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Motivation 

Problem Derive macroscopic dynamics from a microscopic stochastic 

process 

General story 

• (Stk::-:o : Microscopic stochastic process 

• (Sflt>O : Properly scaled stochastic process in space and time with 
scaling parameter E > 0 

• (St)t>O = lim (Sf)t>O : Macroscopic dynamics 
- stO -

Key ingredient for the convergence 
Homogenization (averaging) in space and time : Microscopic state space 
has some homogeneity 

Motivation 

One particle model 

• Example 1 : Random walk 

• (St)t>O : Discrete time/Continuous time simple random walk on zd 
• Sf := c:Sc2t 
• (St) : Brownian motion in ffi.d with the diffusion matrix A= (ajk)J,k=l• 

- l i;: ajk - ""Jujk 

• Example 2 : Diffusion process in ~d with periodic coefficient 

• G(x) = (gjk(x)) : smooth positive definite, one-periodic{:} Riemannian 
metric on 'll'd = ffi.d jzd, m(x)dx : Riemannian volume measure 

• (St)t>o : Diffusion process in ffi.d with the generator 

L = ½ m(x) a~j ( m(x)gjk(x) a~k) (Laplace-Beltrami operator) 

• Sf := c:Sc2t 
• (St) : Brownian motion in ffi.d with a constant diffusion matrix 

A= (ajk)J,k=l given by an implicit form and also a variational formula 
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Geometric interpretation 

Example 1 : Random walk 

• Microscopic geometric object: (zd,JEd,p): weighted graph with the 

periodic weight p: JEd----+ ffi.>o, p(±ej) = 2~ 

• Generator of the "Brownian motion" of the microscopic space : 

Lf(x) = LeEEx p(e)(f(te) - f(oe)) = 

2~ Lf=1(f(x + ej) + f(x - ej) - 2f(x)) 

• Macroscopic geometric object : (JR.d, G = (gjk)) : Riemannian 

mannifold with the constant metric gjk = d5jk 

• Generator of "Brownian motion" of the macroscopic space : 

Lf = 2~ Lf=1 %~2 f = ½.D.cf 
J 

Convergence of a geometric space with Riemannian structure and some 

homogeneity! 

Motivation : Geometric interpretation 

Example 2 : Diffusion process in ffi.d with periodic coefficient 

• Microscopic geometric object : (ffi.d, G = (gjk(x))) : Riemannian 
mannifold with a periodic metric gjk(x) 

• Generator of the "Brownian motion" of the microscopic space : 

L - l_l _ _!L (m(x)gjk(x)...!L) 
- 2 m(x) OXj oxk 

• Macroscopic geometric object (ffi.d, G = (gjk)) : Riemannian 
mannifold with a constant metric gjk 

• Generator of "Brownian motion" of the macroscopic space : 
Lf _ 1 "-'d -jk {)2 f _ 1 A _ f 

- 2 uj,k=l g axjaxk - 2uc 

Convergence of a geometric space with Riemannian structure and some 

homogeneity! 
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Period matrix and the macroscopic diffusion coefficient 

For both examples, G = zd acts on the microscopic geometric object, and 
(H1(X,ffi.)t ~ H 1(G,ffi.) ~ zd holds. 
Period matrix 

• In the class of one-forms of microscopic geometric objects, there is a 
topological basis d01, ... d0d E (H1 (X,ffi.))G. 

• Once we introduce a Riemannian structure, which induces an inner 

product (·, ·) in the class of one-forms, there is a harmonic basis 
H1, ... , Hd E (H1(X, ffi.))G so that (d0j, Hk) = bjk· 

• The change-of-basis matrix from d01, ... d0d to H1, ... , Hd is called 
a period matrix. 

Geometric interpretation of the macroscopic diffusion matrix 

For these examples and more general random walks on periodic lattices, 

the macroscopic diffusion matrix A is the inverse of the period matrix. In 
other words, the period matrix is the "Riemannian" metric of the 
macroscopic geometric object. 

Motivation 

Our goal : Generalize these ideas to the case for a microscopic system 
with many particles! 

