

Key ingredient for the convergence

Homogenization (averaging) in space and time : Microscopic state space has some homogeneity

Motivation

One particle model

- Example 1 : Random walk
 - $(S_t)_{t>0}$: Discrete time/Continuous time simple random walk on \mathbb{Z}^d
 - $S_t^{\varepsilon} := \varepsilon S_{\varepsilon^{-2}t}$
 - (\overline{S}_t) : Brownian motion in \mathbb{R}^d with the diffusion matrix $A = (a_{jk})_{j,k=1}^d$, $a_{jk} = \frac{1}{d} \delta_{jk}$
- Example 2 : Diffusion process in \mathbb{R}^d with periodic coefficient
 - G(x) = (g_{jk}(x)) : smooth positive definite, one-periodic ⇔ Riemannian metric on T^d = R^d/Z^d, m(x)dx : Riemannian volume measure
 - $(S_t)_{t\geq 0}$: Diffusion process in \mathbb{R}^d with the generator $I = \frac{1}{2} \frac{1}{2} \frac{\partial}{\partial t} \left(m(x) \frac{\partial}{\partial t} \right)$ (Laplace Beltrami oper

$$L = \frac{1}{2} \frac{1}{m(x)} \frac{\partial}{\partial x_j} \left(m(x) g^{jk}(x) \frac{\partial}{\partial x_k} \right)$$
(Laplace-Beltrami operator)
$$S_t^{\varepsilon} := \varepsilon S_{\varepsilon^{-2}t}$$

• (\overline{S}_t) : Brownian motion in \mathbb{R}^d with a constant diffusion matrix $A = (a_{jk})_{j,k=1}^d$ given by an implicit form and also a variational formula

Geometric interpretation

Example 1 : Random walk

- Microscopic geometric object : (Z^d, E^d, p) : weighted graph with the periodic weight p : E^d → R_{>0}, p(±e_j) = ¹/_{2d}
- Generator of the "Brownian motion" of the microscopic space : $Lf(x) = \sum_{e \in E_x} p(e)(f(te) - f(oe)) = \frac{1}{2d} \sum_{j=1}^d (f(x + e_j) + f(x - e_j) - 2f(x))$
- Macroscopic geometric object : (ℝ^d, G = (g_{jk})) : Riemannian mannifold with the constant metric g_{jk} = dδ_{jk}
- Generator of "Brownian motion" of the macroscopic space : $Lf = \frac{1}{2d} \sum_{j=1}^{d} \frac{\partial^2}{\partial u_i^2} f = \frac{1}{2} \Delta_G f$

Convergence of a geometric space with Riemannian structure and some homogeneity!

Motivation : Geometric interpretation

Example 2 : Diffusion process in \mathbb{R}^d with periodic coefficient

- Microscopic geometric object : (R^d, G = (g_{jk}(x))) : Riemannian mannifold with a periodic metric g_{jk}(x)
- Generator of the "Brownian motion" of the microscopic space : $L = \frac{1}{2} \frac{1}{m(x)} \frac{\partial}{\partial x_i} \left(m(x) g^{jk}(x) \frac{\partial}{\partial x_k} \right)$
- Macroscopic geometric object (R^d, G
 = (g
 _{jk})) : Riemannian mannifold with a constant metric g
 _{jk}
- Generator of "Brownian motion" of the macroscopic space : $Lf = \frac{1}{2} \sum_{j,k=1}^{d} \bar{g}^{jk} \frac{\partial^2}{\partial x_j \partial x_k} f = \frac{1}{2} \Delta_{\bar{G}} f$

Convergence of a geometric space with Riemannian structure and some homogeneity!

Period matrix and the macroscopic diffusion coefficient

For both examples, $G = \mathbb{Z}^d$ acts on the microscopic geometric object, and $(H^1(X,\mathbb{R}))^G \cong H^1(G,\mathbb{R}) \cong \mathbb{Z}^d$ holds.

