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1. INTRODUCTION 

This text is based on my talk at the RIMS Model Theory Workshop, taking place 
in December 2022. In October 2022, [3] was accepted for publication in the Journal 
of Mathematical Logic and it is a quite long paper achieving various results, some 
of them being technical and so difficult to read separately. My talk at the RIMS 
was thought as a transparent exposition of one of the main results from [3], which 
is of a more geometric flavor and so easier to extract from the whole text. 

I thank organizers of the RIMS Model Theory Workshop 2022. Moreover, I take 
- again - the opportunity to express my gratitude to Hirotaka Kikyo for his support 
and enormous kindness. 

2. BASICS 

As usually, we fix a language £, an £-theory T and a monster model t F T 
(i.e. a model of T which is 1,;-saturated and strongly 1,;-homogeneous for some big 
cardinal 1,;). We start with a general definition: 

Definition 2.1. Let 9Jt be somehow saturated £-structure and let _l O be a ternary 
relation on small subsets of 9Jt (we write A _l ~ C, where A, B, C <;;;; 9Jt are of size 
smaller than the saturation of 9:Jt). We say that _l O satisfies the Independence 
Theorem over a Model if the following holds: 

IF: M :::S 9:Jt, A, B <;;;; 9:Jt, c1, c2 <;;;; 9Jt and c1 =M c2, 

0 0 0 

A _l B, C1 _l A, C2 _l B 
M M M 

0 

THEN: there exists c <;;;; 9Jt such that c =MA c1, c =MB c2 and c _l AB. 
M 

The above condition ( *) has geometric flavor. Therefore we have the following 
intuition: if ( *) holds in some structure 9Jt then we should observe a bit of "geo
metric behavior" in 9:Jt. This intuition becomes more transparent if we start to 
work with a natural notion of independence, for example if we set _l O = _l (the 
forking independence). Let us recall that for a tuple a and small subsets A, B <;;;; t 
we set 

a_LB 
A 

tp(a/BA) does not fork over A. 

tsDG. The author is supported by the European Unions Horizon research and innovation 
programme under the MSCA project no. 101063183, by the National Science Centre (Narodowe 
Centrum Nauki, Poland) grant no. 2021/43/B/STl/00405, and by the UW IDUB PSP no. 501-
Dll0-20-3004310. 
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Remark 2.2. If Tis simple (e.g. __Lis symmetric) then __L satisfies(*). 

Definition 2.3. A ternary relation __L O on small subsets of <t is called a notion of 
independence if 

(1) __L O is Aut( <t)-invariant. 
(2) (local character) For every small a, B <:;;; <t there exists A <:;;; B such that 

IAI,,;; ITI and a __l: B. 
(3) (finite character) a __l: B if and only if for every finite B 0 <:;;; B we have 

a __l: Ba. 
(4) (extension) For every small a, A, B <:;;; <t there exists a' =A a such that 

a' -t: B. 
(5) __L O is symmetric. 
(6) (transitivity) For any small A<:;;; B <:;;; C <:;;; <t and a<:;;; <t we have 

0 

a __LC 
A 

0 0 

a __l B and a __l C. 
A b 

The following well-known theorem shows that ( *) is a meaningful assumption, 
even for an abstract notion of independence and might be used to characterize the 
class of simple theories. 

Theorem 2.4 ( [5]). T is simple if and only if there exists a notion of independence 
-1 ° in <t which satisfies (* ). If this is the case, then moreover __l O = __L. 

After exchanging "simple" with "NSOP1" (No Strict Order Property of the first 
kind) and "-1" with "-1 K,, (Kim-independence), a similar theorem to the above 
one holds, so importance of ( *) is more evident: 

Theorem 2.5 ([4]). Tis NSOPi if and only if __l K satisfies (*). 

Let us shortly explain the ingredients of the above theorem. There are several 
ways of defining NSOP1 , but we like to do it via so called Kim's Lemma for Kim
dividing. 

Definition 2.6. An £-formula cp(x, b) Kim-divides over A if there exists k <wand 
a Morley sequence (bi)i<w in tp(b/ A) such that { cp(x, bi) I i < w} is k-inconsistent. 

Under the assumption of the existence axiom for the forking independence in 
T, we have that T is NSOP1 if and only if the above definition of Kim-dividing 
does not depend on the choice of the Morley sequence in tp(b/A) (in other words, 
if one Morley sequence witnesses Kim-dividing, any other Morley sequence is a 
witness as well). This not depending on the choice of the Morley sequence is 
the statement of the Kim's lemma. The assumption about existence axiom for 
the forking independence is only to work here with a simpler notion of dividing 
(otherwise we would need to work with "q-dividing"). 

