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This paper is a brief survey on an almost a-minimal structure, which was 

proposed by the author. A locally a-minimal expansion of the set of reals has 

strong properties which are not possessed by other locally a-minimal structures. 

An almost a-minimal structure is a promising generalization of a locally o

minimal expansion of the set of reals. It is always an expansion of an a-minimal 

structure and admits uniform local definable cell decomposition. 

1 Introduction 

The purpose of this paper is an introduction to main ingredients of [9] without 

proofs. See the original paper for more details. 

We introduce the notion of almost o-minimality in this paper. The author's moti

vation is first described. In real algebraic geometry [2], topological properties of semi

algebraic sets have been studied. It was recognized that many of these properties are 

induced from a few number of axioms. An o-minimal structure [3, 15, 18] is a model

theoretic generalization of the geometry of semialgebraic sets which satisfies these 

axioms. An expansion of a dense linear order without endpoints M = (M, <, ... ) is 

o-minimal if any definable subset of M is a finite union of points and open intervals. 

Roughly speaking, local o-minimality [20] is a localized notion of o-minimality. The 

structure Mis called locally o-minimal if, for any x EM and any definable subset X 

of M, there exists an open interval I containing the point x such that X n J is a finite 
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union of points and open intervals. Unfortunately, local o-minimality includes wide 

class of structures such as weakly o-minimal structures [16]. For instance, local defin

able cell decomposition theorem is unavailable in general local o-minimal structures 

though definable cell decomposition theorem holds true in o-minimal structures. Sev

eral relatives of local o-minimality has been suggested by adding extra requirements 

to the definition of local o-minimality [7, 14]. Strong local o-minimality requires 

the most restrictive condition among them. A locally o-minimal structure is called 

strongly locally o-minimal if we can choose I independently of the definable set X. 

We often consider structures whose universe is the set of reals R When the universe 

is the set of reals JR, a locally o-minimal structure has good features which are not 

expected even in strongly locally o-minimal structures. Since any bounded closed 

interval is compact, X n J is a finite union of points and open intervals if J is a 

bounded open interval and X is a definable subset of JR. It means that even strong 

local o-minimality is not a good generalization of locally o-minimal structures whose 

universe is R This is the author's motivation for introduction of almost o-minimality. 

The family of subanalytic sets [1, 13] is another example many of whose topological 

properties are obtained from a small set of axioms like the family of subanalytic sets. 

The family of sets definable in a model theoretic structure is closed under coordi

nate projections; that is, the projection image of a definable set is again definable. 

Unfortunately, the projection image of a subanalytic set is not necessarily subana

lytic. However, the image of subanalytic set under the projection satisfying some 

conditions are subanalytic. So, we cannot generalize the subanalytic category as a 

model-theoretic structure, but one can consider a similar generalization as o-minimal 

structures. The analytic-geometric category [4] and Shiota's families of X-sets [19] are 

generalizations of the family of subanalytic sets defined on the ordered field of reals. 

We introduce the notions of almost o-minimality and X-definability in this paper. 

The former is a model-theoretic generalization of a locally o-minimal expansion of 

the set of reals, and the latter is a non-model-theoretic structure similar to Shiota's 

X-sets related to an almost o-minimal structure. 

2 Main results 

This section introduces the main ingredients of [9] without proofs. 
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2.1 Definitions 

We first recall the definitions. 

Definition 2.1. An expansion M = (M, <, ... )of densely linearly ordered set with

out endpoints is almost a-minimal if any bounded definable set in M is a finite union 

of points and open intervals. 

It is not difficult to prove that an almost a-minimal structure is a definably complete 

locally a-minimal structure. Therefore, the assertions on definably complete locally 

a-minimal structures given in [8, 12] are all satisfied in almost a-minimal structures. 