Period matrix

- In the class of one-forms of microscopic geometric objects, there is a topological basis $d\theta_1, \ldots d\theta_d \in (H^1(X, \mathbb{R}))^G$.
- Once we introduce a Riemannian structure, which induces an inner product $\langle \cdot, \cdot \rangle$ in the class of one-forms, there is a harmonic basis $H_1, \ldots, H_d \in (H^1(X, \mathbb{R}))^G$ so that $\langle d\theta_i, H_k \rangle = \delta_{ik}$.
- The change-of-basis matrix from $d\theta_1, \ldots, d\theta_d$ to H_1, \ldots, H_d is called a period matrix.

Geometric interpretation of the macroscopic diffusion matrix

For these examples and more general random walks on periodic lattices, the macroscopic diffusion matrix A is the inverse of the period matrix. In other words, the period matrix is the "Riemannian" metric of the macroscopic geometric object.

Motivation

Our goal : Generalize these ideas to the case for a microscopic system with many particles!

Interacting particle systems

- Example 3 : Exclusion processes
 - $(\eta_t)_{t\geq 0}$: Continuous time Markov process on $\{0,1\}^{\mathbb{Z}^d}$
 - $Lf(\eta) = \sum_{x,y \in \mathbb{Z}^d} r_{x,y}(\eta)(f(\eta^{x,y}) f(\eta))$ where $\eta^{x,y}$ is obtained from by exchanging η_x and η_y • $\pi: \{0,1\}^{\mathbb{Z}^d} \to \mathcal{M}(\mathbb{R}^d): \langle \pi(\eta), f \rangle := \sum_{x \in \mathbb{Z}^d} \eta_x f(x)$

 - $\pi^{\varepsilon}: \{0,1\}^{\mathbb{Z}^d} \to \mathcal{M}(\mathbb{R}^d): \langle \pi^{\varepsilon}(\eta), f \rangle := \varepsilon^d \sum_{x \in \mathbb{Z}^d} \eta_x f(\varepsilon x)$
 - $S_t^{\epsilon} := \pi^{\varepsilon}(\eta_{\varepsilon^{-2}t}).$
 - (\overline{S}_t) : Deterministic dynamic given by $\overline{S}_t = \rho(t, u) du$ where $\rho(t, u)$ is the solution of the diffusion equation

$$\partial_t \rho = \sum_{j,k=1}^d \partial_{u_j} (D_{jk}(\rho) \partial_{u_k} \rho).$$

Can we construct a good microscopic geometric object and understand $D_{ik}(\rho)$ as a period matrix? \Rightarrow Yes!

Remarks

- The convergence of Markov processes = The convergence of the generator + tightness + the existence and uniqueness of the process with the generators
- The scaling limit of random walks on general periodic lattices (crystal lattices) are not trivial as the case for Z^d and the discrete harmonic analysis plays a role to describe the macroscopic diffusion matrix.
- The scaling limit like Example 2 is called the homogenization problem. There have been many studies on this topic.
- The scaling limit like Example 3 is called the hydrodynamic limit. There have been many studies on this topic too, but there was not a universal framework to unify different models.
- We introduced a universal framework for the microscopic geometric object.
- The role of the group action was not understood well in the theory of the hydrodynamic limit. (Even not for the one-particle case.)
- By introducing a general framework and its geometric interpretation, we also obtain new hydrodynamic limits for specific models.

1 Introduction

2 Hydrodynamic limit from geometric approach and main results

Typical example : Exclusion process on \mathbb{Z}^d

- $\{0,1\}^{\mathbb{Z}^d}$: State space = Configuration space
- $\eta = (\eta_x) \in \{0,1\}^{\mathbb{Z}^d}$, η_x : number of particle at $x \in \mathbb{Z}^d$
- Exclusion process : Continuous time Markov process $\{\eta(t)\}_{t\geq 0}$ with the generator L

$$Lf(\eta) = \sum_{x,y \in \mathbb{Z}^d} r_{x,y}(\eta) \eta_x (1 - \eta_y) \{ f(\eta^{x,y}) - f(\eta) \}$$

• Jump rate : $r_{x,y}: \{0,1\}^{\mathbb{Z}^d} \to \mathbb{R}_{\geq 0}$: "frequency of jump from x to y"

Typical example : Exclusion process on \mathbb{Z}^d

We always assume :

