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Abstract

Our aim is to establish Hardy-Sobolev inequalities for Sobolev functions in Herz-
Morrey spaces, which extend the classical Hardy inequalities in the LP Lebesgue
space.

1 Introduction

In the half space H = {z = (21, ..., Zy_1, Tn) : T, > 0}, the Hardy inequality says that

/|u V[Pl pd.t<< — _1> /| (Ou/0x,) () P2l da (1)

for $ < p—1and all u € C*'(R") such that v = 0 on JH. Further,

/|u VPaBP da < (%)p‘/ﬂﬁ(@u/ax )(x) [Pl da (2)

for > p—1and all u € Cj(R"); see e.g. [7], [9], [10], [11] and so on.
In connection with the inequality in the book by Maz'ya [11, Theorem 1, p. 214], we
have
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for < p—2and all u € C'(R") such that v = 0 on JH, and
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for > p—2and all u € C}(R™).

The proofs of those results are given by an elementary calculus with the aid of Minkowski’s
inequality and Holder’s inequality.

Our aim in this note is to extend those Hardy type inequalities in L” to the Herz-Morrey
space MP48(R™) (see §3.1). It is well known that Morrey spaces and Herz spaces play an
important role in harmonic analysis and PDE. For fundamental properties of Herz-Morrey
spaces, we refer the reader to [2], [3], [4], [5], [6], [8], [13], [14], [15], [17], etc.

For 1 < m < n, write

! 1 n—m m
T = (T1, ey Trms T 1, - Tp) = (', 2") €R x R™.

As an extension of (1), we show the norm inequality:
//|—1

" ullagsas ey < ClIV" ull|anas gy (5)

for B < (p —m)/p and u € C*(R™) such that u = 0 on {z = (2/,2”) : |2”| < 1}, where
V'u = (Ou/0Zp_mi1, .., Ou/dz,), which is an extension of (3). If u € C}(R™), then (5)
holds for 5 > (p — m)/p, which is an extension of (2) and (4).

The borderline case of (1) and (2), that is, the case 3 = p —1 > 0, is treated in the
following:

- p 0
/ lu(x) [Pz, log(e/z,)| P dov < <L> / |Ow/ 0z, P2l dx (6)
JH p—1 H

for all w € C*(R™) such that u =0 on {z = (2/,2,,) : x, > 1} and

P
[ P ogten,) e < (Ll) [1owon s aa 7)
H - H

p

for all u € C*(R") such that v = 0 on {z = (2/,2,) : z, < 1}. We extend (6) and (7) to
the Herz-Morrey settings.

Our final goal is to establish Hardy-Sobolev inequalities for Sobolev functions on H in
the Herz-Morrey settings.

2 The classical Hardy inequalities in the half space
For 1 < m < n, write
T =(T1, s Trmy Tnmms 15 s T) = (2, 2") € RP™ x R™.
We show Hardy type inequality similar to Maz’ya [11], as an extension of (3).

THEOREM 2.1. Let p > 1 and 8 < p — m. Then there exists a constant C' > 0 such that

(L) ) "< i ([ o) ”

for u € C*(RY) such that u = 0 on OH.
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Proof. Let u be a function in C'(R™) such that « = 0 on OH. Then, for x € H note that

' d
u(r) = /Ogu(x/,m")dr,
so that )
2" | u(z)] S/o [V u(z!,r2”)| dr. (8)

(/01 </H(|V” (@, ra")|e?/)” dx)l/p) "
</H (IV"u(y)|/7)" dy) " /017"ﬁ/pm/”dr

1/p
]#1_/3 (/Rn (v(y)ly”lﬂ/‘”)pdy) :

as required. 0

By Minkowski’s inequality gives

(/H (w"l_llu(w)Dpwidw) 1/p

IN

IN

Set
H(r)={r=(2",2,) ER"* xR: |z, <r}.

The borderline case of Theorem 2.1 is treated as follows.

THEOREM 2.2. Let p > 1. If u is a function in C*(R™) such that u =0 on R™\ H(1), then

(L) s <3t )

Proof. Let u be a function in C*'(R™) such that v = 0 on R"\ H(1). Then, for x € H note
that

< d
u(x) = —/1 Ju(xﬂm"”) dr,
so that .
|$//| 1|U( )| </ |VHU(CL’/,T'I”)|CZT'. (9)
1
By Hélder’s equality, we have for z = (2/,2") € H

1/p
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when 1 — ap’ > 0. Consequently, Minkowski’s inequality gives
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Here we see that ( > — has the minimum ¢, at a = 1/(p +p'). O

1—ap ap
Next we give extensions of (4) and (7).

