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1 Problems on twin primes 

Number Theory has a very long history that dates back thousands of years. The main 
goal of this study is to understand properties of numbers which essentially can be reduced to 
understanding prime numbers. Although we have the outstanding Prime Number Theorem, 
more precise information about the distribution of prime numbers is mostly unknown. It is also 
not known if there are infinitely many pairs of prime numbers having difference 2, the so-called 
twin prime pairs. In other words, the Twin Prime Conjecture states that there are infinitely 
many prime numbers p such that p + 2 is also a prime number. 

Recent breakthroughs in Analytic Number Theory have succeeded in showing the infinitude 
of prime pairs with small gaps. Yitang Zhang [Zha14] was the first ever to obtain a quantitative 
bounded gap between two prime numbers. He proved that there are infinitely many prime pairs 
(p1,P2) such that IP1 - P2I ::; 70000000. In a project led by a 2006 Fields Medalist, Terence 
Tao, called D. H. J. Polymath, it was proven [Pol14a] that Zhang's bound can be drastically 
improved to 4680. James Maynard, one of this year's Fields Medalists, showed independently 
in [May15] that there are infinitely many prime pairs (P1,P2) with gaps at most 600, that is, 
such that IP1 - P2I ::; 600. Under a certain conjecture, the above bound can be improved to 12. 
In Polymath's later work [Pol14b], Maynard's unconditional bound 600 is improved to 246, and 
conditionally to 6. These are currently the best known results in this direction. 

2 Goldbach's conjecture and relation to twin primes 

The 280-year-old Goldbach's conjecture is one of the most famous unsolved problems in 
Number Theory. It conjectures that all even integers strictly greater than 2 can be written as a 
sum of two prime numbers, such as 

4 = 2 +2, 10 = 3 + 7 = 5 + 5, 30 = 7 + 23 = 11 + 19 = 13 + 17. 

This conjecture immediately implies that any integer n :;:, 6 is a sum of three prime numbers: If 
Goldbach's conjecture is true, then for any integer m:;:, 2, there exist prime numbers Pl and p2 
such that 2m = Pl + P2. Hence, 

2m + 2 = Pl + P2 + 2, 2m + 3 = Pl + P2 + 3, 

or in other words, any integer n :;:, 6 is a sum of three primes. 

Remark. Note that a positive integer n < 6 is either 1, a prime number or a sum of two primes: 

1, 2 (prime), 3 (prime), 4 = 2 + 2, 5 = 2 + 3, 

thus 6 is the smallest positive integer that can be written as a sum of three primes. 

Since odd numbers such as 11, 17, 23 cannot be written as a sum of two primes, Goldbach's 
conjecture cannot be extended to all integers n > 3. In other words, Goldbach's conjecture 
asserts the minimal possible additive representation of any positive integers. For odd integers 
n > 6, it has been proven by Harald Helfgott in 2013 (to be published in a book) that n 
can always be written as a sum of three primes. As seen in the previous paragraph, this is a 
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consequence of, and thus is weaker than, Goldbach's conjecture. The conjecture for even integers 
remains to date a mystery. 

Now for odd positive integers 2m + 1 which can be written as a sum of two primes, one of 
the primes must be even and the other is odd. Since 2 is the only even prime number, we must 
have 

2m + 1 = 2 + p, for some prime p. 

If 2m + 1 is also a prime number, then the twin prime pair (p, 2m + 1) satisfies a Goldbach 
representation, and thus the study of such representations is also important in understanding 
twin prime pairs. 

3 The Riemann Hypothesis - zeros of £-functions 

The Riemann hypothesis, proposed over 160 years ago, is yet another important unsolved 
problems in Mathematics. The Riemann Hypothesis is a conjecture about the location of zeros 
of the Riemann zeta function ( ( s), also generalized to more general L-functions as General
ized Riemann Hypothesis for a family called Dirichlet L-functions, or for the "largest" consid
ered family of L-functions, the Grand Riemann Hypothesis. The hypothesis asserts that the 
"critical" zeros, known as nontrivial zeros, of these functions all lie on the same straight line 
{s E (['. : Re(s) = 1/2}. The importance of this problem extends to not only Number Theory but 
also many other areas of Mathematics and even Physics as reflected in many known equivalent 
statements. In Analytic Number Theory alone, we know the equivalence between the Riemann 
Hypothesis and many prime related problems, and even Goldbach related problems. It is im
portant to note that the Twin Prime Conjecture and Goldbach's conjecture are independent 
problems to the Riemann Hypothesis and neither is stronger than the others. 

Among the above mentioned £-functions, there is a class of £-functions which,illfil' have the 
so-called exceptional zeros. D. R. Heath-Brown [Hea83] in 1983 showed if there are infinitely 
many such £-functions having exceptional zeros, then there are infinitely many twin primes. 
Nevertheless, with John B. Friedlander, Daniel A. Goldston and Henryk Iwaniec [FGIS21], we 
proved that a weak form of Goldbach-counting conjecture implies the non-existence of exceptional 
zeros of Dirichlet £-functions. Goldbach's conjecture can also be stated in terms of counting the 
number of additive representations satisfying Goldbach's conjecture and the weak conjecture we 
used here is a weaker form of this counting conjecture. This, unfortunately, is against Heath
Brown's approach to prove the Twin Prime Conjecture. In particular, regardless of the truth of 
the Twin Prime Conjecture, we cannot at the same time "believe" both Goldbach's conjecture 
and the existence of exceptional zeros of Dirichlet £-functions. 
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