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ON CHARACTERIZATIONS OF VMO,.,N(Rn) SPACE 

KOZOYABUTA 

Alls TRACT. In this note, we shall give a resume of a joint work with Mingming Cao [ 5]. We 

state several different characterizations of the vanishing mean oscillation space associated 

with Neumann Laplacian /';.N, written VMO8N(Rn). We first describe it with the classical 

VMO(Rn) and certain VMO on the half-spaces. Then we comment that VMO8N(Rn) is 

actually BMO8N(Rn)-closure of the space of the smooth functions with compact supports. 

Beyond that, it can be characterized in terms of the compact commutators of Riesz trans­

forms and fractional integral operators associated to the Neumann Laplacian. Additionally, 

we by means of the functional analysis obtain the duality between certain VMO and the cor­

responding Hardy spaces on the half-spaces. Finally, we present an useful approximation for 

BMO functions on the space of homogeneous type, which can be applied to our argument 

and otherwhere. 

1. OORODUCTION 

A locally integrable function f on Rn is said to be in BMO(Rn) if 

11/IIBMO(IR") := sup IQl I ( lf(x) - /Qldx < oo, 
Qs:;IR" JQ 

where /Q denotes the average value off on the cube Q.@ (F. John and L. Nirenberg, 1961.) 

Let VMO(Rn) denote the closure of C~(Rn) in BMO(Rn). Additionally, the space VMO(Rn) 

is endowed with the norm of BMO(Rn). (R.R. Coifman and G. Weiss, 1977.) 

• H 1(Rn) = VMO(Rny_ 

• Let 1 < p < oo and Rj be the j-th Riesz transform on Rn. Then Uchiyama 1978 showed 

that for b E Uq>1Lf0 /Rn) 

(1.1) 

and 

(1.2) 
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where .£,(LP(Rn), LP(Rn)) is the set of all bounded linear operators from LP(Rn) to LP(Rn), and 

<J<(LP(Rn), LP(Rn)) is the set of all compact operators from LP(Rn) to LP(Rn). Prototypes were 

considered by Coifmam, Rochberg and Weiss 1976, and P. Hartman 1958 and D. Sarason 

1975, respectively. 

Moreover 

Proposition 1.1 ([34]). Let f E BMO(Rn). Then f E VMO(Rn) if and only if f satisfies the 

following three conditions: 

(a) r1(f) := lim sup (i~1 JQ lf(x) - fQ! 2dx}112 = 0, 
r--->0 Q:C(Q)<;r 

(b) Y2U) := lim sup (i~
1 

f,Q lf(x) - fQl 2dx}112 = 0, 
r--->oo Q:l(Q):?:r 

(c) y3(f) := lim sup (i~1 JQ lf(x) - fQl 2dx}112 = 0. 
r--->oo QcQ(O,r)' 

Suppose that n is an open subset of Rn. Define 

{ 
I ( If (x)l2 } 

M(O) := f E L10/0): 3E > 0 s.t. Jn 1 + lxln+edx < 00 • 

Definition 1.2. (X. T. Duong and L. Yan 2005) We say that f E M(Q) is of bounded mean 

oscillation associated with an operator L ( abbreviated as BMOL(Q)) if 

where the supremum is taken over all cubes Q in n. 

Definition 1.3. (D. G. Deng, X. T. Duong, L. Song, C. Tan and L. Yan, 2008) We say that 

a function f E BMOL(Q) belongs to VMOL(Q), the space of functions of vanishing mean 

oscillation associated with the semigroup {e-1L}t>O, if it satisfies the limiting conditions 

( 1 L )1/2 Y1 (f; L) := lim sup -
1 

I lf(x) - e-t(Q)2L f(x)l2dx = 0, 
r--->0 Q<;;Q:t(Q)<;r Q Q 

Y2U; L) := lim sup - lf(x) - e-t(Q)2L f(x)l2dx = 0, ( 1 L )1/2 
r--->oo Q<;;O.:t(Q):?:r I QI Q 

y3(f; L) := lim sup - lf(x) - e-t(Q)2L f(x)l 2dx = 0. ( 1 L )1/2 
r--->oo Q<;;O.nQ(O,r)' IQI Q 

We endow VMOL(Q) with the norm of BMOL(Q). 
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2. PRELIMINARIES 

2.1. The Neumann Laplacian. The Neumann problem on the half line (0, oo) is given by 

the following: 

(2.1) {

Ut - Uxx = 0, 

u(x, 0) ~ <f>(x), 

Ux(0, t) - 0. 

