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1 Introduction 

Let N be a smooth compact Riemannian manifold of dimension n with metric h. We 
assume that, by Nash's embedding theorem, N is isometrically embedded into IRf (l > n). 
The p-harmonic map on ]Rm into N is prescribed by the nonlinear elliptic type system 
of 2nd-order partial differential equations 

(1.1) { -!:!,,.Pu= IDulP-2 A(u)(Du, Du) 
uEN 

with the p-Laplace operator 

(1.2) 

Here the unknown map u = ( ui), i = 1, ... , l, is a vector-valued function defined on rn,m 
with values into NC ]Rl, and Da = fJ/8xa, a= 1, ... ,m, Du= (Daui) is the gradient 
of a map u, and 1Dul2 = I:;:1=1 Dau· Dau with an Euclidean inner product · in rn,l_ The 
second fundamental form A(u)(Du, Du) of NC rn,l is a vector field along the map u EN 
with values into the orthogonal complement of the tangent space of N at u (if necessary, 
the manifold N is assumed to be orientable). 

The p-harmonic map is a critical point of the p-energy E(u) 

(1.3) 

and satisfies its Euler-Lagrange equation (1.1). An approach to look for p-harmonic maps 
is to employ the gradient flow associated with the p-energy, called the p-harmonic flow, 
which are described by the evolutionary p-Laplacian system 

(1.4) { 8tu - !:!,,.Pu= IDulP-2 A(u)(Du, Du) 
uEN 

where u = u(t, x) is defined on IR,~= (0, oo) x rn,m with values onto rn,l, 8tu = (8tui) is 
the partial derivative on time. 

(,)The work by M. Masashi was partially supported by the Grant-in-Aid for Scientific Research (C) 
No.18K03375 at Japan Society for the Promotion of Science 
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Now we recall a formal derivation of the Euler-Lagrange equation of (1.3) and the 
gradient flow. Let u be a smooth map from rn,m to N. Let ¢ be a smooth ffi1-vector 
valued function on rn,m with compact support. Let II : ffi1 :J O(N) ---+ N C ffi1 be the 
nearest point projection from a tubular neighborhood O(N) C ffi1 of N, to N. For any 
sufficient small number T, ITI « 1¢1 00 , the map u + Tq> has its value in O(N) and so, 
II(u + Tq>) EN is a admissible comparison map. The first variation (Gateaux derivative) 
is computed by integration by parts as 

(1.5) j (-~Pu+ 1DulP-2A(u)(Du,Du)) · ¢dx. 

JR= 

Thus, the first variational formula (1.5)= 0 is the Euler-Lagrange equation (1.1) with the 
second fundamental form of N c IR,1 

l d2IIj 
Ai(u)(Du,Du)= L duiduk(u)Dui·Duk, i=l,2, ... ,l. 

j, k=l 

For smooth maps u E C 00 (ffim, N) t, the gradient vector field 'vE(u) of the p-energy 
can be formally written as 

and then, by (1.5) 

(1.6) 

and so, the trajectory { u( t)} c C00 (ffim, N), 0 :S t < oo, of its negative direction gradient 
vector field is the solution to the differential equation 

(1.7) 

Thus, the solutions of (1.4) may be naturally regarded as the steepest descent of the 
p-energy. A global in time solution to (1.4) for any initial data may converge to the 
critical points of the p-energy, the p-harmonic maps, as time tending to oo. J. Eells and 
J. H. Sampson originally realized the heat flow method by (1.4) in the harmonic map case 
p = 2 in their pioneering work ([8], also [10]). 

Theorem 1 {14, 9} Suppose that the sectional curvature of the target manifold N is non­
positive, Sect(N) :S 0. Then, for any smooth initial map between smooth compact Rie­
mannian manifolds M and N, there exists a unique global in time weak solution of the 
Cauchy problem on M for p-harmonic flow (1.4). The solution u and its gradient are 
Holder continuous in time-space. The solution and its gradient uniformly converge to a 
weak solution and its gradient, respectively, of the p-harmonic map, as time tends to oo, 
respectively, which are Holder continuous. 

