GENERIC EXPANSIONS OF NATP THEORIES

HYOYOON LEE
DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

Abstract

We show that adding a generic predicate P to an NATP theory preserves NATP, with the assumption of modular pregeometry and elimination of quantifiers and \exists^{∞}.

1. Preliminaries

Notation 1.1. Let κ and λ be cardinals.
(i) By κ^{λ}, we mean the set of all functions from λ to κ.
(ii) By $\kappa^{<\lambda}$, we mean $\bigcup_{\alpha<\lambda} \kappa^{\alpha}$ and call it a tree. If $\kappa=2$, we call it a binary tree. If $\kappa \geq \omega$, then we call it an infinite tree.
(iii) By \emptyset or $\left\rangle\right.$, we mean the empty string in $\kappa^{<\lambda}$, which means the empty set.

Let $\eta, \nu \in \kappa^{<\lambda}$.
(iv) By $\eta \unlhd \nu$, we mean $\eta \subseteq \nu$. If $\eta \unlhd \nu$ or $\nu \unlhd \eta$, then we say η and ν are comparable.
(v) By $\eta \perp \nu$, we mean that $\eta \not \Perp \nu$ and $\nu \not \perp \eta$. We say η and ν are incomparable if $\eta \perp \nu$.
(vi) By $\eta \wedge \nu$, we mean the maximal $\xi \in \kappa^{<\lambda}$ such that $\xi \unlhd \eta$ and $\xi \unlhd \nu$.
(vii) By $l(\eta)$, we mean the domain of η.
(viii) By $\eta<_{l e x} \nu$, we mean that either $\eta \unlhd \nu$, or $\eta \perp \nu$ and $\eta(l(\eta \wedge \nu))<\nu(l(\eta \wedge \nu))$.
(ix) By $\eta^{\frown} \nu$, we mean $\eta \cup\{(i+l(\eta), \nu(i)): i<l(\nu)\}$.

Let $X \subseteq \kappa^{<\lambda}$.
(x) By $\eta^{\frown} X$ and $X^{\frown} \eta$, we mean $\left\{\eta^{\frown} x: x \in X\right\}$ and $\left\{x^{\frown} \eta: x \in X\right\}$ respectively.

Let $\eta_{0}, \cdots, \eta_{n} \in \kappa^{<\lambda}$.
(xi) We say a subset X of $\kappa^{<\lambda}$ is an antichain if the elements of X are pairwise incomparable, i.e., $\eta \perp \nu$ for all $\eta, \nu \in X)$.

Let $\mathcal{L}_{0}=\left\{\unlhd,<_{\text {lex }}, \wedge\right\}$ be a language where $\unlhd,<_{\text {lex }}$ are binary relation symbols and \wedge is a binary function symbol. Then for cardinals $\kappa>1$ and λ, a tree $\kappa^{<\lambda}$ can be regarded as an \mathcal{L}_{0}-structure whose interpretations of $\unlhd,<_{l e x}, \wedge$ follow Notation 1.1.
Definition 1.2. Let $\bar{\eta}=\left(\eta_{0}, \cdots, \eta_{n}\right)$ and $\bar{\nu}=\left(\nu_{0}, \cdots, \nu_{n}\right)$ be finite tuples of $\kappa^{<\lambda}$.
(i) By $\operatorname{qftp}_{0}(\bar{\eta})$, we mean the set of quantifier-free \mathcal{L}_{0}-formulas $\varphi(\bar{x})$ such that $\kappa^{<\lambda} \models$ $\varphi(\bar{\eta})$.
(ii) By $\bar{\eta} \sim_{0} \bar{\nu}$, we mean $\operatorname{qftp}_{0}(\bar{\eta})=\operatorname{qftp}_{0}(\bar{\nu})$ and say they are strongly isomorphic.

Let \mathcal{L} be a language, T a complete \mathcal{L}-theory, \mathbb{M} a monster model of T and $\left(a_{\eta}\right)_{\eta \in \kappa<\lambda}$, $\left(b_{\eta}\right)_{\eta \in \kappa<\lambda}$ be tree-indexed sets of tuples from \mathbb{M}. For $\bar{\eta}=\left(\eta_{0}, \cdots, \eta_{n}\right)$, denote $\left(a_{\eta_{0}}, \cdots, a_{\eta_{n}}\right)$ by $\bar{a}_{\bar{\eta}}$. By $\bar{a}_{\bar{\eta}} \equiv_{\Delta, A} \bar{b}_{\bar{\nu}}\left(\right.$ or $\operatorname{tp}_{\Delta}\left(\bar{a}_{\bar{\eta}} / A\right)=\operatorname{tp}_{\Delta}\left(\bar{b}_{\bar{\nu}} / A\right)$), we mean that for any \mathcal{L}_{A}-formula $\varphi(\bar{x}) \in \Delta$ where $\bar{x}=x_{0} \cdots x_{n}, \bar{a}_{\bar{\eta}} \models \varphi(\bar{x})$ if and only if $\bar{b}_{\bar{\nu}} \models \varphi(\bar{x})$.
(iii) We say $\left(a_{\eta}\right)_{\eta \in \kappa<\lambda}$ is strongly indiscernible over A if $\operatorname{tp}\left(\bar{a}_{\bar{\eta}} / A\right)=\operatorname{tp}\left(\bar{a}_{\bar{\nu}} / A\right)$ for any $\bar{\eta}$ and $\bar{\nu}$ such that $\operatorname{qft}_{0}(\bar{\eta})=\operatorname{qftp}_{0}(\bar{\nu})$.

