On the Structure of Hrushovski's Pseudoplanes Associated to Irrational Numbers

Hirotaka Kikyo
Graduate School of System Informatics
Kobe University

Abstract

Let α be an irrational number, and a / b a reduced fraction. Suppose $2 / 3<\alpha<a / b<3 / 4$ and b is sufficiently large. Let B be a canonical twig for a / b and A the set of all leaves in B. Let $p \in B$ be a good vertex of B over A. Let M be the generic structure for $\left(\mathbf{K}_{f},<\right)$ where f is the Hrushovski's \log-like function associated to α. Assume that B is a closed subset of M. Let D be the orbit of p over A in M. Then $M=\operatorname{cl}(D)$. Actually, we can prove this only assuming $0<\alpha<a / b<1$.

1 Introduction

We show that Hrushovski's pseudoplanes associated irrational numbers introduced in his 1988 preprint [6] is a closure of an orbit of some point p over some finite $\operatorname{set} A$. The "rank" of the type of p over A can be arbitrarily small positive real number. This statement is a weaker version of the monodimensionality introduced by D. Evans, Z. Ghadernezhad, and K. Tent [4].

In this paper, we assume that the irrational number α satisfies $2 / 3<\alpha<$ $3 / 4$ instead of $1 / 2<\alpha<2 / 3$ assumed in Hrushovski's preprint [6]. With little modification, we can prove the same statement assuing $1 / 2<\alpha<2 / 3$, or even $0<\alpha<1$. We essentially use notation and terminology from Baldwin-Shi [2] and Wagner [15]. We also use some terminology from graph theory [3].

For a set $X,[X]^{n}$ denotes the set of all subsets of X of size n, and $|X|$ the cardinality of X.

We recall some of the basic notions in graph theory we use in this paper. These appear in [3]. Let G be a graph. $V(G)$ denotes the set of vertices of G. Vertices will be also called points. $E(G)$ is the set of edges of $G . E(G)$ is a subset of $[V(G)]^{2} .|G|$ denotes $|V(G)|$ and $e(G)$ denotes $|E(G)|$. The degree of a vertex v is the number of edges at v. A vertex of degree 1 is a leaf. G is a path $x_{0} x_{1} \ldots x_{k}$ if $V(G)=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ and $E(G)=\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k-1} x_{k}\right\}$ where the x_{i} are all distinct. x_{0} and x_{k} are ends of G. The number of edges of a path is its length. A path of length 0 is a single vertex. G is a cycle $x_{0} x_{1} \ldots x_{k-1} x_{0}$ if $k \geq 3, V(G)=\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$ and $E(G)=\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k-2} x_{k-1}, x_{k-1} x_{0}\right\}$ where the x_{i} are all distinct. The number of edges of a cycle is its length. A nonempty graph G is connected if any two of its vertices are linked by a path in G. A connected component of a graph G is a maximal connected subgraph of G. A forest is a graph not containing any cycles. A tree is a connected forest.

To see a graph G as a structure in the model theoretic sense, it is a structure in language $\{E\}$ where E is a binary relation symbol. $V(G)$ will be the universe, and $E(G)$ will be the interpretation of E. The language $\{E\}$ will be called the graph language.

Suppose A is a graph. If $X \subseteq V(A), A \mid X$ denotes the substructure B of A such that $V(B)=X$. If there is no ambiguity, X denotes $A \mid X$. We usually follow this convention. $B \subseteq A$ means that B is a substructure of A. A substructure of a graph is an induced subgraph in graph theory. $A \mid X$ is the same as $A[X]$ in Diestel's book [3].

Let A, B, C be graphs such that $A \subseteq C$ and $B \subseteq C . A B$ denotes $C \mid(V(A) \cup V(B))$, $A \cap B$ denotes $C \mid(V(A) \cap V(B))$, and $A-B$ denotes $C \mid(V(A)-V(B))$. If $A \cap B=\emptyset$, $E(A, B)$ denotes the set of edges $x y$ such that $x \in A$ and $y \in B$. We put $e(A, B)=$ $|E(A, B)| \cdot E(A, B)$ and $e(A, B)$ depend on the graph in which we are working.

Let D be a graph and A, B, and C substructures of D. We write $D=B \otimes_{A} C$ if $D=B C, B \cap C=A$, and $E(D)=E(B) \cup E(C) . E(D)=E(B) \cup E(C)$ means that there are no edges between $B-A$ and $C-A$. D is called a free amalgam of B and C over A. If A is empty, we write $D=B \otimes C$, and D is also called a free amalgam of B and C.

Definition 1.1. Let α be a real number such that $0<\alpha<1$.
(1) For a finite graph A, we define a predimension function δ by $\delta(A)=|A|-$ $e(A) \alpha$.
(2) Let A and B be substructures of a common graph. Put $\delta(A / B)=\delta(A B)-$ $\delta(B)$.