THEOREM 2.3. Let p > 1 and 8 > p — m. Then there exists a constant C' > 0 such that

PN A —"

for u € C§(RYN).

Proof. By (9) Minkowski’s inequality gives

. 1/p 0o . 1/p

(/ (|x”|_1|u(x)|)pa:£dx> < / (/ (|V"u(;r’,rx")|x§/”)pd:c> dr
JH J1 JH
1/p o)
< ([ovrawamyay) " [T
H 1
» 8/m\P 1/p
N v " B/p d ,
2 ([ Gty an)
as required. O

THEOREM 2.4. Let p > 1. If u is a function in C*(R") such that w =0 on H(1), then

» 1/p 1/p
(/ <|u(:/z/c)|> =" log(ex,)| ™" dx) < % </ IV u() [z dm) :
m\ |7 p—1\Ju

PP/ (/ IV u(z’,ra” ) [PaE=™ | log(e/rx, )| | log(e/z,)| =~ ldr) dr
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Proof. By (8) and Hélder’s equality, we have for x = (2/, 2")

» 1/p
</ ( VP (log(era,)) |V”u(a:/,mc”)\> dr)

1/p'
X </ (log(erzy)) —ap =1 dr>
1/xn
» 1/p
(/ ( 1/’7 (log(era,))® |V"u(x',rx")\) dr)
0
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—a+1/p
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when 1 — ap’ > 0. Consequently, Minkowski’s inequality gives
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Here we see that ( ) — has the minimum ¢, at a = 1/(p + p'). O
1—ap ap

3 Herz-Morrey space

3.1 Herz-Morrey space
For 1 < m < n, write
T = (X1, ey Ty Tt 15 -y Tn) = (2, 2") € R x R™

and set
Hy(r)={z=(2,2") e R"™ x R™ : [2"| < r}

and A,,(r) = H,,(2r)\ H,,(r). To extend the Hardy inequality in the half space, for p > 1,
q > 0, a weight w and an open set G C R", we consider the Herz-Morrey space

ME#(G) = {] € Lie(G) | Fllasgoic < o0},

where
dr

oo 1/q
s = ([ GO oo )



67

in case ¢ < 00; in case ¢ = o0, set
Hf”Mf,’;w’“’(G) = sup w(r)||fllzr@nam)-
r>0

When w(r) = r?, we write MP45(G) for MP4(G). For fundamental properties of Herz-
Morrey spaces, we refer the reader to [2], [3], [4], [5], [6], [8], [13], [14], [15], [17], etc.

3.2 Hardy inequalities for Herz-Morrey space

Let us begin with the Hardy inequality in the setting of Herz-Morrey space in the half
space.

THEOREM 3.1. Let p > 1 and 8 < (p—m)/p. Then for 1 < k < m there exists a constant
C > 0 such that
//|—1

I u“M,f’q*ﬁ(R") < C|||VNU|HM,§*‘?"5(R")

for u € CY(R") such that u =0 on Hy(1), where V"u = (0u/0xy i1, ..., Ou/Oxy,).

THEOREM 3.2. Let p > 1 and 8 > (p—m)/p. Then for 1 < k < m there exists a constant
C > 0 such that
//|71

E UHM,quﬂ(Rn) < C|||V”“|HM,§”“’5(R")

for u € C§(R™).

3.3 Corollaries to Theorem 3.1
Set

H={z=(2,2,) : x, >0}
As easy consequences of Theorem 3.1, we give the following.

COROLLARY 3.3. Let p > 1 and § < (p — 1)/p. Then there exists a constant C' > 0 such
that

||u||M{’=’1=—1+/3(H) < C||8u/8anMf,q,5(H)
for u € CY(R") such that u = 0 on OH.

COROLLARY 3.4. Let p > 1 and 8 < (p —m)/p. Then there exists a constant C' > 0 such
that
//|—1

|z UHM}»,M(H) < ||Vl HM}”%’?(H)

for u € CY(R") such that u =0 on Hy(1).
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3.4 Corollaries to Theorem 3.2

COROLLARY 3.5. Let p > 1 and 8 > (p — 1)/p. Then there exists a constant C' > 0 such
that
||u||M{’=q=‘1+3(H) < C”au/aanM{”qvﬁ(H)

for u € C§(R™).

COROLLARY 3.6. Let p > 1 and 8 > (p —m)/p. Then there exists a constant C' > 0 such

that
|l g gy < OV ullgpony

for v € Cj(R™).