HYOYOON LEE DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

(iv) We say $\left(b_{\eta}\right)_{\eta \in \kappa<\lambda}$ is strongly based on $\left(a_{\eta}\right)_{\eta \in \kappa<\lambda}$ over A if for all $\bar{\eta}$ and a finite set of \mathcal{L}_{A}-formulas Δ, there is $\bar{\nu}$ such that $\bar{\eta} \sim_{0} \bar{\nu}$ and $\bar{b}_{\bar{\eta}} \equiv_{\Delta, A} \bar{a}_{\bar{\nu}}$.
Fact 1.3. Let $\left(a_{\eta}\right)_{\eta \in \omega<\omega}$ be a tree-indexed set. Then there is a strongly indiscernible sequence $\left(b_{\eta}\right)_{\eta \in \omega<\omega}$ which is strongly based on $\left(a_{\eta}\right)_{\eta \in \omega<\omega}$.
The proof of the above fact can be found in [KK11], [KKS14] and [TT12]. It is called the modeling property of strong indiscernibility (in short, we write it the strong modeling property).
Definition 1.4. Let T be a first-order complete \mathcal{L}-theory. We say a formula $\varphi(x, y) \in \mathcal{L}$ has (or is) k-antichain tree property (k-ATP) if for any monster model \mathbb{M}, there exists a tree indexed set of parameters $\left(a_{\eta}\right)_{\eta \in 2<\omega}$ such that
(i) for any antichain X in $2^{<\omega}$, the set $\left\{\varphi\left(x, a_{\eta}\right): \eta \in X\right\}$ is consistent and
(ii) for any pairwise comparable distinct elements $\eta_{0}, \cdots, \eta_{k-1} \in 2^{<\omega},\left\{\varphi\left(x ; a_{\eta_{i}}\right): i<\right.$ $k\}$ is inconsistent.
We say T has k-ATP if there exists a formula $\varphi(x, y)$ having k-ATP and

- If $k=2$, we omit k and simply write ATP.
- If T does not have ATP, then we say T has (or is) NATP.
- If T is not complete, then saying ' T is NATP' means that any completion of T is NATP.

Remark/Definition 1.5.

(1) We say an antichain $X \subseteq \kappa^{<\lambda}$ is universal if for each finite antichain $Y \subseteq \kappa^{<\lambda}$, there exists $X_{0} \subseteq X$ such that $Y \sim_{0} X_{0}$. A typical example of a universal antichain is $\kappa^{\lambda^{\prime}} \subseteq \kappa^{<\lambda}$ where $\kappa>1$ and $\omega \leq \lambda^{\prime}<\lambda$.
(2) Let $\varphi(x ; y)$ be a formula and $\left(a_{\eta}\right)_{\eta \in \kappa<\lambda}$ be a tree indexed set of parameters where $\kappa>1$ and λ is infinite. We say $\left.\left(\varphi(x ; y),\left(a_{\eta}\right)_{\eta \in \kappa<\lambda}\right)\right)$ witnesses ATP if for any $X \subseteq \kappa^{<\lambda}$, the partial type $\left\{\varphi\left(x, a_{\eta}\right)\right\}_{\eta \in X}$ is consistent if and only if X is pairwise incomparable. Note that T has ATP if and only if it has a witness for some $\kappa>1$ and infinite λ by compactness.
Remark 1.6. By [AK20, Corollary 4.9] and [AKL21, Remark 3.6], if $\varphi(x ; y)$ has ATP, then there is a witness $\left(\varphi(x ; y),\left(a_{\eta}\right)_{\eta \in 2 \leq \omega}\right)$ with strongly indiscernible $\left(a_{\eta}\right)_{\eta \in 2} \leq \omega$.
Fact 1.7. [AKL21, Corollary 3.23(b)] Let κ and λ be infinite cardinals with $\lambda<c f(\kappa)$, $f: 2^{\kappa} \rightarrow X$ be an arbitrary function and $c: X \rightarrow \lambda$ be a coloring map. Then there is a monochromatic subset $S \subseteq 2^{\kappa}$ such that for any $k<\omega$, there is some tuple in S strongly isomorphic to the lexicographic enumeration of 2^{k}.
Fact 1.8. [AKL21, Theorem 3.27] Let T be a complete theory and $2^{|T|}<\kappa<\kappa^{\prime}$ with $c f(\kappa)=\kappa$. The following are equivalent.
(1) T is NATP.
(2) For any strongly indiscernible tree $\left(a_{\eta}\right)_{\eta \in 2<\kappa^{\prime}}$ and a single element b, there are $\rho \in 2^{\kappa}$ and b^{\prime} such that
(a) $\left(a_{\rho \neg 0^{i}}\right)_{i<\kappa^{\prime}}$ is indiscernible over b^{\prime},
(b) $b \equiv_{a_{\rho}} b^{\prime}$.

Remark 1.9. Let $\lambda=2^{|T|}<\kappa<\kappa^{\prime}$ with $c f(\kappa)=\kappa$ and $c: 2^{\kappa} \rightarrow \lambda$. If T is a complete NATP theory, by Fact 1.8 , for any strongly indiscernible tree $\left(a_{\eta}\right)_{\eta \in 2<\kappa^{\prime}}$ and a single element b, there are $\rho \in 2^{\kappa}$ and b^{\prime} satisfying conditions (a) and (b) of Fact 1.8. On the other hand, by Fact 1.7, there is a universal antichain $S \subseteq 2^{\kappa}$ such that $|c(S)|=1$.