The analytic-geometric category and Shiota's X-sets are defined under the assump

tion that the underlying set is the set of reals. They require a kind of locally finiteness 

property of definable sets in R The bounded closed interval is always compact in 

this case. We want to treat the case in which the underlying space is not the set of 

reals. We need to consider another property other than local finiteness property. So, 

we give another definition of 'proper' maps and generalize Shiota's X-sets as follows: 

Definition 2.2. Let (M, <) be a densely linearly ordered set without endpoints. A 

map p from a subset X of Mm to Mn is proper if the inverse image p- 1 (U) of an 

arbitrary bounded closed box U in Mn is bounded. 

An X-structure is a triple X = (M, <, S = { Sn}nEN) satisfying the following condi

tions (1) through (7), where (M, <) is a densely linearly ordered set without endpoints 

and, for all n EN, Sn is a family of subsets in Mn. In this paper, N denotes the set 

of positive integers. 

(1) For all x EM, the singletons {x} belong to 8 1 . All open intervals also belong 

to 81. 

(2) The sets {(x, y) E M 2 Ix= y} and {(x, y) E M 2 Ix< y} belong to 82. 

(3) Sn is a boolean algebra and Mn E Sn; 

(4) We have X1 X X2 E Sm+n whenever X1 E Sm and X2 E Sn; 

(5) For any permutation a of {1, ... , n }, the image a(X) belongs to Sn when X E 

Sn and the notation a: Mn --+ Mn denotes the map given by a(x1, ... , Xn) = 

(xa(l), · · ·, Xa(n)); 
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(6) Let 7r : Mn --+ Mm be a coordinate projection and X E Sn such that the 

restriction nix of 7r to Xis proper. Then, the image 1r(X) belongs to Sm. 

(7) The intersection I nX is a finite union of points and open intervals when X E S 1 

and I is a bounded open interval. 

The set M is called the universe and the underlying set of the X-structure X. A 

subset X of Mn is called X-definable in X when X is an element of Sn. A set X

definable in Xis simply called X-definable when Xis clear from the context. A map 

from a subset of Mm to Mn is X-definable if its graph is X-definable. 

When (M, <, 0, +) is an ordered divisible abelian group and the addition is X

definable, we call the X-structure an X-expansion of an ordered divisible abelian group. 

We define an X-expansion of an ordered real closed field in the same manner. An X

structure X1 is an X-expansion of an X-structure X2 if they have a common universe 

and a set X-definable in X2 is always X-definable in X1 . We also say that X2 is an 

X-reduct of X1 when the above conditions are satisfied. 

The author considers that the theory of the geometry of X-definable sets can be 

developed in the same manner as [19]. An almost o-minimal structure is obviously 

an X-structure. The following is another important example of X-structures. 

Definition 2.3. Let R = (M, <, ... )be an o-minimal structure. A subset X of Mn 

is semi-definable in R if the intersection U n X is definable in R for any bounded 

open box U in Mn. A map from a subset of Mm to Mn is semi-definable if its graph 

is semi-definable. For any positive integer n, let S(R)n denote the family of semi

definable subsets of Mn, and set S(R) = {S(R)n}nEN· The family S(R) satisfies the 

conditions in Definition 2.2. The proof of this fact is straightforward and we omit it. 

The X structure X(R) = (M, <,S(R)) is called the X-structure of semi-definable sets 

in R. 

2.2 On X-structure 

We need some preparation to introduce our main results on almost o-minimal struc

tures. We first introduce the assertion which holds true for any X-expansion of an 

ordered divisible abelian group. 
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The following theorem says that any X-expansion of an ordered divisible abelian 

group (M, 0, +, <) has an a-minimal expansion R of an ordered group such that any 

set definable in R is X-definable and any X-definable set is semi-definable in R. 

Theorem 2.4. Consider an X-expansion X of an ordered divisible abelian group 

(M, 0, +, <). There exists an a-minimal expansion R of the ordered group (M, 0, +, <) 

satisfying the fallowing conditions: 

{i) Any set definable in R is X-definable in X. 

{ii) Any set X-definable in X is X-definable in X(R). 