3.5 The borderline case of Theorem 3.2
THEOREM 3.7. Let p >m > 1 and set w(r) = r®™/?|log(e/r)|~7, where

v=1 when q > p;

y=1-=1/p+1/q  when0<q<p.
Then for 1 < k < m there exists a constant C > 0 such that
//|71

Il|z u||AI’€=‘I=W(Rn) < O|IV"u| ||]\/[]1:,q,(p—7n)/p

(R™)

for uw € C*(R") such that u =0 on R™\ H(1).

3.6 The borderline case of Theorem 3.1

In the same manner we treat the borderline case of Theorem 3.1, as an extension of (5).

THEOREM 3.8. Let p > m > 1 and set w(r) = rP~™)/P|log(er)| =7, where 7 is the constant
appearing in Theorem 3.7. Then for 1 < k < m there exists a constant C' > 0 such that

H\I"|_1U||1v1,f="'“(u§n) < C|||V"“‘||M§~q'<P*’">/”(R")

for u € CY(R") such that u =0 on Hy(1).

4 Hardy-Sobolev inequalities for Sobolev functions

4.1 Hardy-Sobolev inequality for Sobolev functions

Our aim in this section is to give Hardy-Sobolev inequalities for Sobolev functions on H.
We write M (H) for MP*“(R") whose functions are considered on H. We also write M
and H for M; and Hy, respectively.

THEOREM 4.1. Let p > 1 and 8 # (p—1)/p. For 0 < X <1, set 1/py =1/p—A/n > 0.
Then there exists a constant C > 0 such that

||U||Mpw%1+»’f(1}ﬂ) < CllIVulllarpas iy

for u € Cj(H).



When ¢ = p, we have the weighted inequality for Sobolev functions.
COROLLARY 4.2. Letp>1,8+# (p—1)/p, 0 < A< 1and 1/py =1/p— A\/n. Then there

exists a constant C' > 0 such that

/ Ju(z)[Pr a3 =108 dp < C (10)
Ju

for all u € C}(H) such that / |Vu(x) [Pz’ dr < 1.
H

This gives Sobolev’s inequality when A\ = 1, and Hardy’s inequality (no account of the
best constant) when A = 0.
To show Theorem 4.1, we prepare the following two lemmas.

LEMMA 4.3 (Sobolev’s inequality (see e.g. [1], [11], [12])). Let p > 1 and 1/p* = 1/p —
1/n > 0. Then there is a constant C' > 0 such that

1]l Lo ey < CNIV V]| Lo Rn)
for v € CH(R™).
Let A(r) = H(4r) \ H(r/2).

LEMMA 4.4. Let p > 1 and 1/p* = 1/p — 1/n > 0. Then there is a constant C' > 0 such
that

llwll Lo Ay < C{T_IHUHLP(A(T-)) + |||VU|||LP(A(1-))}
foruw € C3(R") and r > 0.

For this, take ¢ € C§(A(1)) such that ¢ =1 on A(1) and |V| < 2, and apply Lemma
4.3 with v(z) = p(x, /r)u(x).
4.2 The borderline case of Theorem 4.1

In the borderline case 5 = (p — 1)/p, we establish the following results by using Theorems
3.7 and 3.8.

THEOREM 4.5. Let p > 1. For 0 < A < 1, set 1/py = 1/p — A/n and w(r) =
A1 @D/ log(e/r)| 7, where y is the constant appearing in Theorem 3.7. Then there
exists a constant C' > 0 such that

l[ullarrs @y < CNIVulll a0
for all uw € C}(H) such that u =0 on H\ H(1).

THEOREM 4.6. Let p > 1 and set w(r) = r**®=D/?|log(er)| =, where ~ is the constant
appearing in Theorem 3.7. Then there exists a constant C' > 0 such that

lullarex o @ < CllIVulll prae-n/e@

for uw € Cj(H) such that w =0 on H(1).
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4.3 Corollaries

When g = p, we have the weighted inequalities for Sobolev functions.

COROLLARY 4.7. Let p > 1,0 < A <1 and 1/py = 1/p — A/n. Then

/ lu(@)[P> () =D/ log(e/2,)| ) da < C (11)
H

for all u € Cg(H) such that w = 0 on H\ H(1) and [||Vull| gop.co-v/0) < 1.

COROLLARY 4.8. Let p > 1,0 < A <1 and 1/py, =1/p— A/n. Then

/ [u(z)]P> (;L';\L_H(p_l)/p\ log(ezn)|_1)m de < C (12)
H

for all u € Cg(H) such that u = 0 on H(1) and ||[Vull| gos.c-v/em < 1.

Our results here give (weighted) Sobolev’s inequality when A = 1, and Hardy’s inequal-

ity (no account of the best constant) when A = 0.
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