Definition 1.2. Let A and B be graphs with $A \subseteq B$, and suppose A is finite.
$A<B$ if whenever $A \subsetneq X \subseteq B$ with X finite then $\delta(A)<\delta(X)$.
We say that A is closed in B if $A<B$. We also say that B is a strong extension of A.

We say that A is almost closed in B, written $A<^{-} B$, if whenever $A \subsetneq X \subsetneq B$ with X finite then $\delta(A)<\delta(X)$.

Let \mathbf{K}_{α} be the class of all finite graphs A such that $\emptyset<A$.
Some facts about < appear in [2, 15, 16]. Some proofs are given in [11].
Fact 1.3. Let A and B be disjoint substructures of a common graph. Then $\delta(A / B)=$ $\delta(A)+e(A, B)$.

Fact 1.4. If $A<B \subseteq D$ and $C \subseteq D$ then $A \cap C<B \cap C$.
Fact 1.5. Let $D=B \otimes_{A} C$.
(1) $\delta(D / A)=\delta(B / A)+\delta(C / A)$.
(2) If $A<C$ then $B<D$.
(3) If $A<B$ and $A<C$ then $A<D$.

Let B, C be graphs and $g: B \rightarrow C$ a graph embedding. g is a closed embedding of B into C if $g(B)<C$. Let A be a graph with $A \subseteq B$ and $A \subseteq C . g$ is a closed embedding over A if g is a closed embedding and $g(x)=x$ for any $x \in A$.

In the rest of the paper, \mathbf{K} denotes a class of finite graphs closed under isomorphisms.

Definition 1.6. Let \mathbf{K} be a subclass of $\mathbf{K}_{\alpha} .(\mathbf{K},<)$ has the amalgamation property if for any finite graphs $A, B, C \in \mathbf{K}$, whenever $g_{1}: A \rightarrow B$ and $g_{2}: A \rightarrow C$ are closed embeddings then there is a graph $D \in \mathbf{K}$ and closed embeddings $h_{1}: B \rightarrow D$ and $g_{2}: C \rightarrow D$ such that $h_{1} \circ g_{1}=h_{2} \circ g_{2}$.
\mathbf{K} has the hereditary property if for any finite graphs A, B, whenever $A \subseteq B \in \mathbf{K}$ then $A \in \mathbf{K}$.
\mathbf{K} is an amalgamation class if $\emptyset \in \mathbf{K}$ and \mathbf{K} has the hereditary property and the amalgamation property.

A countable graph M is a generic structure of $(\mathbf{K},<)$ if the following conditions are satisfied:
(1) If $A \subseteq M$ and A is finite then there exists a finite graph $B \subseteq M$ such that $A \subseteq B<M$.
(2) If $A \subseteq M$ then $A \in \mathbf{K}$.
(3) For any $A, B \in \mathbf{K}$, if $A<M$ and $A<B$ then there is a closed embedding of B into M over A.

Let A be a finite structure of M. There is a smallest B satisfying $A \subseteq B<M$, written $\operatorname{cl}(A)$. The set $\operatorname{cl}(A)$ is called the closure of A in M.

Fact $1.7([2,15,16])$. Let $(\mathbf{K},<)$ be an amalgamation class. Then there is a generic structure of $(\mathbf{K},<)$. Let M be a generic structure of $(\mathbf{K},<)$. Then any isomorphism between finite closed substructures of M can be extended to an automorphism of M.

Definition 1.8. Let \mathbf{K} be a subclass of $\mathbf{K}_{\alpha} .(\mathbf{K},<)$ has the free amalgamation property if whenever $D=B \otimes_{A} C$ with $B, C \in \mathbf{K}, A<B$ and $A<C$ then $D \in \mathbf{K}$.

By Fact 1.5 (2), we have the following.
Fact 1.9. Let \mathbf{K} be a subclass of \mathbf{K}_{α}. If $(\mathbf{K},<)$ has the free amalgamation property then it has the amalgamation property.

Definition 1.10. Let \mathbb{R}^{+}be the set of non-negative real numbers. Suppose f : $\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a strictly increasing concave (convex upward) unbounded function. Assume that $f(0)=0$, and $f(1) \leq 1$. We assume that f is piecewise smooth. $f_{+}^{\prime}(x)$ denotes the right-hand derivative at x. We have $f(x+h) \leq f(x)+f_{+}^{\prime}(x) h$ for $h>0$. Define \mathbf{K}_{f} as follows:

$$
\mathbf{K}_{f}=\left\{A \in \mathbf{K}_{\alpha} \mid B \subseteq A \Rightarrow \delta(B) \geq f(|B|)\right\}
$$

Note that if \mathbf{K}_{f} is an amalgamation class then the generic structure of $\left(\mathbf{K}_{f},<\right)$ has a countably categorical theory [16].

A graph X is normal to f if $\delta(X) \geq f(|X|)$. A graph A belongs to \mathbf{K}_{f} if and only if U is normal to f for any substructure U of A.