X, t E (0, oo ), 

Let 111,N+ be the Laplacian corresponding to (2.1). According to [33, Section 3.1], we see 

that 

For n > l, write JR.1 = JR.n-l x lR+. And we define the Neumann Laplacian on JR.1 by 

where 11n-l is the Laplacian on JR.n-l. Similarly, we can define Neumann Laplacian 11N_ .-

11n,N_ On JR.~. 

The Laplacian 11 and Neumann Laplacian 11N. are positive definite self-adjoint opera­

tors. By the spectral theorem one can define the semigroups generated by these operators 

{e-1,1}12,o and {e-tLiN• h2co• Set p1(x,y) and Pt,LiN• (x,y) to be the heat kernels corresponding to 

the semigroups generated by 11 and 11N., respectively. Then there holds 

It follows from the reflection method [33, p. 60] that 

Let us introduce some notation. For any subset A c JR.n and a function f : JR.n ➔ C, 

denote by !IA the restriction off to A. For any function f on JR.n, we set 

f+ = JhR~ and f- = JhR~. 

For any x = (x',xn) E JR.n we set x = (x', -xn), If f is a function defined on lR.1, its even 

extension and zero extension defined on JR.n are respectively given by 

fe(x) := {f(x), 
f(x), 

if XE JR.1, 

if X E JR.~, 

fz(x) := {f(x), 
0, 

if XE JR.1, 

if XE JR.~. 
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Now let AN be the uniquely determined unbounded operator acting on L2(JRn) such that 

(2.2) 

for all f : JRn ➔ JR such that f+ E W1•2(JR~) and f- E W1•2(JR'.:). Then AN is a positive 

self-adjoint operator and 

(2.3) 

The heat kernel of e-ttw, denoted by p1,,,w(x, y), is given by 

where H: JR ➔ {0, 1} is the Heaviside function given by 

H(t) = 1, if t ~ 0; H(t) = 0, if t < 0. 

Note that 

• The operators A, AN± and AN are self-adjoint and they generate bounded analytic 

positive semigroups acting on all LP(JRn) spaces for 1 :=; p :=; oo; 

• Let Pi,L(x,y) be the kernel corresponding to the semigroup generated by one of the 

operators L listed above. Then p 1,L(x,y) satisfies Gaussian bounds: 

Definition 3.1. Let f be a function on JR~. 

(1) f is said to be in BMO,(R~) if there exists F E BMO(Rn) such that FIIR~ = f. If 

f E BMO,(R~), we set IIJIIBMO,(IR~l := inf {IIFIIBMO(IR"l : FIIR~ = f}. 
(2) f is said to be in BMOz(R~) if its zero extension fz belongs to BMO(Rn). If f E 

BMOz(R~), we set IIJIIBMO,(IR~l := llfzllBMO(lR"l· 
(3) f is said to be BMOe(JR~) if fe E BMO(Rn). Moreover, BMOe(R~) is endowed with 

the norm IIJIIBMO,(IR~l := 11/ellBMO(IR"l· 

Similarly one can define the spaces BMO,(R'.:), BMOz(R'.:) and BMOe(R'.:). 