Here, the notation X(R) denotes the X-structure of semi-definable sets in R. 

Let us consider an almost a-minimal expansion M of an ordered group. It is also 

an X-structure by the definition. There exists an a-minimal structure satisfying the 

conditions in Theorem 2.4. We fix such an a-minimal structure and denote it by 

Rind(M). 

2.3 Semi-definable connected component 

We do not know whether a connected component of a set definable in a locally 

a-minimal expansion of the set of reals is again definable or not. We cannot consider 

definably connected components of a definable set differently from a-minimal struc

tures. Instead, the notion of semi-definable (path wise) connectedness is defined as 

follows and semi-definably connected components exist. 

Definition 2.5. Consider an a-minimal structure R = (M, <, ... ). A semi-definable 

subset X of Mn is semi-definably connected if there are no non-empty proper semi

definable closed and open subsets Y1 and Y2 of X such that Y1 n Y2 = 0 and X = Y1 U 

Y2 . The semi-definable set Xis semi-definably pathwise connected if, for any x, y EX, 

there exist elements c1 , c2 EM and a definable continuous map 1 : [c1 , c2] ---+ X with 

,(c1) = x and ,(c2) = y. 

We then define a semi-definably connected component of a semi-definable set. 

Theorem 2.6. Consider an a-minimal expansion R = (M, <, +, 0, ... ) of an or-
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dered group. Let X be a nonempty semi-definable subset of Mn. The following are 

equivalent: 

(1) X is semi-definably connected. 

(2) For any x, y EX, there exists a bounded open box U in Mn such that both the 

points x and y are contained in some definably connected component of X n U. 

(3) X is semi-definably pathwise connected. 

In addition, for any x E X, there exists a maximal semi-definably connected semi

definable subset Y of X containing the point x. The set Y is called the semi

definably connected component of X containing the point x. A semi-definably 

connected component of X is closed and open in X. 

2.4 Decomposition into multi-cells and uniform local definable cell decom

position 

We are now ready to introduce two important results on almost o-minimal struc

tures. Let M = (M, <, +, 0, ... ) be an almost o-minimal expansion of an ordered 

group. Since an almost o-minimal structure is an X-structure, there exists an o

minimal expansion of an ordered group R = Rind (M) satisfying the conditions (i) 

and (ii) in Theorem 2.4. In particular, any set X definable in M is semi-definable 

in R. So, we can consider semi-definably connected components of X. We define a 

multi-cell under this condition. 

Definition 2. 7. Consider an almost o-minimal expansion of an ordered group M = 

(M, <, 0, +, ... ). Let n be a positive integer. A definable subset X of Mn is a multi

cell if it satisfies the following conditions: 

• If n = 1, either X is a discrete definable set or all semi-definably connected 

components of the definable set X are open intervals. 

• When n > 1, let 1r : Mn -+ Mn-l be the projection forgetting the last coor

dinate. The projection image 1r(X) is a multi-cell and, for any semi-definably 

connected component Y of X, 1r(Y) is a semi-definably connected component 
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of 1r(X) and Y is one of the following forms: 

Y = 1r(Y) x M, 

Y = {(x, y) E 1r(Y) x MI y = f(x)}, 

Y = {(x, y) E 1r(Y) x MI y > f(x)}, 

Y = {(x, y) E 1r(Y) x MI y < g(x)} and 

Y = {(x, y) E 1r(Y) x MI f(x) < y < g(x)} 

for some semi-definable continuous functions f and g defined on 1r(Y) with 

f < g. 

The following theorem is one of the most important achievement in [9]. 

Theorem 2.8. In an almost a-minimal expansion of an ordered group, every definable 

set is partitioned into finitely many multi-cells. 