We call the weak solution which is locally continuous on time-space together with its 
gradient the regular solution. The curvature restriction on the target manifold in general 
is necessary for the global existence of regular solution of the p-harmonic flow. In fact, 
without any curvature restriction on the target manifold, we have some example of a 
blowing up solution at a finite time (see [3] in the case p = m = 3, also [2]). But, a global 
in time weak solution may exist. 

t C 00 (IRm, N) is a Banach manifold 
+ ('vE(u),·) is a bounded linear functional on a tangent space UuEXC00 (IRm, Tu(N)) of a Banach 

manifold X := C"°(IRm, N). 
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Theorem 2 {11} Let p = m 2'. 2 and the initial data be in the set of Sobolev maps 
W 1,P(M,N) between two smooth, compact Riemannian manifolds M andN. Then, there 
exists a global in time weak solution of Cauchy problem on M for them-harmonic flow. 
The solution and its gradient are Holder continuous on time-space, except for at most 
finitely many time slices. 

In the case p = m = 2, the global in time existence as above is also shown for the initial­
boundary value problem of the two-dimensional harmonic flow. Moreover, the solution is 
smooth except for at most finitely many points [19, l]. 

We study the global existence and regularity of a weak solution of the Cauchy problem 
for them-harmonic flow (1.4) with an initial data uo in m,m 

(1.8) { 
OtU - div (IDulm-2 Du) = IDulm-2 A(u)(Du, Du) 
uEN 

in JR,~ 

The assertions in Theorem 2 may also hold true for the Cauchy problem (1.8) on the 
Euclidean space m,m_ Since the weak solution u is in L 00 (0, oo; W1,m(m,m,m,l)) (see Defi­
nition 2 below), for any small positive Eo, there exists a large positive number Ko such that 
the m-energy of the solution outside B(Ko, 0) is smaller than Ea. Combining this fact 
and the local energy estimates(refer to Sect. 2.3 below), the proof in Theorem 2 can be 
extended into the Euclidean case. In this paper, we improve the regularity of the solution 
obtained in [11], and show that the solution has at most only finitely many singular points. 

Before stating our main result, we recall the definitions of the nonlinear space of Sobolev 
maps from m,m into N, and the weak solution for the Cauchy problem (1.8) for the 
m-harmonic flow. 

Definition 1 (Sobolev maps) The Sobolev maps on m,m are defined as follows: 

(1.9) w1,m (IRm, IR1) := { v E Lm (IRm, IR1) I :3 a weak derivativeDv E LP (IRm, IRm1)}; 

w1,m (IRm, N) := {VE w1,m (IRm, IR1) IVE N almost everywhere in IRm}; 

llvllw1 ,=(IR=) := llvllf=(JR=) + IIDvllL=(IR=), 

where we assume that the origin EN {since {1.8) is invariant under the parallel transfor­
mation). 

Definition 2 (A weak solution) Let uo E w1,m(m,m, N). A map u is called a global 
weak solution of the Cauchy problem {1.8) if and only if u is a measurable vector-valued 
function defined on JR,~ := (0, oo) x m,m with values into ffi1, satisfying the following four 
conditions : 

{D2) u EN almost everywhere in JR,~; 

{D3) u satisfies (1.4) in the sense of distributions, that is, for any smooth map ¢ E 

Co (ffi~' m,1)' 

r {OtU · <p + IDulP- 2 Du· Dcp - IDulP-2¢- A(u)(Du, Du)} dz= O; 
}IR~ 

(D4) u attains the initial data continuously in the Sobolev space 

lu(t) - uolw,,=(R=,IR') ➔ 0 as t ➔ 0. 
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Our main theorem in this paper is the following. 

Theorem 3 (A global existence and regularity for them-harmonic flow) Let p = m 2: 3 
and let u0 be any Sobolev map in W 1,m(JRm,N). Then, there exists a global weak solution 
u of the Cauchy problem for the m-harmonic flow with initial data uo, satisfying the 
energy inequality 

Moreover, the solution u is partial regular in the following sense : There exists at most 
finitely many time-space points ~, given by 

(1.10) 

{(T1, Xjl) E ffi: ID< Tz < oo, Xjl E film, l = 1, ... , L < oo; j = 1, ... , Jz < oo}, 
J, 

~l := LJ{xj1}, 
j=l 

such that u and its gradient Du are locally in time-space continuous in the complement 
JR~ \ ~; As t /' T,,, u(t), Du(t) ➔ u(T,,), Du(T,,) locally uniformly in R1 := ]Rm\~,; 
u(t) ➔ u(T,,) in W1~~(Rz). 

The theorem establishes that the singular set of a weak solution obtained in the case that 
p = m actually consists of at most finitely many time-space points ~- The proof is based 
on the local energy estimates similar as made by Hungerbiihler, and the small energy 
regularity estimate available to the p-harmonic flow for p > 2 (see [16]). The small energy 
regularity estimate has been recently applied to the global existence of a partial regular 
weak solution to the Cauchy problem for p-harmonic flow (see [17]). The small energy 
regularity estimate is based on some monotonicity type estimates of local scaled energy. 