Suppose that the length of each tuple a_{η} is finite. Then identifying λ with $S_{x}(b)=$ (the set of all complete types over b with $\left.|x|=\left|a_{\eta}\right|\right)$ and letting $c(\eta)=\operatorname{tp}\left(a_{\eta} / b\right)$ for each $\eta \in 2^{\kappa}$, we obtain $S \subseteq 2^{\kappa}$ such that for all $a_{\eta}, a_{\eta^{\prime}} \in 2^{\kappa}, \operatorname{tp}\left(a_{\eta} / b\right)=\operatorname{tp}\left(a_{\eta^{\prime}} / b\right)$. In fact, the proof of [AKL21, Theorem 3.27] shows that for any ρ in such S, there always exists b^{\prime} satisfying (a), (b) of Fact 1.8.
Remark 1.10. Recall that if a complete theory T has ATP, then there are $\varphi(x ; y) \in \mathcal{L}$ and a strongly indiscernible tree $\left(a_{\eta}\right)_{\eta \in 2 \leq \omega}$ that witness ATP (Remark 1.6). For this witness, $\left\{\varphi\left(x, a_{\eta}\right) \mid \eta \in 2^{\omega}\right\}$ has infinitely many realizations.
Proof. Easy to verify using strong indiscernibility and compactness.
Remark 1.11. Let T be a complete theory having NATP. Let $\left(a_{\eta}\right)_{\eta \in 2^{\kappa^{\prime}}}$ be a strongly indiscernible sequence over \emptyset and let $\left(b_{i}\right)_{i \in \omega}$ be an indiscernible sequence over $A:=\left\{a_{\eta}\right.$: $\left.\eta \in 2^{<\kappa^{\prime}}\right\}$ with $b_{i}=\left(b_{i, 0}, b_{i, 1}, \ldots\right)$ such that $b_{i, 0} \neq b_{j, 0}$ for $i \neq j \in \omega$. Suppose there is a regular cardinal $\kappa<\kappa^{\prime}$ such that $2^{|T|+\left|b_{0}\right|}<\kappa$. By Remark 1.9, there is an universal anticahin $S \subset 2^{\kappa}$ such that $a_{\eta} \equiv_{b_{0}} a_{\eta^{\prime}}$ for all $\eta, \eta^{\prime} \in S$. Take $\rho \in S$ arbitrary. Put $p\left(x, a_{\rho}\right):=\operatorname{tp}\left(b_{0}, a_{\rho}\right)$ for $x=\left(x_{0}, x_{1}, \ldots\right)$ and for each $n \in \omega$, put

$$
p_{n}\left(x_{0}, \ldots, x_{n}\right):=\bigcup_{i \leq n} p\left(x_{i}, a_{\rho}\right) \cup\left\{x_{i, 0} \neq x_{j, 0}: i \neq j \leq n\right\},
$$

which is consistent by b_{0}, \ldots, b_{n}. Then, for each $n \geq 0$,

$$
p_{n}\left(x_{1}, \ldots, x_{n}, a_{\rho}\right) \cup p_{n}\left(x_{1}, \ldots, x_{n}, a_{\rho \frown 0}\right)
$$

is consistent. Thus, the type

$$
p\left(x, a_{\rho}\right) \cup p\left(x, a_{\rho \frown 0}\right)
$$

has infinitely many solutions whose first components are distinct.
Proof. Suppose not. By compactness, there is a formula $\psi\left(x_{0}, \ldots, x_{n}, y\right) \in p_{n}\left(x_{0}, \ldots, x_{n}, y\right)$ such that

$$
\psi\left(x_{0}, \ldots, x_{n}, a_{\rho}\right) \wedge \psi\left(x_{0}, \ldots, x_{n}, a_{\rho \frown 0}\right)
$$

is inconsistent. By strongly indiscerniblity, for any $\eta \unrhd \nu \in 2^{<\kappa^{\prime}}$,

$$
\psi\left(x_{0}, \ldots, x_{n}, a_{\eta}\right) \wedge \psi\left(x_{0}, \ldots, x_{n}, a_{\nu}\right)
$$

is inconsistent.
On the other hand, since $b_{0}, \ldots, b_{n} \models \psi\left(x_{0}, \ldots, x_{n}, a_{\rho}\right)$, by the choice of S,

$$
b_{0}, \ldots, b_{n} \models \psi\left(x_{0}, \ldots, x_{n}, a_{\eta}\right)
$$

for all $\eta \in S$. Since S is a universal antichain, for any antichain X in $2^{<\kappa^{\prime}}$,

$$
\left\{\psi\left(x_{0}, \ldots, x_{n}, a_{\eta}\right): \eta \in X\right\}
$$

is consistent. Therefore, $\psi\left(x_{0}, \ldots, x_{n}, y\right)$ witnesses ATP with $\left(a_{\eta}\right)_{\eta \in 2^{<\kappa^{\prime}}}$, which contradicts the assumption that T has NATP.
Definition 1.12 ([TZ]).
(1) A pregeometry (X, cl) is a set X with a closure operator cl : $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$ such that for all $A \subseteq X$ and singletons $a, b \in X$,
(a) (Reflexivity) $A \subseteq \operatorname{cl}(A)$;
(b) (Finite character) $\operatorname{cl}(A)=\bigcup_{A^{\prime} \subseteq A, A^{\prime} \text { : finite }} \operatorname{cl}\left(A^{\prime}\right)$;
(c) (Transitivity) $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$;
(d) (Exchange) If $a \in \operatorname{cl}(A b) \backslash \operatorname{cl}(A)$, then $b \in \operatorname{cl}(A a)$.

HYOYOON LEE DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

(2) Let (X, cl) be a pregeometry and $A \subseteq X$.
(a) A is called independent if for all singleton $a \in A, a \notin \operatorname{cl}(A \backslash\{a\})$;
(b) $A_{0} \subseteq A$ is called a generating set for A if $A \subseteq \operatorname{cl}\left(A_{0}\right)$;
(c) A_{0} is called a basis for A if A_{0} is an independent generating set for A.