The proof of this theorem is long. When we are only interested in an almost 

a-minimal expansion of an ordered set of reals, we do not need the introduction 

of notions of X-sets and semi-definably connected components because the notion 

of topological connected components work well instead of semi-definably connected 

components. As a corollary of this theorem, we get the following: 

Theorem 2.9 (Uniformity theorem). Consider an almost a-minimal expansion of 

an ordered group M = (M, <, 0, +, ... ). For any definable subset X of Mn+l and 

a positive element R E M, there exists a positive integer K such that, for any a E 

Mn, the definable set X n ( {a} x] - R, R[) has at most K semi-definably connected 

components. 

Before we give the last important theorem, let us recall the definitions of cells. 

Definition 2.10 (Definable cell decomposition). Consider an expansion of dense 

linear order without endpoints M = (M, <, ... ). Let (i1, ... , in) be a sequence of 

zeros and ones of length n. ( i1, ... , in)-cells are definable subsets of Mn defined 

inductively as follows: 

• A (0)-cell is a point in Mand a (1)-cell is an open interval in M. 

• An ( i 1, ... , in, 0 )-cell is the graph of a definable continuous function defined on 

an ( i1, ... , in)-cell. An ( i1, ... , in, 1 )-cell is a definable set of the form { (x, y) E 
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C x M I f(x) < y < g(x)}, where C is an (i1, ... , in)-cell and f and g are 

definable continuous functions defined on C with f < g. 

A cell is an (i1, ... , in)-cell for some sequence (i1, ... , in) of zeros and ones. The 

sequence ( i1, ... , in) is called the type of an ( i1, ... , in)-cell. An open cell 1s a 

(1, 1, ... , 1)-cell. The dimension of an (i1, ... , in)-cell is defined by ~7=1 ij. 

We inductively define a definable cell decomposition of an open box B ~ Mn. For 

n = 1, a definable cell decomposition of B is a partition B = LJ:1 Ci into finite 

cells. For n > 1, a definable cell decomposition of B is a partition B = LJ:1 Ci into 

finite cells such that n(B) = LJ:11r(Ci) is a definable cell decomposition of n(B), 

where 1r : Mn ---+ Mn-l is the projection forgetting the last coordinate. Consider a 

finite family { AA h.EA of definable subsets of B. A definable cell decomposition of B 

partitioning {AAh.EA is a definable cell decomposition of B such that the definable 

sets AA are unions of cells for all >. E A. 

It is well-known that an o-minimal structure admits definable cell decomposition 

[3, Chapter 3, Theorem 2.11]. 

Here is the last important theorem. 

Theorem 2.11 (Uniform local definable cell decomposition). Consider an almost 

a-minimal expansion of an ordered group M = (M, <, 0, +, ... ). Let {AAh.EA be a 

finite family of definable subsets of Mm+n. Take an arbitrary positive element R E M 

and set B =] - R, R[n. Then, there exists a finite partition into definable sets 

such that B = (X1)bU .. . U(Xk)b is a definable cell decomposition of B for any b E Mm 

and either Xi n AA = 0 or Xi ~ AA for any 1 ::; i ::; k and >. E A. Furthermore, 

the type of the cell (Xi)b is independent of the choice of b with (Xi)b # 0. Here, the 

notation Sb denotes the fiber of a definable subset S of Mm+n at b E Mm. 

It is a uniform version of the local definable cell decomposition theorem given in [7, 

Theorem 4.2]. 

Finally, the following table summarizes the decomposition theorems proven in [7, 

8, 9, 12, 14]. In the table, we assume that the structures are definably complete. 
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Structure II local decomp. I global decomp. I 

loc. o-m1n. exp. of JR uniform local decomp. into 

almost o-min. cell decomp. multi-cells 

str. loc. o-min. decomp. into 

um. loc. o-m1n. 1st local cell decomp. quasi-special 

um. loc. o-m1n. 2nd submanifolds 

loc. o-min. None 

Only o-minimal structure admits definable cell decomposition, and we cannot de

compose a definable set into finitely may cells when the structure is not o-minimal. 