2 Regularity estimates 

In this section we state some energy estimates and regularity estimates available for 
regular solutions to the m-harmonic flow. The validity of these estimates have already 
been shown in [16], where the regularity of the p-harmonic flow is addressed in the case 
p > 2 (see also [15, 17]). 

The regular solution of the m-harmonic flow is defined as follows: 

Definition (regular solution) Let lR:'p = (0, T) x ]Rm for 0 < T :S oo. A map u defined 
on lR:ip is a regular solution of (1.8) on lR:ip if and only if u E L00 (0, T; W 1,m(JRm, JR1)), 

OtU E L2 (1R:ip, JR1) such that u E N almost everywhere in lR:ip and (1.8) is satisfied in 
the distributional sense. Furthermore, u and its gradient Du are locally continuous on 
(0, T) X JRm. 

2.1 Preliminaries 

The energy inequality is the fundamental global estimate for them-harmonic flow. 

Lemma 4 (Energy inequality) Let uo E W 1,m(lRm, N) and u be a regular solution of 
( 1. 8) in lR;ip with a positive T < oo. Then, it holds that, for any nonnegative t1 < t2 :S T, 

(2.1) 

We need the so-called Bochner type estimate for the m-energy density. 
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Lemma 5 (Bochner type estimate) Let u be a regular solution of {1.8) on JR~ for a 
positive T < oo. Then, it holds in ~ in the distribution sense that 

Bt (~1Dul 2) - Da (1vu1m-2 Aa/3 D13 (~1Dul 2)) 

(2.2) +C11vu1m-21v2u1 2 <::: C2 (1 + 1Dul2) IDulm, 

where 

with the summation convention over repeated indices, and the positive constants Ci ( i = 
1, 2) depend on m and N. 

Let Bo be a positive number, R be a positive number such that RBo < min{l, T} and 

(to, xo) in the parabolic like envelope P := { (t, x) : T - RB0 < t-<; T, Ix I Bo < t - (T - RB0 )}. 

In the following we use a time-space local cylinder. For r, T > 0 and (to, xo) E (0, T] x lRm, 
Q (T, r) (to, xo) = (to - T, to) x B(r, xo), where B(r, xo) is an open ball in ]Rm with center 
xo and radius r. The time-space Lebesgue measure in JR x ]Rm is denoted by dz= dxdt. 

Lemma 6 (Gradient boundedness on small region) Let u be a regular solution of {1.8) in 

~- For some (to, xo) E P, with po := ((to - (T- RB0 )) 1/Bo - lxol) /4. Suppose that, 

for Bo> 0, ro > 0, C1 > 0 and L > 0, 

(2.3) ro <::: Po/2; L2-p (ro)2 <::: (po)B0 ; ro sup IDul <::: C1. 
Q(L2 -e(ro) 2 , ro)(to, xo) 

Let q > 1 be a positive number. Then there exists a positive number C depending only on 
q, m,p,N, but, independent of L, such that 

C L2-P J 
sup 1Dul2 cq <::: 2 2 

Q(L2 -e(ro/2)2 ,r0 /2)(t0 ,x0 ) IQ (L -P(ro) , ro)I 
Q(L2-P(ro) 2 , ro)(to, xo) 

(2.4) C(t, x) := ( (t - (T- RB0 ))1/Bo - lxl) +; q > l. 

2.2 Small energy regularity estimates 

Now we will present the so-called small energy local regularity of them-harmonic flow. 
This local regularity estimate has been recently shown to hold true for a regular solution 
of the p-harmonic flow with p > 2(see [17], also refer to [20]). Here we require the result 
in the case that p = m :2': 3. 

Theorem 7 (Small energy regularity) Let m :2: 3. Let Bo and a0 be positive numbers 
satisfying the conditions 

(2.5) 4(m- 1) 
~-~<Bo<m; 

m 
Bo-2 -- < ao < l. m-2 -

Let u be a regular solution of {1.8) in (O,T] x ]Rm for a positive T < oo, satisfying the 
energy bound 

(2.6) 
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for a positive number C1 depending only on m and N. Then, there exists a small positive 
numeber Ro < l, depending only on N, m, Bo, ao and C1, and the following holds true: 
Let ,o be any positive number 

(2.7) m(Bo - 2) 
10=----. 

m-2 

If, for some small positive R < min{Ro, T 1IB0 }, 

(2.8) 

then, there holds 

(2.9) 

limsupr70 -m 

r",,O J 
{t=T-RBo}xB(r,O) 

sup !Dul <::: C2 R-ao, 
(T-(R/4)Bo, T) xB(R/4, 0) 

where the positive constant C2 depends only on 10, B 0 , a0 , m, N and C1 . 