The different type EMO spaces enjoy the following properties. 
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Proposition 3.2 ([15]). (D. G. Deng, X. T. Duong, A. Sikora and L. X. Yan, 2008) 

There hold that 

11/IIBMO,'N+ (lll.~) "" 11/IIBMO,(IR~) "" 11/IIBMO,(IR~), 

IIJIIBMO,;N_ (lll.") "" 11/IIBMO,(IR") "" 11/IIBMO,(IR"), 

11/llsMO,.N(IR") "" 11/+,ellsMO(IR") + 11/-,,llsMO(IR")· 

Additionally, P. Auscher and E. Russ 2003 in [1 ] and P. Auscher, E. Russ and P. Tchamitchian 

2005 in [2] further investigated the BMO,(Q), BMOz(Q) and corresponding Hardy spaces if 

Q is a Lipschitz domain. The local case can be found in D. C. Chang [6] 1994. 

As one has seen, the theory of the classical BMO and VMO is closely connected to 

the Laplacian A. On the other hand, the generalization of the operator L brings the new 

challenges to study the VMOL space. As far as we know, there is almost no literature to 

explore its other properties except for the duality. Thus, three basic questions arising from 

(1.2) motivate our work: 

• Question 1: Does (1.2) hold for Riesz transforms VL-112 associated with the operator 

L other than the Laplacian? 

• Question 2: What type of VMOL spaces is suitable to (1.2) for Riesz transforms 

VL-½? 

• Question 3: Are there other new properties for V MOL? 

Before addressing these questions, let us get a glimpse of the possibility. If L is the 

Dirichlet Laplacian An+ on JR:, then the BMO,...DJJR.:) space cannot be characterized by the 

boundedness of [b, V A;~12] (see X. T. Duong, I. Holmes, J. Li, B. D. Wick and D. Yang 2019 

[17, Theorem 1.4]). This indicates that the equation (1.2) does not hold for VL-½ in a very 

general framework. On the other hand, (1.2) holds for certain special operator, for example 

the Bessel operator A,;i in [18]. Furthermore, as we know, the boundedness is prior condition 

for the compactness. Taking into consideration some research on the Neumann Laplacian 

AN [15] and the boundedness of commutators of V A-;,112 in [28], we will pay our attention to 

the Neumann Laplacian AN. We postpone all the definitions and notation in Section 2. 

We begin with giving the answers to Question 1. 

Theorem 3.3. Let l < p < oo and j = 1, ... ,n. Then b E VMO,...N(JR.n) if and only if[b,RN,j] 

is a compact operator on LP(JR.n). 

Our next main result is to indicate that the equation (1.2) also holds for the fractional 

integrals associated with the Neumann Laplacian AN, 
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Theorem 3.4. Let O <a< n, 1 < p < q < oo with i = -J; - ~- Then b E VM08 N(JR.n) if and 

only if [b, Li;a12] is a compact operator from LP(JR.n) to U(JR.n). 

Theorems 3.3 and 3.4 also provide positive answers to Question 2. Additionally, VMOL 

space is suitable to (1.2) for Riesz transforms VL-½ when Lis the Neumann Laplacian LiN+ 

(LiN_) on the upper (lower) half-space. Actually, we have established the desired properties 

for the corresponding VMO spaces on the half-space in Section 3. The approach in Section 

5 is easily modified to the setting of half-spaces. The details are left to the readers. 

Considering Question 3, we first build a bridge between the VM08 N(JR.n) and the classical 

VMO space. As we will see, it is quite valuable to further study the VM08 N(JR.n) space. 

Theorem 3.5. The VM08N(JR.n) space can be characterized in the following way: 

Moreover, we have that 

llfllvMOt,N(R") "" llf+,ellvMO(llt") + llf-,ellvMO(IR")· 

Beyond that, we can understand the VM08 N(JR.n) space in the following way. 

We also amalyze the other properties, including characterizations, duality and weak*­

convergence, of VM08 N(JR.n) and associated spaces. 

Now let us discuss the strategy of the proof. Generally, the proof of (1.2), as well as 

other known results about the compactness of commutators, makes use of a characterization 

of precompactness in Lebesgue spaces, which is the called Frechet-Kolmogorov theorem. 

Such theorem has been adapted for various spaces for examples, [8], [10], [11] and [1 8]. 