Interacting particle systems 
• Example 3 : Exclusion processes 

• (1Jt)t>o : Continuous time Markov process on {O, 1}2 d 

• Lf(ry) = I:x,yEZd rx,A11)(f(17x,y) - f(ry)) where 1Jx,y is obtained from 
by exchanging 1Jx and 7]y 

• 7r: {O, 1}2 d---+ M(JRd) : (1r(17), f) := I:xEZd 1Jxf(x) 
• 7rc: {O, 1}2 d---+ M(JRd) : (1rc(17), f) := Ed I:xEZd 1]xf(c:x) 
• Sl := 1rc:(1Jc2t)-
• (St) : Deterministic dynamic given by St= p(t, u)du where p(t, u) is 

the solution of the diffusion equation 

d 

atP = L 8u/Djk(p)8ukp). 
j,k=l 

Can we construct a good microscopic geometric object and 

understand Djk(P) as a period matrix? ⇒ Yes! 



15

Remarks 

• The convergence of Markov processes ~ The convergence of the 
generator + tightness + the existence and uniqueness of the process 
with the generators 

• The scaling limit of random walks on general periodic lattices (crystal 
lattices) are not trivial as the case for zd and the discrete harmonic 

analysis plays a role to describe the macroscopic diffusion matrix. 

• The scaling limit like Example 2 is called the homogenization 

problem. There have been many studies on this topic. 

• The scaling limit like Example 3 is called the hydrodynamic limit . 
There have been many studies on this topic too, but there was not a 

universal framework to unify different models. 

• We introduced a universal framework for the microscopic geometric 
object. 

• The role of the group action was not understood well in the theory of 
the hydrodynamic limit. (Even not for the one-particle case.) 

• By introducing a general framework and its geometric interpretation, 

we also obtain new hydrodynamic limits for specific models. 

O Introduction 

8 Hydrodynamic limit from geometric approach and main results 
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Typical example : Exclusion process on 'lli 

• {O, 1 }'zd 
: State space = Configuration space 

• T/ = (TJx) E {O, l}zd, T/x: number of particle at x E 'lJ_,d 

• Exclusion process: Continuous time Markov process {TJ(t)}t~o with 
the generator L 

Lf(TJ) = L fx,y(TJ)TJx(l - T/y ){f(TJx,y) - f(TJ)} 
x,yEZd 

• Jump rate: rx,y: {O, l}zd-+ ffi.~o : "frequency of jump from x toy" 

• • • • • • 

Typical example : Exclusion process on 'lli 
We always assume : 

• Translation invariant : rx,ATJ) = ro,y-x(LxTJ) 
• Locality of interaction : rx,y are local functions 

• Finite range : :3R > 0 s.t. rx,y = 0 if llx - YII := ;:,1=1 Ix; - y;I > R 
• Non degenerate ⇒ the density of particles p characterizes the 

invariant measures {vp} 

Reversible or Mean-zero case : Expected HDL equation 

d 

OtP = v'. D(p)v'p = L Ou; (Dij(p)oujP) 
ij=l 

Rigorous results : 

• Symmetric (not necessarily nearest neighbor) simple : 

fx,y(TJ) = fy,x(TJ) = Cx,y, Dij(P) = Dij = ~xEZd CQ,xXiXj 
• Reversible and nearest neighbor (Funaki-Uchiyama-Yau (product 

measure), Varadhan-Yau (non-product measure with mixing 
condition)) : D(p) is given by a variational formula 
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Other typical microscopic models 

Generalized exclusion process : state space {O, 1, 2, ... , "'}zd 

• • • • • ••• • •• ,. . . -----­
__l___l_ 

• • •• __l___l_ 

Multi-color (species) exclusion process: state space {O, 1, 2, ... , "'}zd 

• •• •• • • • . . ------ .. 
__l___l_ ~ __l___l_ 

Open problems of hydrodynamic limits (before our work) 

Specific models 

• Multi-species exclusion process {O, 1, 2, ... , "'}zd 

• Energy exchange model ~r : Mesoscopic model obtained from some 
deterministic model 

General extensions 

• Finite range interaction (not nearest neighbor) models on 7/,d, where 
the underlying graph is czd,IE% := {(x,y): Ix - YI:::; R}) 

• Models on crystal lattices, such as hexagonal lattice, diamond 
lattice ... 