2 Hrushovski's Log-like Functions

Definition 2.1. Let α be a positive real number. x is called a best approximation of α strictly from above with a denominator at most n if x is a smallest rational number r such that $r=k / d>\alpha$ with $d \leq n$ where k and d are positive integers.

Definition 2.2 ([6]). Let α be a positive real number. We define $x_{n}, e_{n}, k_{n}, d_{n}$ for integers $n \geq 1$ by induction as follows: Put $x_{1}=2$ and $e_{1}=1$. Assume that x_{n} and e_{n} are defined. Let r_{n} be the best approximation of α strictly from above with a denominator at most e_{n}. Let k_{n} / d_{n} be the reduced fraction satisfying $k_{n} / d_{n}=r_{n}$. Finally, let $x_{n+1}=x_{n}+k_{n}$, and $e_{n+1}=e_{n}+d_{n}$.

Let $a_{0}=(0,0)$, and $a_{n}=\left(x_{n}, x_{n}-e_{n} \alpha\right)$ for $n \geq 1$. Let f_{α} be a function from \mathbb{R}^{+} to \mathbb{R}^{+}whose graph on interval $\left[x_{n}, x_{n+1}\right]$ with $n \geq 0$ is a line segment connecting a_{n} and a_{n+1}. We call f_{α} a Hrushovski's log-like function associated to α.

Fact 2.3 ([6]). Let f_{α} be a Hrushovski's log-like function and $\left\{x_{i}\right\},\left\{e_{i}\right\},\left\{k_{i}\right\}$, $\left\{d_{i}\right\}$ sequences in the definition of f_{α}.

Suppose C is an extension of B by x points and z edges, $|B| \geq x_{n}$ and $x / z \geq$ k_{n} / d_{n} for some n, and B is normal to f_{α}. Then C is normal to f_{α}.

Fact 2.4 ([6]). Let $D=B \otimes_{A} C$. If $\delta(A)<\delta(B), \delta(A)<\delta(C)$, and A, B, C are normal to f_{α} then D is normal to f_{α}.

Fact 2.5 ([6]). Let α be a real number with $0<\alpha<1$. Then f_{α} is strictly increasing and concave, and $\left(\mathbf{K}_{f_{\alpha}},<\right)$ has the free amalgamation property. Therefore, there is a generic structure of $\left(\mathbf{K}_{f_{\alpha}},<\right)$. Any one point structure is closed in any structure in $\mathbf{K}_{f_{\alpha}}$. If α is rational then f_{α} is unbounded.

The following is easy.
Lemma 2.6. Let $C=A \otimes_{p} B$ where p is a single vertex and $A, B \in \mathbf{K}_{f}$. Then $C \in \mathbf{K}_{f}$. Any finite forests belong to \mathbf{K}_{f}.

Lemma 2.7. Suppose $2 / 3<\alpha<3 / 4$.
(1) The first several terms of the sequences defining f_{α} are given by the following chart with $\left(k_{5}, d_{5}\right)$ being either $(3,4)$ or $(5,7)$:

x_{i}	2	3	4	5	8	\cdots
e_{i}	1	2	3	4	8	\cdots
k_{i}	1	1	1	3	k_{5}	\cdots
d_{i}	1	1	1	4	d_{5}	\cdots

(2) Suppose C is an extension of B by x points and z edges, $5 \leq|B|, 3 / 4 \leq x / z$, and B is normal to f_{α}. Then C is normal to f_{α}.
(3) Suppose C is an extension of B by x points and zedges, $5 \leq|B|, z \leq(4 / 7)|B|$, $\alpha<x / z$, and B is normal to f_{α}. Then C is normal to f_{α}.

Proof. (1) is straightforward. (2) holds by Fact 2.3 and (1).
(3) Choose i satisfying $x_{i} \leq|B|<x_{i+1}$. Since $x_{4}=5 \leq|B|$, we have $4 \leq x_{i}$. Then $x_{i}-1 \leq e_{i}$ and $k_{i} / d_{i} \leq 3 / 4$. Also, we have $d_{i} \leq e_{i}$. So, $|B|<x_{i+1}=x_{i}+k_{i}=$ $x_{i}+\left(k_{i} / d_{i}\right) d_{i} \leq\left(e_{i}+1\right)+(3 / 4) e_{i}=(7 / 4) e_{i}+1$. Hence, $|B| \leq(7 / 4) e_{i}$ and thus $z \leq(4 / 7)|B| \leq e_{i}$. By the choice of k_{i} / d_{i}, we have $k_{i} / d_{i} \leq x / z$. Since $x_{i} \leq|B|, C$ is normal to f_{α} by Fact 2.3.

3 Special Structures

Definition 3.1. Let h / k and h^{\prime} / k^{\prime} be reduced fractions of non-negative integers. $\left(h+h^{\prime}\right) /\left(k+k^{\prime}\right)$ is called a mediant of h / k and h^{\prime} / k^{\prime}. We say that $\left(h / k, h^{\prime} / k^{\prime}\right)$ is a Farey pair if $h^{\prime} k-h k^{\prime}=1$. Note that $0 \leq h / k<h^{\prime} / k^{\prime}$.