Even so, it seems to be invalid for the Neumann Laplacian LlN. One main reason is that the 

smooth properties on JR.n are not enough although the Riesz transforms V LlN are Calder6n­

Zygmund operators on both lR.1 and JR.'.'._. In order to circumvent this obstacle, we reduce our 

question to that in L~(JR.n), which is a closed subspace of LP(JR.n) and contains all even func­

tions with respect to the last variable. Theorem 3.5 is based on the reflection argument on JR.n. 

Thus it allows us to focus on the analysis on half-spaces. The proof of Theorem 3.6 is con­

structive but different from Uchiyama's. We mainly apply some EMO estimates for smooth 

functions with compact support. In view of Theorem 3.5, it needs to connect the functions 

on the upper and lower spaces by continuity and smoothness. As we mentioned above, the 

VM08 N(JR.n) space is closely related to those on half-spaces, such as VMOe(lR.1), VMOr(lR.1) 
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and VMOz<lR:). Hence, we also investigate their duality to understand VMO,1N(JR.n) well. 

Our method is motivated by [13] and [6]. Some results from functional analysis is quite 

effective on our conclusion. Not only that, we utilize an approximation for BMO functions 

by the continuous functions with bounded support. The general case will be presented in 

Section 6. 

This article is organized as follows. In Section 2, we recall the definitions of the Neu­

mann Laplacian 1'1N+ and the reflection Neumann Laplacian 1'1N. We also collect some known 

results related to various types of BMO spaces. In Section 3, we introduce the vanishing 

mean oscillation space VMO,1N(JR.n) associated with 1'1N, and provide its characterizations by 

means of the classical VMO(JR.n) space, the VMO on the half-spaces, and smooth functions 

with compact supports. Section 4 is devoted to the duality between certain VMO spaces and 

the corresponding Hardy spaces. After that, in Section 5, we establish other characterizations 

of VMO,1N(JR.n) using the compact commutators of Riesz transforms and fractional integral 

operators associated with 1'1N. Finally, in Section 6, an approximation is presented for BMO 

functions on the space of homogeneous type in the sense of Coifman-Weiss. 

Let us introduce several types of VMO spaces on the half-spaces. 

Definition 3.7. Let f be a function on JR:. 

(1) f is said to be in VMO,(JR:) if there exists F E VMO(JR.n) such that FIR~ = f. If 
f E VMO,(JR:), we set llfllvMO,(R~) := inf {11FllvMO(R") : FIR~ = f}. 

(2) f is said to be in VMOz<lR:) ifthefunctionfz belongs to VMO(JR.n). If f E VMOzClR:), 

we set llfllvMOz{R~) := llfzllvMO(R")· 
(3) f is said to be VMOe(JR:) if fe E VMO(JR.n). Moreover, VMOe(JR:) is endowed with 

the norm llfllvMO,(R~) := llfellvMO(R")· 
Similarly one can define the spaces VMO,(JR~), VMOz(JR~) and VMOe(JR~). 

Theorem 3.8. The spaces VMO,1NJJR:), VMOe(JR:) and VMO,(JR:) coincide, with equiva­

lent norms 

llfllvMo~N+ (IR~) ~ IIJIIVMo,<R~) ~ llfllvMO,(R~)· 
Similar results hold for VMO,1N_ (JR~), VMOe(JR~) and VMO,(JR~). 

To understand the VMO,1N(JR.n) space well, let us describe it in terms of VMO spaces on 

the upper/lower half-spaces. 

Theorem 3.9. The VMO,1N(JR.n) space can be described as 
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Moreover, we have that 

As a consequence, Theorem 3.5 immediately follows from Theorems 3.9 and 3.8. 

We here give the comparison among the different spaces. 

Theorem 3.10. The following inclusions hold 

Proof. The equivalence VMO,1(Rn) = VMO ~(Rn)= VMO(Rn) was proved in [16, Propo­

sition 3.6]. VMO(Rn) ~ VMO,1N(Rn) and VMO(Rn) <:;; VMO,1N(Rn) can be easily checked. 