Definition 1.13. Let (X, cl) be a pregeometry and $A \subseteq X$. It is well-known that all bases of A have the same cardinality $([\mathrm{TZ}])$.
(1) The dimension of $A, \operatorname{dim}(A)$ is the cardinal of a basis for A.
(2) A is called closed if $\operatorname{cl}(A)=A$.
(3) (X, cl) is called modular if for any closed finite dimensional sets B, C,

$$
\operatorname{dim}(B \cup C)=\operatorname{dim}(B)+\operatorname{dim}(C)-\operatorname{dim}(B \cap C)
$$

We say T is a (modular) pregeometry with acl or acl defines a (modular) pregeometry in T if (\mathcal{M}, acl) is a (modular) pregeometry.

Remark 1.14. Assume T is a pregeomtry with acl. Let A, B be algebraically closed and c be a singleton not in $\operatorname{acl}(A B)$. Then for $D:=A \cap B$, we have the following:
(1) $\operatorname{acl}(c D) \cap \operatorname{acl}(A B)=\operatorname{acl}(D)$.
(2) $\operatorname{acl}(c A) \cap \operatorname{acl}(A B)=\operatorname{acl}(A)$.
(3) $\operatorname{acl}(c B) \cap \operatorname{acl}(A B)=\operatorname{acl}(B)$.

Moreover, if T is modular, then
(4) $\operatorname{acl}(A c) \cap \operatorname{acl}(B c)=\operatorname{acl}(c D)$.

Proof. (1)-(3) are easily obtained by exchange property.
(4): By finite character, we may assume that $\operatorname{dim}(A)$ and $\operatorname{dim}(B)$ are finite. It is enough to show that $\operatorname{dim}(\operatorname{acl}(A c) \cap \operatorname{acl}(B c))=\operatorname{dim}(\operatorname{acl}(c D))$ because $\operatorname{acl}(c D) \subseteq \operatorname{acl}(A c) \cap \operatorname{acl}(B c)$ and they are algebraically closed.

By modularity and $c \notin \operatorname{acl}(A B)$,

$$
\begin{aligned}
\operatorname{dim}(\operatorname{acl}(A c) \cap \operatorname{acl}(B c)) & =\operatorname{dim}(\operatorname{acl}(A c))+\operatorname{dim}(\operatorname{acl}(B c))-\operatorname{dim}(\operatorname{acl}(A c) \cup \operatorname{acl}(B c)) \\
& =(\operatorname{dim}(A)+1)+(\operatorname{dim}(B)+1)-(\operatorname{dim}(\operatorname{acl}(A B))+1) \\
& =\operatorname{dim}(A)+\operatorname{dim}(B)-\operatorname{dim}(A B)+1 \\
& =\operatorname{dim}(D)+1 .
\end{aligned}
$$

2. Adding a generic predicate

The generic predicate construction was introduced in [CP98], and it is known that each of NTP_{2} and NTP_{1} is preserved by such a construction, proved in [Che14] and [Dob18] respectively. We collect some necessary facts from [CP98] first, and then show that NATP is also preserved using similar ideas given in aforementioned papers.

Throughout, consider a complete theory T in a first-order language \mathcal{L}, which contains some unary predicate S. The reader may note that the following fact is stated in [Che14] and [Dob18], but the location of brackets in the first item is corrected. The notation tp_{T}, acl_{T} or $\operatorname{acl}_{T_{P, S}}$ shall mean in the same way as in the previous sections, whose intended meaning will be clear from the context.

Fact 2.1. Assume that T has elimination of quantifiers and elimination of \exists^{∞}. Then
(1) [CP98, Theorem 2.4] $T_{P, S}^{0}$ has a model companion, denoted by $T_{P, S}$, which is axiomatized by T together with

$$
\begin{aligned}
& \forall z\left[\exists x\left(\varphi(x, z) \wedge\left(x \cap \operatorname{acl}_{T}(z)=\emptyset\right) \wedge \bigwedge_{i<n} S\left(x_{i}\right) \wedge \bigwedge_{i \neq j<n} x_{i} \neq x_{j}\right)\right. \\
& \left.\quad \rightarrow \exists x\left(\varphi(x, z) \wedge \bigwedge_{i \in I} P\left(x_{i}\right) \wedge \bigwedge_{i \notin I} \neg P\left(x_{i}\right)\right)\right]
\end{aligned}
$$

where $x=\left(x_{0}, \cdots, x_{n-1}\right)$ and I ranges over all subsets of the set $\{0, \cdots, n-1\}$. Indeed, above expression can be written in a first-order formula [CP98, Lemma 2.3].

For (2) and (3), let a, b be tuples of $(M, P) \models T_{P, S}$ and $A \subseteq M$.
(2) [CP98, Proposition 2.5 and Corollary 2.6(2)] $\operatorname{tp}_{T_{P, S}}(a)=\operatorname{tp}_{T_{P, S}}(b)$ if and only if there exists an \mathcal{L}_{P}-isomorphism between substructures:

$$
f:\left(\operatorname{acl}(a), P \cap \operatorname{acl}_{T}(a)\right) \rightarrow\left(\operatorname{acl}(b), P \cap \operatorname{acl}_{T}(b)\right)
$$

such that $f(a)=b$.
(3) $\left[\mathrm{CP} 98\right.$, Corollary 2.6(3)] $\operatorname{acl}_{T}(A)=\operatorname{acl}_{T_{P, S}}(A)$.

The following remark will be freely used.

Remark 2.2.