Putting everything together, we can see Theorem 2.5 as an equivalence between 
Kim's Lemma for Kim-dividing and property (*) for Kim-independence. Thus 
we see that the property ( *) corresponds to important properties of the theory 
and so we will study how we can obtain property ( *) in some general setting, 
called Weak Independence Theorem. There are applications of the upcoming Weak 
Independence Theorem in the NSOP1 context (e.g. to show that some structures 
are NSOP1 ), but we will not discuss these here. 
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3. SET-UP 

Recall that C!: F T is our monster model of stable theory T. Let moreover F* <;;; C!: 
be a small substructure of C!: (not necessarily elementary substructure, typically not 
a model of T). Here, we are interested in understanding the theory of F*, by 
finding a ternary relation on subsets of F*, which should look like a good notion of 
independence. We have the following objects to be used in our construction. 

relation l, 

The main idea is to combine the structure of Q(F*) with the forking independence 
relation J, from C!: to define a desired ternary relation on F*. To do it, we will need 
to assume several technical conditions. To make it more transparent let us list all 
of them at once: 

• T is stable, even more T has nfcp ( no finite cover property) 
• T has the property B(3): Let { ao, aa, a2} be an A-independent set. Then 

for every a E Aut(acl(a0 a1A)/ acl(a0A) acl(a1A)) there exists an extension 
a<;;; ct being an element of Aut(C!:/ acl(aoa2A) acl(a1a2A)). 

• T = (T3q)m for some £ 0-theory T0 , i.e. we add imaginary sorts and then 
do the Morleyization. 

Now, let us discuss the choice of F*. As we already mentioned, F* is a substructure 
of C!:, but as we aim to understand the theory of F*, we need to choose it to be a 
more generic one and therefore we assume that F* is already somehow saturated 
in the sense of Th(F*) (in other words F* is a monster model for the complete £
theory Th(F*)). Moreover, we will assume that F* is a PAC substructure, and so 
we will be able to deploy some machinery from the model-theoretic Galois theory. 

Definition 3.1. (1) Let A <;;; B be substructures of C!:. We say that A <;;; B is 
a regular extension if dcl(B) n acl(A) = dcl(A). 

(2) A small substructure A of C!: is pseudo-algebraically closed (PAC) if for every 
regular extension A <;;; A', A' <;;; C!:, we have that A is existentially closed in 
A'. 

To summarize, F* is a somehow saturated PAC substructure of C!:. Let us fix also 
F j F*, a small model playing the role of "M" in the property ( *). A question 
which was leading us to the results of [3], was "What is J, K (the Kim-forking 
independence) for Th(F*)?". We mention this, as the answer was provided after 
proving the Weak Independence Theorem, which we discuss here. 
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4. STRUCTURE OF GALOIS GROUP 

As we already pointed out, the main idea is to combine the forking independence 
relation from It with the structure of the Galois group Q(F*). Now, the natural 
question is what do we mean by "the structure of the Galois group". To make it 
precise, let us recall some standard definitions and then define a proper first order 
structure on Q(F*). 

Definition 4.1. Let A<;;;; B <;;;; It and let b be a tuple from It. 

• Q(B/A) := Aut(dcl(B)/ dcl(A)), 
• Q(A) := Q(acl(A)/A), 
• Q(b/A) := Q(dcl(Ab)/A), 
• [B: A]:= IQ(B/A)I, 
• A<;;;; Bis normal if Q(lt/A) · B <;;;; B, 
• A<;;;; B is Galois if A<;;;; B is normal, dcl(A) = A and dcl(B) = B. 

Assume that A <;;;; B is a Galois extension and consider a being a tuple of elements 
from B. We call a a primitive element of A <;;;; B if B = dcl(A, a). A collection 
of all primitive elements of A<;;;; B forms a set denoted by e(B/A). An interesting 
theorem, which follows easily from the elimination of imaginaries and which is a 
general version of the classical Primitive Element Theorem, is the following: 

Theorem 4.2. If A<;;;; Bis Galois and [B: A]< w then e(B/A) =/- 0. 

The primitive elements will come back in a moment, but first let us recall the way 
of turning profinite groups, being some Galois groups, into a first order structures 
which appeared in [l]. Consider a profinite group G and let us work in a language 
.Cc living on sorts (m(k))k<w and having two binary relations: ::::;; and C; and one 
ternary relation P (i.e. infinitely many variants of each of these relations, depending 
on the choice of sorts, e.g. ::::;;k,k' with arguments from m(k) x m(k')). We define 

m(k) ·- {gH I g E G, H ::9 G, His open and [G: H]::::;; k}, 

gH::::;;g'H'-{==} 

C(gH,g'J') -{==} 

P(g1H1, g2H2, g3H3) -{==} 

HCH' 
- ' 

H <;;;; H' and gH = g'H', 

H1 = H2 = H3 and g1g2H1 = g3H1. 