In order to certify the strict inclusion, we give examples. □ 

-Y 
Let X and Y be Banach spaces. For the convenience of notation, we denote by X the 

closure of X in Y. Now we characterize VMO spaces via smooth functions with compact 

supports. 

Theorem 3.11. We have 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

VMO,1N(Rn) = ~BMO,;N(R"), 

VMO (Rn)= coo(Rn)BMO,;N+(JR~) 
AN+ + C + ' 

---BMO (Rn) 
VMO,(R:) = C;:"(R~) ' +, 

VMO (Rn)= coo(Rn)BMO,(R~) 
r + C + ' 

VMO (Rn) = coo(Rn)BMOz(R~) 
Z + C + 0 

Moreover, the similar results hold for the lower half-space. 

Proof. We only show (3.1). We will use the fact 

--BMO(R") 
(3.6) VMO(Rn) = Cc(Rn) . 

---BMO,; (JR") ---BMO,; (JR") 
We first prove C;:"(Rn) N <:;; V MO i1N(Rn). Assume that f E C;:"(Rn) N . Then 

for any E > 0, there exists g E C~(Rn) such that II/ - gllsMo,,N(R") < €. Observe that 8+.e, 8-,e E 

Cc(Rn). Indeed, if supp(g) <:;; R~, then 8+,e E Cc(Rn) and 8-,e = 0. If supp(g) <:;; R'.'., then 

8+,e = 0 and 8-,e E Cc(Rn). If supp(g) n R~ -:f:. 0 and supp(g) n R'.'. -:f:. 0, then 8+,e E Cc(Rn) 

and 8-,e E Cc(Rn). Moreover, it follows from Proposition 3.2 that 11/+,e - 8+,,llsMO(JR") ::5 E 

and 11/-,, - 8-,,llsMO(JR") ::5 E. By (3.6), we have f+,e E VMO(Rn) and f-,e E VMO(Rn), which 

together with Theorem 3.5 gives f E VMO,1N(Rn). 
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Now we are in the position to show the converse. Assume that f E VMOiiN(En), which 

by Theorem 3.5 gives that f+,e, f-,e E V MO(En). Hence for any E > 0, there exists g1 E 

C~(En) such that 11/+,e - g1IIBMO(]Rn) < €. Set 

gi(x) = (gi(x) + gi(x', -Xn))/2, X = (x', Xn) E En. 

11/+,e - 81IIBMO(]Rn) = 11/+,e - (g1(X) + g1(x', -Xn))/211BMO(]Rn) 

1 
~ l (llf+,e - g1IIBMO(]Rn) + 11/+,e - gi(x', -Xn)IIBMO(]Rn)) 

= 11/+,e - g1IIBMO(IR.n) < E. 

Similarly, there exist g2 E C~(En) such that 

ByLemma 3.14 belowthereexistevenfunctionsi,t,1, i,t,2 E C~(E)suchthati,t,1(0) = i,t,2(0) = 1 

and 

Define 

XE E'.'_. 

It immediately yields that 

h E Cc(En) and h+,e, h-,e E C~(En) ~ V MO(En). Consequently, we deduce that 

11/+,e - h+,ellBMO(JRn) ~ 11/+,e - 81IIBMO(]Rn) + 1181 - h+,ellBMO(JRn) 

~ E + llgi(x', O)i,t,i(xn)IIBMO(Rn) < 2E, 

11/-,e - h-,ellBMO(JRn) ~ 11/-,e - 82IIBMQ(]Rn) + llg2 - h-,ellBMO(JRn) 

~ E + llg1 (x', O)l,t,1 (xn)IIBMO(Rn) < 2E, 

and 

II/ - hllvMOtw(Rn) "" 11/+,e - h+,ellvMO(Rn) + 11/-,e - h-,ellvMO(Rn) :$ E. 

This implies that Cc(En) is dense in VMOiiN(En). Since C~(En) is dense in Cc(En) under the 

L00 (En) norm, we see that C~(En) is dense in VMOiiN(En). 

□ 
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The remainder of this section is devoted to showing Lemma 3.14. To this end, we first 

present the BMO estimates for smooth functions with compact supports. 