(1) Note that $T_{P, S}$ is not necessarily complete, so ' $T_{P, S}$ is NATP' means that any completion of it is NATP (Definition 1.4).
(2) Due to Fact 2.1(3), we can say $T_{P, S}$ also has the exchange property for $\mathrm{cl}=\mathrm{acl}$ if T has this property. We will not distinguish between acl_{T} and $\operatorname{acl}_{P, S}$, so the subscripts for acl will be omitted.
(3) If it happens that $T \models S(x) \leftrightarrow x=x$, then we simply write $T_{P, S}^{0}$ for T_{P}^{0} and $T_{P, S}$ for T_{P}.

Theorem 2.3. Let T be a modular pregeometry with acl and let T have quantifier elimination and elimination of \exists^{∞}. If T is NATP, then T_{P} is also NATP.

Proof. Fix a monster model $(\mathbb{M}, P) \models T_{P}$ (which is not necessarily a complete theory). Let κ and κ^{\prime} be cardinals such that $2^{\left|T_{P}\right|}<\kappa<\kappa^{\prime}$ and $c f(\kappa)=\kappa$. Suppose for a contradiction that $\operatorname{Th}(\mathbb{M}, P)$ has ATP witnessed by an \mathcal{L}_{P}-formula $\varphi(x, y)$ with a strongly indiscernible tree $\left(a_{\eta}\right)_{\eta \in 2^{<\kappa^{\prime}}}$ (such a tree of this form exists, similarly as Remark 1.6). By [AKL21, Theorem 3.17], we may assume that $|x|=1$.

Let $\left(\operatorname{acl}\left(a_{\eta}\right)\right)_{\eta \in 2<\kappa^{\prime}}$ be a tree of tuples where each enumeration of $\operatorname{acl}\left(a_{\eta}\right)$ starts with a_{η}. Then $\left(\operatorname{acl}\left(a_{\eta}\right)\right)_{\eta \in 2<\kappa^{\prime}}$ itself might not be strongly indiscernible, but by Fact 1.3 and compactness, there is a strongly indiscernible $\left(\operatorname{acl}\left(a_{\eta}^{*}\right)\right)_{\eta \in 2^{<\kappa^{\prime}}}$ which is strongly based on $\left(\operatorname{acl}\left(a_{\eta}\right)\right)_{\eta \in 2^{<\kappa^{\prime}}}$. Then with dummy variables, an \mathcal{L}_{P}-formula $\varphi\left(x, y^{\prime}\right) \equiv \varphi(x, y)$ with a strongly indiscernible tree $\left(\operatorname{acl}\left(a_{\eta}^{*}\right)\right)_{\eta \in 2^{<\kappa^{\prime}}}$ witnesses ATP of T_{P}. Thus we may replace each a_{η} by a_{η}^{*} and say that $\left(\operatorname{acl}\left(a_{\eta}\right)\right)_{\eta \in 2^{<\kappa^{\prime}}}$ is strongly indiscernible; whenever an enumeration of $\operatorname{acl}\left(a_{\eta}\right)$ is concerned in the rest of this proof, we refer to the enumeration fixed here. Note that $\left(\operatorname{acl}\left(a_{\eta}\right)\right)_{\eta \in 2^{<\kappa^{\prime}}}$ is strongly indiscernible over $D:=\operatorname{acl}\left(a_{\emptyset}\right) \cap \operatorname{acl}\left(a_{0}\right)\left(=\operatorname{acl}\left(a_{\eta}\right) \cap \operatorname{acl}\left(a_{\nu}\right)\right.$ for any $\left.\eta, \nu \in 2^{<\kappa^{\prime}}\right)$.

Put $A=\left\{a_{\eta}: \eta \in 2^{<\kappa^{\prime}}\right\}$. Recall that by Remark 1.10, $\left\{\varphi\left(x, a_{\eta}\right): \eta \in 2^{\kappa}\right\}$ has infinitely many realizations. Thus (by Ramsey's Theorem and compactness) we can find a non-constant A-indiscernible sequence $\left(b_{i}\right)_{i<\omega}$ not in $\operatorname{acl}(A)$ such that each b_{i} realizes $\left\{\varphi\left(x, a_{\eta}\right): \eta \in 2^{\kappa}\right\}$. For each i, put \bar{b}_{i} some fixed enumeration of $\operatorname{acl}\left(b_{i} D\right)$ starting with b_{i} such that $\bar{b}_{i} \equiv{ }_{A} \bar{b}_{0}$.

Let $\left.B=\bigcup_{i<\omega} \operatorname{acl}\left(b_{i} D\right), C=\left\{\operatorname{tp}\left(\operatorname{acl}\left(a_{\eta}\right) / B\right)\right): \eta \in 2^{\kappa}\right\}, f: 2^{\kappa} \rightarrow C$ be a function such that $f(\eta)=\operatorname{tp}\left(\operatorname{acl}\left(a_{\eta}\right) / B\right)$ and $c: C \rightarrow S_{y^{\prime}}(B)$ be an inclusion map where $\left|y^{\prime}\right|=\left|\operatorname{acl}\left(a_{\eta}\right)\right|$. Then letting $\lambda=2^{\left|T_{P}\right|}\left(=\left|S_{y^{\prime}}(B)\right|\right)$, we can find a subset $S \subseteq 2^{\kappa}$ given in the Fact 1.7 so that