The following lemma is well-known.
Lemma 3.2. Let $\left(h / k, h^{\prime} / k^{\prime}\right)$ be a Farey pair and u, v positive integers.
(1) If $h / k<u / v<h^{\prime} / k^{\prime}$ then $k+k^{\prime} \leq v$.
(2) Let $h^{\prime \prime} / k^{\prime \prime}$ be the mediant of h / k and h^{\prime} / k^{\prime}. Then $\left(h / k, h^{\prime \prime} / k^{\prime \prime}\right)$ and $\left(h^{\prime \prime} / k^{\prime \prime}, h^{\prime} / k^{\prime}\right)$ are Farey pairs.

Definition 3.3. Let u / v be a reduced fraction of positive integers. A graph W is called a general twig for u / v if the number of edges of W is v, the number of non-leaf vertices of W is u, and the set of all leaves of W is almost closed in W with respect to $\delta_{u / v}$. A general twig W for u / v is called a twig for u / v if there is a path $P=p_{0} \cdots p_{k}$ in W such that p_{0} is a leaf of W, p_{k} is a non-leaf vertex of W, and the paths from leaves of W other than p_{0} to P are independent paths. The path P is called the main path of the twig W, p_{0} the left end of the main path of W, and p_{k} the right end of the main path of W. Note that the left end of the main path of a twig is a leaf of the twig, and the right end of the main path is a non-leaf vertex of the twig. A twig is a twig for some reduced fraction.

Lemma 3.4. Let $\left(h / k, h^{\prime} / k^{\prime}\right)$ be a Farey pair, A a general twig for h^{\prime} / k^{\prime} and B a general twig for h / k. Suppose $D=A \otimes_{c} B$ where c is a non-leaf vertex of A as well as a leaf of B. Then D is a general twig for $\left(h+h^{\prime}\right) /\left(k+k^{\prime}\right)$.

Proof. First of all, it is clear that the number of all edges in D is $k+k^{\prime}$. Since vertex c is a leaf in B as well as a non-leaf vertex in A, the number of all non-leaf vertices in D is $h+h^{\prime}$.

Let F be the set of all leaves of D, X a proper substructure of D with $F \subsetneq X$. Put $X_{A}=X \cap A$ and $X_{B}=X \cap B$. Then $X=X_{A} \otimes X_{B}$ if $c \notin X$ and $X=X_{A} \otimes_{c} X_{B}$ if $c \in X$. Let u be the number of all non-leaf vertices of A in X, v the number of all edges of A in X, u^{\prime} the number of all non-leaf vertices of B in X, v^{\prime} the number of all edges of B in X. Since c is a non-leaf vertex in A as well as a leaf in B, the number of non-leaf vertices of D in X is $u+u^{\prime}$ and the number of edges of D in X is $v+v^{\prime}$. So, $\delta(X / F)=\left(u+u^{\prime}\right)-\left(v+v^{\prime}\right) \alpha$ where $\alpha=\left(h+h^{\prime}\right) /\left(k+k^{\prime}\right)$. We have $h / k<h^{\prime} / k^{\prime} \leq u / v$ because A is a general twig for h^{\prime} / k^{\prime}, and We also have $h / k \leq u^{\prime} / v^{\prime}$ becuase B is a general twig for h / k. Hence, $h / k<\left(u+u^{\prime}\right) /\left(v+v^{\prime}\right)$. Since the number of all edges in D is $k+k^{\prime}, X$ is a proper substructure of D, and D is connected, we have $v+v^{\prime}<k+k^{\prime}$. Note that h / k and $\left(h+h^{\prime}\right) /\left(k+k^{\prime}\right)$ form a Farey pair by Lemma 3.2 (2). Hence, we have $\left(h+h^{\prime}\right) /\left(k+k^{\prime}\right) \leq\left(u+u^{\prime}\right) /\left(v+v^{\prime}\right)$ by Lemma 3.2 (1). Since $v+v^{\prime}<k+k^{\prime}$, we cannot have $\left(u+u^{\prime}\right) /\left(v+v^{\prime}\right)=$ $\left(h+h^{\prime}\right) /\left(k+k^{\prime}\right)$.

Lemma 3.5. (1) A path of length 4 is a general twig for $3 / 4$. It can be considered as a twig for 3/4 having a main path of length 2 and a uniform height 2. This twig will be called a 2-twig for 3/4.
(2) A path of length 3 is a general twig for 2/3. It can be considered as a twig for $2 / 3$ having a main path of length 1 and a uniform height 2 . This twig will be called a 1-twig for 2/3.