Lemma 3.12. Let cpj(x) E C;:'(lR.) be nonnegative and satisfy X{lxlo52j-IJ :<:::; cpj(x) :<:::; X!1xlo52jJ, 

j EN, and 
1 e 

,ft e(x) = - I cpj(x), f = 3, 4, .... 
f j=l 

Then it holds that iftt E C;:'(JR.), 0 :<:::; iftc(x) :<:::; 1, iftc(x) = 1 for lxl :<:::; 1, iftc(x) = 0 for lxl ::::: 2e 

and II1/tellBMO(]R.) :<:::; 16/£, 

Proof We have only to prove II£ iftell8 Mo(IR) :<:::; 16. Let I= [a, b] be an interval. If III < 2, then 

we see easily that (2j+l - 1) - (2j - 1) = 2j ::::: 2 for any j::::: 1 and 

If III ::::: 2, there exists j E N + such that 2j :<:::; III < 2j+ 1. We shall consider the following two 

cases: (a) j::::: £- 1 and (b) 1 :<:::; j :<:::; £- 2. 

Case (a): j ::::: £ - 1. 

1 f e-2 1 f 1 f m I lf</Je(x)dx = ~ m I <.p;(x)dx + m I 'Pe-1(x)dx 

C-2 l _ 
< ~ - · 2 · 2' + 2 - L. 2i 

i=l 

2t-l 
= -. +2<3. 

21 

Case (b): 1 :<:::; j :<:::; £ - 2. If a ::::: 2\ then b - a < 2j+I i.e. b < a+ 2j+I, and so I contains at 

most one point of the form 2; (j + 1 :<:::; i :<:::; £). Hence, it yields that 

l~I f lfifte(x) - (£ - i)ldx:.:::: 1. 

If -2j :<:::;a< 2j, then b < 2j+l + 2j < 2j+2 :<:::; 2t, which implies that 

1 f 1 j+l . 1 . 
-III lfl/te(x) - (£ - j - l)ldx :<:::; 2j I 2 • 2' :<:::; 2 :<:::; 2j • 2. 21+2 = 8. 

I z=l 

. Thus, we have the desired estimate if a ::::: - 2j. 

Note that if a< -2j, then it follows b < 2j+I _2j = 2j. So, similarly, the above estimates 

hold for b < 2j, and hence if a< -2j. 
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All together we get 

Lemma 3.13. For any E, 17 > 0, there exists if! E C;:"(JR.) with supp if! c [-17, 17] such that 

II1/illsMO(R) < E, 0 ~ ifi(x) ~ 1, and ifi(0) = 1. 

□ 

Proof We use the notations in Lemma 3.12. First we take e E N+ so that llrfrellsMO(IR) ~ 

16/f < E, and we set 

rp(x) = rfre(2e x/17). 

Then from the dilation invariance of BMO norm, we get II1/illsMO(R) < E. Since the supp rfre c 

[-2e, 2e], we see that supp ,fr c [-17, 17]. This ,fr also satisfies rp(0) = 1 and 0 ~ rp(x) ~ 1 for 

xER 

Lemma 3.14. For any E > 0 and g E C;:"(JR.n), there exists if! E C;:"(JR.) such that 

0 ~ rp(xn) ~ 1, rp(0) = 1 and llg(x', 0)rp(xn)llsMO(IR") < E, 

□ 

Proof In the case n = l, for E > 0 take E1 > 0 satisfying lg(0)IE1 < E. Takeing ifie in 

Lemma 3.12 so that 16/f < E1, we get llg(0)rfre(Xn)llsMO(IR) < E. So this rfre is a desired 

function. In the case n ~ 2, we proceed as follows. Let g E C;:"(JR.n) and E > 0. Then 

g(x',0) E C;:"(JR.n-l) c VMO(JR.n-1). Let Q =(/',[)be any cube in JR.n, where/' is a cube in 

JR.n-l and /be an interval in R Since g(x', 0) is also a VMO(JR.n-l) function, there exists o > 0 

such that 

_!__ ( lg(x', 0) - g(·, 0)pldx' < E if II'I <on-I. 
II'I JI' 