- for any $\left.\eta, \nu \in S, \operatorname{tp}\left(\operatorname{acl}\left(a_{\eta}\right) / B\right)=\operatorname{tp}\left(\operatorname{acl}\left(a_{\nu}\right) / B\right)\right)$;
- for any $k<\omega$, there exists some tuple in S strongly isomorphic to the lexicographic enumeration of 2^{k}.
Now, choose an element $\rho \in S$ arbitrary, put $p\left(\bar{x}, \operatorname{acl}\left(a_{\rho}\right)\right)=\operatorname{tp}_{T}\left(\bar{b}_{0} / \operatorname{acl}\left(a_{\rho}\right)\right)$. By Re$\operatorname{mark} 1.11, p\left(\bar{x}, \operatorname{acl}\left(a_{\rho}\right)\right) \cup p\left(\bar{x}, \operatorname{acl}\left(a_{\rho-0}\right)\right)$ has infinitely many realizations, whose first coordinates are all distinct. Then by compactness, we can find \bar{b} such that $\bar{b} \models p\left(\bar{x}, \operatorname{acl}\left(a_{\rho}\right)\right) \cup$ $p\left(\bar{x}, \operatorname{acl}\left(a_{\rho-0}\right)\right)$ and the first element, say b, of \bar{b} is not in $\operatorname{acl}(A) \cdots(*)$. Via an elementary map, \bar{b} is an enumeration of $\operatorname{acl}(b D)$.

By Remark 1.14, 2.2(2) and that $b_{0} \notin \operatorname{acl}(A)$,following relations between algebraic closures hold (\dagger):
(1) $\operatorname{acl}\left(b_{0} D\right) \cap \operatorname{acl}\left(a_{\rho} a_{\rho \frown 0}\right)=\operatorname{acl}(D)$;
(2) $\operatorname{acl}\left(b_{0} a_{\rho}\right) \cap \operatorname{acl}\left(a_{\rho} a_{\rho \sim 0}\right)=\operatorname{acl}\left(a_{\rho}\right)$;
(3) $\operatorname{acl}\left(b_{0} a_{\rho-0}\right) \cap \operatorname{acl}\left(a_{\rho} a_{\rho \frown 0}\right)=\operatorname{acl}\left(a_{\rho \frown 0}\right)$;
(4) $\operatorname{acl}\left(b_{0} a_{\rho}\right) \cap \operatorname{acl}\left(b_{0} a_{\rho-0}\right)=\operatorname{acl}\left(b_{0} D\right)\left(=\overline{b_{0}}\right)$.

Let \bar{c}_{0} be an enumeration of $\operatorname{acl}\left(b_{0} a_{\rho}\right) \backslash\left(\operatorname{acl}\left(b_{0} D\right) \cup \operatorname{acl}\left(a_{\rho}\right)\right)$ and denote $\bar{b}_{0} \backslash \operatorname{acl}(D)$ a subsequence of \bar{b}_{0}, formed by deleting coordinates of \bar{b}_{0} in $\operatorname{acl}(D)$. By (\dagger) and Remark $2.2(2)$, the sets of all coordinates of $\bar{b}_{0} \backslash \operatorname{acl}(D), \bar{c}_{0}$ and $\operatorname{acl}\left(a_{\rho} a_{\rho-0}\right)$ are pairwise disjoint.

Recall $p\left(\bar{x}, \operatorname{acl}\left(a_{\rho}\right)\right)=\operatorname{tp}_{T}\left(\bar{b}_{0} / \operatorname{acl}\left(a_{\rho}\right)\right)$ and $\bar{b} \models p\left(\bar{x}, \operatorname{acl}\left(a_{\rho}\right)\right) \cup p\left(\bar{x}, \operatorname{acl}\left(a_{\rho-0}\right)\right)$. Using \mathcal{L} elementary maps f_{0}, g_{0} where f_{0} fixes $\operatorname{acl}\left(a_{\rho}\right), f_{0}\left(\left(\bar{b}_{0} \backslash \operatorname{acl}(D)\right) \operatorname{acl}\left(a_{\rho}\right)\right)=(\bar{b} \backslash \operatorname{acl}(D)) \operatorname{acl}\left(a_{\rho}\right)$ and $g_{0}\left(\left(\bar{b}_{0} \backslash \operatorname{acl}(D) \operatorname{acl}\left(a_{\rho}\right)\right)=\left(\bar{b} \backslash \operatorname{acl}(D) \operatorname{acl}\left(a_{\rho-0}\right)\right.\right.$, we obtain the following enumerations which are automorphic images of \bar{c}_{0} :

- \bar{c}_{ρ} of $\operatorname{acl}\left(b a_{\rho}\right) \backslash\left(\operatorname{acl}(b D) \cup \operatorname{acl}\left(a_{\rho}\right)\right)$ and
- $\bar{c}_{\rho \frown 0}$ of $\operatorname{acl}\left(b a_{\rho \frown 0}\right) \backslash\left(\operatorname{acl}(b D) \cup \operatorname{acl}\left(a_{\rho \frown 0}\right)\right)$.

Note that

- $(\bar{b} \backslash \operatorname{acl}(D)) \bar{c}_{\rho} \operatorname{acl}\left(a_{\rho}\right)$ is an enumeration of $\operatorname{acl}\left(b a_{\rho}\right)$ and
- $(\bar{b} \backslash \operatorname{acl}(D)) \bar{c}_{\rho \frown 0} \operatorname{acl}\left(a_{\rho \frown 0}\right)$ is of $\operatorname{acl}\left(b a_{\rho \frown 0}\right)$.