Definition 3.6. Two twigs are said to be isomorphic twigs if there is a graph isomorphism between them which preserves the main paths. A graph W is called a concatenation of two twigs W_{1} and W_{2} if $W=W_{1}^{\prime} \otimes_{c} W_{2}^{\prime}$ where W_{1}^{\prime} is a twig isomorphic to W_{1}, W_{2}^{\prime} is a twig isomorphic to W_{2}, and c is the left end of the main path of W_{1}^{\prime} as well as the right end of the main path of W_{2}^{\prime}. A graph $W=$ $W_{1} \otimes_{p_{1}} W_{2} \otimes_{p_{2}} \cdots \otimes_{p_{k-1}} W_{k}$ is called a chain of twigs if each W_{i} is a twig and each p_{i} is a right end of the main path of W_{i} as well as the right end of the main path of W_{i+1} for $i=1, \ldots, k-1 . W_{1} \otimes_{p_{1}} W_{2} \otimes_{p_{2}} \cdots \otimes_{p_{j-1}} W_{j}$ with $j \leq k$ will be called a left prefix of $W . W$ is said to be a chain of twigs satisfying certain property if each W_{i} has the property. For example, W is a chain of twigs for $2 / 3$ if each W_{i} is a twig for $2 / 3$. Let p_{0} be the right end of the main path of W_{1} and p_{k} the left end of the main path of W_{k}. The path from p_{0} to p_{k} in W is called the main path of W, p_{0} the left end of the main path of W, p_{k} the right end of the main path of W. Note
that the paths from leaves of W other than p_{0} to P are independent paths. We say that a chain of twigs has a uniform height n if the distance from any leaves other than the left end of the main path is n.

Lemma 3.7. Let $\left(h / k, h^{\prime} / k^{\prime}\right)$ be a Farey pair, W a twig for h / k, and W^{\prime} a twig for h^{\prime} / k^{\prime}. Let u / v be a reduced fraction with $h / k<u / v<h^{\prime} / k^{\prime}$. Then there is a twig for u / v which is also a chain of twigs isomorphic to W or W^{\prime}.

Proof. We prove the lemma by induction on $v-\left(k+k^{\prime}\right)$. Let $W^{\prime \prime}$ be a concatenation of W and W^{\prime}. Let $h^{\prime \prime} / k^{\prime \prime}$ be the mediant of h / k and h^{\prime} / k^{\prime}.

Suppose $u / v=h^{\prime \prime} / k^{\prime \prime}$. Then $W^{\prime \prime}$ is a twig for u / v by Lemma 3.4. We have the lemma in this case.

Suppose $u / v \neq h^{\prime \prime} / k^{\prime \prime}$. Then $h / k<u / v<h^{\prime \prime} / k^{\prime \prime}$ or $h^{\prime \prime} / k^{\prime \prime}<u / v<h^{\prime} / k^{\prime}$.
Case $h / k<u / v<h^{\prime \prime} / k^{\prime \prime}$. Since $k^{\prime \prime}=k+k^{\prime}>k^{\prime}$, we have $v-\left(k+k^{\prime \prime}\right)<$ $v-\left(k+k^{\prime}\right)$. By induction hypothesis, there is a twig $W^{\prime \prime \prime}$ for u / v which is also a chain of twigs isomorphic to W or $W^{\prime \prime}$. Since $W^{\prime \prime}$ is a concatenation of W and W^{\prime}, $W^{\prime \prime \prime}$ is also a chain of twigs isomorphic to W or W^{\prime}.

Case $h^{\prime \prime} / k^{\prime \prime}<u / v<h^{\prime} / k^{\prime}$. The proof for this case is similar to the proof for the previous case.

Definition 3.8. Let a / b be a reduced fraction with $2 / 3<a / b<3 / 4$. A twig for a / b is called a canonical twig if it is a chain of twigs isomorphic to a 2-twig for $4 / 3$ or a 1 -twig for $2 / 3$. Canonical twigs exist for any such a / b.

4 Almost Monodimensionality

In this section, there are many cases that we want to show some structures are normal to f. Note that any trees are normal to f and any single vertex is closed in structures normal to f. Also, the free amalgamation property holds for the class of structures normal to f. So, if a structure is normal to f then any extension by a tree over a single vertex is also normal to f.

Definition 4.1. Let B be a graph and A a substructure of B. A substructure X of B is said to be smooth over A if any leaves of X belong to A.

Definition 4.2. Let B be a graph and A a substructure of B, and $p \in B . d_{B}^{c}(p / A)$ denotes the smallest value of $\delta_{\alpha}(X / A)$ where $A \subseteq X \subseteq B$ and there is a path from p to A in X.

Definition 4.3. Let B be a graph, A a substructure of B, and β a real number. B is called a 3/4-extension of A if $x=|B|-|A|$ and $z=e(B)-e(A)$ then $x / z \geq 3 / 4$.

Definition 4.4. Suppose $A<B . \quad p \in B$ is called a good vertex of B over A if $p \in B-A$ and whenever $p \in X \subset B$ with $X \cap A \neq \emptyset$ then either $7 \leq|X-A|$ or $X \otimes_{p} p p_{1} p_{2} p_{3}$ is a $3 / 4$-extension of $X^{\prime} p_{3}$ for some $X^{\prime} \subseteq X$ with $X \cap A \subseteq X^{\prime}$. Here, $p p_{1} p_{2} p_{3}$ is a path of length 3 with ends p and p_{3}.