Two kinds of decomposition theorems are expected to hold true for locally o-minimal 

structures. We cannot decompose a definable set into finitely many cells globally, it 

may be possible locally. In other word, for any point and any definable set, there may 

be a definable neighborhood of the point and a decomposition of the intersection of 

the given definable set with the neighborhood into finitely many cells. This kind of 

decomposition is provided in the column of 'local decomp.' of the table. Uniformly 

locally o-minimal structures of the first/second kind are defined in [7, Definition 2.1]. 

The local definable cell decomposition theorem was first demonstrated in [7, Theorem 

4.2] for uniformly locally o-minimal structures of the first/second kind. It was proven 

for strongly locally o-minimal structures in [14, Proposition 13] prior to [7]. 

Another type of decomposition theorems claim that a definable set is partitioned 

into finitely many good-shaped definable sets which satisfies looser constraints than 

cells. They are described in the column of 'global decomp.' of the table. Quasi-special 

submanifolds are defined in [8, Definition 4.1]. Decomposition theorem into quasi

special submanifolds is provided in [8, Theorem 4.5] under a technical assumption 

on structures. In [12, Theorem 2.5], it was proven that this technical condition is 

always satisfied. We defined special submanifolds in [11, Definition 3.1] which satisfy 

more severe conditions than quasi-special submanifolds. The decomposition theorem 

into special submanifolds was proved in [5, Theorem 5.6] when the structure is a 

definably complete locally o-minimal expansion of an ordered field. In [5], different 

terminology and definition are used, but they are same by [11, Proposition 3.13]. The 

decomposition theorem into special submanifolds was proved in [11, Theorem 3.19] in 

more general setting; namely, the case in which the structure is a definably complete 
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locally o-minimal expansion of an ordered group. It is easy to demonstrate that a 

multi-cell is always a special submanifold. 

3 A non-interesting application 

The following lemma is a generalization of a lemma used for the study of definable 

topological vector bundle in o-minimal structures [6, Lemma 2.7]. We used defin

able cell decomposition theorem for o-minimal structures in the proof of the original 

lemma. The proof of the current lemma indicates that the assertions in Section 2 

can be used as substitutes of definable cell decomposition theorem. The author could 

not find an interesting application of the following lemma, but he found several other 

interesting properties of almost o-minimal structures whose proofs are too long to be 

introduced in this paper such as [10]. 

Lemma 3.1. Let M be an almost a-minimal expansion of an ordered group M = 
(M, <, 0, 1, +, ... ) with the distinguished element l. Let X be a definable subset of 

Mn and {½ }f =l be a finite definable open covering of X x [0, 1]. Then, there exist a 

finite definable open covering {Ui};=1 of X and finite definable continuous functions 

0 = 'Pi,O < · · · < 'Pi,k < · · · < 'Pi,r, = 1 on Ui such that, for any l ::::; i ::::; q and 

1 ::::; k ::::; ri, the definable set 

{(x, t) E ui X [0, 1] I 'Pi,k-1(x) '.St '.S 'Pi,k(x)} 

is contained in ½ for some l ::::; j ::::; p. 

Proof. Let 7r : Mn x M ---+ Mn be the projection onto the first n coordinates. In this 

proof, the notation Ax denotes the fiber {t EM I (x, t) EA} for any subset A of a 

Cartesian product Mk+l and any x E Mk. Since (½)xis open in [0, 1] for any x EX 

and M is almost o-minimal, the fiber (½ )x is the union of finitely many intervals 

which are open in [0, l]. Put 

E = {(x, t) EX x [0, 1] It is an endpoint of a maximal interval contained in (½)x 

for some 1 ::::; j ::::; p}. 

The fiber Ex at x EX is a finite set for any x EX. Since 0, 1 E Ex, the cardinarity 

IExl of the set Ex is at least two. We can find a positive integer K such that IExl ::::; K 
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for all x EX by Theorem 2.9. Set Fz = {x EX I IExl = l} for all 2::::; l::::; K. They 

are definable and we have X = U~2 Fz. 