Theorem 7 is just the so-called small energy regularity result for the m-harmonic flows, 
that is, under the condition (2.8) the gradients ofregular solutions of them-harmonic flow 
are uniformly locally bounded as in (2.9) and thus, uniformly locally continuous, by the 
fundamental regularity for the evolutionary p-Laplace operator (see [5]). The criterion 
as in (2.8) may be almost optimal on a scale order, comparing with the corresponding 
uniform regularity criterion for regular solutions of stationary m-harmonic maps (refer 
to [6, 18, 7]), because the exponent 10 can be chosen as close to m as possible, by the 
condtion of Bo in (2.5). 

The proof of Theorem 7 is based on the so-called monotonicity estimate of a scaled local 
energy. Here we state a new monotonicity type estimate of a localized scaled p-energy, 
without the proof. Let u be a regular solution of (1.4) in IlVF for a positive T < oo. Let us 
define our localized scaled p-energy in the following way: Let (to, xo) be in the parabolic 
like envelope 

{(t, x) E (O,oo) x IRm : min{T, 1} > t 2: lxlB0 }; Bo> 2. 

The localized scaled energy is defined as 

(2.10) 

for a scale radius r, 0 :Sr :S min{l, T 1/Bo}, where A= A(r) is a function of a scale radius 
r, defined as 

(2.11) 
Bo-2 

A=A(r)=r=; Bo> 4(m-1)_ 
m 

The forward or backward in time Barenblatt like function, denoted by B+ and B_, respec­
tively, are defined as 

(2.12) =r=t < =r=to. 

The localized function C is used as 

(2.13) C(t, x) := (tl/Bo - lxl) +; q > 2. 
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We call E+(r) and E_(r) the forward and backward localized scaled p-energy, respec­
tively. 

Our monotonicity type estimates of the scaled energys are the followings. 

Lemma 8 (Monotonicity estimate for the backward localized scaled p-energy) Let q > 2. 
Let u be a regular solution of {1.8) in lR.p for a positive T < oo. Then, there holds for all 

positive numbers r < p::; min { 1, (to/2)1/Bo} 

(2.14) 
to-rBo 

+c J IIC<i(t) IDu(t)l 2(m-l)IIL=(B((to-t)'/Bo,xo)) dt, 
to-pBo 

where ij = min{q- 2, q(m -1)/m}, Bo as in {2.11), and the positive exponentµ depends 
only on N, m and Bo, and the positive constant C depends only on the same ones as µ 
and q. 

Lemma 9 (Monotonicity estimate for the forward localized scaled p-energy) Let q > 2. 
Let u be a regular solution of {1.8) on lR.p for a positive T < oo. Then, there holds for 

all positive numbers r < p::; min { 1, (T - t 0 ) 11Bo} 

(2.15) 
to+PBo 

+c J IIC<i(t) IDu(t)l 2(m-l)IIL=(B((t-to)'/Bo,xo)) dt, 
to+rBo 

where ij = min{q - 2, q(m - 1)/m}, Bo as in {2.11), and the positive constantsµ and C 
have the same dependence as those in Lemma 8. 

2.3 Second derivative and gradient Lq-estimates 

We here state some local regularity estimates available for a regular solution to (1.8) 
in lRP, 0 < T < oo, which are crucial for the proof of the main theorem. Let the local 
m-energy be defined for any point xo E lRm, any positiver::; 1 and t 2': 0 as 

(2.16) lli(r;t,xo) := j IDu(t)lmdx. 

B(r,xo) 

Put the local in time-space regions: For t0 E (0, T) and T > 0, I/2 := (to -T /4, t 0 ) c I:= 
(to - T /2, to) C 2I := (to - T, to) C (0, T) and, for nonnegative R::; 1, B/2 := B(R/2, 0) 
B := B(R, 0) and 2B := B(2R, 0). 

The second derivative estimate for the m-harmonic flow has been obtained in [11, 
Lemma 5, p. 601]. 

Lemma 10 (Second derivative estimate) Let u be a regular solution of {1.8) in lR.p for 
a positive T < oo. There exists a positive constant Eo = Eo ( m, N) such that, if, for some 
small positive numbers t0 ::; T, R ::; 1 and T ::; 1, 

(2.17) sup lli(2R; t, xo) :S Eo, 
tE2I 
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then, there holds 

(2.18) J (1Dulm-2 ID2ul 2 + IDulm+2 )dz ::SC {Rm+ E(uo) + E(uo) T ( 1 + ~2 )}, 

'IxB 

where the positive constant C depends only on m and N. 