By Lemma 3.13 for 17 = E0/2, there exists if! E C;:"(JR.) with supp if! c [-17, 17] such that 

Now we deduce that 

II1/illsMO(R) < E, 1/1(0) = 1, and 0 ~ ifi(x) ~ 1, x E R 

J := l~I I, Ilg(x', 0)ifi(xn) - g(·, 0)pifi1ldxndx' 

~ l~I I, I lg(x', 0)ifi(xn) - g(x', 0)ifi1ldxndx' 

+ l~I I, I lg(x', 0)1/11 - g(·, 0)pifi1ldxndx' 
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I ( ' 'If :;; II'I JI' lg(x, 0)ldx ill 111/!(Xn) - l/!1ldxn 

I ( ' ' + II'I JP lg(x, 0) - g(·, 0)pldx ll/!11 

I ( ' ' < cllgllL00 (Rn) + 11'1 J1, lg(x, 0) - g(·, 0)l'ldx ll/!11-

Hence, if III = II'l 11(n-l) < 6, we get J < cllgllL00 (1R.n) + E. If In [-TJ, 1}] = 0, we see trivially 

J = 0. If In [-TJ,TJ] -:f:. 0 and III~ 6, we see that 

1 f I 21] ll/!11 :;; ill 111/!(Xn)ldxn :;; ill · 21] < 8 < E, 

and so we get J < cllgllL00 (Rn) + 2cllgllL00 (1R.") = 3cllgllL00 (Rn)· Modifying constants above com-

pletes the proof of Lemma 3.14. □ 

4. DUAL SPACES 

Let us recall the definitions of various Hardy spaces on the upper/lower half-space in [7]. 

Definition 4.1. Let f be a function on JR.:. 

(1) f is said to be in H;(JR.:) if there exists FE H 1(1R.n) such that FIIR~ = f. If f E H;(JR.:), 

we set 11/IIH)(R~) := inf {IIFIIH'(JRn) : FIIR: = f}. 
(2) f is said to be in H}(JR.:) if the function fz belongs to H 1(1R.n). If f E H}(JR.:), we set 

11/IIHi(R~) := llfzllH1(JRn)• 
(3) f is said to be H;(JR.:) if f, E H1(JR.n). Moreover, H;(JR.:) is endowed with the norm 

11/llm(R~) := llf,IIH1(Rn)· 
(4) f is said to be H~(JR.:) if f 0 E H 1(1R.n). Moreover, H~(JR.:) is endowed with the norm 

11/IIHJ(R~) := 11/,IIHl(Rn)• 
Similarly one can define the spaces H;(JR.~), H}(JR.~), H;(JR.~) and H~(JR.~). 

The authors in [7] proved that 

H;(JR.:) = H~(JR.:) and Hl(JR.:) = H;(JR.:). 

A celebrated work of Pefferman and Stein [22] showed that BMO(JR.n) is the dual space of 

H 1(JR.n). Moreover, in the half-spaces setting, the duality was established in [2] as follows 

(H;(JR.:))* = BMOzClR.:) and (Hl(JR.:))* = BMO,(JR.:). 

As is known, 
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Proof. The proof can be found in Theorem 4.1 [16], in which a more general result about the 

operator L was given. □ 

Based on the duality above, let us investigate the weak*-convergence in Ht(]Itn). 

Theorem 4.3. Suppose that {.fi}k;o,l is a bounded sequence in Hl (JR.n), and that lim fk{x) = 
N k➔oo 

f(x) a.e. x E JR.n. Then f E Hl/JR.n) and {fkh;o,1 weak*-converges to f, that is, 

lim ( fk{x)<{J(x)dx = ( f(x)<{J(x)dx, V<{J E VMO,,,w(JR.n), 
k---+oo JJFf.n JJP!.n 

where the integrals denote the dual form between Ht(JR.n) and BMO;,.N(JR.n) in general. 