- Translation invariant : $r_{x,y}(\eta) = r_{0,y-x}(\tau_{-x}\eta)$
- Locality of interaction : $r_{x,y}$ are <u>local functions</u>
- Finite range : $\exists R > 0$ s.t. $r_{x,y} \equiv 0$ if $||x y|| := \sum_{i=1}^{d} |x_i y_i| > R$
- Non degenerate ⇒ the density of particles ρ characterizes the invariant measures {ν_ρ}

Reversible or Mean-zero case : Expected HDL equation

$$\partial_t \rho = \nabla \cdot D(\rho) \nabla \rho = \sum_{i,j=1}^d \partial_{u_i} \left(D_{ij}(\rho) \partial_{u_j} \rho \right)$$

Rigorous results :

- Symmetric (not necessarily nearest neighbor) simple : $r_{x,y}(\eta) = r_{y,x}(\eta) = c_{x,y}, D_{ij}(\rho) = D_{ij} = \sum_{x \in \mathbb{Z}^d} c_{0,x} x_i x_j$
- Reversible and nearest neighbor (Funaki-Uchiyama-Yau (product measure), Varadhan-Yau (non-product measure with mixing condition)) : D(ρ) is given by a variational formula

Other typical microscopic models

Generalized exclusion process : state space $\{0, 1, 2, \dots, \kappa\}^{\mathbb{Z}^d}$

Multi-color (species) exclusion process : state space $\{0, 1, 2, \ldots, \kappa\}^{\mathbb{Z}^d}$

Open problems of hydrodynamic limits (before our work)

Specific models

- Multi-species exclusion process $\{0, 1, 2, \dots, \kappa\}^{\mathbb{Z}^d}$
- Energy exchange model $\mathbb{R}_+^{\mathbb{Z}^d}$: Mesoscopic model obtained from some deterministic model

General extensions

- Finite range interaction (not nearest neighbor) models on Z^d, where the underlying graph is (Z^d, E^d_R := {(x, y) : |x − y| ≤ R})
- Models on crystal lattices, such as hexagonal lattice, diamond lattice...
- Stationary measures which are not product (except for the exclusion process)

Main result 1 : Framework of microscopic models

Microscopic models are defined by geometric data and stochastic data

- Geometric (spatial/topological) data : the triple (S, ϕ, \mathcal{X})
 - Local state space (Set *S*) (ex. {0,1}, {0,1,2}, ℕ, ℝ, ℝ₊)
 - Local interaction (Map $\phi: S \times S \rightarrow S \times S$) (ex. $\phi(s_1, s_2) = (s_2, s_1)$)
 - Underlying spatial space (Graph $\mathcal{X} = (X, E)$) (ex. $(\mathbb{Z}^d, \mathbb{E}^d), (\mathbb{Z}^d, \mathbb{E}^d_R)$, triangular lattice, diamond lattice)
- Stochastic (spatial/metric) data
 - Speed of local interaction $r : \Phi \to \mathbb{R}_{>0}$ (ex. $r_{x,y}(\eta)$))
 - Equilibrium measures : μ (ex. Bernoulli product measures ν_{ρ})

Symmetry data also plays an essential role

• Symmetry data : G

• Symmetry of the underlying space space (Group G acting on \mathcal{X}) (ex. $G \cong \mathbb{Z}^d$)

Topological structure constructed by geometric data

Suppose the triple (S, ϕ, \mathcal{X}) is given.

- The data (S, ϕ) defines the space of conserved quantities Consv^{ϕ}(S), which is a subspace of function $\{f : S \to \mathbb{R}\}$
- The data (S, ϕ, \mathcal{X}) defines a graph structure $(S^{\mathcal{X}}, \Phi)$, which we call a configuration space with transition structure : $\Phi = \{(\eta, \eta^e) : \eta \in S^X, e \in E\}.$
- We introduce a uniform cohomology on the graph (S^X, Φ)

 - $C_{\text{unif}}^0(S^X)$: set of <u>uniform</u> functions $C_{\text{unif}}^1(S^X)$: set of <u>uniform</u> one forms $\partial : C_{\text{unif}}^0(S^X) \rightarrow C_{\text{unif}}^1(S^X)$: differential (usual graph differential) $Z_{\text{unif}}^1(S^X)$: set of <u>uniform</u> closed forms $\partial C_{\text{unif}}^0(S^X)$: set of <u>uniform</u> exact forms $H_{\text{unif}}^0(S^X)$:= ker ∂ $H_{\text{unif}}^1(S^X)$:= $Z_{\text{unif}}^1(S^X)/\partial C_{\text{unif}}^0(S^X)$