Proof of Lemma 10. Let TJ = rJ(x) be a smooth function defined for x E IRm such that 
TJ = 1 in B, TJ = 0 outside the closure of 2B and IDTJI:::; C/R. Let a= a(t) be a smooth 
function on (-oo, to] such that a = 1 in 'I, a = 0 outside the closure of 2'I and l8wl :::; C jT. 

Let u be a regular solution in IRr of them-harmonic flow. We proceed the estimations 
by use of the Bochner estimate (2.2) in Lemma 5. We use a test function O"TJm in the 
weak form of (2.2), where the admissibility of the test function is shown by the usual 
approximation argument with the Steklov averaging on time. Thus, we have 

J ~IDul 2rradx + C1 J 1nu1m-2 1n2 u1 2rradz 
2B 2'Ix2B 

= J ( ~ 1Dul 2rrota + IDulm-2 A",B D,a ~ 1Dul2 Darr a 
2'Ix2B 

(2.19) 

Each term in the right hand side of (2.19) is estimated as follows: The second integral 
term is estimated above by the Cauchy inequality as 

C J IDu1m-llD2u11r-1 ID71ladz 
2'Ix2B 

(2.20) '.SO J IDu1m-2 ID2ul 271madz+ o~2 J 1Dulm7Jm-2 adz, 
llxIB llxIB 

of which the first term containing the second derivative is absorbed into the second term 
of the left hand side, if 8 is chosen to be small. 
The last integral term in the right hand side of (2.19) is estimated by the Holder inequality 
and the Sobolev inequality WJ'2 (2B) Y L 2m/(m-2l(2B) and thus, is bounded above by 

C2 J IDulm+2 71ma dz 
2'Ix2B 

(2.21) 

::::: ~~f(f1nu(t)lmdx)¾ J(c jlD(IDulT71T)l 2 dx)adt 
2B 2'I 2B 

::::: C (Eo)¾ J (1nu1m-2 1n2 u1 271m + ~2 IDulmT/m-2 ) a dz, 
2'Ix2B 

where the first second derivative term is absorbed into the second term in the left hand 
side of (2.19), if the positive number Ea is small. 

Gathering the above estimates we get 

J 1Dul 271madx + J 1Dulm-2 ID2ul 271madz 
2B 2'Ix2B 

'.S C J { ~ 1Dul2 7Jm + IDulm ( ~ 7/m- 2 + 7/m-2 ) a} dz 
2'Ix2B 

(2.22) 
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where the energy inequality (2.1) in Lemma 4 is used, and thus, the desired estimation 
(2.18) follows from (2.21) and (2.22) □ 

The Lq -estimate of gradient follows from Lemma 10, of which the proof is similar to 
[11, Lemma 7, p. 603]. 

Lemma 11 (Gradient Lq- estimate) Let u be a regular solution to (1.8) in IlVp with a 
positive T < oo. There exists a positive constant Eo = Eo(m,N) such that, if, for some 
small positive numbers to ::; T, R::; 1 and T::; 1, 

(2.23) sup E(2R; t, xo) ~ Eo, 
tE2I 

then, it holds true that 

(2.24) 

where the positive constant C depends only on m and N. 

Proof of Lemma 11. As before, let u be a regular solution in 1R?p of them-harmonic flow. 
The cut-off functions are changed a little. Let 'T/ = rJ(x) be a smooth function defined for 
x E ]Rm such that 'T/ = 1 in B/2, 'T/ = 0 outside the closure of B and IDrJI ::; C / R. Let 
a = a(t) be a smooth function on (-oo, t0] such that a = l in 'I/2, a = 0 outside the 
closure of 'I and l8tal ::; C/T. By use of a test function arJmlDulm in the weak form of 
(2.2), where the admissibility of the test function is shown by the usual approximation 
argument with the Steklov averaging on time, we have 

(2.25) 

J m ~ 2 IDulm+21radx + C1 J 1nu12<m-l) ID2ul 2rra dz 

B IxB 

= J ( m ~ 2 IDu1m+2rrata + 1nu12<m-l) A",8 D,a ~1Dul2 Darr a 

IxB 

Each term in the right hand side of (2.25) will be estimated in the following: By the 
Cauchy inequality, the second integral term is bounded above by 

(2.26) 

C J 1nu12<m-l)+l ID2ul 1r-1 ID11I a dz 

IxB 

~ 8 J 1Dul2(m-1) ID2ul217m a dz+~ J 1Dul2m 1'/m-2 ID11l2 dz, 

IxB IxB 

of which the first term with a small number c5 is absorbed into the second term in the 
left hand side of (2.25) and, by Young's inequalities with a small positive number 8', the 
second integral term is estimated above as 

(2.27) ~ J ( 8' 1Dul2m+21'/m + c(8'-1) 1Dulm+2 ID11lm) a dz. 