The authors of [1] developed the above first order structure of a profinite group 
to tame the theory of PAC fields, and fields are one sorted structures. Our goal 
is to work in a general model-theoretic setting, so many sorted structures may 
appear (and actually do appear as we work in T = (T;q)m)). This causes a new 
obstacle as was noticed in [2] - if we turn a Galois group of a substructure into a 
first order structure as described above, we will lose all information about on which 
sort a given primitive element is "living". Some proofs depend on constructing 
automorphisms by sending one primitive element to another primitive element -
if there is only one sort, there is no choice, but if our structure is many sorted 
- a structure of a Galois group as structure of a pure profinite group does not 
contain information about sorts and proofs does not work in this setting. In [2], 
Galois groups of substructures were equipped with "sorting data" - an additional 
structure which codes whether a finite Galois extension has a primitive element in a 
given tuple of sorts. We use this to define a modification of the first order structure 
for profinite groups from [l]. 
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First, we define a functor: 

{ 

definably closed substr. of It } 
with morphisms ¢: A---+ B being Q {sorted profinite} 
£-embeddings ¢ : acl(A) ---+ acl(B) -------=------- groups 

such that ¢[A] <;;; B is regular 

We set dcl(A) = A r-+ (Q(A), FA), where naturally Q(A) is the profinite group 
Aut(acl(A)/A) and FA is the so called sorting data defined as follows. Let N(Q(A)) 
denote the collection of all open normal subgroups of Q(A). For every N E 

N(Q(A)), we set FA(N) to be the set of all finite tuples J of sort indices (sorts of 
.C) such that the Galois extension A<;;; acl(A)N has a primitive element in the tuple 
of sorts indexed by J. Finally, FA := (FA(N))NEN(Q(A))· 

In the next step, we explain what is our first order structure for a sorted profinite 
group coming from a Galois group. Again, consider A= dcl(A) <;;; It and its Galois 
group presented as the above sorted profinite group, (Q(A),FA)- As in the case of 
[1], we work in a many sorted language, but this time we also parameterize sorts 
via occurrences of the primitive elements - our new language .Cc,s lives on sorts 
m(k, J), where k < w and J is a finite tuple of sort indices in .C. As previously, in 
the language .Cc,s we have two binary relations: ~ and C; and one ternary relation 
P ( again - each of these relations exists in a copy for each combination of sorts 
for their arguments). The .Cc,s-structure derived from (Q(A), FA) is denoted by 
SQ(A) and given as follows: 

m(k, J) .- {gH I g E G, HE N(Q(A)), 

gH ~ g' H' {==} 

C(gH,g'J') {==} 

P(g1H1, g2H2, g3H3) {==} 

[G: H] ~ k and J E FA(H)}, 
HCH' 

- ' 
H <;;; H' and gH = g'H', 

H1 = H2 = H3 and g1g2H1 = g3H1. 

5. WEAK INDEPENDENCE THEOREM 

Finally, we come to the main theorem. Assume that ~ SQ is a ternary relation 
on small subsets of SQ(F*) such that 

SQ 
S' IS' 1 '1, 2 

So 

whenever S1S2 =so S~ S~ (with respect to the many sorted structure we defined 
previously). Moreover, we assume that ~ SQ satisfies the Extension over a Model 

Definition 5.1. Let 9Jt be somehow saturated £-structure and let ~ 0 be a ternary 
relation on small subsets of 9Jt (we write A~~ C, where A, B, C <;;; 9Jt are of size 

smaller than the saturation of 9:Jt). We say that ~ 0 satisfies the Extension over 
a Model if the following holds: 

0 

IF: M :::5 9:Jt, a, b, c <;;; 9Jt such that a ~ b 
M 

0 

THEN: there exists a' =Mb a such that a'~ be 
M 



17

D. M. HOFFMANN 

We define a new ternary relation, on the subsets of F*, which combines _l SQ 

from SQ(F*) and _l from C!:: 

;:) 

A_LC 
B 

A _l C and SQ(acl(A) n F*) 
B 

SQ 

_L SQ(acl(BC) n F*) 
SQ(aci(B)nF•) 

Theorem 5.2 (Weak Independence Theorem). If _l SQ satisfies (*) then _l;:) sat
isfies (* ). 

Corollary 5.3. If SQ(F*) is NSOP1 then F* is NSOPi. 

Proof. It is enough to consider the Kim-independence in SQ(F*) in the place of 
_l SQ and then use the Weak Independence Theorem. □ 
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