• Stationary measures which are not product ( except for the exclusion 
process) 
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Main result 1 : Framework of microscopic models 

Microscopic models are defined by 
geometric data and stochastic data 

• Geometric (spatial/topological) data : the triple (5, ¢, X) 
• Local state space (Set 5) ( ex. {O, 1 }, {O, 1, 2}, N, JR, lR+) 
• Local interaction (Map¢: 5 x 5---+ 5 x 5) (ex. ¢(s1, s2) = (s2, s1)) 
• Underlying spatial space (Graph X = (X, E)) (ex. (zd,JEd), (zd,JE%), 

triangular lattice, diamond lattice) 

• Stochastic (spatial/metric) data 
• Speed of local interaction r: <I>---+ lR>o (ex. rx,A11))) 
• Equilibrium measures: µ (ex. Bernoulli product measures vp) 

Symmetry data also plays an essential role 

• Symmetry data : G 
• Symmetry of the underlying space space (Group G acting on X) (ex. 

G ~ zd) 

Topological structure constructed by geometric data 

Suppose the triple (5, ¢, X) is given. 

• The data (5, ¢) defines the space of conserved quantities Consv<P(5) , 
which is a subspace of function { f : 5 -+ JR} 

• The data (5, ¢, X) defines a graph structure (5x, <l>) , which we call a 
configuration space with transition structure : 
<l> = {(17,1/) : 1J E 5x,e EE}. 

• We introduce a uniform cohomology on the graph (5x, <l>) 
• c~nif(5x) : set of uniform functions 
• CJnif(5x) : set of uniform one forms 
• 8 : C~nif( 5x) ---+ CJnif( 5x) : differential ( usual graph differential) 
• ZJnif(5x) : set of uniform closed forms 
• acinif(5x) : set of uniform exact forms 
• H0 . (5x) ·= ker8 umf · 

• HJnif(5x) := ZJnif(5x)/8C~nif(5x) 
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Main result 2 : Characterization of "smooth" cohomology 

• Assumption 1 

• (5,¢) is irreducibly quantified (~ the dynamics is non-degenerate) 
• Xis transferable ((1:i,JE%), d 2'. 2 satisfies the condition) 

• Assumption 2 

• (5, ¢) is simple (Consv<l>(5) is the one-dimensional space, and some 
more) 

• X is weakly transferable ( (zd, JE%), d 2'. 1 satisfies the condition) 

Theorem (Bannai-Kametani-S) 

Under the assumptions l or 2 

• X must be an infinite graph under the assumption. 

Main result 3 : De Rham cohomology for 5x / G 

Assume that a group G acts freely on the locale X. 

• Action of G on functions and forms are naturally induced. 

• [ := 8(C~nif(5x)G): set of G-invariant uniform exact forms 

• C := Z~nif(5xf : set of G-invariant uniform closed forms 
• H1 ( G, Consv<l>(5)) : the first group cohomology of G with coefficients 

in Consv<l>(5) 

Theorem (Bannai-Kametani-S) 

Under the assumptions l or 2 

In particular, if G ~ 71.i, then 

d 

C ~£EB E9 Consv'P(S). 

k=l 
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Main result 4 : A version of Hodge-Kodaira theorem 

• Using the stochastic data , an inner product is defined on 
(CJnif(Sx))G. (analogy to Riemannian metric) 

• t:L2 := 8( C~nif(sxf) : completion of set of G-invariant uniform exact 
forms 

• CL2 := Zf2 ( sxf : set of G-invariant L 2 closed forms 

• Assume : 5 is a finite set and G ~ 71.d, and the induced measure on 
5x is product. 

Theorem (Bannai-S) 

Under the assumptions 1 or 2, and several essential assumptions including 
above, 

d 

CL2 ~ £L2 EB E9 Consv<P(S). 
k=l 

New interpretation of the macroscopic diffusion matrix 

There are two natural decomposition of closed forms 

d 

CL2 ~ £L2 EB E9 Consv<P(S) : topological (Varadhan's) decomposition 
k=l 

d 

CL2 ~ £L2 EB E9 Consv<P(S) : orthogonal decomposition 
k=l 

Diffusion matrix 

Macroscopic diffusion matrix D(p) = Transition matrix of two different 
decomposition under the measure vp = The inverse of the period matrix 
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Summary 

• The decomposition of the space of (H1t(X) or (H1t(Sx) is the 
key to understand the macroscopic diffusion matrix 

• The group cohomology of G play an essential role as (H1)G(Sx) can 
be computed easily once we prove H1(5x) = {O} 

• Uniform functions and uniform forms are "smooth functions" on 
sx;c 

• Hodge-Kodaira theorem is generalized to configuration spaces 

• The macroscopic diffusion matrix is the inverse of the period matrix 
universally. 