IxB 
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By Young's inequality, the third and forth terms are bounded by 

(2.28) C J ( 1 + IDul2m+2) r,m CY dz. 

IxB 

Looking at (2.27) and (2.28), we estimate the (2m + 2)-powered integral term as follows: 
By the Holder inequality and the Sobolev inequality, WJ'2 (B) y L2m/(m-2l(B), we get 

(2.29) 

2 

< ~~i (!IDu(t)lmdx) m 1 c (/1D(IDulm77~)12 dx) udt 

< c '.~f (! IDu(l)lm d,r 
X J (1Dul2(m-1) ID2ul2 7/m + 1Dul2m 'f/m-2 ID77l2) CY dz, 

IxB 

of which the last term is estimated as in (2.27), leading to 

J IDul2m+2 7/m c, dz 

IxB 

(2.30) 

:S: C(co)¾ J (1Dul2(m-l)ID2ul 277m 
IxB 

where O < Eo :S: 1 and, I/ > 0 is chosen so small that, in the inequality in (2.30), the 
(2m + 2) powered integral of gradient is absorbed into in the first term. In this way, we 
have 

(2.31) J 1vu12m+2 7/m udz::; C (co)¾ J (1vu12(m-l)ID2ul 2 7/m + 1vu1m+2 ID77lm) udz, 

IxB IxB 

of which the second derivative term with a small positive Eo is absorbed into the second 
term in the left hand side of (2.25). 

Finally, plugging (2.31) into (2.27) and (2.28) and gathering the resulting inequalities in 
(2.25) we have 

J 1vu1m+277mudx + J 1Dul2(m-l) ID2ul277mu dz 

B 2Ix2B 

(2.32) ::; C J (IDulm+277miM + 1Dulm+2 ID77lm u) dz, 

IxB 

where the last (m + 2)-powered integral of gradients is estimated by (2.18) in Lemma 10. 

□ 

3 Finite singularity 

In this section we consider the weak solution to the m-harmonic flow (1.8) obtained by 
Hungerbiihler. This weak solution is regular except at most finitely many time slices {11}, 



52

0 < T,, < oo, l = l, ... , L < oo. Let (T,,_1 , T,,), l = l, ... , L < oo, be taken arbitrarily and 
fixed. Thus, this weak solution is locally regular in lRTi-i,Tz = (T,,_1 , T,,) x 1Rm, by the 
partial regularity result in [11, Theorem 10, page 624]. We study the regularity of this 
weak solution around T,,. Hereafter, by parallel transformation on time, let T := T,, -T,,_1 

and we suppose that u is a weak solution of them-harmonic flow (1.8), and locally regular 
in 1R;p = (0, T) x ]Rm_ In the construction of the regular solution u on 1R;p of (1.8) (see 
[11, Theorem 6, Theorem 8, Theorem 9, pp. 620-623]), the usual continuous induction 
on time is used to extend the solution into the maximal existence time-interval (0, T) and 
thus, the regular solution u on 1R;p is obtained from passing to the limit of some sequence 
of regular solutions. In the following we shall make some integral estimates, holding true 
uniformly on the sequence of regular solutions. 

The proof of Theorem 3 is based on the local regularity criterion. 

Theorem 12 (Small m-energy regularity) Let Bo be any positive number satisfying 
4(m - 1)/m < Bo < m. Suppose that u be a regular solution of {1.8} on 1R;p for a 
positive T above. Then, there exist positive numbers Eo < 1 and Ro < 1 depending only on 
m and N such that, if, for some positive RS Ro, 

(3.1) liminf\JJ(2R;t,x0) S Eo, 
t/'T 4 

then it holds true for some positive R < R that u and its gradient Du are uniformly Holder 
continuous in Q((R/8)B0 , R/8)(T, 0), with a Holder exponent and constant depending only 
on R, Bo, m and N. 