Fix 1 ::::; l ::::; K. For any 1 ::::; i ::::; l and x E Fz, we set fz,i(x) as the i-th smallest 

element in the fiber Ex. It defines the definable map fz,i : Fz ---+ [O, 1]. We set 

Gz,s = {x E Fz I fz,i(x) E ½ (V(i,j) E 6) and fz,i(x) (/_ ½ (V(i,j) (/_ 6)} 

for all subsets 6 of {1, ... ,l} x {1, ... ,p}. We next fix a subset 6 of {1, ... ,l} x 

{1, ... ,p}. Using [9, Proposition 4.16(2)], by induction on dimension, we can con

struct a decomposition Gz,s = LJ;;'~·;3 Hz,s,k into finitely many definable sets such 

that they are disjoint each other and fz,i are continuous on Hz,6,k for all 1 ::::; i ::::; l 

and 1 ::::; k ::::; m1,s. Finally, we apply Theorem 2.8 to H1,6,k and decompose it into 

multi-cells. 

Consequently, we obtain 

• multi-cells D1, ... , Dq, 

• positive integers li for all 1 ::::; i ::::; q and 

• definable continuous functions O = 7Pi,O < 7Pi,1 < ... < 7Pi,l; = 1 defined on Di 

satisfying the following: 

(a) DinDi=0ifi=/-j; 

(b) X = U;=l Di; 

(c) Ex= {7/Ji,o(x), 1Pi,1(x), ... , 7Pi,!;(x)} for any x E Di; 

( d) the graph of 7Pi,k either has an empty intersection with ½ or entirely contained 

in½ for any 1 ::::; i::::; q, 0::::; k::::; li and 1 ::::; j ::::; p. 

Set ri = 2li and define definable continuous functions wi,k on Di by 

{ 1Pi,kj2(x) 
\[fi,k(X) = 'Pi,(k-l)j2(x)1'Pi,(k+l)j2(x) 

for all O::::; k::::; Ti. We show the following claim: 

if k is even, 

otherwise 

Claim. For any 1 ::::; i ::::; q and 1 ::::; k ::::; Ti, there exists a positive integer j(i, k) 

such that the definable set 



52

is contained in Y'j(i,k). 

We demonstrate the above claim. One of k - 1 and k is an even number. We 

assume that k - 1 is even. We can show the claim in the same way in the other 

case. Fix a point x 0 E Di. Since {½ }f=1 is an open covering, there exists 1 S 

j(i, k) s p such that Y'j(i,k) contains the point (xo, 'lf1i,(k-l)j2 (xo)). By (d), the set 

{(x, t) E Dix [O, 1] It= 1J!i,k-1(x) = '1Pi,(k-l)j2 (x)} is contained in Y'j(i,k)· The set 

{(x, t) E Dix [O, 1] I 7Pi,(k-l)/2 (x) < t < '1Pi,(k+l)j2 (x)} is contained in Y'j(i,k) by (c) and 

the definition of the set E. Hence, the definable set {(x, t) E Dix [O, 1] I iJ!i,k-i(x) S 
t S \fli,k(x)} is contained in Y'j(i,k) because \fli,k(x) ,;,,,,(k-iJ; 2 (x)1,J,,,,ck+iJ; 2 (x) < 

'IPi,(k+l)/2 (x). We have demonstrated the claim. 

Let 1r1 : Mn -+ M 1 be the projection onto the first l coordinates. Fix 1 S i S q. 