Now let

$$
q\left(\bar{x} \bar{w}, \operatorname{acl}\left(a_{\rho}\right)\right)=\operatorname{tp}_{T}\left(\left(\bar{b}_{0} \backslash \operatorname{acl}(D)\right) \bar{c}_{0} / \operatorname{acl}\left(a_{\rho}\right)\right)
$$

Then for any formula $\psi \in q\left(\bar{x} \bar{w}, \operatorname{acl}\left(a_{\rho}\right)\right) \cup q\left(\bar{x} \bar{w}_{*}, \operatorname{acl}\left(a_{\rho-0}\right)\right)$ where $\bar{w} \cap \bar{w}_{*}=\emptyset$, say $\psi\left(\bar{x}^{\prime} \bar{w}^{\prime} \bar{w}_{*}^{\prime}, \bar{a} \bar{a}_{*}\right) \equiv \psi_{\rho}\left(\bar{x}^{\prime} \bar{w}^{\prime}, \bar{a}\right) \wedge \psi_{\rho \frown 0}\left(\bar{x}^{\prime} \bar{w}_{*}^{\prime}, \bar{a}_{*}\right)$ where
(1) $q\left(\bar{x} \bar{w}, \operatorname{acl}\left(a_{\rho}\right)\right) \vdash \psi_{\rho}\left(\bar{x}^{\prime} \bar{w}^{\prime}, \bar{a}\right)$,
(2) $q\left(\bar{x} \bar{w}_{*}, \operatorname{acl}\left(a_{\rho-0}\right)\right) \vdash \psi_{\rho \frown 0}\left(\bar{x}^{\prime} \bar{w}_{*}^{\prime}, \bar{a}_{*}\right)$,
(3) $\bar{x}^{\prime} \subseteq \bar{x}, \bar{w}^{\prime} \subseteq \bar{w}, \bar{w}_{*}^{\prime} \subseteq \bar{w}_{*}$ are finite tuples of variables,
the following formula(Fact 2.1(1))

$$
\psi\left(\bar{x}^{\prime} \bar{w}^{\prime} \bar{w}_{*}^{\prime}, \bar{a} \bar{a}_{*}\right) \wedge\left(\bar{x}^{\prime} \bar{w}^{\prime} \bar{w}_{*}^{\prime} \cap \operatorname{acl}\left(\bar{a} \bar{a}_{*}\right)=\emptyset\right) \wedge \bigwedge_{v_{i}, v_{j} \in \bar{x}^{\prime} \bar{w}^{\prime} \bar{w}_{*}^{\prime}, i \neq j}\left(v_{i} \neq v_{j}\right)
$$

GENERIC EXPANSIONS OF NATP THEORIES

has a realization in $(\bar{b} \backslash \operatorname{acl}(D)) \bar{c}_{\rho} \bar{c}_{\rho \sim 0}($ by $(*), b \notin \operatorname{acl}(A)$. Then it can be checked that $\operatorname{acl}\left(b a_{\rho}\right) \cap \operatorname{acl}(A)=\operatorname{acl}\left(a_{\rho}\right)$ by exchange property). In particular, $b \notin \operatorname{acl}\left(a_{\rho} a_{\rho \frown 0}\right) \cdots(* *)$.

Then by Fact 2.1(1) and compactness, there is $\left(\bar{b}^{\prime} \backslash \operatorname{acl}(D)\right) \bar{c}_{\rho}^{\prime} \bar{c}_{\rho-0}^{\prime} \models q\left(\bar{x} \bar{w}, \operatorname{acl}\left(a_{\rho}\right)\right) \cup$ $q\left(\bar{x} \bar{w}_{*}, \operatorname{acl}\left(a_{\rho \sim 0}\right)\right)$ where \bar{b}^{\prime} is an enumeration of $\operatorname{acl}\left(b^{\prime} D\right)$ starting with b^{\prime} and we can arbitrarily choose which of the elements of $\left(\bar{b}^{\prime} \backslash \operatorname{acl}(D)\right) \bar{c}_{\rho}^{\prime} \bar{c}_{\rho-0}^{\prime}$ are in P.

To summarize, now we have the following:

- There are \mathcal{L}-automorphisms f_{0}, f_{1} of \mathbb{M} fixing $\operatorname{acl}\left(a_{\rho}\right)$ such that

$$
\begin{aligned}
& f_{0}\left(\left(\bar{b}_{0} \backslash \operatorname{acl}(D)\right) \bar{c}_{0} \operatorname{acl}\left(a_{\rho}\right)\right)=(\bar{b} \backslash \operatorname{acl}(D)) \bar{c}_{\rho} \operatorname{acl}\left(a_{\rho}\right) ; \\
& f_{1}\left((\bar{b} \backslash \operatorname{acl}(D)) \bar{c}_{\rho} \operatorname{acl}\left(a_{\rho}\right)\right)=\left(\bar{b}^{\prime} \backslash \operatorname{acl}(D)\right) \bar{c}_{\rho}^{\prime} \operatorname{acl}\left(a_{\rho}\right) .
\end{aligned}
$$

where $\left(\bar{b}^{\prime} \backslash \operatorname{acl}(D)\right) \bar{c}_{\rho}^{\prime} \operatorname{acl}\left(a_{\rho}\right)$ is an enumeration of $\operatorname{acl}\left(b^{\prime} a_{\rho}\right)$.