Proposition 4.5. Let α be an irrational number, and a / b a reduced fraction. Suppose $2 / 3<\alpha<a / b<3 / 4$ and b is sufficiently large. Let B be a canonical twig for a / b and A the set of all leaves in B. Then there is a good vertex of B over A whose distance from A is 3 .

Proof. Note that for any reduced fractions a^{\prime} / b^{\prime} with $2 / 3<a^{\prime} / b^{\prime}<3 / 4$, the canonical twig for a^{\prime} / b^{\prime} begins from the left end with a twig for $3 / 4$ and ends with a twig for $2 / 3$ at the right end. Since b is sufficiently large, the canonical twigs B for a / b look like the following:

Hence, there is a substructure of B which is isomorphic to one of the following pictures:

(1)

(2)

Let us assume that there is a substructure of B isomorphic to (1) above. Choose a vertex p as indicated in the figure. We show that p is a good vertex of B over A.

Let X be a smooth and connected substructure of B over $p A$ with $p \in X$ and $X \cap A \neq \emptyset$. Suppose that X does not contain a vertex in B adjacent to p. Then X contains the other vertex in B adjacent to p, say p^{\prime}. Then $X \otimes_{p} p p_{1} p_{2} p_{3}=$ $(X-p) \otimes_{p^{\prime}} p^{\prime} p p_{1} p_{2} p_{3}$. Therefore, it is a $3 / 4$-extension of $(X-p) p_{3}$. See (3) in the figure below.

Now, suppose that X contains both vertices adjacent to p. If X contains at least 5 vertices from the main path of B, then X contains at least 2 more paths from the
main path of B to A. Each such path has length 2 and thus contains an inner vertex. Hence $X-A$ contais at least 7 vertices. See (7) in the figure below.

If X contains exactly 3 vertices from the main path of B, then $X \otimes_{p} p p_{1} p_{2} p_{3}$ looks like (4) in the figure below. It is an extension of $(X \cap A) p_{3}$ by 7 vertices and 9 edges. Since $7 / 9>3 / 4$, it is a 3/4-extension of $(X \cap A) p_{3}$.

If X contains exactly 4 vertices from the main path of B, (a) X is isomorphic to (5) or (b) $X \otimes_{p} p p_{1} p_{2} p_{3}$ is isomorphic to (6) in the figure below. In the case (a), $X-A$ contains 7 vertices. In the case (b), $X \otimes_{p} p p_{1} p_{2} p_{3}$ is an extension of $(X \cap A) p_{3}$ by 8 vertices and 10 edges. Since $8 / 10=4 / 5>3 / 4$, it is a $3 / 4-$ extension of $(X \cap A) p_{3}$.

We have shown that vertex p is a good vertex of B over A when we choose p as in (1). When we choose p as in (2), we can show that p is a good vertex of B over A similarly.

Lemma 4.6. Let α be an irrational number with $2 / 3<\alpha<3 / 4, u / v$ a reduced fraction with $u / v<\alpha$ such that whenever $u / v<u^{\prime} / v^{\prime}<\alpha$ then $v<v^{\prime}$. Let $f=f_{\alpha}$ be the Hrushovski's log-like function associated to α. Assume that $B \in \mathbf{K}_{f}$ with $A<B$ and there is a good vertex b of B over A, W is a canonical twigfor $u / v, C$ the set of all leaves of W, and $k=|C|$. Let $D=\left(B_{0} \otimes_{A} B_{1} \otimes_{A} B_{2} \otimes_{A} \ldots \otimes_{A} B_{k-1}\right) \otimes_{C} W$ where $C=\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}, B_{i}$ is isomorphic to B over A and $b_{i} \in B_{i}$ is the isomorphic image of b for each $i=0, \ldots, k-1$. Then for sufficiently large v, D belongs to \mathbf{K}_{f}, and there is a good vertex p of D over A such that $d_{D}^{c}(p / A)>$ $d_{B}^{c}(b / A)+\min \left\{d_{B}^{c}(b / A), 3(1-\alpha)\right\}$.

Proof. We show that D belongs to \mathbf{K}_{f} by choosing v sufficiently large. It is straightforward to prove other statements.

The b_{i} are the leaves of W. We can assume that b_{0} is the left end of the main path of W, and $b_{1}, b_{2}, \ldots, b_{k-1}$ are ordered from left to right respecting the order of vertices in the main path of W connected to b_{i} by a path of length 2 in W.

For j with $1 \leq j \leq k$, let $D_{j}=\left(B_{0} \otimes_{A} B_{1} \otimes_{A} B_{2} \otimes_{A} \ldots \otimes_{A} B_{j}\right) \otimes_{C_{j}} W_{j}$ where $C_{j}=\left\{b_{0}, b_{1}, \ldots, b_{j}\right\}$, and W_{j} is the left prefix of W with the right most leaf b_{j}. Note that $D=D_{k-1}$.