Theorem 12 implies the condition for a regular weak solution of (1.8) to be regular up to 
T. The proof is based on Theorem 7. Now we shall study how to derive the criterion (2.8) 
from (3.1), by use of some local integral estimates of the second derivatives and gradients 
in Lemmata 10 and 11. Before going to the detail of proof, we verify the finiteness of 
singularity from Theorem 12 

Proposition 13 Suppose that u be a regular solution of {1.8) on lR;p for a positive T 
above. If u is not regular around (T, xo) for some xo E ]Rm, then there holds, for any 
positive RS Ro, 

(3.2) liminf\JJ(2R;t,xo) > ~4°. t/'T 

Proposition 14 (Finite singularity) It hold true that the singular set S C ]Rm at T is 
contained in the following set: 

(3.3) S C ~ := { x 0 E film I liB,jpf \JJ(2R; t, x 0 ) > co/ 4 for any positive R ::; Ro} 

and thus, the singular set S at T consists of at most finitely many points. 

Proof of Proposition 14. It follows from Proposition 13 that the singular set S at T of a 
solution u is contained in the set ~ as in (3.3). We shall estimate the size of~ given in 
(3.3) in terms of Hausdorff measure. For any positive number K, let B(K) := B(K, 0) be 
a ball and B(K) n ~ be taken. By Vitalli's covering lemma, for any positive R S Ro, there 
exist finitely many balls { B(2R, xi)} with { xi} C B(K) n ~, i = 1, ... , L, such that the 
balls B(2R, Xi), i = 1, ... , L, are disjoint each other and the family of balls { B(lOR, Xi)}, 
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i = 1, ... , L, covers B(K) n ~, that is B(K) n ~ C LJf=1 B(lOR, xi). By the definition of 
~ in (3.3), 

(3.4) ~ < lim inf 1J!(2R; t, xi) for all positive R-<: Ro and any i = 1, ... , L. 
4 t/'T 

Hence, summing up (3.4) over i = 1, ... , L yields 

L 

L~ < ~ (1iB,\f,1f1J!(2R;t,x;)) 

::; liB,\f,1f (t1J!(2R;t,x;)) 

liminf r IDu(t)lmdx 
t/'T Ju~~, B(2R;t,x;) 

(3.5) < E(uo), 

where the energy inequality (2.1) in Lemma 4 is used in the last inequality. The number 
L of balls of the covering depends on the radius K of B(K) firstly fixed, and bounded 
uniformly on K by (3.5). Taking the supremum on K > 0 in (3.5) yields 

sup L(K) -<: E(u0 ). 
K>O 

Therefore, the finiteness of ~ is verified by (3.5). □ 

Proof of Theorem 3. Now let us prove Theorem 3. Here it is only verified that the solution 
is regular outside ~-

Lemma 15 Suppose that, for some positive R::; Ilo, 

liminf 1J!(2R; t, xo)-<: ~-
t/'T 4 

Then, there exists a sequence { tk} of times tk /' T as k ➔ oo such that 

(3.6) 

Lemma 16 Let Bo be any number satisfying 4(m - 1)/m < Bo < m. Let R::; Ilo be a 
positive number and { tk}, tk /' T, be a sequence of times, obtained in Lemma 15. Choose 

tk > max { T/2, T- RB0 } and, let to := tk and R := (T - to) 11Bo_ Then there exists a 

positive number T ::; min { to/2, R} such that, for any t, to - T ::; t ::; to, 

(3.7) 1J!(2R; t, xo) -<: Eo-

Proof of Lemma 16. Let Bo be a fixed number satisfying 4(m - 1)/m <Bo< m. We can 

choose tk, T > tk > max { T/2, T- RBo }- Put to= tk and thus, from (3.6) in Lemma 15 
it follows that 

(3.8) 

Since Du is locally continuous in (0, T) x ]Rm, it holds for a small positive T < to/2 that, 
for any t E [to - T, to], 

(3.9) 
Eo 

1J!(2R; t, xo) -<: 1J!(2R; to, xo) + 2 . 

The desired claim (3.7) follows from (3.8) and (3.9). □ 
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Lemma 17 Let to be as in Lemma 16. Suppose that, for any t, to - T :S t :S to, 

(3.10) \JJ(2R; t, xo) ::; Eo. 

Then there holds that 

(3.11) 

sup J IDulm+2 dx + J IDIDulml 2 dz 
tEI/2 

B/2 I/2xB/2 

::; C(E(uo) +Rm) (1 + Rlm) + CE(uo) ;,m (1 + ~ 2 ), 

where the positive constant C depends only on m and N, and the notations are used: 
'I/2 := (to - T/4, to) and B/2 := B(R, 0). 