- There are \mathcal{L}-automorphisms g_{0}, g_{1} of \mathbb{M} such that

$$
\begin{gathered}
g_{0}\left(\left(\bar{b}_{0} \backslash \operatorname{acl}(D)\right) \bar{c}_{0} \operatorname{acl}\left(a_{\rho}\right)\right)=(\bar{b} \backslash \operatorname{acl}(D)) \bar{c}_{\rho \prec 0} \operatorname{acl}\left(a_{\rho \frown 0}\right), \\
g_{1}\left((\bar{b} \backslash \operatorname{acl}(D)) \bar{c}_{\rho \frown 0} \operatorname{acl}\left(a_{\rho \prec 0}\right)\right)=\left(\bar{b}^{\prime} \backslash \operatorname{acl}(D)\right) \bar{c}_{\rho \prec 0}^{\prime} \operatorname{acl}\left(a_{\rho \frown 0}\right)
\end{gathered}
$$

where $\left(\bar{b}^{\prime} \backslash \operatorname{acl}(D)\right) \bar{c}_{\rho \prec 0}^{\prime} \operatorname{acl}\left(a_{\rho \frown 0}\right)$ is an enumeration of $\operatorname{acl}\left(b^{\prime} a_{\rho \frown 0}\right)$.
Since we can freely choose $P \cap\left(\left(\bar{b}^{\prime} \backslash \operatorname{acl}(D)\right) \vec{c}_{\rho}^{\prime} \bar{c}_{\rho-0}^{\prime}\right)$,

$$
\begin{aligned}
& f_{1} f_{0}:\left(\operatorname{acl}\left(b_{0} a_{\rho}\right), P \cap \operatorname{acl}\left(b_{0} a_{\rho}\right)\right) \rightarrow\left(\operatorname{acl}\left(b^{\prime} a_{\rho}\right), P \cap \operatorname{acl}\left(b^{\prime} a_{\rho}\right)\right) \text { and } \\
& g_{1} g_{0}:\left(\operatorname{acl}\left(b_{0} a_{\rho}\right), P \cap \operatorname{acl}\left(b_{0} a_{\rho}\right)\right) \rightarrow\left(\operatorname{acl}\left(b^{\prime} a_{\rho-0}\right), P \cap \operatorname{acl}\left(b^{\prime} a_{\rho \frown 0}\right)\right)
\end{aligned}
$$

can be simultaneously regarded as \mathcal{L}_{P}-isomorphisms between \mathcal{L}_{P}-substructures since

- $\operatorname{acl}\left(b^{\prime} a_{\rho}\right) \cap \operatorname{acl}\left(b^{\prime} a_{\rho \frown 0}\right)=\operatorname{acl}\left(b^{\prime} D\right)$ by $(* *)$ and Remark 1.14(4);
- $f_{1} f_{0}\left(\bar{b}_{0}\right)=g_{1} g_{0}\left(\bar{b}_{0}\right)=\bar{b}^{\prime} ;$
- $f_{1} f_{0}$ fixes $\operatorname{acl}\left(a_{\rho}\right)$ pointwise;
- $g_{1} g_{0}\left(\operatorname{acl}\left(a_{\rho}\right)\right)=\operatorname{acl}\left(a_{\rho-0}\right)$ and preserves P-coloring by the $\left(\mathcal{L}_{P}\right)$ strong indiscernibility of $\left(\operatorname{acl}\left(a_{\eta}\right)\right)_{\eta \in 2<k^{\prime}}$.
Therefore by Fact 2.1(2), $\operatorname{tp}_{T_{P}}\left(b_{0} a_{\rho}\right)=\operatorname{tp}_{T_{P}}\left(b^{\prime} a_{\rho}\right)=\operatorname{tp}_{T_{P}}\left(b^{\prime} a_{\rho \sim 0}\right)$. Since $\models \varphi\left(b_{0}, a_{\rho}\right)$, we have $\models \varphi\left(b^{\prime}, a_{\rho}\right) \wedge \varphi\left(b^{\prime}, a_{\rho \neg 0}\right)$, which contradicts that φ witnesses ATP with $\left(a_{\eta}\right)_{\eta \in 2^{<\kappa^{\prime}}}$.

References

[AKL21] Jinhoo Ahn, Joonhee Kim and Junguk Lee, On the Antichain Tree Property, J. Math. Log., 2022, doi:10.1142/S0219061322500210.
[AK20] Jinhoo Ahn and Joonhee Kim, $\mathrm{SOP}_{1}, \mathrm{SOP}_{2}$, and antichain tree property, submitted, 2020, arXiv:2003.10030v4.
[CP98] Zoe Chatzidakis and Anand Pillay, Generic structures and simple theories, Ann. Pure Appl. Logic, 95, No. $1-3$ - (1998), 71-92.
[Che14] Artem Chernikov, Theories without the tree property of the second kind, Ann. Pure Appl. Logic, 165, (2014), 695-723.
[CR16] Artem Chernikov and Nicholas Ramsey, On model-theoretic tree properties, J. Math. Log., 16, (2016), 1650009, 41 pp .
[Dob18] Jan Dobrowolski, Generic variations and NTP $_{1}$, Arch. Math. Logic, 57, (2018), 861-871.
[DK17] Jan Dobrowolski and Hyeungjoon Kim, A preservation theorem for theories without the tree property of the first kind, Math. Log. Quart., 63, (2017), 536-543.
[KR20] Itay Kaplan and Nicholas Ramsey, On Kim-Independence, Journal of the European Mathematical Society, 22, (2020), 1423-1474.
[KK11] Byunghan Kim and HyeungJoon Kim, Notions around tree property 1, Ann. Pure Appl. Logic, 162, (2011), ,698-709.

HYOYOON LEE DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

[KKS14] Byunghan Kim, HyeungJoon Kim and Lynn Scow, Tree indiscernibilities, revisited, Arch. Math. Logic 53 (2014), 211-232.
[TT12] Kota Takeuchi and Akito Tsuboi, On the existence of indiscernible trees, Ann. Pure Appl. Logic, 163, (2012), 1891-1902.
[TZ] Katrin Tent and Martin Ziegler, A Course in Model Theory, Cambridge University Press, 2012.

Department of Mathematics
Yonsei University
50 Yonsei-ro Seodaemun-gu
Seoul 03722
South Korea
Email address: hyoyoonlee@yonsei.ac.kr