Now, let X be a substructure of D. Our aim is to show that X is normal to f. By Fact 2.4 (the free amalgamation property for the structures normal to f), we can assume that $X \cap A \neq \emptyset, X$ is smooth over A, and $X \cap W$ is connected.

Put $Y_{j}=\left(X \cap B_{0}\right) \otimes_{X \cap A} \cdots \otimes_{X \cap A}\left(X \cap B_{j}\right)$. Then $Y_{j} \in \mathbf{K}_{f}$ for any j. In particular, $\left|Y_{k^{\prime}}\right|>7 k^{\prime}$. Also, the number of all edges in $W_{k^{\prime}}$ is at most $4 k^{\prime}$ and $C_{k^{\prime}}<W_{k^{\prime}}$. By Lemma 2.7 (3), $X \cap D_{k^{\prime}}=Y_{k^{\prime}} \otimes \otimes_{k^{\prime}} W_{k^{\prime}}$ is normal to f.

Now, consider $X \cap D_{k^{\prime}+1}$. There are two cases for $W_{k^{\prime}+1}: W_{k^{\prime}+1}=W_{k^{\prime}} \otimes_{p} P_{k^{\prime}+1}$ where $P_{k^{\prime}+1}$ is a path of length 4 or a path of length 3 with ends $p \in W_{k^{\prime}}$ and $b_{k^{\prime}+1}$. We have $D_{k^{\prime}+1}=\left(D_{k^{\prime}} \otimes_{A} B_{k^{\prime}+1}\right) \otimes_{p, b_{k^{\prime}+1}} P$.

If the length is 4 , then $X \cap D_{k^{\prime}+1}$ is a 3/4-extension of $\left(X \cap D_{k^{\prime}}\right) \otimes_{X \cap A}(X \cap$ $B_{k^{\prime}+1}$), which is normal to f. Hence, $X \cap D_{k^{\prime}+1}$ is also normal to f by Lemma 2.7 (2). If the length is 3 , then $X \cap D_{k^{\prime}+1}$ is a 3/4-extension of $\left(X \cap D_{k^{\prime}}\right) \otimes_{X \cap A} X^{\prime}$ for some X^{\prime} with $X \cap A \subseteq X^{\prime} \subsetneq X \cap B_{k^{\prime}+1}$ because $b_{k^{\prime}+1}$ is a good vertex of $B_{k^{\prime}+1}$ over A. $X \cap D_{k^{\prime}} \otimes_{X \cap A} X^{\prime}$ is normal to f by Fact 2.4 , so is $X \cap D_{k^{\prime}+1}$ by Lemma 2.7 (2). Repeating the similar arguments, we see that $X \cap D_{k-1}$ is normal to f.

The essential remaining case is the case where $W \subseteq X$ and $\left|X \cap B_{j}\right| \geq 7$ for all j. Since v is sufficiently large, We can assume $0>\delta_{\alpha}(W / C)>-\delta_{\alpha}(B / A)$. We can also assume that k is very large. Then $X \cap D$ is normal to f.

Now, we prove the main theorem.
Theorem 4.7. Let α be an irrational number, and a / b a reduced fraction. Suppose $2 / 3<\alpha<a / b<3 / 4$ and b is sufficiently large. Let B be a canonical twig for a / b and A the set of all leaves in B. Let $p \in B$ be a good vertex of B over A. Let M be the generic structure for $\left(\mathbf{K}_{f},<\right)$ where f is the Hrushovski's log-like function associated to α. Assume that B is a closed subset of M. Let D be the orbit of p over A in M. Then $M=\operatorname{cl}(D)$.

Proof. We first claim that any points in M independent from A over the empty set belong to $\mathrm{cl}(D)$.

Note that a good vertex of B over A exists by Proposition 4.5. Let $B_{1}<M$ be the embedded image of D obtained by By Lemma 4.6 from B. Then $B_{1} \subseteq \operatorname{cl}(D, A)$,
$A<B_{1}$, there is a good vertex p_{1} of B_{1} over A. Repeating this process, we get $A<B_{1}<B_{2}<\ldots<B_{j}<M$ for any natural number j, and a good vertex p_{i} of B_{i} over A for each $i \leq j$. Each p_{i+1} for i belongs to $\operatorname{cl}\left(\operatorname{Orb}\left(p_{i} / A\right)\right)$. Therefore, each p_{i+1} for i belongs to $\mathrm{cl}(\operatorname{Orb}(p / A))$.