We inductively define definable open subsets Wi,l of M 1 and definable continuous 

maps T/i,l: Wi,l-+ 1r1(Di) as follows: When l = 1, the definable set 1r1(Di) is either 

a discrete definable closed set or the union of open intervals. We first consider the 

former case. Set 

Bi,1 = {(x1 +x2)/2 EM I (x1,x2 E 1r1(Di)) /\ (x1 < x2) 

I\ (~x, (x1 < x < x2) /\ (x E 1r1(Di)))} and 

Wi,1 = M \ Bi,1· 

For any x E Wi,l, we can uniquely find the point in n1 (Di) nearest to x. We denote 

this point T/i,1(x). We have defined the definable map T/i,1 : Wi,1 -+ 1r1(D1). It is 

obviously continuous. In the latter case, we set Wi,1 = 1r1 (Di) and T/i,1 is defined as 

the restriction of the identity map to n 1 (Di)-

When l > 1, any semi-definably connected component Y of the definable set 1r1(Di) 

is one of the following forms: 

{(x, t) E p1(Y) x MI t = f(x)}, 

{(x, t) E p1(Y) x MI fi(x) < t < h(x)} 

because Di are multi-cells. Here, f, Ji and h are semi-definable continuous functions 

on p1(Y). The notation Pl denotes the coordinate projection M 1 -+ M 1- 1 forgetting 
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the last coordinate. In the former case, set 

Bi,l = {(x, (Y1 + Y2)/2) E wi,l-1 X Af I (Y1, Y2 E (n1(Di)),,,i,l-1(x)) I\ (Y1 < Y2) 

I\ (~y, (Y1 < Y < Y2) I\ (y E (nz(Di))r,;,z-i(x)))} and 

Wi,l = (Wi,l-1 X M) \ Bi,l· 

The definable continuous map 'T/i,l : Wi,l --+ nz(Di) is defined by 

'TJi,l(x, t) = (rJi,l-1(x), the point in (nz(Di))r,;,z-i(x) nearest tot). 

Set wi,l = {(x, t) E wi,l-1 X Af It E (n1(Di))r,;,1-1(x)} and 'T/i,z(x, t) = (rJi,l-1(x), t) in 

the latter case. 

Set Wi = Wi,n and 'T/i = 'T/i,n· It is obvious that Di is contained in Wi and the 

restriction of 'T/i to Di is the identity map. For any 1 :::; i :::; q and 1 :::; k :::; Ti, we 

define a definable set Xi,k as follows: 

xi,k = {x E wi I (x,t) E Vj(i,k) for all t EM with \J!i,k-l('TJi(x))::::: t::::: \J!i,k('TJi(x))}. 

It is obvious that Di is contained in Xi,k by the above claim. We show that Xi,k is 

an open set. Let x E Xi,k be fixed. Consider the closed definable subset 

of M. We also set Zi,k(x) = {x} x Y;,k(x). The definable continuous function p on 

the closed definable set Y;,k(x) is defined as the distance between the point (x, t) and 

the closed set vc(. k). Since Y; k ( x) is closed and bounded, the function p takes the 
J i, ' 

minimum m. The minimum m is positive because the intersection of Zi,k(x) with 

~(i,k) is empty. Take an arbitrary y E Wi sufficiently close to x. We may assume the 

following inequalities: 

• d(x,y) < ~' 
• Wi,k-1(rJi(Y)) < Wi,k('T/i(x)), 

• Wi,k('TJi(Y)) > Wi,k-1(rJi(x)), 

• 1wi,k-1(rJi(Y)) - \J!i,k-l('TJi(x))I < ~ and 

• lwi,k(rJi(Y)) - \J!i,k('TJi(x))I < ~-

Here, the notation d( x, y) denotes the distance of x = ( x1, ... , Xn) to y = (y1, ... , Yn) 

given by d(x, y) = max{lxi - Yil 11 :::; i:::; n}. We lead to a contradiction assuming 
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that y (j. Xi,k· There exists an element t EM with \JJi,k-1(rJi(Y)) ::; t::; \JJi,k(rJi(Y)) 

and (y, t) (j. Yj(i,k) by the assumption. If t E 1'i,k(x), the distance between the point 

(y, t) and Zi,k(x) is d(x, y) and less than m. It is a contradiction to the assumption 

that (y, t) (j. Yj(i,k)· In the other case, we get either 

or 

because we have either \JJi,k-1(7/i(Y)) ::; t < \JJi,k-1(rJi(x)) or \JJi,k(rJi(x)) < t < 
\JJi,k(rJi(Y)) by the assumption. Easy computations imply that p(y, t) < m/2 m 

both cases. For instance, in the former case, we have p(y, t) = min { d( x, y), It -
\JJi,k-1(7/i(x))I} < m/2. It contradicts the definition of m. We have demonstrated 

that xi,k is open. 