Theorem 4.4. The dual space ofVMOz(lR.1) is H;(lR.1), 

Theorem 4.5. The dual space ofVMO,(lR.1) is Hl(JR.1), 

5. COMPACT COMMUTATORS 

In this section, we will characterize VMO;,.N(JR.n) via the compactness of commutators of 

Riesz transforms and the fractional integral operators associated with the Neumann Lapla­

cian. 

5.1. Compactness of [b,RN]• The Riesz transforms associated to the Neumann Laplacian 

are given by 

RN= (RN,l,,,, ,RN,n) := V /).";_,112 . 

The kernel of RN,j was formulated in [28] as 

RN,j(x,y) = (R/x,y) + Rj(x,y) )H(XnYn), j = 1, ... , n, 

where Rj(x,y) is the kernel ofRiesz transform Rj: 

Xj - Yj . 
Rj(x,y) = I I 1 ,J = 1, ... ,n, x-yn+ 

Theorem 5.1. Let 1 < p < oo and j = 1, ... ,n. Then b E BMO;,,_N(JR.n) if and only if[b,RN,j] 

is bounded on LP(JR.n). Moreover, we have 

When p = 2, the above result was proved in [28, Theorem 1.4]. But the proof was 

complicated because the authors used a weak factorization of the space HL(JR.n). We present 

a direct and easy proof for the lower bound and the upper bound can be obtained for 1 < p < 

oo as the case p = 2. To show the sufficiency we use the following. 
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Theorem 5.2. Let I < p < oo and b E U1<q<oo Lf0 c(JR.n) with b(x) = b(x), x E JR.n. Then for 

the Riesz transfonn R; (i = 1, ... , n) there exists a constant A = A(n, p, R;) such that 

llbllsMO(R") :S: All[b,R;]lblR"l--->LP(IR"l· 

We prove this by modifying the corresponding proof by A. Uchiyama [34]. 

Theorem 5.3. Let I < p < oo and j = 1, ... , n. Then b E VMO,.,N(JR.n) if and only if [b,RN,j] 

is a compact operator on LP(JR.n). 

We show the sufficiency directly, and the necessity by modifying the corresponding one 

by A. Uchiyama [34]. 

6. A BMO APPROXIMATION 

Let (X, d, µ) be a space of homogeneous type in the sense of Coifman-Weiss. That is, 

X is a topological space endowed with a Borel measure µ and a quasi-metric d, satisfying 

the following conditions: (a) d(x,y) = d(y,x), (b) d(x,y) > 0 if and only if x -:f:- y and (c) 

there exists a constant K such that d(x,y) :S: K[d(x,z) + d(z,y)] for all x,y,z EX. (d) the 

balls B(x, r) = {y E X; d(x,y) < r} centered at x and of radius r > 0 form a basis of open 

neighborhoods of the point x and, also, µ(B(x, r)) > 0 whenever r > 0. Furthermore, µ 

satisfies the doubling condition: there exists a positive constant A such that µ(B(x, 2r)) :S: 

Aµ(B(x, r)). 

The purpose of this section is to give an approximation for BMO(X) functions by the 

continuous functions with bounded supports as follows. We have seen an application of such 

approximation in Section 4. We also believe that there will be more applications of it. 

Proposition 6.1. For any f E BMO(X) there exists a sequence of bounded, continuous and 

boundedly supported {/j}i=1 such that 

11/jllsMo :S: a1llfllsMo, 

lh(x)I :S: a2Mf(x), x EX, 

lim /j(x) = f(x), a.e. x EX, 
]->DO 

where a 1 and a2 are independent on f, and M is the restricted centered Hardy-Littlewood 

maximal function off: 

Mf(x) = sup ( / )) f 1/(y)I dµ(y). 
O<r<l µ B X, r J B(x,r) 
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Remark 6.2. If (X, d, µ) is complete as a quasi-metric space, the closure of any ball is 

compact, because of its total boundedness, which can be seen by using Theorem ( 3.1) and 

the claim (3.4) in [13]. Hence, the functions fj above are compactly supported. 
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