Let $\varepsilon=\min \left\{d_{B}^{c}(p / A), 3(1-\alpha)\right\}$. By the structures of $B_{i}, d_{B_{1}}^{c}\left(p_{1} / A\right)>2 \varepsilon$, $d_{B_{2}}^{c}\left(p_{2} / A\right)>3 \varepsilon$, and so on. We have $d_{B_{j}}^{c}\left(p_{j} / A\right)>(j+1) \varepsilon$. For sufficiently large j, we have $d_{B_{j}}^{c}\left(p_{j} / A\right)>1$. Therefore, there is j such that $d\left(p_{j} / A\right)=1=d\left(p_{j}\right)$ and $p_{j} \in \operatorname{cl}(D)$. Suppose x is not adjacent to vertices in A and $x A<M$. Since $p_{j} A<M$ and $x A$ is isomorphic to $p_{j} A$, there is an automorphism of M which sends x to p_{j} and fixes A pointwise. Hence, x belong to $\operatorname{cl}(D)$ also because D is invariant under the automorphisms fixing A pointwise. We have shown the first claim.

Choose a reduced fraction u / v with $u / v<\alpha$ which is a good approximation of α from below. Using twigs for u / v, make a big tree W such that there is a root x of W such that for all the leaves y of $W, y x$ is not an edge of W, and $y x<W$.

Now, let $x \in M$. Consider $\operatorname{cl}(x A)$. Consider $W \otimes_{x} \mathrm{cl}(x A)>\operatorname{cl}(x A)$. We can embed $W \otimes_{x} \operatorname{cl}(x A)$ into M over $\operatorname{cl}(x A)$ as a closed structure. Let y be a leaf of W. Suppose $y A \subseteq X \subseteq W \otimes_{x} \operatorname{cl}(x A)$. If $x \notin X$, then $X=(X \cap W) \otimes(X \cap \operatorname{cl}(x A))$. In this case, $y<(X \cap W)$ and $A<X \cap \operatorname{cl}(x A)$. Hence, $\delta(y A)<\delta(X)$ unless $y A=X$. Suppose $x \in X . X=(X \cap W) \otimes_{x}(X \cap \operatorname{cl}(x A))$. We have $\delta(y x)<\delta(X \cap W)$ unless $X \cap W=y x$. Also, we have $\delta(A)<\delta(X \cap \operatorname{cl}(x A))$ since $A<M$ and $A \subsetneq X \cap \operatorname{cl}(x A)$.

Suppose $y x \subsetneq X \cap W$. We have

$$
\delta(X)=\delta(X \cap W)+\delta(X \cap \operatorname{cl}(x A))-1>\delta(y x)-1+\delta(A)=1+\delta(A) .
$$

Therefore, $y A$ is closed in $W \otimes_{x} \operatorname{cl}(x A)$, and thus $y A<M$. This shows that all the leaves of W belong to $\operatorname{cl}(D)$. So, x belongs to $\operatorname{cl}(D)$.

Acknowledgments

The work is supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

[1] J.T. Baldwin and S. Shelah, Randomness and semigenericity, Trans. Am. Math. Soc. 349, 1359-1376 (1997).
[2] J.T. Baldwin and N. Shi, Stable generic structures, Ann. Pure Appl. Log. 79, 1-35 (1996).
[3] R. Diestel, Graph Theory, Fourth Edition, Springer, New York (2010).
[4] D. Evans, Z. Ghadernezhad, and K. Tent, Simplicity of the automorphism groups of some Hrushovski constructions, Ann. Pure Appl. Logic 167, 2248 (2016).
[5] G.H. Hardy, and E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Oxford University Press, Oxford (1979).
[6] E. Hrushovski, A stable \aleph_{0}-categorical pseudoplane, preprint (1988).
[7] E. Hrushovski, A new strongly minimal set, Ann. Pure Appl. Log. 62, 147166 (1993).
[8] K. Ikeda, H. Kikyo, Model complete generic structures, in the Proceedings of the 13th Asian Logic Conference, World Scientific, 114-123 (2015).
[9] H. Kikyo, Model complete generic graphs I, RIMS Kokyuroku 1938, 15-25 (2015).
[10] H. Kikyo, Balanced Zero-Sum Sequences and Minimal Intrinsic Extensions, RIMS Kokyuroku 2079, Balanced zero-sum sequences and minimal intrinsic extensions (2018).
[11] H. Kikyo, Model Completeness of Generic Graphs in Rational Cases, Archive for Mathematical Logic 57 (7-8), 769-794 (2018).
[12] H. Kikyo, Model completeness of the theory of Hrushovski's pseudoplane associated to 5/8, RIMS Kokyuroku 2084, 39-47 (2018).
[13] H. Kikyo, On the automorphism group of a Hrushovski's pseudoplane associated to 5/8, RIMS Kokyuroku 2119, 75-86 (2019).
[14] H. Kikyo, S. Okabe, On automorphism groups of Hrushovski's pseudoplanes in rational cases, in preparation.
[15] F.O. Wagner, Relational structures and dimensions, in Automorphisms of first-order structures, Clarendon Press, Oxford, 153-181 (1994).
［16］F．O．Wagner，Simple Theories，Kluwer，Dordrecht（2000）．

Graduate School of System Informatics
Kobe University
1－1 Rokkodai，Nada，Kobe 657－8501
JAPAN
kikyo＠kobe－u．ac．jp
神戸大学大学院システム情報学研究科 桔梗 宏孝