Main result 2 : Characterization of "smooth" cohomology

- Assumption 1
 - (S, ϕ) is irreducibly quantified (~ the dynamics is non-degenerate)
 - \mathcal{X} is transferable $((\mathbb{Z}^d, \mathbb{E}^d_R), d \geq 2$ satisfies the condition)
- Assumption 2
 - (S, ϕ) is simple $(Consv^{\phi}(S)$ is the one-dimensional space, and some more)
 - \mathcal{X} is weakly transferable $((\mathbb{Z}^d, \mathbb{E}^d_R), d \geq 1$ satisfies the condition)

Theorem (Bannai-Kametani-S)

Under the assumptions 1 or 2

$$H^0_{\mathrm{unif}}(S^X)\cong \mathrm{Consv}^\phi(S), \quad H^1_{\mathrm{unif}}(S^X)\cong\{0\}.$$

• \mathcal{X} must be an infinite graph under the assumption.

Main result 3 : De Rham cohomology for S^{χ}/G

Assume that a group G acts freely on the locale \mathcal{X} .

- Action of G on functions and forms are naturally induced.
 - $\mathcal{E} := \partial (C_{\text{unif}}^0(S^X)^G)$: set of *G*-invariant uniform exact forms
 - $C := Z_{unif}^1(S^X)^G$: set of *G*-invariant uniform closed forms
 - H¹(G, Consv^{\(\phi\)}(S)) : the first group cohomology of G with coefficients in Consv^{\(\phi\)}(S)

Theorem (Bannai-Kametani-S)

Under the assumptions 1 or 2

$$\mathcal{C}/\mathcal{E} \cong H^1(G, \operatorname{Consv}^{\phi}(S)).$$

In particular, if $G \cong \mathbb{Z}^d$, then

$$\mathcal{C}\cong\mathcal{E}\oplus igoplus_{k=1}^d \mathsf{Consv}^\phi(S).$$

Main result 4 : A version of Hodge-Kodaira theorem

- Using the stochastic data, an inner product is defined on $(C_{\text{unif}}^1(S^X))^G$. (analogy to Riemannian metric)
 - $\mathcal{E}_{L^2} := \overline{\partial(C^0_{\mathrm{unif}}(S^X)^G)}$: completion of set of *G*-invariant uniform exact forms
 - $C_{L^2} := Z_{L^2}^1(S^X)^G$: set of *G*-invariant L^2 closed forms
- Assume : S is a finite set and $G \cong \mathbb{Z}^d$, and the induced measure on S^X is product.

Theorem (Bannai-S)

Under the assumptions 1 or 2, and several essential assumptions including above,

$$\mathcal{C}_{L^2}\cong \mathcal{E}_{L^2}\oplus igoplus_{k=1}^d \mathrm{Consv}^\phi(\mathcal{S}).$$

New interpretation of the macroscopic diffusion matrix

There are two natural decomposition of closed forms

$$\mathcal{C}_{L^2} \cong \mathcal{E}_{L^2} \oplus \bigoplus_{k=1}^d \operatorname{Consv}^{\phi}(S) :$$
 topological (Varadhan's) decomposition

$$\mathcal{C}_{L^2} \cong \mathcal{E}_{L^2} \oplus \bigoplus_{k=1}^d \mathsf{Consv}^\phi(S):$$
 orthogonal decomposition

Diffusion matrix

Macroscopic diffusion matrix $D(\rho) =$ Transition matrix of two different decomposition under the measure $\nu_{\rho} =$ The inverse of the period matrix

Summary

- The decomposition of the space of (H¹)^G(X) or (H¹)^G(S^X) is the key to understand the macroscopic diffusion matrix
- The group cohomology of G play an essential role as (H¹)^G(S^X) can be computed easily once we prove H¹(S^X) = {0}
- Uniform functions and uniform forms are "smooth functions" on $S^X/{\cal G}$
- Hodge-Kodaira theorem is generalized to configuration spaces
- The macroscopic diffusion matrix is the inverse of the period matrix universally.