Set ui = n:~1 xi,k and i.f)i,k = \Jli,k O 7/ilui for 1 ::; i ::; q. The set ui is a definable 

open set and l.f)i,k is a definable continuous function on Ui. The set { ( x, t) E Ui x 

[O, 1] I l.f)i,k-1(x)::; t::; l.f)i,k(x)} is contained in Yj(i,k) by the definition of Xi,k· Since 

□ 

[1] E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Inst. Hautes 

Etudes Sci. Publ. Math., 67 (1988), 5-42. 

[2] J. Bochnak, M. Coste and M. -F. Roy, Real algebraic geometry, Ergebnisse der 

Mathematik und ihrer Grenzgebiete 3. Folge, vol. 36. Springer-Verlag, Berlin 

Heidelberg, 1998. 

[3] L. van den Dries, Tame topology and o-minimal structures, London Mathematical 

Society Lecture Note Series, Vol. 248. Cambridge University Press, Cambridge, 

1998. 

[4] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, 

Duke Math. J., 84 (1996), 497-540. 

[5] A. Fornasiero, Locally o-minimal structures and structures with locally o-minimal 

open core, Ann. Pure Appl. Logic, 164 (2013), 211-229. 



55

[6] M. Fujita, Definable er vector bundles and bilinear space in an a-minimal struc

ture and their homotopy theorems, arXiv:2002.03081 (2020). 

[7] M. Fujita, Uniformly locally a-minimal structures and locally o-minimal struc

tures admitting local definable cell decomposition, Ann. Pure Appl. Logic, 171 

(2020), 102756, 26 pages. 

[8] M. Fujita, Locally a-minimal structures with tame topological properties, J. Sym

bolic Logic, published online, https:/ /doi.org/10.1017 /jsl.2021.80. 

[9] M. Fujita, Almost a-minimal structures and X-structures, Ann. Pure Appl. Logic, 

173 (2022), 103144, 38 pages. 

[10] M. Fujita, Tame extension of almost a-minimal structure, arXiv:2207.03021 

(2022). 

[11] M. Fujita, Decomposition into special submanifolds, Math. Log. Quart., to ap

pear. 

[12] M. Fujita, T. Kawakami and W. Komine, Tameness of definably complete locally 

a-minimal structures and definable bounded multiplication, Math. Log. Quart., 

68 (2022), 496-515. 

[13] H. Hironaka, Subanalytic sets, in Number theory, Algebraic geometry and Com

mutative algebra, Kinokuniya, Tokyo, 1973, 453-493. 

[14] T. Kawakami, K. Takeuchi, H. Tanaka and A. Tsuboi, Locally a-minimal struc

tures, J. Math. Soc. Japan, 64 (2012), 783-797. 

[15] J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structure II, 

Trans. Amer. Math. Soc., 295 (1986), 593-605. 

[16] D. Macpherson, D. Marker and C. Steinhorn, Weakly a-minimal structures and 

real closed fields, Trans. Amer. Math. Soc., 352 (2000), 5435-5483. 

[17] C. Miller, Expansions of dense linear orders with the intermediate value property, 

J. Symbolic Logic, 66 (2001), 1783-1790. 

[18] A. Pillay and C. Steinhorn, Definable sets in ordered structure I, Trans. Amer. 

Math. Soc., 295 (1986), 565-592. 

[19] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathe

matics, vol. 150. Springer Science and Business Media, LLC, New York, 1997. 

[20] C. Toffalori and K. Vozoris, Notes on local a-minimality, Math. Log. Quart., 55 

(2009), 617-632. 