Proof of Lemma 17. The solution u is regular in (0, T) x IRm. Under the hypothesis (3.10), 
we can apply the second derivative estimates in Lemma 10 to have (2.18). Then, by use 
of (2.18), moreover, we obtain the Lq-estimate as in (2.24) in Lemma 11. Therefore, the 
desired estimate (3.11) follows from the above argument. □ 

Proof of Theorem 12. Now the proof of Theorem 12 will be given as follows. We shall 
show that the condition (2.8) in Theorem 7 holds true for the weak solution u of (1.8), 
which is locally regular in (0, T) x IRm. 

Let Bo and 'Yo be the positive numbers given in (2.5) and (2. 7) in Theorem 7. Let R be 
the positive number as in (3.1), that is just (3.10) in Lemma 17, and thus, the estimation 
(3.11) is available with a time-interval 'I/2 = (to - T / 4, to). Using the boundedness of the 
first integral in (3.11) and the Holder inequality, we have, for any small positive number 
r :SR and any time t E 'I/2, 

(3.12) 

r'Yo-m J IDu(t)lm dx 

B(r,O) 

< ( J 1Du(t)lm+2 dx)=+
2

IB(r)1=2i-2 r'Yo-m 

B(R,O) 

where Co is given by the number as in the right hand side of (3.11), 

(3.13) 

with the positive constant C depending only on m and N. Here we can choose Bo as 

(3.14) 

because 

m 2 + 4 m(Bo - 2) m 2 
m > B 0 > --2 {==a> m > 'Yo = 2 > --2 , 

m+ m- m+ 

m 2 +4 
m> -- {==a> m>2 

m+2 

and thus, from (3.12) with the choice Bo as in (3.14), it follows that, for any time t E 'I/2, 

limsupr'Yo-m J IDu(t)lmdx = 0, 
r",,O 

B(r,O) 

(3.15) 
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which yields the condition (2.8) on any time-section t E 'I/2 in Theorem 7. For any positive 
E < T/8, we use (3.15) at a time-section t = to - E to obtain the gradient boundedness 
from (2.9): Let R := (T- to)1fBo be as in (3.7) in Lemma 16. For any positive E < T/8, 
there holds 

(3.16) sup !Dul <'.'. C A-ao, 
(T-<-(R/4)Bo, T-,)xB(R/4, O) 

Bo-2 
--2 <ao <;l, 
m-

where the positive constant C depends only on 'Yo, Bo, ao, m and N. 
For any positive E < T /8, we use a changing variable s = t + E, y 

w,(s, y) := u(s - E, x). Then, there holds, letting w = w,, 

(3.17) 

08 W - l:,,.pw = IDwlP-2 A(w)(Dw, Dw), w EN 

in Q := (T- (R/4)B0 , T) x B(R/4, 0) 

and, with the same ao as in (3.16), 

(3.18) sup IDwl <'.'. C R-ao. 
Q 

x and put 

Hence, by (3.17) and (3.18), the solution w is a weak solution of the evolutionary p-Laplace 
equation 

(3.19) f is uniformly bounded in Q 

and thus, wand Dw are uniformly continuous in Q := (r- (R/8)B0 , r) x B(R/8, 0) 

(see [5, Theorem 1.1', Remark 3.1, p. 256] [12, Theorem 1, p. 390], also [4, 13]). 
Therefore, by the Arzella-Ascoli theorem, we can take a subsequence of w" denoted by 
the same notation, and the limit function w00 such that, as E ":,i 0, 

(3.20) uniformly in Q 

and the limit function w00 and its gradient Dw00 are uniformly continuous in Q. From 

(3.20) for u(s - E, y) = w,(s, y) in Q, it follows that, for any s E [r - (R/8)B0 , r], 
u(s - E) = w,(s) converges to w00 (s) uniformly on B(R/8, 0), as E ":,i 0. By the energy 
inequality (2.1) in Lemma 4 and u E Nin 1R,r', it holds by the compactness of the Sobolev 
embedding W 1,P(B(2R, 0)) Y Lmp/(m-p)(B(2R, 0)) that, for any q, 1 :<; q < mp/(m-p), 
u(t) converges to u(T) strongly in Lq(B(2R, 0)) as t /' T and thus, almost everywhere 
in B(2R, 0). Therefore, from the facts above it is verified that u(T) = w00 (T) almost 
everywhere in B(R/8, 0) and thus, the solution u is continuously on time-space extended 
up to the time Tin B(R/8, 0). The proof is complete. □ 
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